
Reconciling multiple IPsec and firewall policies

Tuomas Aura, Moritz Becker, Michael Roe, Piotr Zieliński

Submission to SPW 2007

Abstract

Manually configuring large firewall policies can be a hard
and error-prone task. It is even harder in the case of IPsec
policies that can specify IP packets not only to be accepted
or discarded, but also to be cryptographically protected in
various ways. However, in many cases the configuration
task can be simplified by writing a set of smaller, indepen-
dent policies that are then reconciled consistently. Simi-
larly, there is often the need to reconcile policies from
multiple sources into a single one. In this paper, we dis-
cuss the issues that arise in combining multiple IPsec and
firewall policies and present algorithms for policy recon-
ciliation.

1 Introduction

We would like to develop software tools that make it eas-
ier for system administrators to correctly configure IPsec:

• IPsec policies are typically configured using the
same representation that is used internally by the
OS kernel for the IPsec operation. This represen-
tation has not been designed for usability. It easy to
make mistakes in the policy configuration and to al-
low accesses that one wanted to deny, and vice versa.
We would like to provide some alternative means of
specifying the security policy — one that is easier to
understand, and harder to get wrong — and use it to
automatically generate the policy that the operating
system uses internally.

• Mobile devices move regularly between networks
and security domains such as office, home, and cel-
lular networks. Since the IPsec policy on the mobile
device is typically configured by a single administra-
tor, it protects only communication within one do-
main. For example, business laptops are usually not

configured to use IPsec when communicating with
the user’s home PC. We would like be able to com-
bine policies from two or more security domains, un-
less they are inherently in conflict with each other.
(We are just concerned with the policies. Each do-
main must have its own means of authentication,
which may also require configuration, but that is out-
side the scope of this paper.)

• Applications, such as a web server, and even kernel-
level protocols, such as Mobile IPv6 [4], may require
changes to the local IPsec policy when they are in-
stalled. It is impossible for a system administrator
to anticipate all such policies. Thus, it is necessary
to compose policies defined by the administrator, lo-
cal user, and various applications. We would like
to do this policy composition automatically and in
a provably correct way, rather than manually by the
administrators.

These objectives have led us to consider the problem
of reconciling policies: given two or more security poli-
cies, how do we automatically generate a combined policy
that meets the requirements of all of them? In the rest of
this paper, we will describe an algorithm for reconcilia-
tion and give a proof of its correctness. Using this algo-
rithm, complex policies can be constructed by combining
simple building blocks. For example, a system adminis-
trator could write a separate policy for each service that a
machine provides, and then reconcile them to form a pol-
icy for the machine. When security policies are generated
by instantiating templates, as is commonly done in large
systems, the reconciliation algorithm allows us to handle
machines that have multiple roles: instantiate the template
for each role separately, and then reconcile the results.

The reconciliation algorithm can also be used when a
network administrator sets a policy for every machine on
a network, but the administrator of each local machine
is permitted to add additional constraints: reconcile the

1

policies specified by the two levels of administration. If
necessary, this can be extended to more than two policy
sources, so that we could reconcile policies set by the net-
work administrator, the local machine administrator, the
administrator of a visited network (e.g., at home), the user,
and the installed applications.

2 IPsec and firewall policies

In the IPsec architecture [5], the security policy is mod-
elled as an ordered list of 〈selector, action〉 pairs. This
list is known as the security policy database (SPD). Each
packet sent or received is compared against the selectors
to find the first one that matches, and then the correspond-
ing action is taken. The possible actions are:

• BYPASS - pass the packet through without modifica-
tion

• DISCARD - drop the packet

• PROTECT - apply some form of cryptographic pro-
cessing, such as encryption or decryption

PROTECT is a family of actions, rather than a single
action: sending packets through a secure tunnel to gate-
way A is different from sending them through a similar
tunnel to gateway B. In the same way, encrypting for con-
fidentiality is a different action from adding a MAC for
integrity, and encrypting with DES is a different action
from encrypting with AES.

The order of the SPD entries matters. Suppose that a
particular packet matches the selectors in two SPD en-
tries, one with an action of BYPASS and another with an
action of DISCARD . The action that is taken depends on
which of the entries appears first.

3 Extended policies

The security policy database specifies a single action to be
taken for each possible packet. This is what is needed to
enforce the policy at run-time: the IPsec implementation
is passed a packet, it looks up the corresponding action,
and carries it out. We have found that reconciliation needs
extra information about the policy.

Suppose that we defined the reconciliation of polices
pA and pB to be a policy that takes the same action as
both pA and pB . Then it would be possible to reconcile

two policies if and only if they specify the same action in
all situations. This isn’t very useful.

If actions could be ordered in such a way that a “higher”
action always met all the requirements that were met by
a “lower” one, then we could reconcile two policies by
taking the least upper bound of the action specified by
each.

Unfortunately, it is not possible to order actions in this
way. Security policies can express both safety properties
(packets of this form must not be accepted, because oth-
erwise the system would be vulnerable to an attack) and
liveness properties (packets of this form must be accepted,
because otherwise the system would not be able to fulfil
its function). If we are just given an action, we cannot
always tell if it relates to a safety or a liveness property,
and we cannot tell which alternative actions would also
provide that property.

Suppose that the action specified by a policy is BYPASS
. If this policy is expressing a liveness property (packets
of this form must be accepted), then DISCARD is not an
acceptable substitute. If it is expressing a safety property
(packets of this form can be accepted without compromis-
ing security), then DISCARD is acceptable. Similarly, if a
DISCARD action is expressing a safety property (packets
of this form must be discarded), then BYPASS is not an
acceptable substitute. But if the DISCARD action was ex-
pressing a liveness property (the system will continue to
work even if packets of this form are dropped), then BY-
PASS is OK. This means that we cannot order DISCARD
and BYPASS (or even the various PROTECT actions) in
such a way that one is always an acceptable substitute for
the other.

To capture the additional information, we extend the
SPD format to specify a set of allowed actions, rather than
a single action. The set contains every possible action that
would be acceptable — i.e. would not prevent the system
from working and would not make it vulnerable to an at-
tack. Thus, we have to consider all subsets of DISCARD ,
BYPASS , and the various PROTECT actions.

With this extra information, we can now define the rec-
onciliation of two policies: for all possible packets, the
allowed actions under the reconciled policy must also be
allowed under each component policy.

These extended policies cannot be directly used by the
IPsec implementation. To make them usable, we need to
choose just one of the permitted actions to be the action
that is actually taken. This choice could be made at ran-
dom, but this would not take into account the fact that

2

there is often a strong preference between different per-
mitted actions. In a later section, we will consider how to
choose the “best” of the permitted actions.

There is a more serious problem with choosing one of
the permitted actions: the intersection of two non-empty
sets can be empty. For example,

{BY PASS} ∩ {DISCARD} = ∅

Here, we cannot choose an action from the (empty) set
of permitted actions, and reconciliation fails. There is
a genuine conflict between the policies — one says that
packets of a certain form must be accepted, and one says
that they must be discarded. If this happens, our algorithm
can output the ranges of packet headers cause a conflict.

4 Preferences

When a policy permits more than one action, there may
still be reasons for preferring one action over another. For
example, BYPASS might be preferable to PROTECT be-
cause the system runs faster without encryption. Alterna-
tively, PROTECT might be preferable to BYPASS because
it gives a higher level of security, even if BYPASS meets
the policy’s minimum acceptable level of security. As we
cannot place the actions in preference order without addi-
tional information, we need to extend the SPD format still
further to include information about preferences.

Suppose that we have reconciled N policies, and now
wish to choose (for each possible packet) a single action
from the set of permitted actions. We would like to take
into account the preferences of each of the N policies.
This is like holding an election, with each of the N poli-
cies being a voter. Any existing voting scheme can be
used. We do not advocate a particular scheme, because
there is no one scheme that is best in all circumstances
[1].

It may be the case that the user considers some of the
reconciled policies to be more important that others. In
this case, the important policies can be given strict priority
or votes with greater weight.

If we do not include preferences, policy reconcilia-
tion is associative and commutative. We can reconcile
A, B and C by reconciling A with B, treating the result
as a single policy (retaining the action sets, rather than
choosing a single action), and reconciling it with C. This
property is useful is when we wish to reconcile several

administratively-imposed policies, treat the result as a sin-
gle policy, and transmit it to client machines which recon-
cile it with one or more user-specified policies.

If we add preferences, the associative property may no
longer hold (depending on which voting scheme is cho-
sen). With some voting schemes, the result of an election
with voters A, B and C cannot be calculated by merg-
ing A and B’s preferences into a single hypothetical voter
and then holding an election with this voter and C. This
has implications for the data structures we use to repre-
sent the intermediate steps in the reconciliation of three or
more policies: one possible approach is keep track of the
preferences in each of the component policies, and hold a
single election right at the end.

5 Basic requirements for reconcilia-
tion

In this section, we briefly summarise the informal require-
ments for policy reconciliation.

• Component policies may specify multiple allowed
actions for a packet based on its headers. The rec-
onciled policy may also specify multiple actions but,
before installing the policy into the IPsec implemen-
tation, one of them must be selected as the unique
allowed action.

• The allowed actions represent absolute requirements.
When a packet is processed by the reconciled policy,
the result must conform to every one of the compo-
nent policies. If the component policies have con-
flicting requirements, the reconciliation fails.

• In addition to absolute requirements, policies may
also specify preferences or priorities. These may be
used to select the unique action if there are mul-
tiple possibilities. Note that most existing policy-
specification mechanisms cannot express prefer-
ences.

6 Reconciliation theory

This section presents the theoretical justification for our
policy reconciliation algorithm. Theorem 26 is the main
result of this paper as it proves the correctness of a simple

3

yet non-obvious algorithm. An impatient reader may want
to take first a look in the example in the appendix.

An IPsec policy maps IP packets to actions based on
their headers. In this section, the header and action spaces
are treated as unstructured sets. The set of all IP headers
is denoted by H and the set of all actions by A. Our defi-
nition of policy actions differs from existing IPsec imple-
mentations in that there can be multiple allowed actions
for each packet.

Definition 1 (policy) A policy entry is a pair 〈s, a〉 where
s ⊆ H is a selector and a ⊆ A is the set of actions. A pol-
icy is a sequence of policy entries p = 〈e1, e2, . . . , en〉 =
〈〈s1, a1〉, 〈s2, a2〉, . . . , 〈sn, an〉〉 where ∪n

i=1si = H. n is
called the length of p.

�

In order to define the refinement and equivalence of
policies, we need to define how the policy maps IP pack-
ets, based on their headers, to actions. The allowed ac-
tions for the packet are determined by the first policy entry
that matches the packet header.

Definition 2 (matching entry) A policy entry 〈s, a〉
matches a header h ∈ H iff h ∈ s.

�

Definition 3 (catching entry) Let p = 〈e1, . . . , en〉 be a
sequence of policy entries. Let h ∈ H be a header. If h

matches ei and it does not match any ej with j < i, we
say that the ith policy entry in p catches h.

�

Definition 4 (allowed actions) Let p = 〈e1, . . . , en〉 be
a sequence of policy entries. If ei = 〈s, a〉 catches h ∈ H,
we say that the allowed actions for h are Allowed(p, h) =
a. If there is no policy entry in p that catches h, then we
denote Allowed(p, h) =⊥.

�

Note that, in order to accommodate fragments of poli-
cies, the above two definitions refer to a sequence of pol-
icy entries rather than full policies.

Definition 5 (equivalence) Two policies p and p′ are
equivalent iff Allowed(p′, h) = Allowed(p, h) for all
h ∈ H.

�

Definition 6 (refinement) A policy p′ refines p iff
Allowed(p′, h) ⊆ Allowed(p, h) for all h ∈ H.

�

Definition 7 (implementability) A policy is imple-
mentable iff Allowed(p, h) 6= ∅ for all h ∈ H.

�

The following lemma follows directly from the defini-
tions of policy and catching entry.

Lemma 8 Given a policy and h ∈ H, there is a policy
entry that catches h.

�

Lemma 9 Let p = 〈e1, . . . , en〉 be a policy and let
p′ = 〈e1, . . . , ei−1, ei+1, . . . , en〉 be a sequence of pol-
icy entries obtained from p by removing the ith entry. Let
h ∈ H. If ei does not catch or does not match h in p, then
Allowed(p, h) = Allowed(p′, h).

�

Proof Let p, p′ and h be as in the lemma and assume
that ei does not catch h in p. By lemma 8 there is some
ej that catches h where j 6= i. In both p and p′, ej is the
first entry that matches h. One can see this by considering
both situations where j < i and j > i. If j < i, then it
does not matter whether ei matches h or not because it is
not the first matching entry anyway. On the other hand, if
j > i, then ei cannot match h. In neither case is the first
matching entry changed by the removal of ei.

�

Lemma 10 Removing one or more policy entries that
that do not catch any headers produces an equivalent pol-
icy.

�

Proof A selector that does not catch any headers has no
effect on the union of selectors. Thus, the union remains
equal to H when some such policy entries are deleted.
The equivalence follows directly from lemma 9.

�

RFC 4301 defines the concept of decorrelation. The
idea is that if the selectors in the policy are independent
of each other, then the order of the policy entries does not
matter.

Definition 11 (decorrelation) Let p =
〈〈s1, a1〉, 〈s2, a2〉, . . . , 〈sn, an〉〉 be a policy. p is
decorrelated iff si ∩ sj = ∅ for all 1 ≤ i < j ≤ n. We
denote by Decor(p) the following function:

Decor(p) = 〈〈s∗i , ai〉 | s∗i = si \ ∪
i−1
j=1sj and i = 1 . . . n〉

�

Decor(p) is the obvious way of converting policies to
equivalent decorrelated ones. This is verified by the fol-
lowing lemma.

Lemma 12 If p is a policy, Decor(p) is a decorrelated
policy.

�

4

Proof Let p = 〈〈s1, a1〉, . . . , 〈sn, an〉〉 be a policy. We
show first that Decor(p) is a policy. ∪n

i=1s
∗

i = ∪n
i=1(si \

∪i−1
j=1sj) = ∪n

i=1si. Since p is a policy this is equal to H

and, thus, Decor(p) is a policy.
Next, we show that Decor(p) is decorrelated. Consider

any s∗i = si \ ∪i−1
j=1sj and s∗l = sl \ ∪l−1

j=1sj with i < l.

Then, s∗i ⊆ si ⊆ ∪l−1
j=1sj , which does not intersect with

s∗l .
�

If p is a decorrelated policy, then Decor(p) = p. We
can also prove the following two lemmas to show that the
equivalence of policies is preserved by decorrelation and
by arbitrary reordering of the policy entries in the decor-
related policy.

Theorem 13 Any policy p is equivalent with Decor(p).
�

Proof Let p be a policy and h a header. The actions
in the ith entries of p and Decor(p) are the same for any
i. Thus, it suffices to show that the same (ith) entry in
both policies catches h. If the ith entry in p catches h, it
means that h ∈ si and h 6∈ sj for j = 1 . . . i − 1. This is
equivalent with h ∈ si \ ∪

i−1
j=1sj , which is the selector of

the ith entry in Decor(p). Since Decor(p) is decorrelated,
this can happen if and only if the ith entry in Decor(p)
catches h.

�

We now define formally the main requirement for rec-
onciliation algorithms, i.e., the fact that the reconciled
policy must not violate any of the component policies.

Definition 14 (correct reconciliation) Let P be a set of
policies and p a policy. p is a correct reconciliation of P

iff p refines every p′ ∈ P .
�

The following lemma follows from the definitions of
correct reconciliation, refinement and equivalence.

Lemma 15 Let P = {p1, . . . , pm} and P ′ =
{p′1, . . . , p

′

m} be sets of policies such that p′k is equiva-
lent with pk for k = 1 . . .m. If a policy p is a correct
reconciliation of P , it is also a correct reconciliation of
P ′.

�

Lemma 16 Let P be a set of policies and p a correct rec-
onciliation of P . If a policy p′ is equivalent with p, then
p′ is also a correct reconciliation of P .

�

Proof The lemma, too, follows directly from the def-
initions of correct reconciliation, refinement and equiva-
lence.

�

Probably the most intuitive way of reconciling policies
is to decorrelate them first and then take a cross prod-
uct of the component policies. The number of entries in
the reconciled policy is equal to the product of the num-
ber of entries in the component policies. The selectors
in the reconciled policy are computed as intersections of
the component selectors and the actions as intersections
of the component actions.

Definition 17 (crossproduct set) Let P = {p1, . . . pm}
be a set of policies where

pk = 〈ek
1 , . . . , ek

nk
〉 = 〈〈sk

1 , ak
1〉, . . . , 〈s

k
nk

, ak
nk
〉〉

and nk is the length of pk for k = 1 . . .m. Furthermore,
denote

s(i1,i2,...,im) = ∩m
k=1 sk

ik
,

a(i1,i2,...,im) = ∩m
k=1 ak

ik
, and

e(i1,i2,...,im) = 〈s(i1,i2,...,im), a(i1,i2,...,im)〉.

We call the set of policy entries E = {e(i1,i2,...,im) | 1 ≤
ik ≤ nk for k = 1 . . .m} the crossproduct set of P .

�

Definition 18 (policy crossproduct) Let P be a set of
policies. Any policy that is obtained by ordering the
crossproduct set of P linearly is a crossproduct of P .

�

Lemma 19 Let P be a set of policies and E its crossprod-
uct set. Any linear ordering of E is a policy.

�

Proof Let P be a set of decorrelated policies and E its
crossproduct set. Denote the elements of P and E be as
in definition 17. We observe that the following reduction
holds:

∪ {s(i1,i2,...,im) | 1 ≤ ik ≤ nk for k = 1 . . .m}

= ∪n1

i1=1 ∪
n2

i2=1 . . . ∪
nm−1

im−1=1 ∪
nm

im=1(∩
m
k=1s

k
ik

)

= ∪n1

i1=1 ∪
n2

i2=1 . . . ∪
nm−1

im−1=1 ∪
nm

im=1((∩
m−1
k=1 sk

ik
) ∩ sm

im
)

= ∪n1

i1=1 ∪
n2

i2=1 . . . ∪
nm−1

im−1=1 ((∩m−1
k=1 sk

ik
) ∩ (∪nm

im=1s
m
im

))

= ∪n1

i1=1 ∪
n2

i2=1 . . . ∪
nm−1

im−1=1 ((∩m−1
k=1 sk

ik
) ∩ H)

= ∪n1

i1=1 ∪
n2

i2=1 . . . ∪
nm−1

im−1=1 (∩m−1
k=1 sk

ik
) = . . . = H

The equivalence with H results from repeating the same
reduction m times.

�

Lemma 20 Let P be a set of decorrelated policies and E

its crossproduct set. Any linear ordering of E is a decor-
related policy.

�

5

Proof Let P be a set of decorrelated policies and E

its crossproduct set. Denote the elements of P and E

as in definition 17. By lemma 19, a linearization of E

is a policy. We need to show that a linearization of E

is decorrelated. Assume the contrary, i.e., that for some
e(i1,i2,...,im) 6= e(j1,j2,...,jm) ∈ E, there exist an h ∈ H

such that h ∈ s(i1,i2,...,im) and h ∈ s(j1,j2,...,jm). From
the definition of s(i1,i2,...,im) it follows that h ∈ sk

ik
and

h ∈ sk
jk

for all k = 1 . . .m. Since all pk are decorrelated,
it must be the case that ik = jk for all k = 1 . . .m. Thus,
e(i1,i2,...,im) = e(j1,j2,...,jm). This contradicts with our
assumption, which proves the claim.

�

Theorem 21 Let P be a set of decorrelated policies. Ev-
ery crossproduct of P is a correct reconciliation of P .

�

Proof Let P be a set of decorrelated policies and E

its crossproduct set. Denote the elements of P and E

be as in definition 17. Let p be a sequence obtained by
ordering linearly the elements of E. From lemma 20,
we know that p is a decorrelated policy. It remains to
show that p refines all policies in P . Consider an arbi-
trary pl ∈ P and h ∈ H. There is a unique policy en-
try e(i1,i2,...,im) = 〈s(i1,i2,...,im), a(i1,i2,...,im)〉 in p that
matches h. s(i1,i2,...,im) = ∩m

k=1s
k
ik

⊆ sl
il

where il is the
index of the unique policy entry in pl that matches h. The
allowed actions for h in pl are al

il
. The allowed actions

for h in p are a(i1,i2,...,im) = ∩m
k=1a

k
ik

⊆ al
il

. This shows
that, for an arbitrary h, Allowed(p, h) ⊆ Allowed(pl, h).
Thus, p refines pl, which concludes the proof.

�

Theorem 22 The following algorithm computes a correct
reconciliation of a set of policies:

1. Decorrelate each input policy by computing
Decor(p).

2. Compute a crossproduct of the non-repetitive, decor-
related policies.

3. Remove all policy entries that have empty selectors
from the crossproduct.

�

Proof By theorem 21, step 2 computes a correct recon-
ciliation. By lemmas 15 and 16, we can replace policies
with equivalent ones before and after the reconciliation
step. By theorem 13 and lemma 10, steps 1 and 3 replace

policies with equivalent ones. Thus, the algorithm pro-
duces a correct reconciliation.

�

Note that step 1, i.e., computing the decorrelated policy
is non-trivial because it involves set intersections and mi-
nus operations on sets. The resulting selectors may pro-
duce selectors that are not simple ranges even if all the
selectors in the input were.

It is not surprising that the decorrelated policies can
be reconciled by taking the cross product of their entries.
What is more surprising is that the decorrelation step is, in
fact, unnecessary. Instead, it suffices to retain some of the
order from the component policies. The advantage of this
algorithm is that that intersection is the only set operation
required.

Definition 23 (crossproduct lattice order) Let P be a
set of policies and E its crossproduct set. Denote the el-
ements of P and E as in definition 17. The crossprod-
uct lattice order on E is the partial order � on E such
that e(i1,i2,...,im) � e(j1,j2,...,jm) iff ik ≤ jk for all
k = 1 . . .m.

�

Definition 24 (ordered crossproduct) Let P be a set of
policies. Any policy that is obtained by extending the
crossproduct lattice order on E to a linear order is an or-
dered crossproduct of P .

�

An ordered crossproduct is clearly a crossproduct, only
with more restrictions on the order of items. Thus, lemma
19 is sufficient to show that an ordered crossproduct is a
policy.

It would be possible to further relax the requirements
on the order policy entries. The order of two entries is
unimportant, for example, if the selectors do not intersect
or if the actions are equal. The above definition is, how-
ever, sufficient to prove the correctness of the algorithms
presented in this paper. Further optimisations may be pos-
sible with a more relaxed definition of the ordering.

Lemma 25 Let P be a set of policies, E its crossproduct
set, and p an ordered crossproduct of P . Denote the el-
ements of P and E as in definition 17. Let h ∈ H. If
e(j1,j2,...,jm) catches h in p, then ek

jk
catches h in pk for

all k = 1 . . .m.
�

Proof Let P , E and p be as in the theorem, h ∈ H,
and e(j1,j2,...,jm) the policy entry that catches h in p. De-
note by � the crossproduct lattice order on E. h ∈

6

s(j1,j2,...,jm) = ∩m
l=1a

l
jl

⊆ ak
jk

for k = 1 . . .m. Thus,
ek

jk
= 〈sk

jk
, ak

jk
〉 matches h in pk for k = 1 . . .m.

We need to show that the jkth entry is the first entry
that matches h in pk for k = 1 . . .m. Assume the con-
trary, i.e., for some particular 1 ≤ l ≤ m, the first entry in
pl that matches h is el

il
and il < jl. Let ik = jk for k 6= l.

Now, the condition of definition 23 is fulfilled. There-
fore, e(i1,i2,...,im) � e(j1,j2,...,jm). Moreover, h ∈ sk

ik
for

k = 1 . . .m, which implies h ∈ ∩m
l=1s

l
il

= s(i1,i2,...,im),
i.e., that s(i1,i2,...,im) matches h. But if that is the case,
then s(j1,j2,...,jm) is not the first matching entry for h in p,
which contradicts with the fact that e(j1,j2,...,jm) catches
h. Since our assumption lead to this contradiction, it
must be false and the jkth entry must be the first one that
matches h in each pk for k = 1 . . .m. This implies the
lemma.

�

Theorem 26 Let P be a set of policies and p an ordered
crossproduct of P . p is a correct reconciliation of P .

�

Proof Let P be a set of policies, E its crossproduct set,
and p an ordered crossproduct of P . Denote the elements
of P and E as in definition 17.

We need to show that p refines pk ∈ P for k = 1 . . .m.
Consider arbitrary 1 ≤ k ≤ m and h ∈ H. By lemma 8,
there is some e(j1,j2,...,jm) that catches h in p. By lemma
25, ek

jk
catches h in pk. a(j1,j2,...,jm) = ∩m

l=1a
l
jl

⊆ ak
jk

,
i.e., Allowed(p, h) ⊆ Allowed(pk, h). Since this is true
for an arbitrary k and h, p refines pk for all k = 1 . . .m,
which implies that p is a correct reconciliation of P .

�

A policy set may have correct reconciliations that are
not an ordered crossproducts. They may be either more
restrictive policies (e.g., a trivial policy that maps all head-
ers to an empty action set), or equivalent policies with dif-
ferent order or granularity of entries. The following theo-
rem proves that the ordered crossproduct is, in this sense,
the most general reconciliation.

Theorem 27 Let P be a set of policies and p an ordered
crossproduct of P . Every correct reconciliation of P re-
fines p.

Proof Let P be a set of policies, E its crossproduct set,
and p an ordered crossproduct of P . Denote the elements
of P and E as in definition 17.

Consider any h ∈ H. By construction of
p, Allowed(p, h) = ∩m

k=1a
k
ik

. This is equal

Reconcile(in p1, in p2, out p)
OrderedCrossproduct(p1, p2, p);
RemoveEmpty(p);

OrderedCrossproduct(in p1, in p2, out p)
p = 〈〉;
for (e1 ∈ p1)

for (e2 ∈ p2)
p.append(〈 e1.selector ∩ e2.selector,

e1.action ∩ e2.action 〉);

RemoveEmpty(in/out p)
for (i = e1.length downto 1)

if (e1.entry(i).selector == ∅)
e1.delete(i);

Figure 1: Pseudocode for reconciling two policies

to ∩m
k=1Allowed(pk, h), by lemma 25, or, equiva-

lently, ∩p′∈P Allowed(p′, h). Now suppose some pol-
icy q is a correct reconciliation of P , that is, for
all p′ ∈ P , Allowed(q, h) ⊆ Allowed(p′, h).
Therefore, Allowed(q, h) ⊆ ∩p′∈P Allowed(p′, h) =
Allowed(p, h), as required.

�

Theorem 28 The following algorithm computes a correct
reconciliation of a set of policies:

1. Compute an ordered cross-product of the input poli-
cies.

2. Remove all policy entries that have empty selectors
from the crossproduct.

�

Proof By theorem 26, step 2 computes a correct recon-
ciliation. By lemma 16, we can replace the policy with
an equivalent one after the reconciliation step. By lemma
10, step 2 replaces policies with equivalent ones. Thus,
the algorithm produces a correct reconciliation.

�

7 Reconciliation algorithm

Theorem 22 gives an intuitive algorithm for reconciling
a set of IPsec policies. The policy entries are decorre-
lated before the reconciliation step. The problem with
this algorithm is that the selectors in most IPsec policies
and implementations are simple multi-dimensional ranges
(e.g. address ranges or port ranges or both). Decorre-
lation, however, requires one to compute set union and

7

minus operations. (Figure 8 has pseudocode for decorre-
lation.) The decorrelated selectors are no longer simple
multi-dimensional ranges but complex areas in the selec-
tor space. The reconciled policy will also contain such
complex selectors. Since IPsec implementations do not
accept policies with such selectors, one would have to di-
vide each entry into simple subranges and create a sepa-
rate policy entry for each. This may increase substantially
the number of policy entries in the final reconciled policy.

The main result of this paper, theorem 28 shows that
it is possible to avoid the decorrelation step. Moreover,
intersection is the only set operations that is required to
compute the reconciled policy. Figure 7 provides pseu-
docode for a reconciliation algorithm that is based on the-
orem 28. For readability, the pseudocode takes as its input
only two policies but it can be easily extended to an arbi-
trary number of component policies.

Since the intersection of two simple ranges is a sim-
ple range, the policy crossproduct will have only simple
multi-dimensional ranges as selectors. This means that
the resulting policy will have at most as many lines as
is the product of the number of entries in the component
policies, and that the reconciled policy is directly usable
in most IPsec implementations. The correctness of this
algorithm is not obvious, which is why we needed to de-
velop the theory in the previous section.

A key to understanding the pseudocode is that the the
nested loops in the function OrderedCrossproduct
output the entries of the crossproduct in a lexicographic
order, which clearly is a linearization of the crossproduct
lattice order (def. def:orderedcrossproduct).

The final output Reconcile algorithm may still con-
tain more than one allowed action. The preferred action
should be chosen based on some priority scheme, as dis-
cussed in section 4. After that, the policy may be further
processed and its implementability may be checked with
the algorithms presented in the next section.

8 Shadowing and collecting

The result of the policy reconciliation in the previous sec-
tion may still contain redundant entries, that is, ones that
can safely be removed without changing the behaviour of
the policy. Removing redundant entries reduces the size
of the policy and, usually, improves performance.

We discuss two specific types of redundancy, and how
to eliminate them. We say that a policy entry is shadowed

if its selector is covered by the selectors before it, and that
it is collected if the later entries in the same policy map
headers caught it to the same allowed actions. In either
case, the entry can be removed. Again, the reader may
want to take first a look at the example in the appendix.

Definition 29 (shadowing) Let p =
〈〈s1, a1〉, . . . 〈sn, an〉〉 be a policy. 〈si, ai〉 is shad-
owed iff si ⊆ ∪i−1

j=1sj .
�

Definition 30 (collecting) Let p = 〈e1, . . . , en〉 be a pol-
icy. ei = 〈s, a〉 is collected iff for every h ∈ H that is
caught by ei, Allowed(p, h) = Allowed(p′, h) where p′

is the sequence of policy entries p′ = 〈ei+1, . . . , en〉.
�

Lemma 31 A policy entry is shadowed iff it does not
catch any headers.

�

Proof Let p = 〈〈s1, a1〉, . . . 〈sn, an〉〉 be a policy. As-
sume first that the policy entry 〈si, ai〉 is shadowed, i.e.,
si ⊆ ∪i−1

j=1sj . Let h ∈ H. If 〈si, ai〉 matches h, then

h ∈ si ⊆ ∪i−1
j=1sj . This implies h ∈ sj , i.e., 〈sj , aj〉

matches h for some j = 1 . . . (i − 1). Thus, the ith entry
cannot not catch h.

On the other hand, assume that the policy entry 〈si, ai〉
does not catch any headers. If si = ∅, the entry is
shadowed by definition. Otherwise, consider an arbi-
trary h ∈ si. Then, 〈si, ai〉 matches h. To prevent it
from catching h, some earlier entry must match h, i.e.,
h ∈ sj for some j = 1 . . . (i − 1). Thus, h ∈ si implies
h ∈ ∪i−1

j=1sj , which means that the ith entry is shadowed.
�

Lemma 32 A policy is implementable iff every policy
entry 〈s, a〉 for which a = ∅ is shadowed.

�

Proof By the definition of implementable, a policy p

is implementable iff Allowed(p, h) 6= ∅ for all h ∈ H.
By the definition of allowed actions, this is the case iff for
each entry 〈s, a〉 in p, either a 6= ∅ or the entry does not
catch any headers. In the latter case, by lemma 31, the
entry is shadowed.

�

The following lemma follows directly from lemmas 10
and 31.

Theorem 33 Removing one or more shadowed policy
entries from a policy produces an equivalent policy.

�

8

While shadowed entries can be removed all at once,
collected entries must be deleted one by one. This is be-
cause deleting one collected entry may cause another to
be not collected.

Theorem 34 If a policy entry is collected, removing it
from the policy produces an equivalent policy.

�

Proof Let p = 〈e1, . . . , en〉 be a policy and let ei be
collected. Let p′ = 〈e1, . . . , ei−1, ei+1, . . . , en〉 be the
same policy but with ei removed. Denote el = 〈sl, al〉 for
l = 1 . . . n.

We show both that p′ is a policy and that p and p′ are
equivalent. Consider an h ∈ H. By lemma 8, it is caught
by some jth policy entry in p. If j 6= i, then by lemma
9, Allowed(p, h) = Allowed(p′, h). On the other hand, if
j = i, then none of the entries before j matches h. The
first matching entry in the remaining part of the policy,
i.e., p′ = 〈ei+1, . . . , en〉 catches h. By the definition of
collecting, the allowed actions at this catching entry are
the same in p′ as in p. This shows that, for an arbitrary
h, Allowed(p, h) = Allowed(p′, h), which implies the
equivalence. Since Allowed(p′, h) is defined for all h, p′

must also be a policy.
�

Theorem 35 The following algorithm computes a correct
reconciliation of a set of policies:

1. Compute an ordered cross-product of the input poli-
cies.

2. Remove all policy entries that have empty selectors
from the crossproduct.

3. Remove all shadowed policy entries from the or-
dered crossproduct.

4. Remove collected policy entries, one by one, until
none exist.

�

Proof By theorem 26, step 2 computes a correct recon-
ciliation. By lemma 16, we can replace the policy with
an equivalent one after the reconciliation step. By lemma
10 and theorems 33 and 34, steps and 2-4 replace poli-
cies with equivalent ones. Thus, the algorithm produces a
correct reconciliation.

�

From the definitions it is easy to see that any policy en-
try with an empty selector is shadowed and any shadowed
entry is collected. It is, however, more efficient to remove

the empty and shadowed entries first because the algo-
rithm for removing collected entries is the slowest. The
following theorem shows that after removal of all shad-
owed and collected entries, a policy is completely free of
redundancy: any further removal of entries would not pre-
serve equivalence.

Theorem 36 Let p = 〈e1, ..., en〉 be a policy, and let p′

be the sequence of policy entries obtained from p by re-
moving the ith entry ei, for some i = 1...n. If p and p′

are equivalent then ei is shadowed or collected.

Proof We prove that ei is collected. Let p′′ be the
sequence of policy entries 〈ei+1, ..., en〉. Consider an
any h ∈ H. The equivalence of p and p′ implies that,
if ei = 〈si, ai〉 catches h in p, there must be some
ej = 〈sj , aj〉 with j > i and ai = aj that catches h

in p′. Therefore, Allowed(p, h) = Allowed(p′′, h), and
hence ei is collected.

�

9 Algorithm improvements

The algorithms in this section are computationally more
expensive than the crossproduct in the previous section
because they require one to compute a decorrelation of the
reconciled policy. This does not, however, create any new
entries to the reconciled policy or increase the run-time
overhead when the policy is used in an IPsec implemen-
tation. Instead, the computation, including decorrelation,
is required only to find out which entries can be removed
from the un-decorrelated reconciled policy. Thsi compu-
tation is all done once at the time of policy configuration
and not when individual IP packets are processed.

It is important to run the optimization algorithm after
selecting the unique allowed action for each policy entry.
That way, more policy entries will be removed. The invo-
cation of SelectUniqueActions in the pseudocode
represents this step.

The algorithms for decorrelation and the removal of
shadowed and collected entries require set operations on
selectors (union, intersection, difference) as well as subset
checking. These operations are expensive if selectors are
naively implemented as sets. Instead, the selectors could
be represented as propositional formulas and the set op-
erations as boolean operations (disjunction, conjunction,
implication). These could then be efficiently implemented
using (ordered) binary decision diagrams (BDDs), as is
discussed in [2, 3]. A similar approach is taken in [6],

9

where decision trees are used to identify and remove shad-
owing and collected entries in firewall policies.

In is important to note, however, that the algorithms de-
scribed in this paper do not need to be implemented very
efficiently because they are executed during policy con-
figuration and not when processing each IP packet. The
selectors in the final policy are still simple ranges if the
selectors in the input policies are. Only the intermediate
computation requires handling of complex sets of selec-
tors.

10 Conclusion

In this paper, we presented an algorithm for reconciling
two or more IPsec policies. The algorithm produces short
and efficient policies without decorrelating the component
policies first. Since the correctness of the algorithm is not
obvious, we gave a formal definition of correct reconcil-
iation and proved that the algorithm meets it. We also
showed how to remove redundant entries from the policy
and proved that it remains a correct reconciliation.

The results can be used to implement composition of
multiple IPsec and firewall policies. We expect it to be
much easier for the administrators and users to specify
independent component policies, which are automatically
compiled into one policy, than to manually configure one
monolithic policy for each device.

References

[1] K. J. Arrow. Social Choice and Individual Values. Yale
University Press, 1970.

[2] J. D. Guttman and A. L. Herzog. Rigorous automated net-
work security management. International Journal of Infor-
mation Security, 2003. To appear.

[3] H. H. Hamed, E. S. Al-Shaer, and W. Marrero. Model-
ing and verification of IPSec and VPN security policies. In
13th IEEE International Conference on Network Protocols
(ICNP 2005), pages 259–278, 2005.

[4] D. B. Johnson, C. Perkins, and J. Arkko. Mobility support
in IPv6. RFC 3775, IETF Mobile IP Working Group, June
2004.

[5] S. Kent and K. Seo. Security architecture for the Internet
Protocol. RFC 4301, IETF, Dec. 2005.

[6] A. X. Liu and M. G. Gouda. Complete redundancy de-
tection in firewalls. In Proceedings of 19th Annual IFIP
Conference on Data and Applications Security, LNCS 3654,
pages 196–209, Storrs, CT USA, Aug. 2005. Springer.

Reconcile2(in p1, in p2, out p, out conflicts)
OrderedCrossproduct(p1, p2, p);
RemoveEmpty(p);
SelectUniqueActions(p); // Not defined here
Decorrelate(p, d);
CheckConflicts(p, conflicts);
RemoveShadowed(p, d);
RemoveCollected(p, d);

Decorrelate(in p, out d)
d = 〈〉;
union = ∅;
for (i = 1 to p.length)

e = p.entry(i);
d.append(〈 e.selector \ u, e.action 〉);
union = union ∪ e.selector;

CheckConflicts(in d, out conflicts)
conflicts = ∅;
for (e ∈ d)

if (e.action == ∅)
conflicts = conflicts ∪ e.selector;

RemoveShadowed(in/out p, in/out d)
for (i = p.length downto 1)

if (d.entry(i).selector == ∅)
p.delete(i);
d.delete(i);

RemoveCollected(in/out p, in/out d)
aset = ∅;
for (e ∈ p)

aset = aset ∪ { e.action };
for (a ∈ aset)

RemoveCollectedForAction(p, d, a)

RemoveCollectedForAction(in/out p,
in/out d, in a)

for (i = p.length downto 1)
e = p.entry(i);
if (e.action == a)
if (d.entry(i).selector ⊆ c)

p.delete(i);
d.delete(i);

else
collect = collect ∪ e.selector;

else
collect = collect ∩ e.selector;

Figure 2: Removing shadowed and collected entries

10

A Policy reconciliation example

The following example shows two component policies A and B, their reconciliation (where the grey line will be
deleted as empty), and the optimized policy after all shadowed and collected entries have been removed.

Policy A: general firewall

Local
IP

Remote
IP

Local
port

Remote
port Protocol

A1 * 10.1.*.* * * *
A2 * * * * TCP
A3 * * * * ICMP bypass
A4 * * * * *

Policy B: web server

Local
IP

Remote
IP

Local
port

Remote
port Protocol

B1 * * 80 * TCP bypass, EPS transport
B2 * * * * * discard (default policy)

Policy C: reconciliation of A and B

Local
IP

Remote
IP

Local
port

Remote
port Protocol

C11 * 10.1.*.* 80 * TCP bypass, ESP transport
C12 * 10.1.*.* * * * discard collected
C21 * * 80 * TCP ESP transport
C22 * * * * TCP discard collected
C31 * * 80 * — empty
C32 * * * * ICMP discard collected
C41 * * 80 * TCP — shadowed
C42 * * * * * discard

Policy D: Shadowed and collected entries removed

Local
IP

Remote
IP

Local
port

Remote
port Protocol

D11 * 10.1.*.* 80 * * bypass, ESP transport
D21 * * 80 * TCP ESP transport
D42 * * * * * discard

discard (default policy)

Allowed actions

bypass, ESP transport, discard
ESP transport, discard

Policy
entry

Selector
Allowed actions

Policy
entry

Policy
entry

Policy
entry

Allowed actions

Allowed actions

Selector

Selector

Selector

11

