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Abstract
We investigate the algorithmics of subtyping in the presence of
nominal inheritance and variance for generic types, as found in
Java 5, Scala 2.0, and the .NET 2.0 Intermediate Language. We
prove that the general problem is undecidable and characterize
three different decidable fragments. From the latter, we conjecture
that undecidability critically depends on the combination of three
features that are not found together in any of these languages: con-
travariant type constructors, class hierarchies in which the set of
types reachable from a given type by inheritance and decomposi-
tion is not always finite, and class hierarchies in which a type may
have multiple supertypes with the same head constructor.

These results settle one case of practical interest: subtyping be-
tween ground types in the .NET intermediate language is decidable;
we conjecture that our proof can also be extended to show full de-
cidability of subtyping in .NET. For Java and Scala, the decidability
questions remain open; however, the proofs of our preliminary re-
sults introduce a number of novel techniques that we hope may be
useful in further attacks on these questions.

1. Introduction
The core of the subtype relation in most object-oriented program-
ming languages isnominal, in the sense that basic inclusions be-
tween type constructors are explicitly declared by the program-
mer. However, most languages also support a modicum ofstruc-
tural subtyping; for example, array types in Java and C] behave co-
variantly. More recent designs feature richer structural features—in
particular, covariant and contravariant subtyping of constructor pa-
rameters, such as thevarianceannotations of Scala’s generic types
and thewildcard types supported by Java 5.

Formally, subtyping is typically presented in a declarative
style. For many systems, an equivalent syntax-directed presenta-
tion is easily derived, and termination of the corresponding sub-
type checker is easy to demonstrate. For example, in the case of
C] 2.0 and the original “GJ” design for generics in Java [3, 13],
it is straightforward to derive an algorithm by building transitivity
into the subtyping rules for superclasses and upper bounds and to
then prove termination by constructing a measure on subtype judg-
ments that strictly decreases from conclusion to premises in the
algorithmic rules.

For more sophisticated systems, such as the original use-site
variance proposal for Java [14], the wildcard design of Java 5 [12,
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22], and the declaration-site variance of Scala [18], algorithmic
subtyping rules have never been presented, and decidability is still
an open problem.1 This is the starting point for our investigation.

Language features Each of these languages supportsgeneric in-
heritance, in which a named class is declared with type parameters
and (multiple) supertypes referencing the type parameters. Here are
equivalent definitions in .NET 2.0 IL, C] 2.0, Java 5 and Scala 2.0:

.class C<X,Y> extends class D<class E<!X>> // .NET IL
implements class I<!Y>

class C<X,Y> : D<E<X>>, I<Y> // C#
class C<X,Y> extends D<E<X>> implements I<Y> // Java
class C[X,Y] extends D[E[X]] with I[Y] // Scala

A second feature shared by these languages iscovariant and
contravariantsubtyping of generic types. Scala 2.0 and .NET 2.0 IL
supportdeclaration-site variance, where the variance behaviour of
type parameters is declared up-front on the declaration of the class;
this feature is also a strong candidate for a future version of C].
For example, here are equivalent headers for a contra/co-variant
function type in .NET IL, an imaginary future version of C], and
Scala:

.class interface Func<-A,+B> // .NET IL
interface Func<-A,+B> // C# ?.0
trait Func[-A,+B] // Scala

In contrast, Java 5 supportsuse-site variance, where annotations on
theuseof a generic type determine its variance behaviour, as in the
cast function below:

interface Func<A,B> { B apply(A a); }
class C { }
class D extends C {

static Func<? super D, ? extends C>
cast(Func<? super C, ? extends D> f) { return f; }

}

Here, the? extends annotation induces covariant subtyping on
the type argument, and? super annotation induces contravariant
subtyping. (In an earlier variance design for Java [14] the annota-
tions were the more concise+ and-.)

For all of these languages, decidability of subtyping is an open
problem. The Java 5 design [12, 22] is based on an earlier extension
to Java generics whose decidability is not known [14,§4.1]. A
core calculus for Scala has been studied recently and type-checking
and subtyping proved decidable [8], but variance is not supported.
Finally, an extension to C] 2.0 modeled on variance in .NET IL 2.0
has been studied by the first author and others [10], but without
considering generic inheritance in its full generality (in particular,
support for multiple instantiation inheritance).

Contributions We present here a collection of results regard-
ing the algorithmics of nominal subtyping in the presence of
(declaration-site) variance. First, we show that a general form of

1 Readers may enjoy attempting to compile the examples in Appendix A
using their favorite Java compiler!



the problem, where the subtype hierarchy may involve multiple
inheritance from arbitrary supertypes (in particular, from multiple
instances of the same type constructor) is undecidable. Second, we
show various restricted fragments of the system are decidable: (1)
a system with only covariant and invariant constructors (no con-
travariance); (2) a system (like the .NET CLR) where unbounded
expansion of types is disallowed—i.e, where the class hierarchy is
restricted so that the set of types reachable from a given type by
inheritance and decomposition is always finite; and (3) finally, a
system in which (as in Scala and Java) multiple instantiation inher-
itance is prohibited—class hierarchies are restricted so that a type
may not have multiple supertypes with the same head constructor—
and where some technical restrictions (detailed below) are imposed
on unbounded expansion.

These results settle the decidability issue for one case of practi-
cal interest: subtyping between ground types in the .NET interme-
diate language (which is used for runtime type tests); we conjecture
that the argument can be extended without major new insights to the
case of subtyping between open types in .NET. For Java and Scala,
the decidability questions remain open—we discuss the remaining
gaps in Section 6. However, even for these languages, our results
do begin to give a feel for the lay of the land, and their proofs in-
troduce a number of novel techniques that we hope may be useful
in further attacks on the decision problems.

2. Definitions
Syntax Types, ranged over byT , U , V andW , are of two forms:
type variables, ranged over byX , Y , andZ and constructed types
C<T>, whereC is a type constructor (such asList) andT is a
list of argument types. We define theheightof a type by

height(X ) = 1
height(C<T>) = 1 + max height(T )

As usual, nullary constructor applications are written without
brackets (C meansC<>). It is also convenient to write unary
applications without the angle brackets (CT meansC<T>), and
to declare that application associates to theright (not to the left,
as usual), so that we can write long nested applications without
brackets. For example,CDEX is shorthand forC<D<E<X >>>.

Class tables We are working in a nominal subtyping world, where
the basic inclusions between constructors are explicitly declared in
a globalclass table. A class table is a set of class declarations, each
of the form

C<X > <:: T1

...
Tn

where the class nameC is unique to the declaration, and theTis
may mention the parameter variablesX . This says that, given
a tuple of argumentsU , the applicationC<U > is a subtype of
[U /X ]Ti for eachi. We write C<U > <:: [U /X ]Ti when this
holds and define<::+ and<::∗ to be the transitive and reflexive
transitive closures of this relation. (In Java and C], exactly one of
the supertypes ofC<U > will be an actual class; the rest will be
interfaces. Since we are only interested in subtyping in this paper,
we elide the difference.)

Note that the class table is allowed to be both singly and mu-
tually recursive: the supertypes ofC can mentionC, can mention
a classD whose supertypes involveC, etc. Moreoever, in the ab-
sence of further restrictions, we have already gone beyond generic
inheritance in the style of Java, Scala, and C], as we have not im-
posed a single root (such asjava.lang.Object), and we permit
both mixin-style inheritance [1] of the formC<X > <:: Xi and
multiple-instantiation inheritance (e.g., C <:: DE1,DE2).

We require that inheritance beacyclic, in the following sense:
if C<T> <::+ D<U > thenC 6= D . In the presence of mixins
it is not immediately apparent how to check acyclicity for a given
class table: consider, for example, the definitionsCX <:: X and
D <:: CD . Fortunately, a straightforward procedure does exist [1],
and for the remainder of the paper we simply assume that the
acyclicity property holds.

Individual parameters of type constructors may be marked as
co- or contra-variant. The general form of a class declaration is:

C<vX > <:: T1

...
Tn

where eachvi is ◦ (invariant, also written as an empty string),+
(covariant), or- (contravariant). We writeC#i to stand for thei’th
type parameter in the definition of the classC , andvar(C#i) for
the variance of that type parameter.

Subtyping Figure 1 presents the ground subtype relation<: to-
gether with an auxiliary variance-indexed relation<:v (the last
three rules). Rule SUPER is the familiar generic inheritance rule
from Generic Java and C] 2.0. Note the side-condition, which en-
sures that the subtyping rules aresyntax-directed; moreover, given
the absence of cycles in the inheritance hierarchy, two instantia-
tions of the same class cannot be related by inheritance. Subtyping
can be extended to open types through the addition of an axiom
X <: X asserting reflexivity for type variables.

Although the rules are syntax-directed, rule SUPER presents a
choice forV in its premise ifC inherits from multiple superclasses.
So a subtype checker may need to employ backtracking.

In rule VAR, the variance annotation of a parameterC#i de-
termines the behaviour of thei’th argument in an instantiation
of C with respect to subtyping. SupposeTi is a subtype of
Ui. If var(C#i) = + then C<T1, . . . ,Ti, . . . ,Tn> is a sub-
type of C<T1, . . . ,Ui, . . . ,Tn>; dually, if var(C#i) = - then
C<T1, . . . ,Ui, . . . ,Tn> is a subtype ofC<T1, . . . ,Ti, . . . ,Tn>.

This declaration-sitevariance is supported by Scala 2.0 [18],
and has also been studied as an extension to C] by the first au-
thor and others [10]. Java 5, in contrast, supportsuse-sitevariance,
where the variance behaviour of a type is determined by annota-
tions on its actual instantiation. Suppose thatT is a subtype ofU .
ThenC<? extends T> is a subtype ofC<? extends U >; du-
ally, C<? super U > is a subtype ofC<? super T>.

In fact, wildcard types in Java are best thought of asbounded ex-
istentials, soC<? extends T> is essentially∃X<:T .C<X > and
C<? super T> is ∃X :>T .C<X >. This existential interpretation
leads to somewhat more complex (and more powerful) subtyping
rules, particularly in combination with inheritance and F-bounded
type parameters. Nevertheless, it is quite straightforward to define a
translation from declaration-site to use-site variance that preserves
and reflects subtyping. Hence rather than dive in at the deep end
with use-site/wildcard variance, we choose to start our investiga-
tion with the declaration-site variety.

Also note that we do not considerbounds(also calledcon-
straints) on type parameters, a feature supported by Java 5, C] 2.0,
.NET IL 2.0, and Scala 2.0. Formally, these require subtyping judg-
ments of the form∆ ` T <: U , where∆ is a set of assumptions:
upper bounds on type parameters, for Java, C], and .NET, and both
lower and upper bounds, for Scala. We believe that for declaration-
site variance, our results can be generalized to open subtyping in
the presence of bounds; we return to this point in Section 6.

Properties of subtyping It is easy to prove that ground subtyping
is reflexive, by a derivation consisting only of instances of VAR.
To prove transitivity, we need to make use of a well-formedness



(VAR)
for eachi Ti <:var(C#i) Ui

C<T> <: C<U >

(SUPER)
C<X > <:: V [T/X ]V <: D<U >

C<T> <: D<U >
C 6= D

T <: U

T <:+ U T <:◦ T

U <: T

T <:- U

Figure 1. The subtyping relation

¬v =

8><
>:
-, if v = +,

◦, if v = ◦,
+, if v = -

vi ∈ {◦, +}

vX ` Xi ok

for eachi
var(C#i) ∈ {◦, +} ⇒ vX ` Ti ok
var(C#i) ∈ {◦, -} ⇒ ¬vX ` Ti ok

vX ` C<T> ok

vX ` T ok

C<vX > <:: T ok

Figure 2. Well-formed types and class declarations

condition on supertype declarations that restricts covariant type pa-
rameters to appear only in positive positions in the supertype and,
dually, restricts contravariant parameters to appear only in nega-
tive positions. (This condition is necessary for semantic soundness,
but observe that if it were not enforced, one could make the defin-
ition C<+X > <:: NX for contravariantN , and haveCT <: CU
and CU <: NU but not CT <: NU .) Formally, we intro-
duce a well-formedness judgmentvX ` T ok which can be read
“type T respects the variance annotationsv on type parameters
X .” This is shown in Figure 2 together with its application in spec-
ifying well-formedness of class declarations. (For the type system
proper, well-formedness is also used to restrict field and method
signatures appropriately [10].) For example, if classC is invari-
ant in its parameter andN is contravariant, then the declaration
D<-X , +Y > <:: NNY is allowed, because-X , +Y ` NNY ok
is derivable, butD<-X , +Y > <:: NY andD<-X , +Y > <:: CX
are rejected.

Using these assumptions, we can prove that subtyping is transi-
tive.

LEMMA 1 (Transitivity). If T <: U andU <: V thenT <: V .

PROOF: See Appendix B. �

It follows that the syntax-directed formulation of subtyping we
are working with here is equivalent to a declarative formulation
where reflexivity and transitivity are included as separate rules
and rule SUPER is replaced by a simpler version that concludes
T <: U from premiseT <:: U . This observation gives some
assurance that the decidability issues we are addressing do not
arise just from some peculiarity in the way we have formulated our
algorithmic rules, but rather are inherent to the notion of subtyping
under consideration.

3. Examples
Is the subtype relation we have defined decidable, for any class ta-
ble? It is not clear, on the face of it, what we should expect. On
one hand, this type system has something of the flavor of System
F ω
≤ [5, 7, 20], the higher-order extension of SystemF≤ [6] (the

type constructors in the present system are intuitively something
like bounded type variables of higher kind inF ω

≤ ), so we might
worry about the possibility of undecidability [19]. Indeed, the pos-
sibility of recursion in the class table introduces elements ofF-
boundedquantification [4, 11, 2]. On the other hand, some features
of F≤ that play a prominent role in its proof of undecidability (in
particular, “free-standing” universal quantifiers, which allow intro-
ducing new type variables into the environment) are missing here.
And the other complicating feature, the variance annotations, has
been shown to be well-behaved (though complex to analyze) in at
least some situations [21].

(Appendix A presents Java 5 code for the examples below).

Example 1 The first observation that hints at the full system’s
undecidability is that the subtype checker defined by the algorith-
mic rules above does not always halt. (This is not a proof of un-
decidability, of course—it is always possible that there is another,
smarter algorithm that does always terminate.)

Define the classesN andC as follows:

N<-Z> <::
C <:: NNC

That is,N is a contravariant constructor with no declared super-
types andC is an invariant nullary constructor whose immediate
supertype isNNC.

Now, suppose we want to know whetherC <: NC. If we try
to construct a proof of this fact from the algorithmic subtyping
rules (following the steps of the subtyping algorithm), we enter an
infinite regress:

C <: NC
−→ NNC <: NC by SUPER
−→ C <: NC by VAR
−→ NNC <: NC by SUPER
−→ C <: NC by VAR
−→ etc.

Of course, this infinite regress is easy to detect. And clearly, if
T <: U can only be proved by a derivation containing as a
subderivation a proof ofT <: U , then T is not a subtype of
U . (Under aco-inductiveinterpretation of the subtyping rules,T
would be considered a subtype ofU . We believe that this more
generous definition is semantically sound; but it does not affect
decidability, as an algorithm must in any case detect infinite regress,
returningtrue in place offalse.)

Example 2 Unfortunately, slightly trickier examples lead to more
complicated patterns of regress. For example, if we defineN as
above and consider

CX <:: NNCCX

then the regress involves longer and longer types as it goes on:

CT <: NCU
−→ NNCCT <: NCU by SUPER
−→ CU <: NCCT by VAR
−→ NNCCU <: NCCT by SUPER
−→ CCT <: NCCU by VAR
−→ NNCCCT <: NCCU by SUPER
−→ CCU <: NCCCT by VAR
−→ NNCCCU <: NCCCT by SUPER
−→ CCCT <: NCCCU by VAR
−→ etc.



In general, there is no way to describe and detect all such patterns
of regress.

Example 3 Another observation that illustrates the bad behavior
of the subtyping relation is thatsuccessfulderivations can be ex-
ponentially larger than the class table. For example, consider the
following definitions:

C0X <:: NNX
C1X <:: C0C0X

...
CnX <:: Cn−1Cn−1X

The derivation of the valid subtyping assertionCnNT <: NCnT
uses2n+1 instances of the VAR rule!

Example 4 Analogously, there are patterns of regress where the
“cycle” is exponentially larger than the class table. One such is
obtained by making a small change to the declaration ofCn above:

C0X <:: NNX
C1X <:: C0C0X

...
CnX <:: Cn−1Cn−1CnX

The reduction ofCnNT <: NCnT enters a cycle (i.e., generates
a subgoal that has already been seen) after passing through2n+1

instances of VAR.

4. Undecidability of the general case
To show undecidability of subtyping, we perform a reduction from
thePost Correspondence Problem, or PCP for short.

The Post Correspondence ProblemLet{(u1, v1), . . . , (un, vn)}
be a set of pairs of non-empty words over a finite alphabet
Σ. The Post Correspondence Problem is to determine whether
or not there exists a sequence of indicesi1, . . . , ir such that
ui1 · · ·uir = vi1 · · · vir .

THEOREM 2. PCP is undecidable.

PROOF: See, for example, [15]. �

Reduction The construction uses the following classes:

E empty sequence
SX stop
N<-X > negation
Ni<-X > negation, for0 6 i 6 n
LX letter, for eachL ∈ Σ
C<X ,Y > crank
B boot

The first five of these have no declared supertypes; the supertype
declarations for the last two are given below. The general idea is
that words overΣ are represented as types, while instances of PCP
are represented as class tables in which each pair of words from the
PCP instance corresponds to a different supertype declaration for
the constructorC.

We represent words as sequences of applications of classes,
using the nullary classE to represent the empty sequence. So,
for example, ifΣ = {P, Q, R} then our class table will contain
declarations for classesP , Q, andR, each taking one parameter
and with no supertypes, and the wordPQP can be represented by
the typePQPE (i.e.,P<Q<P<E<>>>>).

Let u·T denote the representation of a non-empty wordu con-
catenated onto a word represented by typeT :

L·T = LT
(Lu)·T = L<u·T>

The representation of a non-empty wordu, denotedu, is defined as

u = u·E.

It is easy to see thatu = v iff u = v.
The class table entries forC andB are:

C<X ,Y > <:: NN1C<u1·X , v1·Y > (C1)
N1NC<u1·X , v1·Y > (C′

1)
...

NNnC<un·X , vn·Y > (Cn)
NnNC<un·X , vn·Y > (C′

n)

NN0SX (CL)
N0SY (CR)

B <:: NN1C<u1, v1> (B1)
N1NC<u1, v1> (B′

1)
...

NNnC<un, vn> (Bn)
NnNC<un, vn> (B′

n)

Now, the given word problem has a solution iff the subtyping
judgmentB <: NB is derivable. To see why, consider the progress
of the proof search procedure starting fromB <: NB. Its first
step must be to use some instance of SUPER on the left-hand
side. If it chooses one of the even-numbered supertypes (the ones
beginning withNi), then it will fail on the next step: since none of
the Nis have declared supertypes, there is no rule that can derive
NiS <: NT . Among the odd-numbered rules, however, it has
a free choice—i.e., algorithmically, it must try each of them in
turn, backtracking and trying the others if the proof search for the
corresponding subgoal fails. So suppose it tries the first one, rule
(B1) in the class table. The active goal then becomes

NN1C<u1, v1> <: NB.

The next step of proof search necessarily applies rule VAR, yielding

B <: N1C<u1, v1>.

At this point, there is again just one choice that allows us to make
progress: the only way to avoid failing on the very next step is to
choose rule(B′

1)

N1NC<u1, v1> <: N1C<u1, v1>,

and another use of VAR yields

C<u1, v1> <: NC<u1, v1>.

At this point, the proof search algorithm again has a choice to
make. It can either apply SUPER with one of the odd-numbered
supertypes ofC, or apply the special “stop rule”(CL) (again,
the even numbered rules and rule(CR) all lead to failure on the
next step). If it chooses one of the(C′

i) rules—say,(C4)—then an
analogous sequence of forced steps leads to the subgoal

C<u4u1, v4v1> <: NC<u4u1, v4v1>.

This process might continue in the same way with yet another of the
(Ci) rules, but suppose, instead, that the proof search now chooses
the stop rule(CL):

NN0S<u4u1> <: NC<u4u1, v4v1>,

which leads to

C<u4u1, v4v1> <: N0S<u4u1>,

from which the only choice that does not fail at the next step is
(CR),

N0S<v4v1> <: N0S<u4u1>,



from which VAR yields

S<u4u1> <: S<v4v1>.

Now the proof search immediately succeeds or fails. The construc-
tor S has no declared supertypes and no variance annotation, so
the only wayS<u4u1> <: S<v4v1> can hold is by reflexivity.
This rule applies if the two types being compared are exactly the
same—i.e., ifu4u1 = v4v1. Summing up, we can see that there
exists some way of constructing a successful subtyping derivation
for the judgmentB <: NB iff there is some sequenceI such that
uI = vI—that is (since the translation from words to types is in-
jective), such thatuI = vI .

Formalities The rest of the section recapitulates this argument
more formally.

Let i and j range over positive integers, used to index the
words, and letI and J range over (possibly empty) sequences
of positive integers. We writeIJ to denote the concatenation of
sequencesI and J , and we identifyi with the single-element
sequence containingi. ForI = i1 · · · ir we writeuI to denote the
concatenated wordui1 · · ·uir . We begin with a couple of lemmas.

LEMMA 3 (Single step).Suppose

C<uI , vI> <: NC<uI , vI>

is derivable for a non-empty sequenceI. TheneitheruI = vI , or
there is a proper subderivation whose conclusion is

C<uiI , viI> <: NC<uiI , viI>

for somei.

PROOF: SinceC 6= N , the derivation must end with an instance
of SUPER. There are two cases.

• Declaration (CL) was used, and so the premise was

NN0SuI <: NC<uI , vI>.

Since both sides begin withN , the final rule in this subderiva-
tion must be VAR, with premise

C<uI , vI> <: N0SuI .

Again, the subderivation for this premise must end with an
instance of SUPER. None ofCL, Ci, or C′

i lead to a successful
derivation (for anyi), butCR does, giving us the premise

N0SvI <: N0SuI .

By VAR again, this was derived from

SuI <: SvJ .

Finally, by VAR once more, we must have a subderivation of
uI = vI , and souI = vI , as required.

• Declaration (Ci) was used, for somei, so the premise was

NNiC<uiI , viI> <: NC<uI , vI>.

By VAR, this must have been derived from

C<uI , vI> <: NiC<uiI , viI>.

Then by SUPER through declarationC′
i we have premise

NiNC<uiI , viI> <: NiC<uiI , viI>

and by VAR we have the premise

C<uiI , viI> <: NC<uiI , viI>

as required. �

LEMMA 4 (Multiple step).For any non-empty sequenceI, if there
is a derivation of

C<uI , vI> <: NC<uI , vI>

then there exists a (not necessarily proper) subderivation whose
conclusion is

C<uJI , vJI> <: NC<uJI , vJI>

such thatuJI = vJI for some (possibly empty)J .

PROOF: By induction on the height of the derivation.
From Lemma 3, we have eitheruI = vI , in which case we’re

done (J is the empty sequence), or else we have a proper subderiva-
tion whose conclusion is

C<uiI , viI> <: NC<uiI , viI>

for somei. We now apply the induction hypothesis to get a (not
necessarily proper) subderivation of

C<uJ′iI , vJ′iI> <: NC<uJ′iI , vJ′iI>

for someJ ′ such thatuJ′iI = vJ′iI . This is the result we desire
(let J = J ′i). �

THEOREM 5. Subtyping is undecidable.

PROOF: We show that an instance of PCP can be reduced to an
instance of subtype validity under some class table.

For the particular instance of PCP, define a class table as de-
scribed above. We now show that the instance of PCP has a solution
if and only if B <: NB is derivable.

(⇒). Suppose thatI is a solution to the problem, so that
uI = vI . Then S<uI> <: S<vI> by reflexivity. By two uses
of VAR, and SUPER throughCL andCR we obtain a derivation of
C<uI , vI> <: NC<uI , vI>. We now showB <: NB is derivable
by induction on the length ofI. For the base case, supposeI = i.
Then we can easily construct a derivation, using VAR twice and
SUPER throughBi and B′

i. For the inductive step, suppose that
I = iJ . By two uses of VAR and SUPER, throughCi and thenC′

i,
we obtainC<uJ , vJ> <: NC<uJ , vJ>. Applying the induction
hypothesis gives us the desired result.

(⇐). The derivation must end with an instance of SUPER, with
premiseNNiC<ui, vi> <: NB for somei. This in turn must have
been derived using VAR, with premiseB <: NC<ui, vi>. Another
use of SUPER and VAR takes us toC<ui, vi> <: NiC<ui, vi>.
Now we can apply Lemma 4, to obtain a derivation of

C<uIi, vIi> <: NC<uIi, vIi>

for someI such thatuIi = vIi. In other words, we have someJ
such thatuJ = vJ , as required. �

5. Some decidable fragments
The reduction from PCP in the previous section used the following
vital ingredients:

• Contravariancewas used in a “double-negation” fashion to
send a term to the opposite side of the subtype assertion and
then back again. (Interestingly, it is possible to devise a slightly
more complex reduction from PCP that uses only asinglecon-
travariant constructor.)

• Unbounded growthin the size of the subtype assertion was used
to accumulate a concatenation of words in the encoding.

• Multiple instantiation inheritance—applying a type constructor
at different type instantiations in inheritance declarations—was
used to encode a choice of words. (Note, though, that the instan-
tiations arenon-overlapping: instantiation ofC does not lead to
identification of any of its supertypes.)

In this section, we explore different ways to recover decidability
by restricting the class table to eliminate one or more of these
ingredients.



5.1 Contravariance

THEOREM 6. Suppose that no type constructors are contravariant.
Then subtyping is decidable.

PROOF: Define the following order on subtype assertions:

(T1 <: U1) ≺ (T2 <: U2)
iff

height(U1) < height(U2)
or (height(U1) = height(U2) andT2 <::+ T1)

The acyclicity condition on inheritance ensures that the inverse
of <::+ is well-founded; so≺ is well-founded also. It is easy to
see that this order strictly decreases from conclusion to premises
of the subtyping rules: rule VAR reduces the height of both sides of
the assertion for covariant parameters, whilst rule SUPERleaves the
right-hand-side alone and reduces the left-hand-side with respect to
the inheritance ordering. �

5.2 Expansive inheritance

The undecidability reduction made crucial use of the ability to grow
the subtype assertion in an unbounded fashion. We now show how
to check this growth by restricting the form of types in the class
table.

Given a particular class table, a set of typesS is said to beclosed
under decomposition and inheritance—or inheritance closed, for
short—if (a) wheneverC<T> is in S, so are all theT , and (b) if
T is in S andT <:: U , thenU is in S. Define theinheritance
closureof a setS, writtencl(S), to be the least inheritance-closed
superset ofS.

The types appearing in subtype judgments in the subtyping rules
are clearly closed with respect to decomposition and inheritance:
a derivation ofT <: U involves only types incl({T ,U }). If
the subtype checker remembers a set of “visited goals” and rejects
assertions that appear in this set, then it must terminate if the
inheritance closure of the types in the original problem is finite.
We say that a class table isfinitary if any finite set of types has a
finite inheritance closure with respect to the class table; otherwise,
the class table isinfinitary. The class table in Example 1 is finitary,
while that in Example 2 is infinitary:cl({CT}) = {NmCnT |
0 6 m 6 2 andn > 0}. Likewise, the “crank” classC in
Section 4 induces an infinitary closure.

Even disregarding subtyping, infinite closure presents a prob-
lem for language implementers, as they must take care not to create
type representations for supertypes in an eager fashion, else non-
termination is the result. For example, the .NET Common Lan-
guage Runtime supports generic instantiation and generic inheri-
tance in its intermediate language targeted by C]. The class loader
maintains a hash table of types currently loaded, and when loading
a new type it will attempt to load its supertypes, add these to the ta-
ble, and in turn load the type arguments involved in the supertype.

Fortunately, there is a syntactic characterization of infinitary
class tables due to Viroli [23] that can be used to reject such defi-
nitions; the specification of the .NET CLR includes such a restric-
tion [9, Partition II,§9.2]. Here we recast Viroli’s definitions in our
framework and present a (somewhat slicker) proof of correctness.

Define a type parameter dependency graphas follows. The
vertices are all the type parameters to classes in the class table; we
will denote these interchangeably by eitherC#i—the i’th formal
type parameter to classC—or by their alphabetic names, which
we assume are (α-converted to be) distinct. Boolean-labeled edges
represent uses of formal type parameters in class instantiations
in the class table. For each declarationC<X > <:: T and each
subtermD<T> of T ,

• if Tj = Xi add anon-expansiveedgeC#i
0→ D#j;

• if Xi is a proper subterm ofTj add anexpansiveedgeC#i
1→

D#j.

We writeX → Y if X
e→ Y for somee ∈ {0, 1} and write→+

for the transitive closure of→.
Infinitary class tables are characterized precisely by those

graphs that contain a cycle with at least one expansive edge.
Consider Example 2 and its graph, using dotted arrows for non-
expansive edges and solid arrows for expansive ones:

N<-Z> <::
C<X> <:: NNCCX X 66MM
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The type parameterX appears in three edges: a non-expansive edge
represents its use as argument to the second occurrence ofC, an
expansive cyclic edge represents its use inside the argument to the
first occurrence ofC, and an expansive edge toZ represents its use
inside the argument to the two occurrences ofN .

Now consider a more complex class table and its graph:

C<X> <:: DP<X, X>
P<Y, Y ′> <:: Q<CY, CDY ′>
Q<Z, Z′> <::
D<W> <::

Z X

����   

Z′

Y

>>OO

W Y ′

hh

oo
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The type parameterX is used in three ways: its appearance in the
instantiation ofD is represented by an edge to the “sink” nodeW ,
its use as first argument toP is represented by an edge in a non-
expansive cycle throughY , and its use as second argument toP
is represented by an edge in an expansive cycle throughY ′. The
existence of this latter expansive cycle implies that the class table
is infinitary; indeedcl({CT}) ⊇ {CDmT | m > 0}.

In order to show that expansiveness is asufficientcondition for
infinitary closure, we make use of the following relationship be-
tween inheritance closure and type parameter dependency graphs.

LEMMA 7. SupposeS is inheritance closed andC<T> ∈ S.

1. If C#i
0→ D#j thenD<U > ∈ S for someU with Uj = Ti.

2. If C#i
1→ D#j thenD<U > ∈ S for someU such thatTi is a

proper subterm ofUj .

PROOF:

1. From the definition of a type parameter dependency graph, we
must haveC<X > <:: V for someV with some typeD<V >
a subterm ofV andVj = Xi. By inheritance closure ofS we
have[T/X ]V ∈ S and then by decomposition closure we have
D<[T/X ]V > ∈ S, from which the result follows.

2. Similar. �

THEOREM 8. If a class table is expansive, then it is infinitary.

PROOF: Suppose that the class table is expansive. Then its type
parameter dependency graph contains a cycle, at least one of whose
edges (say the first) is expansive—i.e., eitherC#i

1→ C#i (a one-
cycle), orC#i

1→ D#j →+ C#i. By repeated use of Lemma 7
we can see that, ifC<T> ∈ S andS is inheritance closed, then
C<U > ∈ S for someU with Ti a proper subterm ofUi. In
other words, for any instantiation ofC in S there is a larger one; it
follows thatS is infinite. �

Showing that expansiveness is anecessarycondition is a bit
more tricky. We need two further notions.

First, we rank the vertices in the graph, assigning each type pa-
rameterX a natural numberlevel(X ) with the following property.



SupposeX → Y . If Y →+ X thenlevel(X ) = level(Y ), else
level(X ) > level(Y ). (One means of assigning levels is first to
identify nodes in strongly-connected components and then to topo-
logically sort the resulting DAG.) For the example above, we can
make the assignmentlevel(Z) = level(Z′) = level(W ) = 0 and
level(Y ) = level(Y ′) = level(X) = 1.

Second, we introduce the notion of apath. A particular subterm
of a type can be identified by a path, which we represent as a
sequence of formal type parameters, writingε for the empty path
and X .p (or C#i.p) for the path consisting of the formal type
parameterX (or C#i) concatenated onto the pathp. We interpret
a pathp as a partial function from terms to subterms, as follows:

ε(T ) = T

p(Ti) = U

(C#i.p)(C<T>) = U

For example, letT = C<DU ,V >. Then(C#1.ε)(T ) = DU ,
and(C#1.D#1.ε)(T ) = U . We say thatp is a path inT if p(T )
is defined.

THEOREM 9. If a class table is infinitary, then it is expansive.

PROOF: We argue the contrapositive—that non-expansive class
tables are finitary. LetS be a finite set of types. Letδ be a bound
on the height of types inS and in the class table (ifT ∈ S then
height(T ) 6 δ; if C<X > <:: T thenheight(T ) 6 δ) and let
L be the number of levels (so0 6 level(X ) < L for any formal
type parameterX ). We prove that the height of types incl(S) is
bounded byδL; then, because the set of types of a certain height is
finite, it follows thatcl(S) must be finite.

Let φ(p) hold for a pathp if it can be divided into a sequence
of (possibly empty) sequences of type parameters whose levels
are bounded by0, . . . , L−1 and whose lengths are bounded byδ.
That is,φ(p) means thatp has the formX 0X 1 · · ·X L−1, with
level(X l) 6 l and |X l| 6 δ for 0 6 l < L. Let φ(T ) hold for
a typeT if φ(p) holds for every pathp in T . It is easy to see that
φ(T ) impliesheight(T ) 6 δL.

Clearlyφ holds for the types inS. We show thatφ is preserved
under the closure operations used to constructcl(S). For decom-
position, it’s clear that, ifφ(C<T>) holds, then so doesφ(Ti) for
eachi. For inheritance, suppose thatC<X > <:: U ; we must show
that φ(C<T>) implies φ([T/X ]U ). If U is simply a type para-
meter (mixin inheritance), then the result follows directly. Other-
wise, consider a pathp in [T/X ]U . There are two possibilities.
First, p could be simply a path inU that maps to a non-variable
subterm (p(U ) = D<U > for someD and U ). In this case we
know that|p| 6 δ and so we haveφ(p) immediately. Otherwise,
p = p′.q for some non-emptyp′ and q such thatp′(U ) = Xi

and q is a path inTi. HenceC#i.q is a path inC<T>, and so
from φ(C<T>) we can deduceφ(C#i.q), or written another way,
φ(Xi.q). Now if level(Xi) = k thenq = Yk.Yk+1. . . . .YL−1,
with level(Yl) 6 l for k 6 l < L and with |Yk| < δ and
|Yl| 6 δ for k < l < L. Supposep′ = Z .Z . By the definition

of the type parameter dependency graph, we know thatXi
1→ Zj

for eachj and thatXi
0→ Z . Because the graph contains no expan-

sive cycles (that is, we do not haveZj →+ Xi), we can deduce that
level(Zj) < level(Xi) = k for eachj. Finally, because|Z | < δ,
we can see thatp = Z .Z .Yk. . . . .YL−1 satisfiesφ, as required.�

COROLLARY 10. Non-expansive subtyping is decidable.

5.3 Multiple instantiation inheritance

We now consider the third ingredient of the reduction from PCP:
multiple instantiation inheritance. Java 5 prohibits it:

(SUPERVAR)
T <::∗ D<T> for eachi, Ti <:var(D#i) Ui

T <: D<U >

T <: U

T <:+ U T <:◦ T

U <: T

T <:- U

Figure 3. Deterministic subtyping

“A class may not at the same time be a subtype of two
interface types which are different invocations of the same
generic interface, or an invocation of a generic interface and
a raw type naming that same generic interface.” [12,§8.1.5]

To put it another way, generic instantiations are uniquely deter-
mined by the inheritance relation: ifT <::∗ C<U > andT <::∗

C<V > thenU = V . The Java 5 specification goes on to say:

“This requirement was introduced in order to support trans-
lation by type erasure.”

C] 2.0, which does not erase types, has no such restriction. Instead,
it merely requires supertypes to be non-overlapping: ifC<X > <::
T andC<X > <:: U , then, for all instantiationsV , if [V /X ]T =
[V /X ]U , thenT = U .

If multiple instantiation inheritance is prohibited, we can refor-
mulate subtyping so that derivations are unique. Figure 3 presents
the revised rules, in which SUPERVAR combines variance and in-
heritance in a single rule. It is easy to show that the rules define
the same relation. (For an example of non-unique derivations under
singleinstantiation inheritance in the original system, consider the
declarationsCX <:: IX andD <:: CE, IE and the assertion
D <: IE. In the revised rules, such non-determinism is ‘hidden’
inside the<::∗ side-condition on rule SUPERVAR.)

Of course, uniqueness of derivations in a syntax-directed system
does not imply decidability: derivations inF≤ are unique, but sub-
typing is undecidable [19]. However, it does simplify the problem
somewhat, as the search for a derivation does not involve a choice
of paths, but must determine merely whether a particular linear path
is finite (and, if so, whether it ends in a successful state).

Fortunately, for all examples in Section 3—and for many other
more complex ones—it is possible to detect the infinite regress us-
ing a notion ofaccessibility, which we describe next. (Unfortu-
nately, we do not yet have a general result for all class tables with-
out multiple instantiation inheritance; our proof requires an addi-
tional, somewhat artificial, technical condition on class tables, de-
scribed below. It is possible that, without this restriction, the prob-
lem is still undecidable.)

Consider Example 2 once more. Observe that the typesT and
U actually play no role in the reduction: they can be replaced
by arbitrary types without affecting the validity of the subtype
assertion. Indeed, at any point in the reduction, all but the first
occurrence ofC in the types can be replaced without affecting
validity, because that part of the type is never “accessed.” To make
things a little clearer, we adapt the example to use a different type
insideC. The definitions and type parameter dependency graph are
as follows:

N<-Z> <::
D<Y > <::
C<X> <:: NNCDX
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Using the new rules from Figure 3, the pattern of regress is as
follows:

CT <: NCU
−→ CU <: NCDT by SUPERVAR
−→ CDT <: NCDU by SUPERVAR
−→ CDU <: NCDDT by SUPERVAR
−→ CDDT <: NCDDU by SUPERVAR
−→ etc.

Notice thatC is invariant and recursive throughX : the former
property means that it cannot be “passed through” using variance
to reach a goal involving its arguments—the only thing we can do
with it is to use the inheritance relation to replace it (on the left
of <:) by some supertype—and the latter means that, when an
instantiation ofC is replaced by something else in this way, the
type replacing it is another instantiation ofC itself or of another
class in mutual recursion withC.

Of course, a type parameter may be used both recursively and
non-recursively in different subterms of the same type, or in differ-
ent supertype declarations. To obtain our (preliminary) decidability
result, we impose a somewhat artificial restriction on the class ta-
ble: if a type parameterX appears in an expansive cycle in the
type parameter dependency graph, then (a) it is an invariant type
parameter, and (b) it appears exactly once in a single supertype
declaration. We call such a type parameterexpansive-recursive.

We can now formalize the idea ofaccessibilityby defining a
relation∼ between types, read “same accessible parts” and defined
as follows:C<T> ∼ D<U > if C = D and for eachi eitherC#i
is expansive-recursive or elseTi ∼ Ui. We extend the definition
to subtype judgments:(T <: T ′) ∼ (U <: U ′) iff T ∼ U
andT ′ ∼ U ′. Alternatively, we say that a pathp is accessibleif it
does not contain an expansive-recursive type parameter. It is easy
to show thatT ∼ U iff T andU have the same set of accessible
paths.

The following technical lemma relates this notion of accessibil-
ity to the inheritance relation.

LEMMA 11. SupposeT <::∗ U andT ∼ T ′. ThenT ′ <::∗ U ′

for someU ′ such thatU ∼ U ′.

PROOF: By induction on the number of steps of inheritance used
to deriveT <::∗ U .

• SupposeU = T . Then setU ′ = T ′ and we’re done.
• SupposeT = C<T> andT ′ = C<T ′>, with C<X > <:: V

and[T/X ]V <::∗ U . We will show that, ifp is an accessible
path in V , then [T/X ](p(V )) ∼ [T

′
/X ](p(V )); setting

p = ε then gives us[T/X ]V ∼ [T ′/X ]V , from which the
desired result follows by the induction hypothesis.

We proceed by an inner induction on the size of termp(V ).
First, supposep(V ) = Xi for somei. We deduce thatXi

is not expansive-recursive by the following argument. Sup-
pose it were. Thenp would represent the only occurrence of
Xi (by our linearity restriction), and the only edges fromXi

in the type parameter dependency graph would be to nodes
in p, as they represent all arguments to constructors inV
for which Xi is a subterm. By the definition of expansive-
recursive edges, one of these edges would belong to an ex-
pansive cycle in the graph, and hence one of the type para-
meters inp would itself be expansive-recursive. This con-
tradicts our assumption thatp is accessible; henceXi is not
expansive-recursive. This being the case, we immediately
haveTi ∼ T ′

i becauseC<T> ∼ C<T ′>.
Next, supposep(V ) is some compound typeD<V >. We
must show that, for eachVi with D#i not expansive-
recursive,[T/X ]Vi ∼ [T

′
/X ]Vi. This follows by an

application of the inner induction hypothesis on the (ac-
cessible) pathp.D#i. �

For the rest of the argument, it is convenient to introduce a
notation for “reduction” between subtyping goals. We writeJ −→
J ′ if judgmentsJ and J ′ are respectively the conclusion and
premise of an instance of SUPERVAR. (We have been relying on
the same informal intuition all along, of course, in arguments of the
form “subtyping judgmentJ1 can only be provable ifJ2 is,” but
the notion is particularly easy to formalize in the present setting,
where we have imposed enough conditions to make proof search
deterministic.) This relation is specified by the following inference
rules:

T <::∗ D<V > var(D#i) = +

T <: D<U > −→ Vi <: Ui

T <::∗ D<V > var(D#i) = -

T <: D<U > −→ Ui <: Vi

The following key lemma captures our intuition that only the
accessible part of a type affects reducibility.

LEMMA 12. SupposeJ1 and J2 are subtyping judgments with
J1 ∼ J2. If J1 −→ J ′1, thenJ2 −→ J ′2 for someJ ′2 such that
J ′1 ∼ J ′2.

PROOF: SupposeJ1 = T <: D<U > andJ2 = T ′ <: D<U
′
>.

ThenJ1 is reducible only ifvar(D#i) 6= ◦ for somei. Suppose
var(D#i) = + (the case forvar(D#i) = - is similar). We must
have T <::∗ D<V > for someV and J ′1 = Vi <: Ui. By
Lemma 11 we haveT ′ <::∗ U ′ for someV ′ such thatD<V > ∼
V ′, so V ′ = D<V ′> for someV ′, and henceJ2 −→ J ′2
whereJ ′2 = V ′

i <: U ′
i . Finally, sinceD<U > ∼ D<U ′> and

D<V > ∼ D<V ′> it follows immediately from the definition of∼
thatUi ∼ U ′

i andVi ∼ V ′
i , as required. �

COROLLARY 13. If J −→+ J ′ andJ ∼ J ′ thenJ −→∞.

We now have a sufficient condition for non-termination: if we en-
counter a goal that matches a goal already seen up to accessibility,
then we can returnfalseimmediately.

Example 4 demonstrates that many reductions may occur before
such a matching goal is reached. Fortunately, we can show that the
number of reductions is bounded: although the inaccessible part of
a type can grow unboundedly (as in Example 2), the accessible part
cannot. Hence, there are only a finite number of possible types up
to accessibility. This is the key to decidability.

Let δ be a bound on the height of a supertype (ifC<X > <:: T
thenheight(T ) 6 δ), and letL be the number of levels (so0 6
level(X ) < L). Given a particular subtyping problemT <: U ,
we can always arrange forδ to be larger than bothheight(T ) and
height(U ).

Define a notion ofaccessible heightas follows.

acc(T ) = max{|p| | p is an accessible path inT}
We now show that the accessible height of subtype judgments is
bounded byδL.

LEMMA 14. If acc(J) 6 δL andJ −→ J ′ thenacc(J ′) 6 δL.

PROOF: Letφ(p) hold for a pathp if it can be divided into (possibly
empty) sequences of type parameters whose levels are bounded by
0, . . . , L−1 and whose lengths are bounded byδ. That is,p has
the formX 0X 1 · · ·X L−1 such thatlevel(X i) 6 i, and|X i| 6 δ
for 0 6 i < L. Let φ(T ) hold for a typeT if φ(p) holds for
every accessible pathp in T . It is easy to see thatφ(T ) implies
acc(T ) 6 δL.



We now show that, ifφ(T ) and φ(U ), and T <: U −→
T ′ <: U ′, thenφ(T ′) andφ(U ′). The argument is very similar
to that pursued in Theorem 9, but this time relies on the fact that
accessible paths contain no expansive-recursive type parameters.�

COROLLARY 15. Suppose that the class table makes no use of
multiple instantiation inheritance and that any expansive-recursive
type parameters are invariant and used exactly once. Then subtyp-
ing is decidable.

6. Discussion
Starting with only basic restrictions on class tables (acyclicity and
well-formedness with respect to variance), we have proved the fol-
lowing results about subtyping under inheritance and declaration-
site variance:

• The general problem is undecidable (§4).

• If the class table makes no use of contravariance, then subtyping
is decidable (§5.1).

• If the class table is not expansive, then subtyping is decidable
(§5.2).

• If there is no use of multiple instantiation inheritance, and all
expansive-recursive type parameters are invariant and linear,
then subtyping is decidable (§5.3).

Of these results, decidability of non-expansive subtyping can be
applied directly to ground subtyping in .NET (that is, subtyping
between closed types). It is straightforward to generalize the result
to incorporate other features of the .NET type system such as
covariant arrays, invariant managed pointer types, and boxed types.
(Decidability even of ground subtyping is important, as subtype
tests at runtime involve un-erased generic types.) To generalize
to open subtyping, as employed by the .NET CLR verifier (type-
checker), we must support upper bounds on type parameters, and
the associated subtyping rule (∆ ` X <: U can be derived from
premise∆ ` T <: U if X <: T ∈ ∆). For instance, an analog
of Example 1 can be given using bounds:2 X <: NNX ` X <:
NX . Observe, though, that bounds alone cannot induce arbitrary
expansion of types, because type parameters cannot range over
type constructors: they are not higher-kinded. Put another way,
there is no analog of Example 2 using bounds. We believe that
our decidability result generalizes to the complete type system of
.NET 2.0.

Supertype declarations in Java, C] and Scala have the form
C<X > <:: T . The constraint-bounded polymorphismstudied
by Litvinov [17, 16] also supports “lower bounds” of the form
T <:: C<X >. It is easy to adapt the reduction from PCP to show
that subtyping is undecidable in the presence of covariance and
both upper and lower bounds in the class table, without the need
for contravariance.

One obvious direction for future work is to generalize the result
of Section 5.3, removing the special requirement on expansive-
recursive type parameters. If expansive subtyping in the absence of
multiple instantiation inheritance turned out to be decidable, then
perhaps this could be combined with the existing result on a subset
of Scala [8] to prove that Scala has decidable subtyping.

An undecidability result for expansive subtyping, on the other
hand, would imply that both Scala 2.0 and Java 5 have undecidable
subtyping. A fix for Scala might be to apply the non-expansiveness
restriction on class tables discussed in Section 5.2. We do not be-
lieve that this restriction adversely affects expressivity—at least, we
have been unable to devise any practical application of expansive
inheritance.

2 Thanks to Martin Odersky for observing this.

For Java 5, other features must be explored. First, variance
behaviour for wildcard types is actually aconsequenceof the
interpretation—intuitively, and in the subtyping rules—of wild-
cards as bounded existential types [22]. It is not immediately ap-
parent how to adapt our decidability results to these very different
rules. Second, the combination of Java’s wildcards and F-bounded
type parameters is particularly intricate, and can lead to unbounded
growth in thetyping contextduring subtype checking.

Finally, our undecidability result highlights a hazard in extend-
ing the type systems of any of these languages: if some future ver-
sion of Java or Scala were to support multiple instantiation inheri-
tance, or the .NET CLR were adapted to support expansive inher-
itance through lazy loading of supertypes, then subtyping would
(most definitely!) be undecidable.
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Universiẗat Erlangen-N̈urnberg, 1998.

[22] M. Torgensen, E. Ernst, and C. P. Hansen. Wild FJ. InWorkshop on
Foundations of Object-Oriented Languages (FOOL), January 2005.

[23] M. Viroli. On the recursive generation of parametric types. Technical
Report DEIS-LIA-00-002, Università di Bologna, 2000.



A. Java examples
We present the Java 5 equivalent of the examples from Section 3.

Example 1 This one causesjavac 1.5 to run out of stack. On
javac 1.6.0-beta2 the program is rejected (correctly).

class N<Z> { }
class C extends N<N<? super C>> {

N<? super C> cast(C c) { return c; }
}

Example 2 The following example causes bothjavac 1.5 and
javac 1.6.0-beta2 to run out of stack.

class T { }
class N<Z> { }
class C<X> extends N<N<? super C<C<X>>>> {

N<? super C<T>> cast(C<T> c) { return c; }
}

Example 3 The following example causesjavac 1.5 to run
out of stack. If the test usesC7 instead, the program is accepted
(correctly). Onjavac 1.6.0-beta2 the failure happens atC13.

class T { }
class N<Z> { }
class C0<X> extends N<N<? super X>> { }
class C1<X> extends C0<C0<X>> { }
class C2<X> extends C1<C1<X>> { }
class C3<X> extends C2<C2<X>> { }
class C4<X> extends C3<C3<X>> { }
class C5<X> extends C4<C4<X>> { }
class C6<X> extends C5<C5<X>> { }
class C7<X> extends C6<C6<X>> { }
class C8<X> extends C7<C7<X>> { }
class Test {

N<? super C8<T>> cast(C8<N<? super T>> c)
{ return c; }

}

Example 4 Finally, this example causesjavac 1.5 to run out
of stack. Onjavac 1.6.0-beta2 the program is rejected (cor-
rectly); but again, fails atC13.

class T { }
class N<Z> { }
class C0<X> extends N<N<? super X>> { }
class C1<X> extends C0<C0<X>> { }
class C2<X> extends C1<C1<X>> { }
class C3<X> extends C2<C2<X>> { }
class C4<X> extends C3<C3<X>> { }
class C5<X> extends C4<C4<X>> { }
class C6<X> extends C5<C5<X>> { }
class C7<X> extends C6<C6<X>> { }
class C8<X> extends C7<C7<C8<X>>> { }
class Test {

N<? super C8<T>> cast(C8<N<? super T>> c)
{ return c; }

}

B. Proof of Transitivity
The proof that the subtype relation is transitive relies on one tech-
nical lemma:

LEMMA 16. SupposevX ` C<T> ok. If C<wY > <:: U then
vX ` [T/Y ]U ok.

PROOF: We prove the following, from which the result follows
because by well-formedness of class declarations we havewY `
U ok.

1. If wY ` V ok thenvX ` [T/Y ]V ok.
2. If ¬wY ` V ok then¬vX ` [T/Y ]V ok.

We proceed by simultaneous induction on both derivations.�

With this in hand, we are ready for the main proof of transitivity.
PROOF OFLEMMA 1: Suppose the derivation ofT <: U has

sizem and the derivation ofU <: V has sizen. We proceed by in-
duction onm+n. When both derivations end in rule VAR or when
the first ends in rule SUPER, the result follows by straightforward
applications of the induction hypothesis.

The interesting case is when the first derivation ends in rule
VAR and the second derivation ends in rule SUPER. SupposeT =
C<T> andU = C<U >. Then we have derivations concluding as
follows:

for eachi Ti <:vi Ui

C<T> <: C<U >

C<vX > <:: V0 [U /X ]V0 <: V

C<U > <: V

By well-formedness of class declarations, we knowvX ` V0 ok.
We will now show that[T/X ]V0 <: V , from which the result
follows using an instance of rule SUPER. To do this, we essentially
transform the derivation of[U /X ]V0 <: V into a derivation
of [T/X ]V0 <: V by replacing each subderivation of the form
[U /X ]Xi <: W by a derivation ofTi <: W and replace each
subderivation of the formW <: [U /X ]Xi by W <: Ti.

Under the assumptions from rule VAR above (namely, that
Ti <:vi Ui for eachi), we prove the following. For any typesW
andW0, (1) if vX ` W0 ok, and[U /X ]W0 <: W has a deriva-
tion of size smaller thann, then [T/X ]W0 <: W is derivable;
and (2) if¬vX ` W0 ok, andW <: [U /X ]W0 has a derivation
of size smaller thann, thenW <: [T/X ]W0 is derivable. We
proceed by induction on both subtype derivations simultaneously.

• SupposeW0 = Xi. For (1) well-formedness ofW0 tells us that
vi ∈ {◦, +}. Consider the case whenvi = +. Then we have a
derivation ofUi <: W of size smaller thann; we can apply
the outer induction hypothesis to get a derivation ofTi <: W ,
as required. Now supposevi = ◦. We must haveUi = W so
Ti <: W follows trivially. For (2) well-formedness ofW0 tells
us that¬vi ∈ {◦, +}, that isvi ∈ {◦, -}. Consider the case
whenvi = -. Then we have a derivation ofW <: Ui of size
smaller thann; we can apply the outer induction hypothesis to
get a derivation ofW <: Ti, as required. Again,vi = ◦ is
trivial.

• SupposeW0 = D<W >. There are two sub-cases to consider.

The derivation ends with an instance of VAR, so W =
D<W ′> for someW ′. We show (1), and (2) is similar. Then
we must have for eachj that [U /X ]Wj <:var(D#j) W ′

j .
Supposevar(D#j) = +. Then by the well-formedness
derivation for W0 we know thatvX ` Wj ok, so we
can apply the inner induction hypothesis part (1) to ob-
tain [T/X ]Wj <: W ′

j . Supposevar(D#j) = -. Then
by the well-formedness derivation forW0 we know that
¬vX ` Wj ok, so we can apply the inner induction hy-
pothesis part (2) to obtainW ′

j <: [T/X ]Wj . Finally
supposevar(D#j) = ◦. We havevX ` Wj ok and
¬vX ` Wj ok and [U /X ]Wj = W ′

j . By a simple in-
duction on the well-formedness derivations we can deduce
that [T/X ]Wj = [U /X ]Wj . Hence we have shown for
all j that[T/X ]Wj <:var(D#j) W ′

j , and the result follows
by an application of rule VAR.



For (1), the derivation must conclude with the following
instance of SUPER:

D<Y > <:: T0 [[U /X ]W /Y ]T0 <: W

[U /X ]D<W > <: W

By Lemma 16, we havevX ` [W /Y ]T0 ok. Hence
[T/X ][W /Y ]T0 <: W follows by an application of the
inner induction hypothesis part (1) to the premise above.

For (2), we have a derivation ending in:

E<Y > <:: T0 [V /Y ]T0 <: [U /X ]W0

E<V > <: [U /X ]W0

The result follows by applying the inner induction hypothe-
sis part (2) to the premise. �


