
22

Reconfiguration Methods for Mobile
Sensor Networks

AMAN KANSAL

Microsoft Research

WILLIAM KAISER, GREGORY POTTIE, and MANI SRIVASTAVA

University of California Los Angeles

and

GAURAV SUKHATME

University of Southern California

Motion may be used in sensor networks to change the network configuration for improving the
sensing performance. We consider the problem of controlling motion in a distributed manner for
a mobile sensor network for a specific form of motion capability. Mobility itself may have a high
resource overhead, hence we exploit motility, a constrained form of mobility, which has very low
overheads but provides significant reconfiguration potential. We present an architecture that allows
each node in the network to learn the medium and phenomenon characteristics. We describe a
quantitative metric for sensing performance that is concretely tied to real sensor and medium
characteristics, rather than assuming an abstract range based model. The problem of determining
the desirable network configuration is expressed as an optimization of this metric. We present a
distributed optimization algorithm which computes a desirable network configuration, and adapts
it to environmental changes. The relationship of the proposed algorithm to simulated annealing
and incremental subgradient descent based methods is discussed. A key property of our algorithm
is that convergence to a desirable configuration can be proved even though no global coordination
is involved. A network protocol to implement this algorithm is discussed, followed by simulations
and experiments on a laboratory test bed.

Categories and Subject Descriptors: C.4 [Performance of Systems]; C.2.4 [Computer Commu-
nication Networks]: Distributed Systems

General Terms: Performance, Reliability, Measurement

Additional Key Words and Phrases: Mobile or actuator systems, network protocols, coverage, actu-
ation, motion coordination, spatial resolution, mobility control

ACM Reference Format:
Kansal, A., Kaiser, W., Pottie, G., Srivastava, M., and Sukhatme, G. 2007. Reconfiguration methods
for mobile sensor networks. ACM Trans. Sens. Netw. 3, 4, Article 22 (October 2007), 28 pages. DOI =
10.1145/1281492.1281497 http://doi.acm.org/10.1145/1281492.1281497

Author’s address: A. Kansal; email: kansal@microsoft.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1550-4859/2007/10-ART22 $5.00 DOI 10.1145/1281492.1281497 http://doi.acm.org/
10.1145/1281492.1281497

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

22:2 • A. Kansal et al.

1. INTRODUCTION

We consider a sensor network in which limited motion capabilities are available
for physical network reconfiguration. Our objective is to understand the various
steps needed for selecting an optimal configuration and to design distributed
algorithms for the same.

The optimization metric we consider is based on the sensing performance
achieved by the sensor network. The sensing performance affects most sensor
network applications directly. It is thus important to collect data at the highest
fidelity possible within the given resource constraints. Motion can help achieve
this in at least three ways:

(1) Phenomenon Adaptivity: Mobile sensors can move to sample the phe-
nomenon precisely where highest resolution coverage is required.

(2) Medium Adaptivity: Mobile sensors can reposition themselves to overcome
medium obstacles and anisotropies.

(3) Increased Sensor Range: Mobile sensors can cover a larger volume, depend-
ing on the acceptable motion delay.

The sensing advantages outweigh the cost of motion for appropriate system
design choices.

An interesting analogy of using motion to leverage limited sensing resources
occurs in human eyes. The resolution is highest in the center of the retina
and gradually degrades toward the periphery [Perry and Geisler 2002]. This
is an attempt to minimize sensing resources (in this case, neurons) and at the
same time maximize spatial resolution and field of view. Rapid eye movements
are used to shift the focus of attention toward a peripheral region when some
event, such as motion, is detected by the low resolution peripheral view [Bichot
et al. 2005].

1.1 Key Contributions

We design and implement a network of cameras with limited mobility (pan, tilt,
and zoom), and use the motion for improving sensing performance. In particular
we focus on developing a distributed algorithm that determines a desirable
network configuration.

We begin with a system architecture that modularizes the various functions
of the motion coordination task. A constrained form of mobility is used, to mini-
mize the resource cost of motion itself. A realistic sensing performance metric is
developed that models the actual coverage characteristics of the sensors, rather
than an abstract disk-based model. The metric quantifies the resultant network
coverage.

We describe a distributed algorithm to optimize this global metric using only
local communication in a defined neighborhood. This allows scalability in the
number of nodes and reduces the computational complexity of the optimization.

We prove that our algorithm converges to a desirable network configu-
ration. Convergence is proved without assumptions on the differentiability
or smoothness of the performance metric, but using only its dependence on
sensor coverage characteristics. This is important because the realistic camera

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

Reconfiguration Methods for Mobile Sensor Networks • 22:3

Fig. 1. Prototype system with motile cameras and supporting resources.

coverage model, along with the presence of obstacles in the medium, does
not yield a closed-form expression for the objective function, and it is not
immediately obvious if typical optimization procedures will converge when
used with this function.

We present a network protocol that implements our distributed motion con-
trol algorithm, and addresses practical details such as the message passing re-
quired for local coordination, and the termination of the motion without global
coordination. The effect of environment dynamics on the motion strategy is con-
sidered. The performance of the protocol is studied through simulations that
model multiple sensor network deployments with obstacles.

Finally, we present an implementation of our proposed methods on a sensor
network consisting of network cameras and the supporting resources used to
learn the presence of obstacles in the medium.

1.2 Prototype System

The algorithms and methods discussed in this article are developed in the con-
text of a network of cameras with limited motion capabilities. The sensed data
consists of video streams from these cameras, which are processed frame by
frame to detect events of interest. Detected events are then sensed at high
resolution to provide higher-fidelity data for more sophisticated data process-
ing algorithms, such as those for recognition or classification of the events. The
medium contains physical obstacles that cause occlusions in the covered region.
The test bed is shown in Figure 1. Apart from the cameras, it also has other
supporting resources such as laser ranges for medium mapping and processing
platforms.

2. SYSTEM ARCHITECTURE

It is important to understand the various tasks required to reconfigure the
network in response to medium and phenomenon demands. We modularize
these tasks into the blocks shown in Figure 2. Each of the blocks shown is
considered below, except block III, which is discussed at length in subsequent
sections.

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

22:4 • A. Kansal et al.

Fig. 2. A framework for managing actuation for sensing uncertainty control.

Fig. 3. System design (a) our prototype laser ranger node with pan and tilt capability, used to map
the obstacles in the sensing medium, and (b) a sample tag, used as an event to be detected and
recognized in our test bed.

2.1 Acquiring Medium Characteristics

Block I in the figure represents any means available to the network for learning
the locations of the obstacles. If available, this knowledge helps the motion
strategy to minimize occlusions. Such methods may be based on the use of
range sensors [Harle and Hopper 2003] or in the case of cameras, the use of
stereo-vision.

In our testbed, we use laser ranging to map the obstacles, as discussed in
Kansal et al. [2005]. A Leica Disto Pro 4 laser ranging device is used, mounted
on a pan-tilt platform and controlled using an Intel X-scale based Stargate
processor board, shown in Figure 3(a). A key distinction from laser ranging
used in robot navigation is that the range data is not being used for real time
navigation and this allows using slower ranging devices, with a lower overhead
in system cost.

2.2 Learning the Phenomenon Distribution

The system also needs means to discover events of interest, as represented by
block II. This information can be used to direct high resolution sensing at the
regions where events have occurred while coverage is maintained over a much
larger area at a lower resolution.

In our test system, a low resolution image is used to detect targets. The target
pattern consists of a set of markings that identify each target (Figure 3(b), from

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

Reconfiguration Methods for Mobile Sensor Networks • 22:5

Ipina and Lo [2001]), while we use color to detect the presence of a target in field
of view. The detection and identification algorithms are not studied as part of
this work; we use an off-the-shelf method [Ipina and Lo 2001] for identification
and well-known color-finding methods for detection. The key feature of interest
to our system design is that the detection task can succeed at a much lower
resolution than required for reliable identification. Another example where
low-resolution coverage may be used to direct the high-resolution sensing is
a surveillance scenario, where low-resolution data may be used for motion de-
tection and then high-resolution data helps classify the cause of motion.

The locations of detected events over time may be used to approximate the
distribution of events in space. This information is beneficial in choosing net-
work configurations that are biased toward regions of high event probability. In
our system, each sensor is required to know the locations of events only within
a local neighborhood. Thus, while the event distribution is not centrally avail-
able, a distributed representation of it is built up, as we will describe in our
motion coordination algorithm (block III).

2.3 Choice of Motion Primitives

Motion algorithms must be designed for the specific motion primitives (block
IV) available to the system. The selection of the motion capabilities is affected
by several considerations. It is also important to determine whether motion is
useful at all compared to an alternative strategy of deploying a high density
of static sensors, because motion itself has resource overheads. We consider a
constrained form of motion, referred to as motility: the capability for pan, tilt,
and zoom in a camera. Motility is well suited for sensor networks because it
has the following advantages:

(1) Low energy. Only the sensor transducer has to be moved while the bulkier
parts such as the motors, the battery, and the processor board, remain
stationary.

(2) Minimal navigation support. Since motility does not depend on unreliable
or arbitrary terrain characteristics, no extra sensors are needed to obtain
terrain feedback.

(3) Infrastructural support, such as localization beacons or trajectory mark-
ings, is not required.

(4) Feasible in tethered nodes. Since the node itself does not move, motility is
also feasible in power intensive or high bandwidth sensors, such as video
sensors.

We observe that even such a limited form of motion has significant sensing
advantages. To quantify the advantage, consider the following model to use
motion: the cameras are used at low resolution to detect events and then reori-
ented to provide high resolution coverage at the location of the detected event.
The extent of the advantage depends on two factors: (1) the difference between
the resolution at which detection can take place and the resolution required
for the final application task and (2) the time available for motion.

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

22:6 • A. Kansal et al.

dV

V

tilt

pan zoom

s

(a) Covered Volumes

0 5 10 15 20 25 30
0.5

1

1.5

2

2.5

Zoom Factor

T
im

e
 t

o
 M

o
v
e
 f

ro
m

 Z
o
o
m

 1
 (

s
)

(b) Zoom Delay

Fig. 4. (a) Covered volumes for detection and sensing phases, with the pan, tilt, and zoom required
to provide sensing resolution within the detection volume. (b) The time to change zoom measured as
a function of the zoom step. The communication delay in sending the zoom command was separately
characterized and has been subtracted from the motion time.

Suppose the resolution required for the final sensing objective, such as tag
identification in our system, is such that an object dimension ls in space should
map to at least one pixel-length in the image. Given the angular field of view
in horizontal direction, θfov,h, of the camera and the image size in pixels, L × H,
we can compute the maximum distances Rs up to which a camera can reliably
sense, using the following relationship:

tan(θfov,h/2) = lsL/2Rs. (1)

The volume covered by the camera can be modeled as a pyramid of height Rs

with the base area Lls × Hls, and its vertex at the camera.1 This yields the
volume over which the desired sensing resolution is provided, say, Vs.

On the other hand, suppose detection can occur when a distance ld is mapped
to a single pixel-length, which similarly leads to a volume Vd over which de-
tection is feasible. Figure 4(a) shows the volumes Vs and Vd . The camera can
provide the resolution ls at points outside Vs, but within Vd , by using its pan,
tilt, and zoom motion. The maximum advantage that may occur in coverage
due to motion is G = Vd/Vs, if the camera has motion capabilities to reach any
point in Vd at the resolution ls and sufficient time is available for that motion
to occur. Figure 4(a) also shows the pan, tilt, and zoom ranges required to cover
the entire Vd . Suppose the time taken for that motion, referred to as the ac-
tuation delay, is τ . The advantage G may be reduced if the tolerable actuation
delay does not permit reaching some fraction of Vd . The tolerable delay τ de-
pends on the event dynamics. As an example, consider the PTZ camera [Sony
2004] used in our test bed. This camera has a field of view θfov,h = 45◦ in the
horizontal direction and θfov,v = 30◦ in the vertical direction, which determine
the horizontal and vertical vertex angles respectively for Vd . It has pan and tilt
ranges of 340◦ and 115◦ respectively, which are more than sufficient to cover the
entire Vd . The zoom range is 25, which means that the maximum ratio Rd/Rs

supported is 25. The pan and tilt speeds are 170◦s−1 and 57.5◦s−1 respectively.

1A small region near the vertex may be too close for focus limitations but its volume is assumed
insignificant compared to the entire pyramid.

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

Reconfiguration Methods for Mobile Sensor Networks • 22:7

Fig. 5. Evaluating coverage gain due to motion with varying actuation delay and difference in
detection and identification resolution.

The time taken for zoom is nonlinear and was measured experimentally for the
entire zoom range (Figure 4(b)).

The detailed calculation of the advantage in covered volume due to motion,
G, for these capabilities is skipped for brevity. The derived value of G is plotted
in Figure 5 for various values of τ ranging from zero to the maximum time
required to exploit the entire motion range and various values of Rd/Rs within
the zoom range of the camera. Note that G is quite large and hence plotted on
a log scale. The region in the figure corresponding to actuation delay above 1s
and the ratio Rd/Rs > 2 shows more than an order of magnitude advantage
in coverage. Applications with sensing requirements that lie in this region will
benefit significantly from the algorithms discussed in this paper.

In addition to the multiple orders of magnitude advantage seen above by pro-
viding high-resolution coverage only on demand rather than at all times, motion
also provides another advantage when multiple cameras are used in a network.
Consider the area over which coverage is provided for detection using low reso-
lution. An initial random deployment may have wasted sensing resources due to
overlapped regions of coverage among cameras or certain cameras being blocked
by obstacles. Motion can be used to reconfigure the camera poses to improve
the detection coverage. The exact calculation of such advantage depends on the
precise location of obstacles and the exact deployment in any given setting. To
evaluate an expected advantage we simulate multiple random network config-
urations with random obstacle positions. We consider four different scenarios:
cameras with no motion capability; cameras with only pan capability; cameras
with a capability to move a small distance linearly, such as along a fixed track;
and cameras with unconstrained robotic motion capability. The motion time is
not considered a limitation here since such reconfiguration is assumed to occur
only at infrequent intervals when there are significant changes in the obstacle
configuration. Figure 6(a) shows the densities of cameras with these different

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

22:8 • A. Kansal et al.

Fig. 6. Alternative deployments: (a) Coverage fraction with and without actuation at different
deployment densities. Node density is the number of nodes in a 20m × 20m square region, where
each sensor covers a sector of 45◦ with radius Rs = 7.3m. The error bars show the standard
deviation across 10 random topologies simulated. (b) Converting the node density to total network
cost, at 90% coverage point.

capabilities required to achieve the same coverage. Clearly, mobile and motile
cameras require much lower density. For scenarios where a small number of
static cameras suffice, this may not be a big advantage, but in scenarios where
the number of static cameras required is large, say 1000, the reduction in the
number of cameras needed to, say 50, using pan motion for instance, may have
huge benefits in ease of deployment, maintenance, and operation.

Also, since motile nodes, mobile nodes, and static nodes have different costs,
it may be relevant to compare the overall system cost rather than node den-
sity. The cost needs to be evaluated for the particular sensors of interest for
a system, and these costs may change over time. However, the factors respon-
sible for the costs can be considered here. The cost of a static node includes
the node production cost, cn; the installation cost (placing it and providing it
power and network connectivity), ci; maintenance cost, cm; and the back-end
data processing cost, cp, to process the partially processed data received from
that node. The total system cost is N (cn + ci + cm + cp). It is reasonable to as-
sume that only cn varies across the three types of nodes, while the other costs
are similar. Let us make three further assumptions that make the comparison
harsher on the motile nodes. First, we do not account for (ci + cm + cp). Installa-
tion costs as high as 75% of the system cost have been reported [Farrar 2001].
Only cn is considered, which means that the savings in N (ci + cm + cp) due
to a lower N for the motile nodes compared to static ones are being ignored.
Second, the off-the-shelf fully mobile nodes do not have built-in reliable navi-
gation and localization subsystems; rather, they have a traction platform with
appropriate interfaces for adding deployment specific navigational support. We
ignore the costs of these additions, thus losing the significant cost advantage
that motile nodes have in that they do not need such navigation support. Third,
the cost of motile node considered is with three motile capabilities—pan, tilt,

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

Reconfiguration Methods for Mobile Sensor Networks • 22:9

and zoom—even though only the pan capability is considered in the above den-
sity calculation. Obviously, the cost of a pan-only camera will be lower than
one with all three motility primitives. Figure 6(b) shows this cost trade-off at
the densities required for achieving 90% coverage, and even with the harsher
comparison, the motile nodes offer a significant advantage.2

These considerations motivate our choice of using motility in our camera
network. It may happen for other applications and sensor types that using
static nodes, or fully mobile nodes, or a mix of the two, is a more optimal choice.

3. MOTION COORDINATION

We now consider block III of Figure 2: algorithms to achieve a desirable network
configuration, and adapt it to the spatio-temporal dynamics of the environment.
Our focus is on distributed methods, due to scalability concerns.

3.1 Sensing Performance

The first important consideration in motion coordination is the choice of the
sensing performance metric to quantify the value of a given network configu-
ration. Our camera coverage model depends on three parameters. The camera
can view any point not closer than its minimum focal distance Rmin, and not
farther than Rmax beyond which distance the spatial resolution is too poor to be
of interest. The camera has an angular field of view θfov. The three parameters
Rmax, Rmin, and θfov, change with the zoom setting of the camera. Given this
model, the sensing performance is characterized as follows.

The first quantity of interest is the actuation delay achieved by the network
configuration. As mentioned before, complete coverage is only provided at a res-
olution lower than required for the final sensing application, and the cameras
are zoomed in to the relevant location when an event of interest is detected.
Thus, it is important to characterize the delay in providing the required high
resolution coverage after an event is detected. Let the region to be covered by
the network be denoted by A and let p be a point in A. Suppose an event is
detected at a point p. For the motion capabilities chosen for our system, the
actuation delay depends on the time taken by the camera to pan, tilt, and zoom
for focusing at the point p. Denote this time by τ (p). It can be measured in
terms of the motor capabilities of the node. Since the pan and zoom are driven
by separate motors and can occur in parallel, the time required is:

τ (p) = max{δθp ∗ ωp, tp(δz)}, (2)

where δθp is the pan angle to be moved to direct the sensor at p, ωp is the
angular pan speed, δz is the change in zoom required for achieving the required
classification resolution at p, and tp(δz) is the time required for changing the
zoom (Figure 4(b)). The tilt time can be considered similarly as the pan time,

2The costs considered are USD 800 for a static network camera [SNC-CS3N 2004], 1300 for a pan-
tilt-zoom network camera [Sony 2004], and 35000 for a fully mobile node [Packbot 2004]. For linear
actuation, we assumed the cost to be 1200, assuming the static node cost plus an additional track,
motor, and motor controller. The specific static camera used in the comparison was chosen to match
the PTZ camera in all other respects, such as optics, network connectivity and brand value.

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

22:10 • A. Kansal et al.

but our system deployment is two-dimensional and hence tilt is ignored. When
multiple sensors can observe a point p, for simplicity we assume no coordi-
nation among sensors for detection, and thus τ (p) is based on the best sensor
observing p.

Second, the coverage metric must also characterize the detection perfor-
mance. Several possible metrics exist for this, beginning with a purely geo-
metric coverage metric which quantifies the area in line of sight of the sensors,
to more sophisticated estimation theoretic metrics which quantify the proba-
bility of detection based on the noise models and collaboration among sensors.
Let c(p) denote the detection performance at point p. Since detection depends
on resolution, we model c(p) as proportional to the resolution at which a sensor
s views p, measured in the number of pixels per unit area. This is a more accu-
rate model than a purely distance based one, since the resolution depends not
only on the distance but also the zoom setting of the camera and obstacles in
the medium. When multiple sensors can observe a point p, as before we assume
no coordination among sensors for detection, and thus c(p) is based on the best
sensor observing p.

To aggregate the above factors into a single metric, we consider a linear
combination of the two metrics to determine the sensing performance, f (p), at
a point:

f (p) = w ∗ c(p) + (1 − w){1/τ (p)}. (3)

The choice of the weighting parameter w, where 0 ≤ w ≤ 1, determines the
proportion of the contribution of actuation delay and detection terms to the
performance. The value 1/τ (p) is capped to a maximum when τ (p) = 0.

Third, apart from maximizing the probability of detection, and minimizing
the actuation delay, it may also be of interest to maximize the area covered. Let
1(p) be a binary function which takes the value 1 at covered points and 0 at
others.

Fourth, the network may have to be geared toward regions where more events
are expected. Suppose that the event distribution function is known at all points
p ∈ A and is denoted q(p). Considering the above factors, we define the coverage
utility at a point as:

u(p) = (1 − α) f (p) ∗ q(p) + α ∗ 1(p), (4)

where α is a constant weight, 0 ≤ α ≤ 1, determining the significance of cover-
age alone. Note that the second term in Equation (4) is not multiplied by q(p).
This allows maximizing the area covered, even when events are concentrated
in a small region, by setting the value of α to be high.

Suppose the state, or pose, of a sensor node i is denoted by si = {θp, z}, where
θp and z represent the pan and zoom settings respectively. The network con-
figuration for a network of N nodes is then denoted by S = {s1, s2, . . . , sN }.
Given the pan and zoom ranges of a node, the node state si lies in a set
Si = {[θmin

p , θmax
p], [1, zmax]}, where the superscripts min and max represent the

minimum and maximum possible values respectively for the superscripted pa-
rameters. Let S represent the resultant set of possible network configurations.

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

Reconfiguration Methods for Mobile Sensor Networks • 22:11

It is given by:

S = S1 × S2 × . . . × SN . (5)

Using the metric defined above for each point, we now express the overall utility
of a network configuration, S, as:

U (S) =
∑

p∈A
u(p). (6)

The summation requires that the region A be discretized. An obvious granu-
larity to discretize is the value of ls, the spatial distance that maps to one pixel,
since the image is discretized at the pixel level. However, a coarser granularity
may be used to reduce computation overhead.

The network reconfiguration problem can now be expressed as an optimiza-
tion problem, where the goal is to determine the network configuration which
maximizes the coverage utility:

Sopt = max
S∈S

U (S). (7)

3.2 Distributed Motion Coordination Algorithm

Note that the performance metric as defined in the preceeding is a global metric
for the entire network and depends on the state of multiple sensors. The phe-
nomenon distribution and medium characteristics are are learnt locally. Thus,
the performance metric is not known at individual sensors given their local
views and only partial knowledge about q(p).

Even if all the information could be made available centrally, it is not im-
mediately obvious how the optimization problem can be solved efficiently. We
first note that the optimization problem in (7) is NP-hard. Consider a special
case of the problem: α = 1. In this case the utility function is reduced to max-
imizing the coverage due to N sensors over a polygonal region with obstacles.
So, if the problem in (7) can be solved in polynomial time, then a polynomial
time solution exists to maximize coverage in a polygonal region with obstacles.
However, that problem is known to be NP-hard [Chin and Ntafos 1988]. Thus,
the problem in (7) is clearly NP-hard.

Further, the nature of c(p) and τ (p) implies that U (S) is not only non-linear
but also not known in a closed form—it can only be evaluated numerically for
each S. As seen from equation (5), the search space is exponential in N and a
brute force search over S is clearly out of the question.

A distributed solution will thus help ameliorate both communication over-
heads and computational complexity. Here, we define an algorithm to be dis-
tributed, if under its execution, each node exchanges messages only within a
local neighborhood rather than with a central coordination entity or the en-
tire network. The desirable local neighborhood for a node should minimize the
number of communication hops required for coordination, and its size should
not increase with the network size N .

Consider the utility function U (S) defined in Equation (6). This function is
inherently distributed in that the utility value at a point p can only be influ-
enced by a subset of the sensors: the ones which have p in their line of sight and

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

22:12 • A. Kansal et al.

within the maximum range of view from one or more of their possible poses.
Denote the set of sensors that influence the utility value at p by β(p). Collect
together into a subregion B j all those points which share the common influ-
encing sensor set β(p), and denote this sensor subset by β j . Suppose the entire
region A can be divided into K such subregions. By definition the {B j }K

j=1 are
disjoint (the corresponding β j are not). There may be points in region A are not
be covered by any of the sensors; as a matter of notation, these may be denoted
by BK corresponding to βK = �, the null set.

The utility function can now be decomposed into a summation over these
disjoint subregions:

U (S) =
K∑

j=1

∑

p∈B j

u(p). (8)

Since each B j corresponds to a sensor subset β j and a set of N sensors may
have 2N subsets, the number of terms in the above summation is potentially
exponential. We can however map the above decomposition to one where the
number of terms is linear in N . Let γi denote the subset of sensors that is the
union of all subsets β j to which sensor i belongs:

γi = { j |∃βk such that (i, j) ∈ βk}. (9)

The utility in the region within range of sensor i can be affected only by the
sensors in γi. Given the state of each sensor in γi, sensor i can compute the set of
points
i at which i gives the highest f (p) value. The subregions
i are disjoint
(though the sensor subsets γi are not) and {
i}N

i=1 ∪ BK = A. Hence the utility
function can be decomposed as:

U (S) =
N∑

i=1

∑

p∈
i

u(p). (10)

The interesting property of this decomposition is that each sensor only needs
to communicate with sensors in γi to determine U (S) over
i. We call γi the
neighborhood of sensor i. The set γi includes all sensors that may affect the
computation of
i from any pose selected at those sensors. Suppose the region
influenced by sensor i from all its poses is Vi. Then the set γi includes potentially
all sensors influencing any point in Vi. The expected cardinality of this set
depends on the deployment density and the maximum distance up to which
a sensor may influence coverage. For most practical sensors, the distance up
to which they may sense is bounded, which implies that the cardinality of γi

stays constant even as the network size, N , increases, at a given deployment
density.

We now describe a distributed algorithm that requires each sensor to coor-
dinate only with sensors within γi and yet improve the global utility function.
Suppose a mechanism is available at sensor i to ensure that when it is changing
its pose, all other sensors in γi will remain static. The communication protocol
to realize this mechanism and other implementation details will be discussed
in the next section. The algorithm then proceeds as follows.

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

Reconfiguration Methods for Mobile Sensor Networks • 22:13

Fig. 7. Utility function for various possible pan pose combinations. The θp values are in degrees,
measured counterclockwise from initial camera pose. The utility function has multiple local max-
ima, even for this simple scenario.

Sensor Pose Update: Sensor i searches over all its possible pan settings,
and chooses the one for which the utility evaluated over Vi is maximum:

θp(i) = max
θp∈[θmin

p ,θmax
p]

∑

p∈Vi

u(p). (11)

This is a one-dimensional search and thus computationally tractable. After
selecting its best pan setting, the sensor similarly selects its best zoom setting.
After this pose update, sensor i stops and some other sensor j waiting on i
may update its pose, again making sure that sensors in γ j stay static during
its update step.

This change in pose at i affects all
 j for j ∈ γi. However, it does not affect
sensors not in γ j , and they may be changing their poses in parallel with sensor
i using the same method. This property makes the algorithm distributed over
neighborhoods γi. The sensors update their poses in an arbitrary order.

While the proposed algorithm is not guaranteed to find the global optimum,
it has several desirable properties discussed in subsequent sections, includ-
ing convergence to a stable state. Before analyzing the convergence and other
properties of interest, let us visualize the above update procedure for a simple
example with two sensors. Consider a rectangular region with a few obstacles
and two cameras placed at diagonally opposite corners. Each camera can pan
90◦, in its corner. To reduce the dimensionality of the search space to two for
easier visualization, let us ignore zoom. The utility function achieved for all
combinations of pan angles at each camera is shown in Figure 7. The pose se-
lection algorithm described above proceeds as follows: sensor C1 first selects

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

22:14 • A. Kansal et al.

a pan, θp(1), that maximizes the utility in its region of influence. This change
in configuration is seen as line segment A in Figure 7. Then, sensor C2 selects
a pan pose, θp(2), for this given value of θp(1), and line segment B shows the
change in network configuration. In the next iteration, again C1 selects a new
pan θp(1) moving along line segment C. The process continues until no camera
is able to select a better pose than its existing pose. A distributed termina-
tion condition will be discussed in a later section. At each step, our algorithm
searches along a line in the 2N -dimensional search space, S, and so we will
refer to the above optimization procedure as incremental line search (ILS).

Note that in addition to the above method for configuring the network, an-
other motion control algorithm is also required to move the cameras after an
event is detected for providing the required high resolution coverage. For this
task, we use a simple method that zooms in to the pixel location in the image
where an event is detected. One advantage of this approach is that the spa-
tial location of the detected event is not required. More sophisticated methods
which may move multiple cameras in response to detected events are also of
interest, but not studied as part of this work.

4. CONVERGENCE AND OTHER PROPERTIES OF ILS

An important property of this optimization procedure is that it does not require
a closed-form expression for the utility function, but may proceed using only a
numerical computation. This makes the above procedure amenable to several
realistic performance metrics, in the presence of nonlinearities in actuation and
the effect of obstacles.

Another important property is the convergence of the network configuration
to a stable state. Even though the sensors may update their local poses without
any global coordination, the network utility function will not oscillate. Further,
the utility will reach a local maximum,3 though not necessarily the global one,
which is hard to ensure without global coordination. We prove this convergence
property below.

THEOREM 4.1 (MONOTONICITY OF ILS). Under ILS execution, the global net-
work utility increases monotonically.

PROOF. Assume first that only one sensor i in the entire network updates its
pose at a time. Suppose the network configuration after iteration t is denoted
St . The region A can be viewed as consisting of two disjoint subregions Vi and
A − Vi, and the utility can be expressed as:

U (St) =
∑

p∈Vi

u(p) +
∑

p∈A−Vi

u(p). (12)

The update at sensor i does not affect the second term, and it thus stays constant
at this iteration. The first term only depends on the region over which utility is
computed by i, and since i choses a pose to maximize this term, this term can
only increase or stay constant. Thus when only one sensor updates at a given

3As seen in Figure 7, the maximum found by ILS is not necessarily the local maximum closest to
its starting point, unlike gradient descent based methods.

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

Reconfiguration Methods for Mobile Sensor Networks • 22:15

iteration, monotonicity holds:

U (St+1) ≥ U (St). (13)

Now, suppose multiple sensors update in parallel. However, the coordination
over γi ensures that no sensor that affects Vi will update its pose when i is
moving. Thus, we can consider the region A − Vi independently. For another
moving sensor j , we can decompose A − Vi into two disjoint sets A − Vi −
V j and V j . An equation similar to (12) can then be written over these two
subregions. Recursively applying the same argument, all sensors j that update
in parallel within the coordination constraint over respective γ j can only lead to
a monotonic increase in the global network utility regardless of update order.

Corollary: The network configuration converges to a stable state using ILS.
The proof of the corollary is easy to see from the fact that a monotonically

increasing function can either grow unbounded or stabilize to a fixed value.
Since the definition of u(p) always yields a finite value and a summation over
a finite region A ensures that U cannot grow infinitely, the ILS algorithm will
cause the network configuration to converge to a stable state.

Note that the monotonicity is valid as long as other environmental parame-
ters such as the obstacles and phenomenon distribution remain stationary. We
will see later how environmental dynamics affect ILS and lead to a graceful per-
formance degradation. The distributed operation ensures that such dynamics
are incorporated into the algorithm’s actions as soon as learned locally.

As long as the decomposition in Equation (6) holds, ILS can be used for
arbitrary performance metrics, other than the detection and classification one
discussed above. Generalizations include examples where the objective is not
classification but tracking the movement of events after detection. Instead of
time τ (p), the metric of interest would be the localization quality which might
depend on the angle and distance from the nearest two sensors for any point p.

4.1 Relationship to Other Heuristics

Several heuristics have been explored in literature for optimization over com-
binatorially large search spaces. An important class of such heuristics is that
based on stochastic local search methods, such as simulated annealing. While
the optimization problem for network reconfiguration can be solved centrally
using simulated annealing, it is not straightforward to extend it to a distributed
algorithm. First, a global temperature state may have to be maintained. Sec-
ond, the monotonicity property discussed in the preceeding does not hold for the
annealing process, and convergence proofs are not available for distributed op-
eration. The ILS algorithm always guarantees that any reconfiguration actions
it takes will not worsen the utility compared to a static network. Parallelized
simulated annealing algorithms, also sometimes referred to as distributed, are
significantly different from our approach. They are typically designed for im-
plementation on multiprocessor systems or computer clusters, for reducing the
processing time compared to a single processor implementation. The global ob-
jective function is still available to each node, and each node may anneal the
entire set of state variables. The multiple processors are mainly used to search

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

22:16 • A. Kansal et al.

multiple random paths in parallel. The distributed nature of the objective func-
tion itself is not considered. Extension of stochastic local search methods to
distributed settings, exploiting the decomposition of the optimization objective
function over a relevant neighborhood set, is an open research problem.

Another potentially useful optimization heuristic is incremental subgradient
descent. Its similarity to ILS lies in the fact that at each iteration step only a
subset of parameters is updated in order to change the global objective function.
While the utility function in our system is not differentiable and subgradients
do not exist, such methods may be applied to our objective function at least
centrally, by computing its derivatives using the method of finite differences.
However, convergence is an issue when distributed operation is desired. Mono-
tonicity does not hold. Convergence proofs of incremental subgradient descent,
such as discussed in Solodov [1995], require the utility function to be continuous
and differentiable. Extending such methods to operate with limited neighbor
coordinations is still an open problem.

5. COORDINATION PROTOCOL IMPLEMENTATION

In this section we develop a motion coordination protocol to implement the dis-
tributed optimization algorithm described above. This includes determining a
distributed mechanism to ensure coordination among the neighbors, exchang-
ing the information required for calculating the motion steps, and determining
the appropriate stopping criterion for the optimization in a distributed man-
ner. This also involves learning the function q(p) from local data without global
normalization. Note that our protocol requires a sensor i to coordinate with
other sensors in γi and since these have overlapping sensing regions, they are
expected to be reachable within short network routes. They may not necessarily
be on the same subnet in a LAN such as in case of two cameras mounted on
two different buildings looking at the same street.

5.1 Protocol Specification

The first step is the determination of a mechanism to ensure that for each node
i changing its pose, the set of nodes in γi stay static, and the number of nodes
that can update their pose at any given time is maximized. This can be viewed
as a graph coloring problem where for a given node i, all nodes in γi are treated
to be adjacent to it. Each node must be allotted a color such that no two adjacent
nodes have the same color while the number of colors is minimized. With this,
nodes of one color can update their poses simultaneously and the number of
iterations required to allow each node update once would be equal to the number
of colors used. Efficient graph coloring heuristics are known, and hence if the
entire network graph is known at a central location, any such heuristic may be
used. However, we do not assume that a central view of the network graph is
known and propose the following heuristic for achieving a graph coloring in a
distributed manner. This procedure is inspired from common RTS-CTS based
wireless MAC protocols for avoiding interference, though we do not need the
communication channel to be wireless for its execution. The protocol at each
node i is described in Figure 8.

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

Reconfiguration Methods for Mobile Sensor Networks • 22:17

Fig. 8. Distributed motion coordination protocol for optimizing network configuration.

The protocol requires a random wait before sending a Request to Update
(RTU) packet in order to ensure that over a long duration, most nodes will get a
change to update their poses rather than a just few well-positioned nodes with
smaller number of neighbors repeatedly winning the contention. No sequential
ordering within a neighborhood is imposed, and it is not required that each
node get equal number of chances to update its pose. This is compatible with
the distributed termination condition, which may cause certain nodes to stop
the update before others and hence this will not cause an undue interruption
of updates at other nodes which are still changing their pose.

The protocol assumes a medium information service to learn the obstacles.
An example implementation of this service using laser ranging, as shown in
Section 2.1, is used in our experiments.

5.1.1 Phenomenon Learning Phase. The protocol also requires a service
to acquire q(p). This is carried out in a distributed manner as follows. Node i
maintains locations of all events detected by itself or its neighbors within Vi.
We assume that when a node detects an event, it informs all its neighbors about

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

22:18 • A. Kansal et al.

it. Since only a subregion of Vi is covered by selected poses of the sensor and its
neighbors, events that occur in uncovered parts of Vi, are not detected and do
not affect the learning process. Since the total number of events in the network
is not known to node i, q(p) is not normalized but the count of events at a point p
is incremented whenever an event is detected there. Thus, q(p) acquired locally
need not be a consistent probability density function in a global sense, but it
serves its purpose of providing higher weight in the utility function, to points
where more events occur. To prevent the count variables from overflowing, the
q(p) data is periodically aged as follows. After every time duration Tq , the sensor
i scales the q(p) at each point in Vi by 0.5. The aging step is:

q(p) ← 0.5 ∗ q(p) + q′(p) ∀ p ∈ Vi, (14)

where the temporary variable q′(p) stores the event count since the previous
aging step. This aging procedure thus gives higher weight to more recent events
as the contribution of older events degrades by 0.5 every Tq . The duration Tq is
expected to be a long duration over which sufficient events may be accumulated.
The phenomenon distribution learning thus continues perennially and every
Tq , the update of q(p) may trigger a network reconfiguration to occur.

5.1.2 Termination Condition. The termination condition in the protocol is
chosen for ease of distributed implementation. In centralized optimizations, a
stopping criterion that can determine when to stop the iterations is to check
when the change in the estimate of the optima has become insignificant over the
past few iterations. However, in the distributed setting, the global utility metric
is not available to any node. Even if the parameters in control of a particular
node are not changing from one iteration to the next, the parameters at other
nodes may be changing, and determining the stopping time would thus require
global coordination. To avoid this global coordination, the termination condition
proposed in Figure 8 allows each node to stop based only on local information.
The value of � is set to 0.1% of the previously measured utility over Vi and may
vary from sensor to sensor.

If a node receives an RTU packet from any neighbor followed by an UF packet
that shows a change in pose, it is likely that this node has a further opportunity
to optimize its pose and hence it will restart its motion coordination protocol.
The node will also restart pose updates if the medium information affecting its
covered region is updated or when the phenomenon density learning module
indicates a change in q(p) in this node’s covered region. Thus a node stops
pose updates based on local conditions and may reenter the update process
when required. No node may know when the entire network has reached a
stable state. Each node may stop its motion and restart it multiple times before
reaching a stable condition. This approach is valid because of the monotonicity
property of our algorithm. Due to monotonicity, the stable state is reached even
if different parts of the network stop and restart motion at different times.
This stopping criterion automatically ensures that updates to node poses due
to medium changes lead to relevant pose changes at affected nodes without the
need for globally sharing such information.

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

Reconfiguration Methods for Mobile Sensor Networks • 22:19

5.1.3 Graceful Degradation. The monotonicity property yields another de-
sirable behavior in the distributed motion coordination protocol: graceful degra-
dation in the presence of rapid environment dynamics. Under such conditions,
the network configuration may continue to evolve without ever reaching a glob-
ally static configuration, due to frequent medium and phenomenon changes.
Between any two instances of an environmental change, the monotonicity prop-
erty holds. This implies that even when the environmental dynamics are faster
than the convergence time of ILS, the network will only try to improve its con-
figuration for the current situation. The improvement in configuration may be
smaller than that which the ILS algorithm could have achieved in a static en-
vironment, thus degrading the performance gracefully with increasingly faster
environment dynamics.

6. EVALUATION OF PROPOSED METHODS

There are three main performance considerations for a distributed optimization
algorithm: whether it converges to a stable configuration, is this configuration
a good one, and how long does it take to converge?

We have already proved convergence to a stable state. Since we used a re-
alistic sensing performance model, our assumptions are valid under practical
implementation constraints and hence the algorithm will converge to a sta-
ble state. As an illustration, let us visualize the operation of the algorithm for
an example scenario and a randomly generated event distribution, for various
choices of design parameters. Figure 9(a) shows a random initial deployment of
10 sensors with a few obstacles. The shade at a point represents the utility at
that point due to the best-suited sensor for it, the white regions are uncovered
and the black circles represent obstacles. Suppose the event distribution has
not been acquired as yet. Also, we set α = 0 first: ILS will try to maximize net-
work utility—which may depend on a few points with high utility, rather than
due to more covered points. The final configurations found by executing ILS
with w = 0.1, corresponding to low weight for the detection performance and a
higher weight for time to recognition, and at w = 0.9 are shown in Figures 9(b)
and 9(c) respectively. The shades within covered regions vary since in one case
the utility is dominated by time to access a point while in the other by the reso-
lution of coverage. The exact choice of the weight parameter depends on desired
behavior, which is application specific, and we do not dwell on it further here.
Suppose next that the event distribution shown in Figure 9(d) is acquired. The
figure axes represent the spatial extent and the shade at each location corre-
sponds to the event density at that location. In the simulation this is generated
as a sum of two Gaussian distributions. The optimized configuration is shown
in Figure 9(e) with w = 0.1—the prominence of higher zoom (narrower field
of view) in the diagonal region with higher event density is apparent. Suppose
however that the area covered is also to be kept high and thus α is set to 0.8.
This yields the configuration in Figure 9(f).

The second important issue is whether the stable configuration discovered
above is a good one. More specifically, we wish to know if it is better than the
configuration achieved without using ILS but by allowing each node to take

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

22:20 • A. Kansal et al.

Fig. 9. ILS optimization (a) random initial network configuration (b) optimized configuration with
w = 0.1, showing significantly improved coverage than (a), (c) optimized coverage using w = 0.9,
showing the different stable state than (b), (d) a sample event distribution, where brighter areas
show higher event density (e) optimized configuration after learning the event distribution, and (f)
optimized configuration with α set to a high value.

its individual decision, and if it is close to the global optimum. Few analytical
proofs are available for convergence to a global optimum for distributed op-
eration; rather we simulate how ILS behaves in random scenarios. Different
orders in which the sensors update their poses lead to different search paths in
the search space. Also, in the contention phase of the network protocol, certain
sensors may win the contention more often than others, and update their pose
more often. We simulate the operation of ILS for ten random contention suc-
cess patterns, and plot the network utility in Figure 10. Note that the network
utility is not available to any individual node, and is made available in the
simulations by considering the poses of all nodes centrally for the purpose of
evaluation. The solid curves show the evolution of utility with iteration for dif-
ferent contention success patterns. The dotted line shows the utility achieved

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

Reconfiguration Methods for Mobile Sensor Networks • 22:21

Fig. 10. Optimization accuracy: convergence with ten random search paths. Each curve shows a
different random contention success pattern. The various converged states have a utility within
10.9% of the best case.

by a naı̈ve method: updating the pose of each sensor locally without any coor-
dination with its neighbors. The graph shows that while the convergence time
varies among multiple contention success orders, the final utility with ILS is
always better than a naı̈ve local method.

The graph also shows that the final utilities, which are local minima, found
in multiple random runs are within 10.9% of the best case. This suggests that
ILS behaves well for several random instances. This is also expeted due to the
relationship of ILS to incremental subgradient methods. It has been known
that incremental methods are less likely to get stuck in poor local optima or
stationary points, compared to gradient descent methods, since they do not
suffer from the gradient descent effect of finding the local maxima closest to
the starting point [Solodov 1995]. Based on such arguments and our simulation
results, we conjecture that ILS discovers a good quality stable configuration
with high probability. The monotonicity property always guarantees that ILS
will never worsen a configuration, and the graph shows that using ILS has a
significant advantage compared to a naïve approach.

We now address the third important consideration: time to converge. This is
plotted in Figure 11 for a larger network, with N = 25 sensors spread across
100 × 50 meters, and maximum camera range Rmax = 8m at widest zoom,
corresponding to l = 1cm for the prototype camera as shown in section 2.3.
Each curve corresponds to a randomly generated initial topology. To consider
the worst case execution time, we consider each sensor’s update as a separate
iteration, even though several of these occur in parallel. Each iteration consists
of the contention phase wait of Ttimeout. This setting depends on the communi-
cation layer used. For instance, for the 802.11 MAC used in a WiFi-based LAN,
the per hop delay is expected to be less than 10ms [Tickoo and Sikdar 2004;

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

22:22 • A. Kansal et al.

Fig. 11. Convergence: evolution of utility with increasing number of iterations. Each curve corre-
sponds to a random location topology and random initial poses of the sensors.

Gupta and Kumar 2004] and even lower when an-ethernet based LAN is used.
If γi spans 10 hops as a worst case estimate, the total round trip delay would be
limited to 200ms. At least one sensor wins the contention and computes its op-
timal pose. This has the delay of pan motion and zoom motion. The longest pan
step may be 340◦ degrees, which takes 2 seconds. The longest zoom step (see
Figure 4(b)) allowing a maximum zoom setting of 5 in detection mode (leaving
the remaining zoom range of 20 available for providing high resolution coverage
for recognition), is 1.3s. A single update time is thus 2 + 1.3 + 0.2 = 3.5s. The
number of iterations required to achieve the final utility is about 80, as seen in
the graph for each random topology, and even in the worst case this requires
4 minutes 40 seconds. The number of iterations is about 3 times the number
of sensors, implying that on an average each sensor updates three times. Even
with increasing network size, due to parallelism in updates, the convergence
time will stay at the same order. Thus the stable state is discovered in only a
few minutes for the hardware capabilities in our system. Since the phenomenon
learning phase (which must wait for several events to occur in order to estimate
or update the q(p)) and medium dynamics are expected to be much slower, con-
vergence time is not an important consideration for our system, and ILS can
repeatedly be used to update the network configuration whenever new environ-
mental information becomes available. Time to converge may be an important
concern in other applications of ILS where the system must deal with rapid
dynamics.

6.1 Experiments

Let us now consider the execution of ILS on the test bed shown in Figure 1. The
test bed has four cameras. Rather than beginning with a random configuration,

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

Reconfiguration Methods for Mobile Sensor Networks • 22:23

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

(a) Range scan 1

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

(b) Range scan 2

(c) Obstacles and Initial Config. (d) Final config.

Fig. 12. ILS Optimization. The shaded sectors represent camera coverage, and the shade at a
location corresponds to the spatial resolution achieved by the best camera for that location. (a)
Range scan from laser in bottom left corner (b) range scan from laser in top right corner, (c) map of
obstacles in the medium and the initial network configuration, (d) optimized configuration found
by ILS—it changes both the pan and zoom settings of the cameras to increase sensing performance
characterized by time required for recognition.

we arrange the cameras along the edges to form a regular tessellation cover-
ing the entire rectangular region of interest. However, the test bed also has
some obstacles in the rectangular region, which render the regular tessellation
ineffective.

The first requirement is the information about medium obstacles. We collect
this using laser ranging. Range scans from the bottom left corner and the top
right are shown in Figures 12(a) and 12(b) repectively. Note that these scans
exploit the adaptive scanning enhancements discussed in Kansal et al. [2005],
and hence the scan step size is seen to be greater when scanning a structured
environmental feature, such as a straight line, since it matches the adaptive
algorithm’s predicted structure. A backtracking procedure allows the algorithm
to reduce the scan step size and rescan the missed portion in case a large
deviation from the predicted structure is observed. Combining the two scans
yields the obstacle map shown in Figure 12(c) by the dark patches; efficient
communication methods for sharing the laser range data from multiple laser
devices are discussed in Kansal et al. [2005]. Figure 12(c) also shows the initial
network configuration.

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

22:24 • A. Kansal et al.

Fig. 13. GUI snapshots of the four processes controlling the network cameras in the testbed.

In this configuration, each sensor node has all other nodes as its neighbors.
The test bed can thus be viewed as one neighborhood set in a larger network. The
final network configuration found by the ILS algorithm is shown in Figure 12(d).
The experiment used w = 0.1, thus giving more weight to the time required
for recognition and the parameter α was set high to maximize covered area.
These results not only verified that the ILS algorithm behaves as designed but
also helped us ensure that all the algorithms and methods proposed can be
implemented in a real system.

The test bed software also includes certain supporting components to enable
visualization of the experiment’s progress. The images captured by the network
cameras are compressed JPEG files for ease of transfer over the network. Our
camera controller software decompresses each image. It also calculates the
occluded pixels based on the laser ranger readings. The occluded pixels are
plotted superimposed on the raw image for visualizing the camera’s field of
view as it evolves under ILS. A snapshot of the visualization of four separate
processes, each controlling one of the network cameras is shown in Figure 13.

7. RELATED WORK

Motion coordination algorithms have been proposed in mobile sensor networks
for the purpose of improving communication performance [Goldenberg et al.
2004], deployment [Howard et al. 2002], and coverage [Butler and Rus 2003;
Chu et al. 2004; Jung and Sukhatme 2002; Merrill et al. 2002] among other
tasks. We consider a different coverage metric that combines detection perfor-
mance and motion delay. This metric is better suited to characterize sensing

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

Reconfiguration Methods for Mobile Sensor Networks • 22:25

when motion is an integral part of the system. Another distinction of our work
is that we have considered realistic sensor and motion models rather than as-
suming a circular disk-based coverage, isotropic medium, and the availability
of reliable navigational systems for the mobile sensors.

There is considerable work on methods to determine appropriate network
configurations spanning various fields of study including computer vision, sen-
sor networks, and robotics.

Beginning with the art gallery problem, several efforts have tried to deter-
mine an optimal configuration of sensors to cover a given region [Chvatal 1975;
O’Rourke 1987; Fisk 1978]. A variant that allows the use of mobile sensors is
known as the watchmen tours problem [Carlsson et al. 1993; Efrat et al. 2000;
LaValle et al. 1997]. However, this research is directed at finding the optimal
solution in a central manner. Further, their methods are designed for abstract
sensor models where a sensor has infinite range and is limited only by line of
sight limitations due to the shape of the area to be covered. Some work has
considered more realistic sensor models [Erdem and Sclaroff 2004], but discus-
sion is limited to simple polygons since linear time algorithms are available to
find the visible subregion of a simple polygon [Gindy and Avis 1981] (coverage
regions with obstacles are thus not addressed). While these solutions have sev-
eral interesting properties [Nilsson 1994], they are not directly applicable to
our problem.

Distributed geometric optimization methods [Cortes et al. 2005; Olfati-Saber
and Murray 2004] have also been used for mobile sensor network reconfigura-
tion. However, that approach is developed for a differentiable optimization met-
ric with idealized motion models. A gradient descent method is used that may
converge to poor local optima. Extension to our specific problem with the more
sophisticated sensor model and constrained motion capability is not obvious.

Another related class of methods is found in the use of estimation-theoretic
optimization metrics and the application of information filters to coordinate net-
work wide motion [Grocholsky et al. 2003; Geman and Jedynak 1996; Aranda
et al. 2005]. However, most of these methods involve sharing some global infor-
mation among nodes and are again designed with abstract sensing models.

There are certain other distributed optimization methods which use a dis-
tributed control law and show that it optimizes a global metric of interest, such
as using a potential field or other linear control law based only on local neigh-
bor interactions [Jadbabaie et al. 2003; Gazi and Passino 2004; Howard et al.
2002]. Such methods have several useful properties but are hard to design for
given performance metrics. Also, convergence analysis used in these works,
such as using matrix Laplacian or Lyapunov function based techniques may
not directly apply when the motion control law is nonlinear, which is the case
in our system.

The most closely related works focusing on the control of cameras with pan
tilt, and zoom capabilities are Chu et al. [2004] and Collins et al. [2001]. In
Chu et al. [2004], the cameras are constantly moved to track observed targets,
using a factor graph [Kschischang et al. 2001]. Constant motion is also used
to increase the covered area and search for potential targets. On the other
hand, our algorithm does not constantly move cameras but proactively positions

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

22:26 • A. Kansal et al.

cameras for making the network better suited to detect and classify targets as
they emerge. A low-resolution view is used to detect targets, and high-resolution
coverage is provided on demand where needed. Thus, the factor graph based
tracking method could potentially be used as a higher layer method on top of
our algorithm to execute the tracking functionality when targets are present.
In Collins et al [2001] too, a set of cameras are controlled to optimize a sensing
performance metric. However, the algorithm used is not distributed but is based
on a centralized greedy heuristic. Also, the motion of the cameras is reactive
and cameras are moved in response to existing tasks.

Another interesting work for sensor node location control [Butler and Rus
2003] has also considered the problem of configuring the network in accordance
with event distributions. The event distribution, however, was tracked in a
central manner and each sensor was required to know the entire distribution
to map its location. The methods were designed for an isotropic medium, range-
based coverage models, and sensor nodes with unconstrained motion capability.
Implementation of such a method is not obvious for our system constraints.

Most previous systems attempt to maximize the spatial extent of coverage
at a given resolution. Our goal to maximize resolution while balancing the op-
posing demand of maximizing the spatial extent of coverage. One of our system
design assumptions is that phenomena of interest can be detected at lower res-
olution but high-resolution coverage is required for the specific sensing appli-
cation using the data. We can use this assumption to provide higher-resolution
sensing in regions with detected events, by reducing resolution in uninteresting
regions. In a fixed-resolution system, on the other hand, when a camera orients
toward one region, coverage in another region may be totally lost.

8. CONCLUSIONS

We have presented a framework for optimizing the configuration of a mobile
sensor network with limited motion capabilities. The nature of motion capabil-
ities was motivated by the resource constraints and the scale of the network.
We presented practical methods to learn the environmental parameters which
affect the network configuration and then designed a distributed optimization
protocol to help adapt the network configuration to the sensing demands. A key
convergence property of our algorithm was proved. A significant point to note
is that all methods were designed in the context of realistic sensor models with
due consideration of deployment constraints such as obstacles. Our approach
enables using significantly reduced sensing resources to achieve an equivalent
high-resolution coverage at the expense of a small actuation delay.

We explored the behavior of our algorithm with respect to some performance
considerations, in addition to convergence, in simulations, and also demon-
strated its implementation on a prototype sensor network. The sensing per-
formance metric used here characterized the detection performance and the
actuation delay. Future work includes integration of the exact motion coordi-
nation strategies that may be used for the sensing task after event detection
and also extensions of our current methods to include the case of tracking mo-
bile events. The ILS algorithm may further be extended to exploit the temporal

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

Reconfiguration Methods for Mobile Sensor Networks • 22:27

dimension and determine sequences of configurations to be visited over a given
time period rather than finding a single optimal configuration.

REFERENCES

ARANDA, S., MARTINEZ, S., AND BULLO, F. 2005. On optimal sensor placement and motion coordi-
nation for target tracking. In Proceedings of the IEEE International Conference on Robotics and
Automation. Barcelona, Spain.

BICHOT, N. P., ROSSI, A. F., AND DESIMONE, R. 2005. Parallel and serial neural mechanisms for
visual search in macaque area v4. Science 308, 5721 (April), 529–534.

BUTLER, Z. AND RUS, D. 2003. Event-based motion control for mobile-sensor networks. IEEE Per-
vas. Comput. 2, 4, 34–42.

CARLSSON, S., NILSSON, B. J., AND NTAFOS, S. C. 1993. Optimum guard covers and m-watchmen
routes for restricted polygons. Inte. J. Computat. Geom. Appl. 3, 1, 85–105.

CHIN, W. P. AND NTAFOS, S. 1988. Optimum watchman routes. Inform. Process. Letters 28, 39–44.
CHU, M., REICH, J., AND ZHAO, F. 2004. Distributed attention for large video sensor networks. In

Intelligent Distributed Surveillance Systems Seminar. London, UK.
CHVATAL, V. 1975. A combinatorial theorem in plane geometry. J. Combinat. Theory Series 18,

39–41.
COLLINS, R., LIPTON, A., FUJIYOSHI, H., AND KANADE, T. 2001. Algorithms for cooperative multisensor

surveillance. In Proceedings of the IEEE 89, 10, 1456–1477.
CORTES, J., MARTINEZ, S., AND BULLO, F. 2005. Analysis and design tools for distributed motion

coordination. In American Control Conference. Portland, OR.
EFRAT, A., GUIBAS, L. J., HAR-PELED, S., LIN, D. C., MITCHELL, J. S. B., AND MURALI, T. M. 2000.

Sweeping simple polygons with a chain of guards. In Proceedings of the Eleventh Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’00). San Francisco, CA. 927–936.

ERDEM, U. M. AND SCLAROFF, S. 2004. Optimal placement of cameras in floorplans to satisfy task
requirements and cost constraints. In Omnivis2004, The 5th Workshop on Omnidirectional Vi-
sion, Camera Networks and Non-Classical Cameras. Prague, Czech Republic.

FARRAR, C. 2001. Lecture Notes on Structural Health Monitoring Using Statistical Pattern Recog-
nition (Chapter Historical Overview of Structural Health Monitoring). Los Alamos Dynamics,
Los Alamos, NM.

FISK, S. 1978. A short proof of Chvatal’s watchmen theorem. J. Combinat. Theory Series 24,
374.

GAZI, V. AND PASSINO, K. M. 2004. Stability analysis of social foraging swarms. IEEE Trans. Syst.,
Man, and Cybern (Part B: Cybernetics). 34, 1.

GEMAN, D. AND JEDYNAK, B. 1996. An active testing model for tracking roads in satellite images.
IEEE Trans. Patt. Anal. Mach. Intell. 18, 1, 1–14.

GINDY, H. E. AND AVIS, D. 1981. A linear algorithm for computing the visibility polygon from a
point. J. Algor. 2, 186–197.

GOLDENBERG, D., LIN, J., MORSE, A. S., ROSEN, B., AND YANG, Y. R. 2004. Towards mobility as a network
control primitive. In ACM MobiHoc. Tokyo, Japan.

GROCHOLSKY, B., MAKARENKO, A., KAUPP, T., AND DURRANT-WHYTE, H. 2003. Scalable control of de-
centralised sensor platforms. In Information Processing in Sensor Networks 2nd International
Workshop (IPSN’03). 96–112.

GUPTA, N. AND KUMAR, P. 2004. A performance analysis of the 802.11 wireless LAN medium
access control. http://www.ece.rice.edu/c̃amp/MAC/MAC Analysis.pdf. Submitted Internationals
Communications in Information and Systems.

HARLE, R. K. AND HOPPER, A. 2003. Building world models by ray tracing within ceiling mounted
positioning systems. In UbiComp. Seattle, WA. 1–17.

HOWARD, A., MATARIC, M., AND SUKHATME, G. 2002. An incremental self-deployment algorithm
for mobile sensor networks. Autonom. Robots J. (Special Issue on Intelligent Embedded Sys-
tems). 13, 2, 113–126.

IPINA, D. L. D. AND LO, S. L. 2001. Sentient computing for everyone. In Proceedings of the IFIP
TC6/WG6.1 3rd International Working Conference on New Developments in Distributed Appli-
cations and Interoperable Systems. Kluwer, B.V., Deventer, The Netherlands, 41–54.

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

22:28 • A. Kansal et al.

JADBABAIE, A., LIN, J., AND MORSE, A. S. 2003. Coordination of groups of mobile autonomous agents
using nearest neighbor rules. IEEE Trans. Autom. Control 48, 6, 988–1001.

JUNG, B. AND SUKHATME, G. S. 2002. Tracking targets using multiple robots: the effect of environ-
mental occlusion. Autonom. Robots 13, 3, 191–205.

KANSAL, A., CARWANA, J., KAISER, W. J., AND SRIVASTAVA, M. B. 2005. Acquiring medium models for
sensing performance estimation. In IEEE SECON.

KSCHISCHANG, F., FERRY, B., AND LOELINGER, H.-A. 2001. Factor graphs and the sum-product algo-
rithm. IEEE Trans. Inform. Theory 47, 2, 498–519.

LAVALLE, S. M., LIN, D., GUIBAS, L. J., LATOMBE, J. C., AND MOTWANI, R. 1997. Finding an unpre-
dictable target in a workspace with obstacles. In Proceedings of the IEEE International Conference
on Robotics and Automation. Albuquerque, NM, 737–742.

MERRILL, W., GIROD, L., ELSON, J., SOHRABI, K., NEWBERG, F., AND KAISER, W. 2002. Autonomous
position location in distributed, embedded, wireless systems. In Proceedings of the IEEE CAS
Workshop on Wireless Communications and Networking Pasadena, CA.

NILSSON, B. J. 1994. Guarding art galleries, methods for mobile guards. Ph.D. thesis, Department
of Computer Science, Lund University.

OLFATI-SABER, R. AND MURRAY, R. M. 2004. Consensus problems in networks of agents with switch-
ing topology and time-delays. IEEE Trans. Auto. Control 49, 9, 1520–1533.

O’ROURKE, J. 1987. Art Gallery Theorems and Algorithms. Oxford University Press, Oxford, UK.
PACKBOT 2004. Packbot, the next step in unmanned tactical mobile robots.

http://www.packbot.com.
PERRY, J. AND GEISLER, W. 2002. Gaze-contingent real-time simulation of arbitrary visual fields.

In SPIE Proceedings of the Human Vision and Electronic Imaging. San Jose, CA.
SNC-CS3N 2004. Sony SNCCS3N. http://bssc.sel.sony.com/Professional/. CS Mount Fixed Net-

work Color Camera.
SOLODOV, M. V. 1995. Nonmonotone and perturbed optimization. Ph.D. thesis, University of Wis-

consin, Madison, WI.
SONY 2004. Sony SNC-RZ30N data sheet. http://bssc.sel.sony.com/.
TICKOO, O. AND SIKDAR, B. 2004. Queueing analysis and delay mitigation in IEEE 802.11 random

access Mac based wireless networks. In IEEE Infocom. Hong Kong, China.

Received December 2005; accepted March 2007

ACM Transactions on Sensor Networks, Vol. 3, No. 4, Article 22, Publication date: October 2007.

