On Decidability of Nominal Subtyping with Variance

Andrew J. Kennedy Benjamin C. Pierce
Microsoft Research Cambridge University of Pennsylvania
Abstract 22], and the declaration-site variance of Scala [18], algorithmic

subtyping rules have never been presented, and decidability is still

We investigate the algorithmics of subtyping in the presence of - . i : s
9 9 yping P an open problerh This is the starting point for our investigation.

nominal inheritance and variance for generic types, as found in
Java 5, Scala 2.0, and the .NET 2.0 Intermediate Language. WeLanguage features Each of these languages suppagsmeric in-
prove that the general problem is undecidable and characterizeheritance in which a named class is declared with type parameters
three different decidable fragments. From the latter, we conjecture and (multiple) supertypes referencing the type parameters. Here are
that undecidability critically depends on the combination of three equivalent definitions in .NET 2.0 IL, .0, Java 5 and Scala 2.0:
features that are not found together in any of these languages: con-

. . . - . .class C<X,Y> extends class D<class E<!X>> // .NET IL
travariant type constructors, class hierarchies in which the set of

implements class I<!Y>

types reachable from a given type by inheritance and decomposi-c1ass c<X,Y> : D<E<X>>, I<Y> // C#
tion is not always finite, and class hierarchies in which a type may class Cc<X,Y> extends D<E<X>> implements I<Y> // Java
have multiple supertypes with the same head constructor. class C[X,Y] extends D[E[X]] with I[Y] // Scala

These results settle one case of practical interest: subtyping be- A second feature shared by these languagevariant and
tween ground types in the .NET intermediate language is decidable; contravariantsubtyping of generic types. Scala 2.0 and .NET 2.0 IL
we conjecture that our proof can also be extended to show full de- supportdeclaration-site variangewhere the variance behaviour of
cidability of subtyping in .NET. For Java and Scala, the decidability type parameters is declared up-front on the declaration of the class;
questions remain open; however, the proofs of our preliminary re- this feature is also a strong candidate for a future version®of C
sults introduce a number of novel techniques that we hope may beFor example, here are equivalent headers for a contra/co-variant

useful in further attacks on these questions. function type in .NET IL, an imaginary future version of Gand
Scala:

1. Introduction .class interface Func<-A,+B> // .NET IL
interface Func<-A,+B> // C# 7.0

The core of the subtype relation in most object-oriented program-

ming languages isominal in the sense that basic inclusions be-

tween type constructors are explicitly declared by the program- In contrast, Java 5 suppomise-site variancevhere annotations on

mer. However, most languages also support a modicustrat- theuseof a generic type determine its variance behaviour, as in the

tural subtyping; for example, array types in Java afid€have co- €25t function below:

variantly. More recent designs feature richer structural features—in interface Func<A,B> { B apply(A a); }

particular, covariant and contravariant subtyping of constructor pa- class C { }

rameters, such as thvarianceannotations of Scala’s generic types c¢lass D extends C {

and thewildcard types supported by Java 5. static Func<? super D, 7 extends C>

Formally, subtyping is typically presented in a declarative cast (Func<? super C, 7 extends D> f) { return f; }

style. For many systems, an equivalent syntax-directed presenta-

tion is easily derived, and termination of the corresponding sub- Here, the? extends annotation induces covariant subtyping on

type checker is easy to demonstrate. For example, in the case ofthe type argument, antl super annotation induces contravariant

C* 2.0 and the original “GJ” design for generics in Java [3, 13], subtyping. (In an earlier variance design for Java [14] the annota-

it is straightforward to derive an algorithm by building transitivity ~ tions were the more conciseand-.)

into the subtyping rules for superclasses and upper bounds and to For all of these languages, decidability of subtyping is an open

then prove termination by constructing a measure on subtype judg-problem. The Java 5 design [12, 22] is based on an earlier extension

ments that strictly decreases from conclusion to premises in theto Java generics whose decidability is not known [§4.,1]. A

algorithmic rules. core calculus for Scala has been studied recently and type-checking

For more sophisticated systems, such as the original use-siteand subtyping proved decidable [8], but variance is not supported.

variance proposal for Java [14], the wildcard design of Java 5 [12, Finally, an extension to 2.0 modeled on variance in .NET IL 2.0
has been studied by the first author and others [10], but without
considering generic inheritance in its full generality (in particular,
support for multiple instantiation inheritance).

trait Func[-A,+B] // Scala

Permission to make digital or hard copies of all or part of this work for personal or Contributions We present here a collection of results regard-
classroom use is granted without fee provided that copies are not made or distributed.

for profit or commercial advantage and that copies bear this notice and the full citation Ing the _a|gOl’I_'[hmICS_ of nom_'nal SUbtyp'ng in the presence of
on the first page. To copy otherwise, to republish, to post on servers or to redistribute (declaration-site) variance. First, we show that a general form of
to lists, requires prior specific permission and/or a fee.

) . 1Readers may enjoy attempting to compile the examples in Appendix A
Copyright© ACM [to be supplied]...$5.00 using their favorite Java compiler!

the problem, where the subtype hierarchy may involve multiple We require that inheritance kaeyclig in the following sense:
inheritance from arbitrary supertypes (in particular, from multiple if C<T> <::T D<U>then C # D. In the presence of mixins
instances of the same type constructor) is undecidable. Second, wet is not immediately apparent how to check acyclicity for a given
show various restricted fragments of the system are decidable: (1)class table: consider, for example, the definitigh®¥ <:: X and

a system with only covariant and invariant constructors (no con- D <:: CD. Fortunately, a straightforward procedure does exist [1],
travariance); (2) a system (like the .NET CLR) where unbounded and for the remainder of the paper we simply assume that the
expansion of types is disallowed—i.e, where the class hierarchy is acyclicity property holds.

restricted so that the set of types reachable from a given type by Individual parameters of type constructors may be marked as
inheritance and decomposition is always finite; and (3) finally, a co- or contra-variant. The general form of a class declaration is:
system in which (as in Scala and Java) multiple instantiation inher-

itance is prohibited—class hierarchies are restricted so that a type O<oX> < T

may not have multiple supertypes with the same head constructor— :

and where some technical restrictions (detailed below) are imposed T
n

on unbounded expansion.
These results settle the decidability issue for one case of practi-where eachy; is o (invariant, also written as an empty string),

cal interest: subtyping between ground types in the .NET interme- (covariant), or (contravariant). We write€’#i to stand for the’th

diate language (which is used for runtime type tests); we conjecture type parameter in the definition of the claSs andvar(C#i) for

that the argument can be extended without major new insights to thethe variance of that type parameter.

case of subtyping between open types in .NET. For Java and Scala,) .)

the decidability questions remain open—we discuss the remaining SuUbtyping - Figure 1 presents the ground subtype relatarto-

gaps in Section 6. However, even for these languages, our resultsdether with an auxiliary variance-indexed relatien, (the last

do begin to give a feel for the lay of the land, and their proofs in- three rules)_. Rule $PER is the familiar generic m_hentan(_:e rule

troduce a number of novel techniques that we hope may be usefulrom Generic Java and*.0. Note the side-condition, which en-

in further attacks on the decision problems. sures that the subtyping rules ayntax-directedmoreover, given
the absence of cycles in the inheritance hierarchy, two instantia-

tions of the same class cannot be related by inheritance. Subtyping
can be extended to open types through the addition of an axiom
X <: X asserting reflexivity for type variables.

Although the rules are syntax-directed, ruleF&R presents a

2. Definitions

Syntax Types, ranged over by, U, V and W, are of two forms:
type variables, ranged over by, Y, andZ and constructed types
C<T>, whereC is a type constructor (such asst) and 7" is a choice forV in its premise ifC inherits from multiple superclasses.
list of argument types. We define theightof a type by So a subtype checker may need to employ backtracking.
height(X) 1 In rule VAR, the variance annotation of a parametéf: de-
height(C<T>) 1 + max height (T) termines the behaviour of théth argument in an instantiation

o .) of C with respect to subtyping. SupposE is a subtype of
As usual, nullary constructor applications are written without

Us. If var(C#i) = + then C<Th,..., T;,..., Tp> is @ sub-
brackets ¢ means(C<>). It is also convenient to write unary type of C<T1,..., Us,. .., Tn>; dually, if var(C#i) = - then
applications without the angle bracket8T meansC<T>), and

the G] C<Tr,...,Us,..., Tp>isasubtype oC< Ty, ..., Ts, ..., Tp>.
to declare that application associates to fight (not to the left, This declaration-sitevariance is supported by Scala 2.0 [18],

as usual), so that we can write long nested applications without and has also been studied as an extension®tbyCthe first au-
brackets. For examplé;DE X is shorthand folC<D<E<X>>>. thor and others [10]. Java 5, in contrast, supposks-sitevariance,

Class tables We are working in a nominal subtyping world, where ~ Where the variance behaviour of a type is determined by annota-
the basic inclusions between constructors are explicitly declared in ions on its actual instantiation. Suppose tffais a subtype ofU.

a globalclass tableA class table is a set of class declarations, each 1hen C'<? extends T> is a subtype ofC'<? extends U>; du-
of the form ally, C<? super U> is a subtype ofC<? super T>.

In fact, wildcard types in Java are best thought dd@asnded ex-

O<X> < T istentials soC<? extends T>is essentiallydX <:T.C<X>and
: C<? super T>is3X:>T.C<X>. This existential interpretation
T, leads to somewhat more complex (and more powerful) subtyping

rules, particularly in combination with inheritance and F-bounded
type parameters. Nevertheless, it is quite straightforward to define a
translation from declaration-site to use-site variance that preserves
and reflects subtyping. Hence rather than dive in at the deep end
with use-site/wildcard variance, we choose to start our investiga-
tion with the declaration-site variety.

where the class namé is unique to the declaration, and tfies
may mention the parameter variablé& This says that, given
a tuple of argumentd/, the applicationC<U> is a subtype of
[U/X]T; for eachi. We write C<U> <:: [U/X]T; when this
holds and define<::™ and <::* to be the transitive and reflexive
transitive closures of this relation. (In Java ant] Exactly one of Also note that we do not considéounds(also calledcon-
the supertypes o€ < U> will be an actual class; the rest will be straintg on type parameters, a feature supported by Java 3,0
interfaces. Sir]ce we are only interested in subtyping in this paper, NET | 2.0, and Scala 2.0. Formally, these require subtyping judg-
we elide the difference.)) _ ments of the form\ - T <: U, whereA is a set of assumptions:
Note that_ the class table is allowed to bt_a both singly ar_1d MU- " pper bounds on type parameters, for Javaa@d .NET, and both
tually recursive: the supertypes 6fcan mentiorC, can mention 5yer and upper bounds, for Scala. We believe that for declaration-

a classD whose supertypes involv@, etc. Moreoever, in the ab- e yariance, our results can be generalized to open subtyping in
sence of further restrictions, we have already gone beyond genericy, presence of bounds; we return to this point in Section 6.
inheritance in the style of Java, Scala, arfd & we have not im-

posed a single root (such gava.lang.Object), and we permit
both mixin-style inheritance [1] of the fornP’<X> <:: X; and
multiple-instantiation inheritance(g, C <:: DE1, DEs).

Properties of subtyping It is easy to prove that ground subtyping
is reflexive, by a derivation consisting only of instances aRY
To prove transitivity, we need to make use of a well-formedness

foreachi Ti <:yar(ogi Ui 3. Examples

VAR) — — Is the subtype relation we have defined decidable, for any class ta-
C<T> <: O<U> ble? It is not clear, on the face of it, what we should expect. On
— — = — one hand, this type system has something of the flavor of System
(SUPER) O<X><: Vo [T/X]V <: D<U> C+D F¢ [5, 7, 20], the higher-order extension of Systéra [6] (the
O<T> <: D<U> type constructors in the present system are intuitively something
like bounded type variables of higher kind), so we might
T<:U U<:T worry about the possibility of undecidability [19]. Indeed, the pos-
— E— — sibility of recursion in the class table introduces element&-of
T<+U T<©T T<-U boundedquantification [4, 11, 2]. On the other hand, some features
of F< that play a prominent role in its proof of undecidability (in
Figure 1. The subtyping relation particular, “free-standing” universal quantifiers, which allow intro-

ducing new type variables into the environment) are missing here.

And the other complicating feature, the variance annotations, has
- ifo =+, been shown to be well-behaved (though complex to analyze) in at
least some situations [21].

= i’ :: Z : f’ (Appendix A presents Java 5 code for the examples below).
Example 1 The first observation that hints at the full system’s
v; € {o,+} undecidability is that the subtype checker defined by the algorith-
e mic rules above does not always halt. (This is not a proof of un-
vX F X; ok decidability, of course—it is always possible that there is another,
) _ smarter algorithm that does always terminate.)
foreachi Y@r(C#i) € {o,+} = vX I T; ok Define the classed andC as follows:
var(C#i) € {o,-} = —wX + T; ok N<-Z> <
vX F C<T> ok C <: NNC
X E T ok That is, NV is a contravariant constructor with no declared super-
types andC' is an invariant nullary constructor whose immediate
C<vX> <:: T ok supertype iSVNC.
Now, suppose we want to know wheth@r<: NC. If we try
Figure 2. Well-formed types and class declarations to construct a proof of this fact from the algorithmic subtyping

rules (following the steps of the subtyping algorithm), we enter an

. . .) infinite regress:
condition on supertype declarations that restricts covariant type pa-

rameters to appear only in positive positions in the supertype and, ¢ < NC

dually, restricts contravariant parameters to appear only in nega- — NNC <:NC by SUPER
tive positions. (This condition is necessary for semantic soundness, — C<:NC by VAR
but observe that if it were not enforced, one could make the defin- — NNC <:NC by SUPER
ition C<+X> <:: NX for contravariantV, and haveCT <: CU — C<NC by VAR
and CU <: NU but not CT <: NU.) Formally, we intro- — et

duce a well-formedness judgmenX + T ok which can be read Of course, this infinite regress is easy to detect. And clearly, if
“type T respects the variance annotation®n type parameters T <: U can only be proved by a derivation containing as a
X" This is shown in Figure 2 together with its application in spec- subderivation a proof of’ <: U, then T is not a subtype of
ifying well-formedness of class declarations. (For the type system . (Under aco-inductiveinterpretation of the subtyping ruleg;
proper, well-formedness is also used to restrict field and method would be considered a subtype 6f. We believe that this more
signatures appropriately [10].) For example, if cldsss invari- generous definition is semantically sound; but it does not affect
ant in its parameter andy/ is contravariant, then the declaration decidability, as an algorithm must in any case detect infinite regress,
D<-X,+Y> <:: NNY isallowed, becauseX,+Y - NNY ok returningtrue in place offalse)

is derivable, buD<-X,+Y> <:: NY andD<-X +Y> <:: CX

are rejected. Example 2 Unfortunately, slightly trickier examples lead to more
Using these assumptions, we can prove that subtyping is transi-complicated pattems of regress. For example, if we definas
tive. above and consider
LEMMA 1 (Transitivity). If T <: UandU <: V thenT <: V. CX <: NNCCX
PROOF. See Appendix B O then the regress involves longer and longer types as it goes on:
CT <:NCU
It follows that the syntax-directed formulation of subtyping we — NNCCT <: NCU by SUPER
are working with here is equivalent to a declarative formulation — CU<:NCCT by VAR
where reflexivity and transitivity are included as separate rules — NNCCU <: NCCT by SUPER
and rule LIPERis replaced by a simpler version that concludes — CCT<:NCCU by VAR
T <: U from premiseT" <:: U. This observation gives some — NNCCCT <: NCCU by SUPER
assurance that the decidability issues we are addressing do not — CCU<: NCCCT by VAR
arise just from some peculiarity in the way we have formulated our — NNCCCU <: NOCCCT by SUPER
algorithmic rules, but rather are inherent to the notion of subtyping — CCCT <: NCCCU by VAR

under consideration. — etc.

In general, there is no way to describe and detect all such patternsThe representation of a non-empty warddenoted., is defined as

of regress.

Example 3 Another observation that illustrates the bad behavior
of the subtyping relation is thatuccessfutlerivations can be ex-
ponentially larger than the class table. For example, consider the
following definitions:

CoX <: NNX
C1 X <:: CoCo X

CnX <:: Cr1Cr1 X

The derivation of the valid subtyping assertiohN T <: NC,, T
use2™*! instances of the AR rule!

Example 4 Analogously, there are patterns of regress where the
“cycle” is exponentially larger than the class table. One such is
obtained by making a small change to the declaratiofi,pfbove:

CoX <: NNX
C1 X <:: ChCoX

CnX <:: Cr1 Cr1 G X

The reduction ofC,, N T <: N C,, T enters a cycle (i.e., generates
a subgoal that has already been seen) after passing th2dugh
instances of XR.

4. Undecidability of the general case

To show undecidability of subtyping, we perform a reduction from
the Post Correspondence Problenr PCP for short.

The Post Correspondence ProblenLet {(u1,v1),. .., (un,vn)}

be a set of pairs of non-empty words over a finite alphabet
3. The Post Correspondence Problem is to determine whether
or not there exists a sequence of indicgs. .., such that
Wiy -+ Uiy = iy - Vi, .

r T

THEOREM 2. PCP is undecidable.
PROOF See, for example, [15].

Reduction The construction uses the following classes:

E empty sequence

SX stop

N<-X> negation

Ni<-X> negation, fol0 < i < n
LX letter, for eachl, € X
C<X,Y> crank

B boot

u=ukb.

Itis easy to see that = v iff u = v.
The class table entries far and B are:

C<X,Y> < NN.C<ui-X,v1-Y> (C1)
N1N0<’LL1~X,U1'Y> (C{)

NN, C<upn-X, 00 Y> (Cn)
NoNC<up-X,v0-Y> (C)

NNoSX (CL)

NoSY (Cr)

B < NN:C<uy,v1> (B1)
NiNC<uy,v1> (B1)

NN, C<un, va> (Br)

N NC<un, vn> (Br)

Now, the given word problem has a solution iff the subtyping
judgmentB <: N B is derivable. To see why, consider the progress
of the proof search procedure starting frdth <: N B. Its first
step must be to use some instance ofPERrR on the left-hand
side. If it chooses one of the even-numbered supertypes (the ones
beginning withV;), then it will fail on the next step: since none of
the N;s have declared supertypes, there is no rule that can derive
N;S <: NT. Among the odd-numbered rules, however, it has
a free choice—i.e., algorithmically, it must try each of them in
turn, backtracking and trying the others if the proof search for the
corresponding subgoal fails. So suppose it tries the first one, rule
(B1) in the class table. The active goal then becomes

NN:1C<uq,v1> <: NB.
The next step of proof search necessarily applies rake, Yielding
B <: N1C<uy, v1>.

At this point, there is again just one choice that allows us to make
progress: the only way to avoid failing on the very next step is to
choose rulg By)

NiNC<ui,v1> <: N1C<uy,v1>,
and another use ofAR yields
C<ug,v1> <: NC<uy,v1>.

At this point, the proof search algorithm again has a choice to
make. It can either apply (B ER with one of the odd-numbered
supertypes ofC, or apply the special “stop rule{CL) (again,

The first five of these have no declared supertypes; the supertypethe even numbered rules and r(lér) all lead to failure on the

declarations for the last two are given below. The general idea is
that words ovel are represented as types, while instances of PCP

are represented as class tables in which each pair of words from the
PCP instance corresponds to a different supertype declaration for

the constructof.

We represent words as sequences of applications of classes
using the nullary clas¥ to represent the empty sequence. So,
for example, if¥ = {P,Q, R} then our class table will contain
declarations for classeB, @, and R, each taking one parameter
and with no supertypes, and the wdpd) P can be represented by
the typePQPE (i.e., PKQ<P<E<>>>>).

Let u- T denote the representation of a non-empty woibn-
catenated onto a word represented by tfpe

L-T LT
(Lu)-T L<u-T>

next step). If it chooses one of tH€;) rules—say(Cs)—then an
analogous sequence of forced steps leads to the subgoal

C<ugug,vav1> <: NC<ugui, v4v1>.

This process might continue in the same way with yet another of the
(C5) rules, but suppose, instead, that the proof search now chooses
the stop rulCy):

NN()S<U4U1> <: NC<u4u1, V4V1>,
which leads to

C<uqu, vav1> <: NoS<uqui>,

from which the only choice that does not fail at the next step is
(Cr),
NoS<vav1> <: N()S<U4u1>,

from which VAR yields

S<ugui> < S<wvgvr>.

Now the proof search immediately succeeds or fails. The construc-

then there exists a (not necessarily proper) subderivation whose
conclusion is

C<u(n,v,]1> <: NC(U,]],’UJI>

tor S has no declared supertypes and no variance annotation, sguch thatu;; = v for some (possibly empty).

the only way S<usui1> <: S<wsvi> can hold is by reflexivity.

This rule applies if the two types being compared are exactly the PROOF. By induction on the height of the derivation.

same—i.e., ifusur = wv4v1. SuMmMing up, we can see that there

From Lemma 3, we have eithe; = v, in which case we're

exists some way of constructing a successful subtyping derivation done ¢ is the empty sequence), or else we have a proper subderiva-

for the judgmentB <: N B iff there is some sequendesuch that
uy = vy—that is (since the translation from words to types is in-
jective), such thati; = vy.

Formalities The rest of the section recapitulates this argument
more formally.

Let + and j range over positive integers, used to index the
words, and letl and J range over (possibly empty) sequences
of positive integers. We writd J to denote the concatenation of
sequenced and J, and we identify: with the single-element
sequence containing For I = i; - - - i,, we writeu; to denote the
concatenated word,, - - - u;,.. We begin with a couple of lemmas.

LEMMA 3 (Single step)Suppose
C<ur,vr> <: NC<ur,vr>

is derivable for a non-empty sequenkteTheneitheru; = vy, or
there is a proper subderivation whose conclusion is

CRuir, vir> <: NC<M, Vir>

for somei.

PROOF SinceC # N, the derivation must end with an instance
of SUPER There are two cases.

¢ Declaration C',) was used, and so the premise was
NNoSuy <: NC<ur,vr>.

Since both sides begin witlV, the final rule in this subderiva-
tion must be MR, with premise

C<ur,vr> <: NoSus.

Again, the subderivation for this premise must end with an
instance of 8PER None ofC,, C;, or C! lead to a successful
derivation (for any:), butC'r does, giving us the premise

N()Sﬂ < N()Sﬂ
By VAR again, this was derived from
Sur <: Svy.

Finally, by VAR once more, we must have a subderivation of
ur = vr, and sou; = vy, as required.
Declaration (;) was used, for somg so the premise was

NN;C<uir,vir> <: NC<ug,vr>.

By VAR, this must have been derived from

C<ur,vr> <: N;C<uir, vir>.

Then by $iPERthrough declaratio® we have premise
NiNC<uir, vir> <: N;C<uir, vir>
and by \AR we have the premise

C<Uz‘l,U”> <: NC<ui1,v”>

as required. O

LEMMA 4 (Multiple step).For any non-empty sequengeif there
is a derivation of

C<ur,vr> <: NC<ur,vr>

tion whose conclusion is

C<ui1,v”> < Nc<ui1,M>

for some:. We now apply the induction hypothesis to get a (not
necessarily proper) subderivation of

C<ugrir, vyir> <t NC<ugrig, vyrir>

for someJ’ such thatu;/;; = vy/,;;. This is the result we desire
(let J = J'3). O

THEOREMS5. Subtyping is undecidable.

PROOF. We show that an instance of PCP can be reduced to an
instance of subtype validity under some class table.

For the particular instance of PCP, define a class table as de-
scribed above. We now show that the instance of PCP has a solution
if and only if B <: N B is derivable.

(=). Suppose thafl is a solution to the problem, so that
ur = wvr. Then S<ur> <: S<vr> by reflexivity. By two uses
of VAR, and SYPERthroughCr, andC'r we obtain a derivation of
C<uy,vr> <: NC<uyz,vr>. We now showB <: N B is derivable
by induction on the length of. For the base case, suppdse- i.

Then we can easily construct a derivation, usinrgrMwice and
SuPER through B; and B;. For the inductive step, suppose that
I = iJ. By two uses of ¥R and SUPER, throughC; and thenC?,
we obtainC<ug,vs> <: NC<uy,vs>. Applying the induction
hypothesis gives us the desired result.

(«<=). The derivation must end with an instance eff&R with
premiseN N;C<u;, v;> <: N B for some:. This in turn must have
been derived usingAR, with premiseB <: N C<u;, v;>. Another
use of IIPERand VAR takes us taC<u;, vi> <: N;C<ug, vi>.

Now we can apply Lemma 4, to obtain a derivation of

C('LL[Z',U]Z'> < NC<’LL[¢,'U”>

for somel such thatuy; = vy;. In other words, we have some
such thatu; = v, as required. O

5. Some decidable fragments

The reduction from PCP in the previous section used the following
vital ingredients:

e Contravariancewas used in a “double-negation” fashion to
send a term to the opposite side of the subtype assertion and
then back again. (Interestingly, it is possible to devise a slightly
more complex reduction from PCP that uses ongjreglecon-
travariant constructor.)

¢ Unbounded growtin the size of the subtype assertion was used
to accumulate a concatenation of words in the encoding.

e Multiple instantiation inheritance-applying a type constructor
at different type instantiations in inheritance declarations—was
used to encode a choice of words. (Note, though, that the instan-
tiations arenon-overlappinginstantiation ofC does not lead to
identification of any of its supertypes.)

In this section, we explore different ways to recover decidability
by restricting the class table to eliminate one or more of these
ingredients.

5.1 Contravariance o if X, is a proper subterm of; add anexpansiveedge Ci —
THEOREM 6. Suppose that no type constructors are contravariant. ~ D#J.
Then subtyping is decidable. We write X — Y if X % Y for somee € {0, 1} and write—*

for the transitive closure of.

PROOF: Define the following order on subtype assertions: Infinitary class tables are characterized precisely by those

(T <: Uh) < (T2 <: U) graphs that contain a cycle with at least one expansive edge.
iff Consider Example 2 and its graph, using dotted arrows for non-
height(U1) < height(Uz) expansive edges and solid arrows for expansive ones:
or (height(U1) = height(Us) and T> <7 Th)
The acyclicity condition on inheritance ensures that the inverse N<-Z> <)\g i 7
of <:* is well-founded:; so< is well-founded also. It is easy to C<X> < NNCCX Q ~—

see that this order strictly decreases from conclusion to premises

of the subtyping rules: ruleAR reduces the height of both sides of The type parametex appears in three edges: a non-expansive edge
the assertion for covariant parameters, whilst rul@ SRleaves the represents its use as argument to the second occurrergasf
right-hand-side alone and reduces the left-hand-side with respect togxpansive cyclic edge represents its use inside the argument to the

the inheritance ordering. O first occurrence of!, and an expansive edge forepresents its use
. . inside the argument to the two occurrences\Vof
5.2 Expansive inheritance Now consider a more complex class table and its graph:

The undecidability reduction made crucial use of the ability to grow

the subtype assertion in an unbounded fashion. We now show how ¢<Xx> <: DP<X,X> A X Vi
to check this growth by restricting the form of types in the class p<y,y’> < Q<CY,CDY’> AR

table. Q<Z,7'> < T \L \T

Given a particular class table, a set of tygds said to beclosed D<W> < 2 B
under decomposition and inheritare®r inheritance closedfor Y W <o Y?
short—if (a) wheneveC<T> is in S, so are all theT, and (b) if
TisinSandT <:: U, thenU is in S. Define theinheritance
closureof a setS, written ¢l(S), to be the least inheritance-closed
superset o8.

The types appearing in subtype judgments in the subtyping rules
are clearly closed with respect to decomposition and inheritance:
a derivation of T <: U involves only types incl({T, U}). If
the subtype checker remembers a set of “visited goals” and rejects
assertions that appear in this set, then it must terminate if the
inheritance closure of the types in the original problem is finite.
We say that a class table figitary if any finite set of types has a o
finite inheritance closure with respect to the class table; otherwise, LEMMA 7. Supposé& is inheritance closed and'<7T> € S.
the class table imfinitary. The class table in Example 1 is finitary,

The type parameteX is used in three ways: its appearance in the
instantiation ofD is represented by an edge to the “sink” ndtie
its use as first argument 8 is represented by an edge in a non-
expansive cycle through’, and its use as second argument?o
is represented by an edge in an expansive cycle thratgiThe
existence of this latter expansive cycle implies that the class table
is infinitary; indeedc!({CT}) D {CD™ T | m > 0}.

In order to show that expansiveness isudficientcondition for
infinitary closure, we make use of the following relationship be-
tween inheritance closure and type parameter dependency graphs.

. 0 . T7. TT wnr
while that in Example 2 is infinitaryel({ CT}) = {N™C"T | 1.1t C#i = Ditj thenD<U> € S for someU with U; = Ts.
0 < m < 2andn > 0}. Likewise, the “crank” classC' in 2.If C#i — D#jthenD<U> € S for someU such thatT; is a
Section 4 induces an infinitary closure. proper subterm ofJ;.

Even disregarding subtyping, infinite closure presents a prob-
lem for language implementers, as they must take care not to creatd”ROOF.

type representations for supertypes in an eager fashion, else non-1. From the definition of a type parameter dependency graph, we

termination is the result. For example, the .NET Common Lan- must haveC<X> <:: V for someV with some typeD<V >
guage Runtime supports generic instantiation and generic inheri- 3 subterm of/’ and V; = X;. By inheritance closure a$ we
tance in its intermediate language targeted byTbe class loader . have[T /X]V € S and then by decomposition closure we have
maintains a hash table of types currently loaded, and when loading p«[7/X]V> € S, from which the result follows.

a new type it will attempt to load its supertypes, add these to the ta- 2 Similar ’ 0

ble, and in turn load the type arguments involved in the supertype.
Fortunately, there is a syntactic characterization of infinitary THEOREM 8. If a class table is expansive, then it is infinitary.

class tables due to Viroli [23] that can be used to reject such defi- . . .
PROOF. Suppose that the class table is expansive. Then its type

nitions; the specification of the .NET CLR includes such a restric- -
tion [9, Partition I1,59.2]. Here we recast Viroli's definitions in our ~ Parameter dependency graph contains a cycle, ?t least one of whose

framework and present a (somewhat slicker) proof of correctness. edges (say the first) is expansive—i.e., eithgi — C#i (a one-
Define atype parameter dependency grapb follows. The cycle), or C#i - D#j —+ Ci. By repeated use of Lemma 7
vertices are all the type parameters to classes in the class table; Wgye can see that, i'<T> € S andS is inheritance closed, then

will denote these interchangeably by eith@#i—the i'th formal C<U> € S for someU with T; a proper subterm ofJ;. In
type parameter to clas§—or by their alphabetic names, which gther words, for any instantiation & in S there is a larger one; it
we assume arexconverted to be) distinct. Boolean-labeled edges follows thats is infinite. 0
represent uses of formal type parameters in class instantiations))) o)
in the class table. For each declarati6k X> <:: T and each Showing that expansiveness isnacessarycondition is a bit
subtermD<T> of T, more tricky. We need two further notions.

0 First, we rank the vertices in the graph, assigning each type pa-
e if T; = X, add anon-expansivedgeC#i — D#yj; rameterX a natural numbetevel(X) with the following property.

SupposeX — Y. If Y =T X thenlevel(X) = level(Y), else
level(X) > level(Y). (One means of assigning levels is first to
identify nodes in strongly-connected components and then to topo-
logically sort the resulting DAG.) For the example above, we can
make the assignmeitvel(Z) = level(Z') = level(W) = 0 and
level(Y) = level(Y') = level(X) = 1.

Second, we introduce the notion opath A particular subterm

T <::* D<T> for eachi, T; <:yar(Dui) Us
(SUPERVAR) — (D#D
T <: D<U>
T<:U U<:T
T <+ U T <:6 T T <:= U

of a type can be identified by a path, which we represent as a
sequence of formal type parameters, writinfpr the empty path
and X.p (or C#i.p) for the path consisting of the formal type
parameterX (or C#i) concatenated onto the pathWe interpret

a pathp as a partial function from terms to subterms, as follows:

p(Ti)=U
«(T)=T (C#ip)(C<T>)=1U

For example, letl’ = C<DU, V>. Then(C#1.¢)(T) = DU,
and(C#1.D#1.€)(T) = U. We say thap is a path inT if p(T)
is defined.

THEOREM9. If a class table is infinitary, then it is expansive.

PROOF We argue the contrapositive—that non-expansive class
tables are finitary. Lef be a finite set of types. Leét be a bound

on the height of types i and in the class table (" € S then
height(T) < 6;if C<X> <:: T thenheight(T) < &) and let

L be the number of levels (D < level(X) < L for any formal
type parameteX’). We prove that the height of types id(S) is
bounded by L; then, because the set of types of a certain height is
finite, it follows thatcl(S) must be finite.

Let ¢(p) hold for a pattp if it can be divided into a sequence
of (possibly empty) sequences of type parameters whose levels
are bounded by, ..., L—1 and whose lengths are boundedddy
That is, ¢(p) means thap has the formXoX; --- X_1, with
level(X;) < land|X;| < dfor0 < I < L. Let¢(T) hold for
atypeT if ¢(p) holds for every pathy in T'. It is easy to see that
¢(T) implies height(T) < 6L.

Clearly ¢ holds for the types i5. We show that is preserved
under the closure operations used to consteliG§). For decom-
position, it’s clear that, its(C<T>) holds, then so does(T;) for
eachi. For inheritance, suppose th@k X > <:: U; we must show
that o(C<T>) implies p([T/X]|U). If U is simply a type para-
meter (mixin inheritance), then the result follows directly. Other-
wise, consider a path in [T/X]U. There are two possibilities.
First, p could be simply a path iV that maps to a non-variable
subterm p(U) = D<U> for someD and U). In this case we
know that|p| < & and so we have(p) immediately. Otherwise,
p = p’.q for some non-empty’ and q such thaty’(U) = X;
andgq is a path inT;. Hence C#i.q is a path inC<T>, and so
from ¢(C<T>) we can deduce(C#i.q), or written another way,
¢(qu) Now if level(Xi) =k thenq = ?]@ Yk+1 Yr_1,
with level(Y;) < Ifork < [< L and with|Y;] < ¢ and
Vi) < §fork < | < L. Suppose’ = Z.Z. By the definition
of the type parameter dependency graph, we know ihat- Z;
for eachj and thatXx; 2, 7. Because the graph contains no expan-
sive cycles (that is, we do not haZe —* X;), we can deduce that
level(Z;) < level(X;) = k for eachj. Finally, becauséZ| < 4,
we canseethat= Z.2.Y} Y1, satisfiesp, as required]

COROLLARY 10. Non-expansive subtyping is decidable.

5.3 Multiple instantiation inheritance

We now consider the third ingredient of the reduction from PCP:
multiple instantiation inheritance. Java 5 prohibits it:

Figure 3. Deterministic subtyping

“A class may not at the same time be a subtype of two
interface types which are different invocations of the same
generic interface, or an invocation of a generic interface and
a raw type naming that same generic interface.” B21.5]

To put it another way, generic instantiations are uniquely deter-
mined by the inheritance relation: f <::* C<U>and T <:*
C<V>thenU = V. The Java 5 specification goes on to say:

“This requirement was introduced in order to support trans-
lation by type erasure.”

C* 2.0, which does not erase types, has no such restriction. Instead,
it merely requires supertypes to be non-overlapping:<4fX > <::

T andC<X> <:: U, then, for all instantiationd’, if [V /X|T =
[V/X]|U,thenT = U.

If multiple instantiation inheritance is prohibited, we can refor-
mulate subtyping so that derivations are unique. Figure 3 presents
the revised rules, in whichl @ ERVAR combines variance and in-
heritance in a single rule. It is easy to show that the rules define
the same relation. (For an example of non-unique derivations under
singleinstantiation inheritance in the original system, consider the
declarationsCX <:: IX andD <:: CE,IFE and the assertion
D <: IE. In the revised rules, such non-determinism is ‘hidden’
inside the<::* side-condition on rule SPERVAR.)

Of course, uniqueness of derivations in a syntax-directed system
does not imply decidability: derivations i are unique, but sub-
typing is undecidable [19]. However, it does simplify the problem
somewhat, as the search for a derivation does not involve a choice
of paths, but must determine merely whether a particular linear path
is finite (and, if so, whether it ends in a successful state).

Fortunately, for all examples in Section 3—and for many other
more complex ones—it is possible to detect the infinite regress us-
ing a notion ofaccessibility which we describe next. (Unfortu-
nately, we do not yet have a general result for all class tables with-
out multiple instantiation inheritance; our proof requires an addi-
tional, somewhat artificial, technical condition on class tables, de-
scribed below. It is possible that, without this restriction, the prob-
lem is still undecidable.)

Consider Example 2 once more. Observe that the typesd
U actually play no role in the reduction: they can be replaced
by arbitrary types without affecting the validity of the subtype
assertion. Indeed, at any point in the reduction, all but the first
occurrence ofC in the types can be replaced without affecting
validity, because that part of the type is never “accessed.” To make
things a little clearer, we adapt the example to use a different type
insideC. The definitions and type parameter dependency graph are
as follows:

N<-Z> < VAR
D<Y> < Y <o X VA
C<X> <: NNCDX 7

Using the new rules from Figure 3, the pattern of regress is as application of the inner induction hypothesis on the (ac-
follows: cessible) pathy. D#i. O

CT <:NCU
— CU<:NCDT by SUPERVAR
— CDT <: NCDU by SUPERVAR
— CDU <: NCDDT by SUPERVAR
— CDDT <: NCDDU by SUPERVAR
— eftc.

For the rest of the argument, it is convenient to introduce a
notation for “reduction” between subtyping goals. We wiite—
J’ if judgments.J and .J’ are respectively the conclusion and
premise of an instance ofUBERVAR. (We have been relying on
the same informal intuition all along, of course, in arguments of the
form “subtyping judgment/; can only be provable if; is,” but
Notice thatC is invariant and recursive througk: the former the notion is particularly easy to formalize in the present setting,
property means that it cannot be “passed through” using variancewhere we have imposed enough conditions to make proof search
to reach a goal involving its arguments—the only thing we can do deterministic.) This relation is specified by the following inference
with it is to use the inheritance relation to replace it (on the left rules:

of <:) by some supertype—and the latter means that, when an T <:* D<V> var(D#ti) = +
instantiation ofC' is replaced by something else in this way, the —
type replacing it is another instantiation 6fitself or of another T <:D<U> — V; <: Us;
class in mutual recursion witfy. . o — ‘

Of course, a type parameter may be used both recursively and T <" D<V> var(D#i) = -
non-recursively in different subterms of the same type, or in differ- T < D<U> — U, <: V,

ent supertype declarations. To obtain our (preliminary) decidability) -
result, we impose a somewhat artificial restriction on the class ta- The following key lemma captures our intuition that only the
ble: if a type parameteX appears in an expansive cycle in the accessible part of a type affects reducibility.

type parameter dependency graph, then (a) it is an invariant type| emwa 12. SupposeJ; and J, are subtyping judgments with
parameter, and (b) it appears exactly once in a single supertypey, . j, If J, — J, thenJs — J, for someJ, such that
declaration. We call such a type paramebgpansive-recursive J| ~ Jb.

We can now formalize the idea afccessibilityby defining a
relation~ between types, read “same accessible parts” and definedPrRoOF. Suppose/; = T <: D<U> andJ, = T’ <: D<U >.
as follows:C<T> ~ D<U> if C = D and for each either C#: Then J; is reducible only ifvar(D#i) # o for somei. Suppose

is expansive-recursive or elsg ~ U;. We extend the definition var(D#1i) = + (the case fowar(D#i) = - is similar). We must
to subtype judgmentT <: T') ~ (U <: U")iff T ~ U have T <:* D<V> for someV andJ; = Vi <: U;. By
and T’ ~ U’. Alternatively, we say that a paghis accessibléf it Lemma 11 we havd” <::* U’ for someV’ such thatD<V> ~
does not contain an expansive-recursive type parameter. It is easyy’ so V/ = D<V’> for some V', and hencel, — Jj
to show thatT' ~ U iff 7"and U have the same set of accessible where J, = V/ <: U/. Finally, sinceD<U> ~ D<U’> and
paths. D<V> ~ D<V'> it follows immediately from the definition of
The following technical lemma relates this notion of accessibil- that U/; ~ U/ and V; ~ V/, as required. O

ity to the inheritance relation.

LEMMA 11. Supposel’ <::* UandT ~ T'. ThenT’ <::* U’

for someU’ such that/ ~ U’. We now have a sufficient condition for non-termination: if we en-
counter a goal that matches a goal already seen up to accessibility,
then we can returfalseimmediately.

COROLLARY 13.1f J —™ J" andJ ~ J' thenJ —°,

PrROOFE By induction on the number of steps of inheritance used

to deriveT <" U. Example 4 demonstrates that many reductions may occur before
e Supposel/ = T. Then set/’ = T’ and we're done. such a matching goal is reached. Fortunately, we can show that the
e Supposel’ = C<T>and T’ = C<T’>, with C<X> <:: V number of reductions is bounded: although the inaccessible part of

a type can grow unboundedly (as in Example 2), the accessible part
cannot. Hence, there are only a finite number of possible types up
to accessibility. This is the key to decidability.

Let 6 be a bound on the height of a supertype@&X> <:: T
thenheight(T) < 6), and letL be the number of levels (b <

and[T/X]V <:* U.We will show that, ifp is an accessible
path in V, then [T/X](p(V)) ~ [T /X](p(V)); setting
p = ethen gives u§7/X|V ~ [T7/X]V, from which the
desired result follows by the induction hypothesis.

We proceed by an inner induction on the size of teiri). level(X) < L). Given a particular subtyping probleffi <: U,
= First, suppose(V') = X; for somei. We deduce thak; we can always arrange férto be larger than botheight(T) and
is not expansive-recursive by the following argument. Sup- height(U).
pose it were. Thep would represent the only occurrence of Define a notion ohccessible heighds follows.

X; (by our linearity restriction), and the only edges frdén

in the type parameter dependency graph would be to nodes
in p, as they represent all arguments to constructor¥’in We now show that the accessible height of subtype judgments is
for which X; is a subterm. By the definition of expansive- bounded by L.

recursive edges, one of these edges would belong to an ex- , ,
pansive cycle in the graph, and hence one of the type para- “EMMA 14. If acc(J) < oL andJ — J' thenace(J') < 6L

meters inp would itself be expansive-recursive. This con- proor Letg(p) hold for a pattp if it can be divided into (possibly

acc(T) = max{|p| | pis an accessible path ifi}

tradicts our assumption thatis accessible; henck; is not empty) sequences of type parameters whose levels are bounded by
expansive-recursive. This being the case, we immediately o " '7—1 and whose lengths are bounded dyThat is,p has
haveT; ~ T] because’'<T> ~ C<T">. . the formX o X - -- X 11 such thatlevel(X;) < i, and|X;| < §

* Next, supposey(V') is some compound typ®<V'>. We for 0 < i < L. Let ¢(T) hold for a typeT if $(p) holds for
must show that, for eacl’; with D#ti not expansive- every accessible paihin T. It is easy to see that(T) implies

recursive,[T/X|V; ~ [T'/X]V;. This follows by an acc(T) < SL.

We now show that, if¢(T) and ¢(U), and T <: U — For Java 5, other features must be explored. First, variance
T' <: U', theng(T') and¢p(U’). The argument is very similar behaviour for wildcard types is actually @nsequencef the
to that pursued in Theorem 9, but this time relies on the fact that interpretation—intuitively, and in the subtyping rules—of wild-
accessible paths contain no expansive-recursive type paranieters. cards as bounded existential types [22]. It is not immediately ap-

parent how to adapt our decidability results to these very different

CoROLLARY 15. Suppose that the class table makes no use of rles. Second, the combination of Java’s wildcards and F-bounded
multiple instantiation inheritance and that any expansive-recursive type parameters is particularly intricate, and can lead to unbounded
type parameters are invariant and used exactly once. Then subtyp-growth in thetyping contextluring subtype checking.

ing is decidable. Finally, our undecidability result highlights a hazard in extend-
ing the type systems of any of these languages: if some future ver-
6. Discussion sion of Java or Scala were to support multiple instantiation inheri-

tance, or the .NET CLR were adapted to support expansive inher-
itance through lazy loading of supertypes, then subtyping would
(most definitely!) be undecidable.

Starting with only basic restrictions on class tables (acyclicity and

well-formedness with respect to variance), we have proved the fol-

lowing results about subtyping under inheritance and declaration-

site variance:

Acknowledgements

. . The work was begun while the second author was a visiting re-

. _Ifthe qlasstable makes no use of contravariance, then SUbtyp'ngsearcher at Microsoft Research, Cambridge. We would like to
is decidable§5.1). thank Nick Benton, Gavin Bierman, Karl Mazurak, Martin Oder-

e If the class table is not expansive, then subtyping is decidable sky, Claudio Russo, and the members of the Penn PL Club for
(85.2). helpful discussions, and the FOOL reviewers for their extremely

« If there is no use of multiple instantiation inheritance, and all careful and detailed comments.
expansive-recursive type parameters are invariant and linear,

¢ The general problem is undecidab$d).

then subtyping is decidablég.3). References
Of these results, decidability of non-expansive subtyping can be [1] E. Allen, J. Bannet, and R. Cartwright. A first-class approach to
applied directly to ground subtyping in .NET (that is, subtyping genericity. InObject-Oriented Programming: Systems, Languages,

between closed types). It is straightforward to generalize the result ~ Applications (OOPSLAAnaheim, California, October 2003. ACM.
to incorporate other features of the .NET type system such as [2] P. Baldan, G. Ghelli, and A. Raffaet Basic theory of F-bounded
covariant arrays, invariant managed pointer types, and boxed types. quantification.Information and Computatiori 53(1):173-237, 1999.

(Decidability even of ground subtyping is important, as subtype (3] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the
tests at runtime involve un-erased generic types.) To generalize future safe for the past: Adding genericity to the Java programming

to open subtyping, as employed by the .NET CLR verifier (type- language. In C. Chambers, editdCM SIGPLAN Conference on Ob-
checker), we must support upper bounds on type parameters, and ject Oriented Programming: Systems, Languages, and Applications
the associated subtyping rulA (- X <: U can be derived from (OOPSLA) ACM SIGPLAN Notices volume 33 number 10, pages
premiseA - T <: U if X <: T € A). For instance, an analog 183-200, Vancouver, BC, Oct. 1998.

of Example 1 can be given using bourfd® <: NNX F X <: [4] P. Canning, W. Cook, W. Hill, W. Olthoff, and J. Mitchell. F-bounded
N X. Observe, though, that bounds alone cannot induce arbitrary quantification for object-oriented programming.AGM Symposium
expansion of types, because type parameters cannot range over on Functional Programming Languages and Computer Architecture
type constructors: they are not higher-kinded. Put another way, (FPCA), London, Englancpages 273-280, Sept. 1989.

there is no analog of Example 2 using bounds. We believe that [5] L. Cardelli. Notes about,. Unpublished manuscript, Oct. 1990.
our decidability result generalizes to the complete type system of] | cardelli, S. Martini, J. C. Mitchell, and A. Scedrov. An extension

.NET 2.0. _) of System F with subtypinglnformation and Computatiqri.09(1—
Supertype declarations in Java! @nd Scala have the form 2):4-56, 1994. Summary in TACS '91 (Sendai, Japan, pp. 750—770).

C<X_>_ <: T. The Constralnt-boqued polymor[,),hlsswdled [7] A. B. Compagnoni. Decidability of higher-order subtyping with

by Litvinov [17, _16] also supports “lower _bounds of the form intersection types. IrComputer Science LogicSept. 1994,

T <:: C<X>. Itis easy to adapt the reduction from PCP to show Kazimierz, Poland. Springérecture Notes in Computer Scier@es,

that subtyping is undecidable in the presence of covariance and June 1995. Also available as University of Edinburgh, LFCS technical
both upper and lower bounds in the class table, without the need report ECS-LFCS-94-281, titled “Subtyping I} is decidable”.
for contravariance.)) [8] V. Cremet, F. Garillot, S. Lenglet, and M. Odersky. A core calculus
One obvious direction for future work is to generalize the result for Scala type checking. IRroc. MFCS Springer LNCS, Sept. 2006.
of Sec_t'on 5.3, removing the Spec"'?" requwer_nen_t on expansive- [9] ECMA International. ECMA Standard 335: Common Language
recursive type parameters. If expansive subtyping in the absence of " |yfrasirycture, 3rd edition, June 2005. Availabletattp: //
multiple instantiation inheritance turned out to be decidable, then wiw. ecma- international . org/publications/standards/
perhaps this could be combined with the existing result on a subset Ecma-335.htm.

of Scala [8] tc.) prove that Scala has de_udable subtyplng. [10] B. Emir, A. Kennedy, C. Russo, and D. Yu. Variance and generalized

An undecidability result for expansive subtyping, on the other constraints for € generics. InEuropean Conference on Object-
hand, W0u|d Imp|y that bOth Scala 20 a.nd Java 5 haVe Und?c|dab|e Oriented Programming (ECOOP)’ Nan[esy Frande|y 2006.
subtyping. A fix for Scala might be to apply the non-expansiveness [11] G. Ghelli. Termination of system F-bounded: A complete proof
restriction on class tables discussed in Section 5.2. We do not be- Information and Computati03,/139(1).39_56 1997 piete proot.
lieve that this restriction adversely affects expressivity—at least, we)) ']
have been unable to devise any practical application of expansive [12] J. Gosling, B. Joy, G. Steele, and G. Bractihe Java Language
inheritance Specification Addison Wesley, 3rd edition, June 2005.

. lgarashi, B. Pierce, and P. Wadler. Featherweight Java:

[13] A. | hi, B. Pi d P. Wadler. Feath ight J A
2Thanks to Martin Odersky for observing this. minimal core calculus for Java and GJ. ACM SIGPLAN

Conference on Object Oriented Programming: Systems, Languages,
and Applications (OOPSLAYct. 1999. Full version in ACM
Transactions on Programming Languages and Systems (TOPLAS),
23(3), May 2001.

[14] A. lgarashi and M. Viroli. Variant parametric types: A flexible
subtyping scheme for genericACM Transactions on Programming
Languages and Systems (TOPLAZBY5), September 2006.

[15] N. D. Jones.Computability and Complexity From a Programming
Perspective The MIT Press, 1997.

[16] V. Litvinov. Constraint-based polymorphism in Cecil: Towards a
practical and static type system. @bject-Oriented Programming:
Systems, Languages, and Applications (OOPSMAjhcouver,
October 1998. ACM.

[17] V. Litvinov. Constraint-Bounded Polymorphism: an Expressive and
Practical Type System for Object-Oriented LanguagekD thesis,
University of Washington, 2003.

[18] M. Odersky and M. Zenger. Scalable component abstractions. In
Object-Oriented Programming: Systems, Languages, Applications
(OOPSLA) ACM, 2005.

[19] B. C. Pierce. Bounded quantification is undecidaligormation
and Computation112(1):131-165, July 1994. Also in C. A.
Gunter and J. C. Mitchell, editor§heoretical Aspects of Object-
Oriented Programming: Types, Semantics, and Language Design
MIT Press, 1994. Summary ifCM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), Albuquerque,
New Mexico

[20] B. C. Pierce and M. Steffen. Higher-order subtyping. P
Working Conference on Programming Concepts, Methods and Calculi
(PROCOMET)1994. Full version imheoretical Computer Science
vol. 176, no. 1-2, pp. 235-282, 1997 (corrigendum in TCS vol. 184
(1997), p. 247).

[21] M. Steffen. Polarized Higher-Order Subtyping PhD thesis,
Universi@t Erlangen-Nirnberg, 1998.

[22] M. Torgensen, E. Ernst, and C. P. Hansen. Wild F0Wbrkshop on
Foundations of Object-Oriented Languages (FOQIlgnuary 2005.

[23] M. Viroli. On the recursive generation of parametric types. Technical
Report DEIS-LIA-00-002, Universitdi Bologna, 2000.

A. Java examples
We present the Java 5 equivalent of the examples from Section 3.

Example 1 This one causegavac 1.5 to run out of stack. On
javac 1.6.0-beta2 the program is rejected (correctly).

class N<Z> { }
class C extends N<N<? super C>> {
N<? super C> cast(C c) { return c; }

}

Example 2 The following example causes bojlvac 1.5 and
javac 1.6.0-beta2 to run out of stack.

TA{Z}

class N<Z> { }

class C<X> extends N<N<? super C<C<X>>>> {
N<? super C<T>> cast(C<T> c) { return c; }

}

Example 3 The following example causegavac 1.5 to run
out of stack. If the test uses instead, the program is accepted
(correctly). Onjavac 1.6.0-beta?2 the failure happens ati3.

TA{Z}
N<Z> { }
CO<X> extends
C1<X> extends
C2<X> extends
C3<X> extends
C4<X> extends
C5<X> extends
C6<X> extends
C7<X> extends
C8<X> extends
class Test {

N<? super C8<T>> cast(C8<N<? super T>> c)

{ return c; }

}

Example 4 Finally, this example causemvac 1.5 to run out
of stack. Onjavac 1.6.0-beta2 the program is rejected (cor-
rectly); but again, fails at13.

T{}?}
N<Z> { }
CO<X> extends
C1<X> extends
C2<X> extends
C3<X> extends
C4<X> extends
C5<X> extends
C6<X> extends
C7<X> extends
C8<X> extends
class Test {

N<? super C8<T>> cast(C8<N<? super T>> c)

{ return c; }

}

class

class
class
class
class
class
class
class
class
class
class
class

N<N<? super X>> { }
CO<CO<X>>
C1<C1<X>>
C2<C2<X>>
C3<C3<X>>
C4<C4a<X>>
C5<C5<X>>
C6<CB<X>>
C7<C7<X>>

e
N S S S

class
class
class
class
class
class
class
class
class
class
class

N<N<? super X>> { }
CO<CO<X>>
C1<C1<X>>
C2<C2<X>>
C3<C3<X>>
C4<C4<X>>
C5<Ch<X>>
C6<CB<X>>

{
{
{
{
{
{
{
C7<C7<C8<X>>

}
}
}
}
}
}
}
>

{1}

B. Proof of Transitivity

The proof that the subtype relation is transitive relies on one tech-
nical lemma:

LEMMA 16. SupposevX + C<T>ok. If C<wY> <:: U then
vX - [T/Y]U ok.

PROOF. We prove the following, from which the result follows
because by well-formedness of class declarations we have-
U ok

1. If wY - V okthenvX - [T/Y]V ok
2. If =wY + V okthen-vX + [T/Y]V ok

We proceed by simultaneous induction on both derivations.[]

With this in hand, we are ready for the main proof of transitivity.

PROOF OFLEMMA 1: Suppose the derivation & <: U has
sizem and the derivation ot/ <: V has sizex. We proceed by in-
duction onm + n. When both derivations end in rulex¥ or when
the first ends in rule SPER the result follows by straightforward
applications of the induction hypothesis.

The interesting case is when the first derivation ends in rule
VAR and the second derivation ends in ruleF&ER Supposel’ =
C<T>andU = C<U>. Then we have derivations concluding as
follows:

foreachi T; <:, Ui C<vX> <:: Vo
C<T> <: C<U>

[W/Y} Vo<V
C<U><:V

By well-formedness of class declarations, we kna - V, ok
We will now show that{T/X]V, <: V, from which the result
follows using an instance of ruleU®ER To do this, we essentially
transform the derivation ofU/X]V, <: V into a derivation

of [T/X]Vo <: V by replacing each subderivation of the form
[U/X]X; <: W by a derivation ofT; <: W and replace each
subderivation of the formiV <: [U/X]X; by W <: T;.

Under the assumptions from ruleak above (namely, that
T; <:,; U, for eachi), we prove the following. For any typed’
and Wy, (1) if vX = Wy ok and[U/X]| W, <: W has a deriva-
tion of size smaller tham, then[T/X| Wy <: W is derivable;
and (2) if—vX + Wy ok and W <: [U/X] W, has a derivation
of size smaller tham, then W <: [T/X]W, is derivable. We
proceed by induction on both subtype derivations simultaneously.

e SupposelWy = X;. For (1) well-formedness ofl/; tells us that
v; € {o,+}. Consider the case whep = +. Then we have a
derivation of U; <: W of size smaller tham; we can apply
the outer induction hypothesis to get a derivatioriipf<: W,
as required. Now supposg = o. We must havel, = W so
T, <: W follows trivially. For (2) well-formedness oW, tells
us that—wv; € {o,+}, thatisv; € {o,-}. Consider the case
whenv; = -. Then we have a derivation d¥/ <: U; of size
smaller tham; we can apply the outer induction hypothesis to
get a derivation of <: T;, as required. Againy; = o is
trivial.

e Supposell, = D<W>. There are two sub-cases to consider.

= The derivation ends with an instance oAR, so W =
D<W'’>for somelV’. We show (1), and (2) is similar. Then
we must have for eachthat [U/X]W; <:yer(pgs) Wi
Supposevar(D#j) = +. Then by the well-formedness
derivation for Wy we know thatvX F W; ok, so we
can apply the inner induction hypothesis part (1) to ob-
tain [T/X]W; <: W;. Supposevar(D#j) = -. Then
by the well-formedness derivation fdi, we know that
-vX F W; ok so we can apply the inner induction hy-
pothesis part (2) to obtaiW] <: [T/X]W;. Finally
supposevar(D#j) = o. We havevX F W, ok and
-vX F W;okand[U/X]|W; Wj. By a simple in-
duction on the well-formedness derivations we can deduce
that[T/X|W; = [U/X]W;. Hence we have shown for
all j that[T/X| W; <tyar(pg;y W, and the result follows
by an application of rule ¥R.

= For (1), the derivation must conclude with the following
instance of 8PER

D<Y><: Ty [[U/XIW/Y]To<: W
[U/X]|D<W> <: W
By Lemma 16, we haveeX F [W/Y]T, ok Hence

[T/X]|[W/Y]|To <: W follows by an application of the
inner induction hypothesis part (1) to the premise above.

For (2), we have a derivation ending in:
E<Y><: Ty [V/Y]To <: [U/X]|Wo

E<V> < [U/X] W,

The result follows by applying the inner induction hypothe-
sis part (2) to the premise. O

