
Supporting Unrestricted Recursive Types

Zhaozhong Ni

Microsoft Research
One Microsoft Way, Redmond, WA 98052, U.S.A.

zhaozhong.ni@microsoft.com

Abstract. Recursive types capture important invariants in programs
and proofs. It is well-known that the näıve treatment of unrestricted
recursive types causes inconsistency. Typically, recursive types are ad-
mitted by putting various restrictions on their formations. This puts
limitation and complexity on the usages of recursive types. In this paper
we present a general approach to support unrestricted recursive types.
Instead of putting restrictions on formation (introduction), we design
the elimination rules to control the (dangerous) unfolding (elimination)
of recursive types, while maintaining the intuition behind the näıve un-
derstanding. Thus the usage of recursive types in our solution is simple
and intuitive. Using System F as an example, we demonstrate how to
safely admit recursive types and prove strong normalization for the new
system. Our method is applicable to similar type systems and logics.

1 Introduction

Recursive types (e.g., µα. τ) are self-referential formulas that can be used to cap-
ture complex invariants found in programs and proofs, such as objects, symmetry
threading, weak updates, etc.

Intuitively, the most straight-forward treatment of recursive types should be
achieved via the following two rules (assuming ∆ and Γ are the type and term
environments and τ [τ ′/α] stands for substituting all α by τ ′ in τ).

∆; Γ ` e :τ [µα. τ/α]
∆; Γ ` fold e :µα. τ

(fold)
∆;Γ ` e :µα. τ

∆;Γ ` unfold e :τ [µα. τ/α]
(unfold-naive)

Unfortunately, it is a well-known fact that such kind of näıve treatment of
recursive types will result in inconsistency of systems with the presence of →
constructor—one can easily construct a term and a typing derivation for every
type through the following derivation. (We omit the type environment and term
and write ∆; Γ ` e :τ as Γ ` τ .)

Γ, µα. α→ τ ` µα. α→ τ

Γ, µα. α→ τ ` (µα. α→ τ)→ τ
Γ, µα. α→ τ ` µα. α→ τ

Γ, µα. α→ τ ` τ

Γ ` (µα. α→ τ)→ τ

(same as left)
Γ ` (µα. α→ τ)→ τ

Γ ` µα. α→ τ

Γ ` τ

Apparently, breaking some of the inference steps in the above derivation
might allow one to avoid breaking the consistency of the system.

Previously, to support recursive types and ensure the consistency, it is typical
to put various restrictions on the formation of recursive types—only “good” re-
cursive types get introduced in the system. Inductive definitions, for example, re-
quires syntactic checks on the “positions” (occurrences) of recursive variables in
recursive formulae, and reject those in the “negative” positions [1, 2]. Nakano [3]
requires a “properness” check in the formation of recursive types that are sup-
ported by an approximation-based semantic model. In the modal model of types
work, Appel et al. [4] also require a “contractiveness” check, which is first used
in MacQueen [5], to construct their approximation-based semantic model.

What type can and can not appear in these systems are no longer just de-
termined by the BNF of types. Instead, meta-logical checks on the syntax of
recursive types or semantics of their typing need to be done. This causes several
problems for the usage of these solutions. The first problem is that some of these
restrictions on recursive types being overly conservative, thus prohibiting the
specification and reasoning of some “good” ones. The second problem is that
sometimes the “goodness” of a recursive type might depends on its usage, thus
can not be fully determined upon formation time. The third problem is that, in
practice, especially in program verification, the recursive types formulae in pro-
gram specifications are typically indeed “good” (reasoning about them will not
causes inconsistency). This because the meta logic used for informal reasoning of
the programs are presumably consistent. Requiring additional meta-level check
of the “goodness” of these program specifications is unnecessary.

It will be ideal if one can specify recursive types freely based on the BNF of
types and do “good” reasoning with them. Recently, Hawblitzel et al. [6] support
such kind of unrestricted recursive types in their GTAL language by utilizing a
special “modal” operator ◦ and prohibiting reduction inside the fold construc-
tor. The recursive type there is used to construct the invariant for supporting
weak updates of a TAL. However, a recursive type µα. τ in GTAL unfolds to
◦(τ [µα. τ/α]), which is different from the näıve expectation of τ [µα. τ/α]. Also,
Church-Rosser property does not hold for GTAL.

In this paper we present a general approach to support unrestricted recursive
types. Instead of putting restrictions on formation (introduction rules), we design
the elimination rules to control the (dangerous) unfolding (elimination rules) of
recursive types, while maintaining the intuition behind the näıve understanding.
Thus the usage of recursive types in our solution is simple and intuitive. Using
System F [7] as an example, we demonstrate how to safely admit unrestricted
recursive types and show the complete proof of the strong normalization property
of Fµ, our new system. Our method is applicable to other type systems and logics.

The paper is organized as follows. We first recap the baseline System F in
Sect. 2. We then define our new Fµ system with unrestricted recursive types in
Sect. 3. In Sect. 4 and Sect. 5 we explain in details how to prove the strong
normalization property of Fµ in two steps. We further discuss the usage of Fµ

in Sect. 6. Finally, we compare with related work and conclude in Sect. 7.

(Types) τ ::= α | τ → τ ′ | Πα. τ

(Terms) e ::= x | λx :τ. e | e e′ | Λα. e | e [τ]

(V alues) v ::= λx :τ. e | Λα. e

(Type Env.) ∆ ::= · | ∆, α

(Term Env.) Γ ::= · | Γ, x :τ

Fig. 1. Syntax of System F

(λx :τ. e) e′ ↪→ e[e′/x] (R-APP) (Λα. e) [τ] ↪→ e[τ/α] (R-TAPP)

e ↪→ e′

λx :τ. e ↪→ λx :τ. e′
(R-LAM)

e ↪→ e′

e e′′ ↪→ e′ e′′
(R-APP1)

e ↪→ e′

v e ↪→ v e′
(R-APP2)

e ↪→ e′

Λα. e ↪→ Λα. e′
(R-TLAM)

e ↪→ e′

e [τ] ↪→ e′ [τ]
(R-TAPP1)

Fig. 2. Reduction rules of System F

FTV(τ) ⊆ ∆

∆ ` τ
(TYPE)

∆ ` Γ(x)

∆; Γ ` x :Γ(x)
(VAR)

∆;Γ, x :τ ` e :τ ′

∆;Γ ` λx :τ. e :τ → τ ′
(LAM)

∆;Γ ` e :τ → τ ′ ∆;Γ ` e′ :τ

∆;Γ ` e e′ :τ ′
(APP)

∆, α; Γ ` e :τ

∆;Γ ` Λα. e :Πα. τ
(TLAM)

∆;Γ ` e :Πα. τ ∆ ` τ ′

∆;Γ ` e [τ ′] :τ [τ ′/α]
(TAPP)

Fig. 3. Static semantics of System F

2 System F

We briefly recap the definition and properties of System F [7]. We first present
the syntax of System F in Fig. 1.

The reduction steps of System F is presented in Fig. 2. Substitutions τ [τ ′/α],
e[τ/α], and e[e′/x] are defined in their usually way.

We present the static semantics of System F in Fig. 3.
The following properties are well-known to hold true for System F. Interested

reader can refer to Girard [7] for proofs.

Theorem 1 (System F Subject Reduction).
If Γ;∆ ` e :τ and e ↪→ e′ then ∆;Γ ` e′ :τ .

Theorem 2 (System F Progress).
If ·; · ` e :τ then either e = v or e ↪→ e′.

Theorem 3 (System F Strong Normalization).
If ·; · ` e :τ then the length of any reduction sequence starting with e is finite.

(Types) τ ::= α | τ → τ ′ | Πα. τ | µα. τ

(Terms) e ::= x | λx :τ. e | e e′ | Λα. e | e [τ] | foldτ e | unfoldτ e e′

(V alues) v ::= λx :τ. e | Λα. e | foldτ e

(Type Env.) ∆ ::= · | ∆, α

(Term Env.) Γ ::= · | Γ, x :τ

Fig. 4. Syntax of Fµ

(λx :τ. e) e′ ↪→ e[e′/x] (R-APP) (Λα. e) [τ] ↪→ e[τ/α] (R-TAPP)

e ↪→ e′

λx :τ. e ↪→ λx :τ. e′
(R-LAM)

e ↪→ e′

e e′′ ↪→ e′ e′′
(R-APP1)

e ↪→ e′

v e ↪→ v e′
(R-APP2)

e ↪→ e′

Λα. e ↪→ Λα. e′
(R-TLAM)

e ↪→ e′

e [τ] ↪→ e′ [τ]
(R-TAPP1)

unfoldτ ′′ (foldτ e) (foldτ→τ ′ e′) ↪→ foldτ ′ (e′ e) (R-UNFOLD)

e ↪→ e′

foldτ e ↪→ foldτ e′
(R-FOLD)

e ↪→ e′

unfoldτ e′′ e ↪→ unfoldτ e′′ e′
(R-UNFOLD1)

e ↪→ e′

unfoldτ e v ↪→ unfoldτ e′ v
(R-UNFOLD2)

Fig. 5. Reduction rules of Fµ

3 Fµ

Our approach to support unrestricted recursive types is general and applicable
to many type systems and logics. In this paper, we use system F as an example,
extend it with unrestricted recursive types, and name it as Fµ. In this section
we give the formal definition of Fµ, with the extended constructs highlighted.
We discuss subject reduction and progress properties for Fµ here and leave the
discussion of the strong normalization property of Fµ to the next two sections.

We present the syntax of Fµ in Figure 4. Not surprisingly, a recursive type
µα. τ specifies a recursive type variable α and a type body τ . The folding con-
structor fold takes a term e of type τ and rolls it into (foldτ e). The first inter-
esting feature of Fµ is its unfolding constructor unfold, which takes not one, but
two, terms e and e′, and unrolls them into term (unfoldτ e e′) of type τ . Any
terms starting with fold are considered a value.

The reduction steps of Fµ is presented in Figure 5. Rule (R-FOLD), (R-
UNFOLD1), and (R-UNFOLD2) are very simple—they allow the reduction

FTV(τ) ⊆ ∆

∆ `µ τ
(TYPE)

∆ `µ Γ(x)

∆; Γ `µ x :Γ(x)
(VAR)

∆;Γ, x :τ `µ e :τ ′

∆;Γ `µ λx :τ. e :τ → τ ′
(LAM)

∆;Γ `µ e :τ → τ ′ ∆;Γ `µ e′ :τ

∆;Γ `µ e e′ :τ ′
(APP)

∆, α; Γ `µ e :τ

∆;Γ `µ Λα. e :Πα. τ
(TLAM)

∆;Γ `µ e :Πα. τ ∆ `µ τ ′

∆;Γ `µ e [τ ′] :τ [τ ′/α]
(TAPP)

∆;Γ `µ e :τ [µα. τ/α]

∆; Γ `µ foldτ [µα. τ/α] e :µα. τ
(FOLD)

∆;Γ `µ e :µα. τ ∆;Γ `µ e′ :µ . (τ [µα. τ/α]→ τ ′[µα′. τ ′/α′])

∆; Γ `µ unfoldµα′. τ ′ e e′ :µα′. τ ′
(UNFOLD)

Fig. 6. Static semantics of Fµ

of sub-terms. Rule (R-UNFOLD) might looks strange when first being seen,
but will become easy to understand when the static semantics of Fµ is discussed
in later this section. Although rule (R-FOLD) looks not that special, to admit
it while maintaining the strong normalization properties, as will be discussed in
the next two sections, is not trivial at all. It is worth noting that Church-Rosser
theorem holds for Fµ, but not if rule (R-FOLD) is excluded from the system.
In contrast, GTAL [6] essentially does not have rule (R-FOLD), and thus does
not have Church-Rosser property. In this paper, however, we focus on the strong
normalization proof and do not discuss the Church-Rosser proof.

We present the static semantics of Fµ in Figure 6. The introduction rule for
recursive types, rule (FOLD), is not surprising at all. However, the elimination
rule for recursive types, rule (UNFOLD), might look unconventional. The idea
of rule (UNFOLD) is to take the term e of a recursive type µα. τ , do the näıve
unfolding and extract a term of type τ [µα. τ/α], and supply it to another term
that transforms terms of type τ [µα. τ/α] into terms of type τ ′[µα′. τ ′/α′], as en-
capsulated in term e′ of a “dummy” recursive type µ . (τ [µα. τ/α]→ τ ′[µα′. τ ′/α′]).
The näıve reasoning tells us that we should obtain a term of type τ ′[µα′. τ ′/α′]
by now. However, to make sure that one do not “abuse” the folding/unfolding
operations, that term is immediately folded back and becomes of type µα′. τ ′,
which is the type of (unfoldµα′. τ ′ e e′). This is obvious from the reduction
rule (R-UNFOLD), which extracts two sub-terms of recursive types, applies
one to another, and wraps the result back into terms of recursive types. Despite
rule (R-UNFOLD)’s unconventional shape, we still call it the elimination rule
of recursive types, as it does consume two recursive types and only generate one.

We proved the following subject reduction and progress theorems of Fµ.
The detailed proof is available in Appendix A. Instead of directly proving the
strong normalization theorem of Fµ here, we prove it in the next two sections
by indirections to the strong normalization property of System F.

Lemma 4 (Fµ Subsitutions).

1. If ∆, α `µ τ and ∆ `µ τ ′ then ∆ `µ τ [τ ′/α];

2. If ∆, α; Γ `µ e :τ and ∆ `µ τ ′ then ∆;Γ[τ/α] `µ e[τ ′/α] :τ [τ ′/α];

3. If ∆;Γ, x :τ `µ e :τ ′ and ∆; Γ `µ e′ :τ then ∆;Γ `µ e[e′/x] :τ ′.

Theorem 5 (Fµ Subject Reduction).
If ∆;Γ `µ e :τ and e ↪→ e′ then ∆;Γ `µ e′ :τ .

Theorem 6 (Fµ Progress).
If ·; · `µ e :τ then either e = v or e ↪→ e′.

4 Strong Normalization of Fµ without Rule (R-FOLD)

In this and next sections we prove the strong normalization theorem of Fµ in
two steps. For the first step, we prove in this section that Fµ, without reduction
rule (R-FOLD), satisfies strong normalization. This is done by mapping Fµ

types, terms, and typing and reduction derivations into System F, and utilize
the strong normalization result of System F. For the second step, we prove in next
section the strong normalization theorem of the complete Fµ system (including
reduction rule (R-FOLD)), by mapping all Fµ reduction sequences into those
without rule (R-FOLD)) and utilize the strong normalization result proved in
this section.

We use ⇀ to denote Fµ reduction steps that do not use rule (R-FOLD)
in their derivations. We use ↪→+ to represent one or more consective steps of
↪→ reduction, i.e.,

e ↪→+ e′ , e ↪→ e1 ↪→ e2 ↪→ . . . ↪→ e′.

Similarly, ⇀+ is used to represent one or more consecutive steps of ⇀ reduc-
tion. Notice that, in this section when ↪→ and ↪→+ are used, they only denote
the reduction steps in System F, as is obvious from the context.

In Figure 7 we define the translations from Fµ types and terms to System F
ones. Similar to the core idea used in GTAL [6], we map all recursive types to
True type, i.e., Πα. α→α. This is because the recursive types does not make ma-
jor impact to the reductions structure. All introduction term of recursive types,
(foldτ e), is mapped to true term, i.e., Λα. λx :α. x, which is of type Πα. α→α.
This is in co-ordinance with the fact that in this section we do not allow reduc-
tions of sub-terms inside fold. The translation of term unfoldτ e e′ keeps both
term e and e′ after the translation, so that the reductions inside them can be
mapped to the System F level.

The translation of term ((λx :τ. foldτ x) e) is rather interesting. Instead of
doing the usually translation for application terms, we lift the fold constructor
from the right half into the left half, and obtain ((λx :Πα. α→α. x) pfoldτ eq).

pαq = α
pτ → τ ′q = pτq→ pτ ′q
pΠα. τq = Πα. pτq
pµα. τq = Πα. α→α

pxq = x
pλx :τ. eq = λx :pτq. peq

p(λx :τ. foldτ x) eq = (λx :Πα. α→α. x) pfoldτ eq
pe e′q = peq pe′q

pΛα. eq = Λα. peq
pe [τ]q = peq [pτq]

pfoldτ eq = Λα. λx :α. x
punfoldτ e e′q = (λ :Πα. α→α. pe′q) peq

px1 :τ1, . . . , xn :τnq = x1 :pτ1q, . . . , xn :pτnq

Fig. 7. Translation of Fµ constructs into System F

The intuition here is that this adds one meaningless reduction step in the System
F level, and will compensate for the one virtual reduction step introduced by
rule (R-FOLD1) in the Fµ level, as will be discussed in the next section. It
will be more obvious when we move on to the next section.

We prove the strong normalization property of Fµ without rule (R-FOLD)
by showing a correspondence between reductions in it and those in System F, us-
ing the above translation. In the following we list the lemmas and theorems used
for the proof, as well as some interesting cases. The detailed proof is available
in Appendix A.

Lemma 7 (Translation Substituion Preservation).

1. pτ [τ ′/α]q = pτq[pτ ′q/α];

2. pe[τ/α]q = peq[pτq/α];

3. pe[e′/x]q = peq[pe′q/x].

Theorem 8 (Translation Type Wellformedness Preservation).
If ∆ `µ τ then ∆ ` pτq.

Theorem 9 (Translation Typing Preservation).
If ∆;Γ `µ e :τ then ∆; pΓq ` peq :pτq.

Proof. By induction on the derivation of ∆; Γ `µ e :τ .

case (APP).
∆; Γ `µ e :τ → τ ′ ∆;Γ `µ e′ :τ

∆;Γ `µ e e′ :τ ′
.

By induction hypothesis it follows that ∆; pΓq ` pe′q :pτq.

Depending on the shape of e, there are two sub-cases.

case e = λx :τ. foldτ x.
By ∆; Γ `µ λx :τ. foldτ x :τ → τ ′ it follows that τ ′ has the shape µα. τ ′′.

We have
∆; pΓq, x :Πα. α→α ` x :Πα. α→α

∆; pΓq ` λx :Πα. α→α. x : (Πα. α→α)→Πα. α→α

and
∆, α; pΓq ` λx :α. x :α→α

∆; pΓq ` Λα. λx :α. x :Πα. α→α
.

It then follows that

∆; pΓq ` λx :Πα. α→α. x : (Πα. α→α)→Πα. α→α

∆; pΓq ` Λα. λx :α. x :Πα. α→α

∆; pΓq ` (λx :Πα. α→α. x) Λα. λx :α. x :Πα. α→α

.

By the definition of p·q it follows that ∆; pΓq ` p(λx :τ. foldτ x) e′q :pτ ′q.
¤

Theorem 10 (Translation Reduction Preservation).
If e ⇀ e′ then peq ↪→+ pe′q.

Proof. By induction on the derivation of e ⇀ e′.

case (R-APP). (λx :τ. e) e′ ⇀ e[e′/x].

Depending on the shape of e, there are two sub-cases.

case e = foldτ x.
By the definition of p·q and Lemma 7 it follows that

p(λx :τ. foldτ x) e′q = (λx :Πα. α→α. x) Λα. λx :α. x

↪→ Λα. λx :α. x = (Λα. λx :α. x)[pe′q/x] = pfoldτ xq[pe′q/x] = p(foldτ x)[e′/x]q.

case (R-UNFOLD). unfoldτ ′′ (foldτ e) (foldτ→τ ′ e′) ⇀ foldτ ′ (e′ e).

By the definition of p·q it follows that

punfoldτ ′′ (foldτ e) (foldτ→τ ′ e′)q = (λ :Πα. α→α. pfoldτ→τ ′ e′q) pfoldτ eq
= (λ :Πα. α→α. Λα. λx :α. x) (Λα. λx :α. x) ↪→ Λα. λx :α. x = pfoldτ ′ (e′ e)q.

¤

Theorem 11 (Fµ Strong Normalization (⇀)).
If ·; · `µ e : τ then the length of any reduction sequence starting with e, without
using reduction rule (R-FOLD), is finite.

Proof. For any reduction sequence e ⇀ e1 ⇀ e2 ⇀ . . ., by Theorem 10 it fol-
lows that there exists the following reduction sequence

peq ↪→+ pe1q ↪→+ pe2q ↪→+

By Theorem 9 it follows that ·; · ` peq :pτq. By Theorem 3 the length of the
above reduction sequence is finite.

But the above reduction sequence is no shorter than the original sequence,
thus the length of reduction sequence e ⇀ e1 ⇀ e2 ⇀ . . . is also finite. ¥

5 Strong Normalization of Fµ

In this section we prove that strong normalization property of Fµ still holds
even when reduction rule (R-FOLD) is allowed. This is done by mapping all
Fµ reduction steps (↪→) into those without rule (R-FOLD) (⇀), and utilize
the strong normalization result proved in the previous section.

The key observation here is that any reduction steps that involve reduction
of sub-terms inside a fold term corresponds to some reduction steps outside a
fold term, while preserving the whole terms’ typing. This is illustrated by the
following example.

e ↪→ e′

foldτ e ↪→ foldτ e′ =⇒ e ↪→ e′

(λx :τ. foldτ x) e ↪→ (λx :τ. foldτ x) e′

and
∆; Γ `µ e :τ [µα. τ/α]

∆; Γ `µ foldτ [µα. τ/α] e :µα. τ
=⇒

∆;Γ `µ λx :τ [µα. τ/α]. foldτ [µα. τ/α] x :τ [µα. τ/α]→µα. τ ∆; Γ `µ e :τ [µα. τ/α]

∆; Γ `µ (λx :τ [µα. τ/α]. foldτ [µα. τ/α] x) e :µα. τ

In particular, we do not directly map ↪→ reduction steps to ⇀ reduction
steps. Instead, we first define the following new reduction rule

(λx :µα. τ . x)(foldτ [µα. τ/α] e) ↪→ (λx :τ [µα. τ/α]. foldτ [µα. τ/α] x) e (R-FOLD1)

and use Ã to represent reduction steps that might use rule (R-FOLD1) as
well as those rules allowed for ⇀ , but not rule (R-FOLD). Similar to ↪→+ and
⇀+ , we use Ã+ to represent one or more consecutive steps of Ã reduction.

The proof is done by first proving the strong normalization of Ã reduction
sequences, utilizing the strong normalization results from previous sections. We
then map ↪→ reduction steps to Ã steps, and thus prove the strong normal-
ization property for the complete Fµ.

5.1 Strong Normalization of Ã Reduction Sequences

The key insight here is that, while the newly defined reduction rule (R-FOLD1)
introduces “virtual” reduction steps that does not seems to map to any real re-
duction steps in the System F level, there “happens” to be a specially defined
path for term of the shape ((λx :τ. foldτ x) e) in the translation p·q, and the ad-
ditional “concrete” reduction steps introduced there exactly compensates these
“virtual” reduction steps.

In the following we list the lemmas and theorems used for the proof, as well
as some interesting cases. The detailed proof is available in Appendix A.

Lemma 12 ((R-FOLD1) Reduction Steps Finite).
The length of any Ã reduction sequences that uses rule (R-FOLD1) in every
step is finite.

Proof.
Every use of rule (R-FOLD1) consumes a sub-term of the shape (λx :µα. τ . x).
When rule (R-FOLD1) is used in a derivation, rule (R-APP), (R-TAPP),

and (R-UNFOLD) can not be used in the same derivation.
Other reduction rules can not generate any new sub-terms by themselves.
So every reduction step using rule (R-FOLD1) consumes one (λx :µα. τ . x).
But the number of (λx :µα. τ . x) sub-terms in any given term is finite.
Thus the length of such Ã reduction sequences must be finite. ¥

Lemma 13 ((R-FOLD1) Translation Equivalence).
If the derivation of e Ã e′ uses reduction rule (R-FOLD1) then peq = pe′q.

Proof. By induction on the derivation of e Ã e′.

case (R-FOLD1).

(λx :µα. τ . x) (foldτ [µα. τ/α] e) ↪→ (λx :τ [µα. τ/α]. foldτ [µα. τ/α] x) e.

By the definition of p·q it follows that

p(λx :µα. τ . x) (foldτ [µα. τ/α] e)q
= (λx :pµα. τq. x) pfoldτ [µα. τ/α] eq
= (λx :Πα. α→α. x) pfoldτ [µα. τ/α] eq
= p(λx :τ [µα. τ/α]. foldτ [µα. τ/α] x) eq. ¤

Theorem 14 (Fµ Strong Normalization (Ã)).
If ·; · `µ e : τ then the length of any reduction sequence starting with e, with-
out using reduction rule (R-FOLD), but might using the additional reduction
rule (R-FOLD1), is finite.

|x| = x

λx :τ. e	= λx :τ.	e		
e e′	=	e		e′
Λα. e	= Λα.	e		
e [τ]	=	e	[τ]	

|foldτ e| = (λx :τ. foldτ x) |e|
|unfoldτ e e′| = (λx :τ. x) (unfoldτ |e| |e′|)

Fig. 8. Coercion function | · |

Proof.
By checking whether rule (R-FOLD1) appears in each reduction step, we

can write any such reduction sequence in the following shape

e Ã∗
f e′ ⇀+ e1 Ã∗

f e′1 ⇀+ e2 Ã∗
f e′2 ⇀+ . . .

where Ã∗
f stands for zero or more consecutive Ã reduction steps that uses

rule (R-FOLD1). (Remember that the only difference between Ã and ⇀ is
the usage of rule (R-FOLD1).)

By Theorem 10 and 13 it follows that there exists the following reduction
sequence

peq = pe′q ↪→+ pe1q = pe′1q ↪→+ pe2q = pe′2q ↪→+

By Theorem 9 it follows that ·; · ` peq :pτq.
By Theorem 11 the length of the above reduction sequence is finite.
But the length of the above sequence is no shorter than the sum of the lengths

of all ⇀+ in the original sequence. Thus the length of any ⇀+ in the original
sequences is finite.

Since every ↪→+ in the above reduction sequence corresponds to a ⇀+ in
the original sequence, the number of ⇀+ in the original sequence must be finite.

Thus the number of Ã∗
f in the original sequence must also be finite.

But by Theorem 12 the length of every Ã∗
f in the original sequence is finite.

Thus the length of the original reduction sequence must be finite. ¥

5.2 Strong Normalization of ↪→ Reduction Sequences

The idea in this step is to define a coercion function | · |, as presented in Fig-
ure 8, that transforms any Fµ terms into beta-equivalent forms that only con-
tain fold constructor inside sub-terms in shape of (λx :τ. foldτ x), thus allowing
the reduction of those sub-terms originally inside fold terms, even if reduction
rule (R-FOLD) is missing.

In the following we list the lemmas and theorems used for the proof, as well
as some interesting cases. The detailed proof is available in Appendix A.

Lemma 15 (Coercion Substituion Preservation).

1. |e[τ/α]| = |e|[τ/α];

2. |e[e′/x]| = |e|[|e′|/x].

Theorem 16 (Coercion Typing Preservation).
If ∆;Γ `µ e :τ then ∆;Γ `µ |e| :τ .

Theorem 17 (Coercion Reduction Preservation).
If e ↪→ e′ then |e| Ã+ |e′|.

Proof. By induction on the derivation of e ↪→ e′.

case (R-UNFOLD). unfoldτ ′′ (foldτ e) (foldτ → τ ′ e′) ↪→ foldτ ′ (e′ e).

By the definition of | · | it follows that

|unfoldτ ′′ (foldτ e) (foldτ → τ ′ e′)|
= (λx :τ0. x) (unfoldτ ′′ |foldτ e| |foldτ → τ ′ e′|)
= (λx :τ0. x) (unfoldτ ′′ ((λx :τ. foldτ x) |e|) ((λx :τ → τ ′. foldτ → τ ′ x) |e′|))
Ã (λx :τ0. x) (unfoldτ ′′ (foldτ |e|) ((λx :τ → τ ′. foldτ → τ ′ x) |e′|))
Ã (λx :τ0. x) (unfoldτ ′′ (foldτ |e|) (foldτ → τ ′ |e′|))
Ã (λx :τ0. x) (foldτ ′ (|e′| |e|))
Ã (λx :τ ′. foldτ ′ x) (|e′| |e|) = (λx :τ ′. foldτ ′ x) |e′ e| = |foldτ ′ (e′ e)|.

Notice that here in the shaded step we use the additional reduction rule (R-
FOLD1) defined in the beginning of this section to lift the fold constructor, as
the coercion | · | would do. ¤

Now we are able to show the strong normalization property for the entire Fµ.

Theorem 18 (Fµ Strong Normalization (↪→)).
If ·; · `µ e :τ then the length of any reduction sequence starting with e is finite.

Proof. For any reduction sequence e ↪→ e1 ↪→ e2 ↪→ . . ., by Theorem 17 it fol-
lows that there exists the following reduction sequence

|e| Ã+ |e1| Ã+ |e2| Ã+

By Theorem 16 it follows that ·; · ` |e| : τ . By Theorem 14 the length of the
above reduction sequence is finite.

But the above reduction sequence is no shorter than the original sequence,
thus the length of reduction sequence e ↪→ e1 ↪→ e2 ↪→ . . . is also finite. ¥

Reviewer #2 provided a “counter-example” to the strong normalization prop-
erty of Fµ by giving the following definitions

r = µβ. β

s = µα. (α→ r)

t = s→ r
= (µα. (α→ r))→ r
= (α→ r)[µα. (α→ r)/α]

u = t→ r

f = λx :s. unfoldr x (foldu (λx′ : t. x′ x))

and showing the following diverging reduction steps

f (foldt f) ↪→ unfoldr (foldt f) (foldu (λx′ : t. x′ (foldt f)))
↪→ foldr ((λx′ : t. x′ (foldt f)) f)
↪→ foldr (f (foldt f))

as the source term (f (foldt f)) appears as a sub-term in the reduction target.
We want to point out that the above reduction is impossible, thus the above

is not a “counter-example” to the strong normalization property of Fµ.
The problem is that both f and (f (foldt f)) are not well-typed terms. We

show this by first infering the complete type of f , as it is not given in the review.

x has type s.

x′ has type t, i.e., s→ r.

x′ x has type r.

(λx′ : t. x′ x) has type t→ r, i.e, u.

By inspection foldu (λx′ : t. x′ x) can only have type µ . (t→ r).

unfoldr x (foldu (λx′ : t. x′ x)) is not a well-formed term, as type s, the type
of x, unfolds to type t, and the type of foldu (λx′ : t. x′ x) is µ . (t→ r), which, ac-
cording to rule (UNFOLD), means that the type of unfoldr x (foldu (λx′ : t. x′ x))
should unfold to r. As annotated in the term, this type is r itself. However, by
no means can type r unfold to itself. Instead, the only valid term here should be
unfoldµ . r x (foldu (λx′ : t. x′ x)), which is validated by the following derivation.

∆; Γ `µ x :s ∆;Γ `µ foldu (λx′ : t. x′ x) :µ . (t→ r)
∆; Γ `µ unfoldµ . r x (foldu (λx′ : t. x′ x)) :µ . r

With this change, term f can only be defined now as

λx :s. unfoldµ . r x (foldu (λx′ : t. x′ x)) and has type s→µ . r

Term f no longer has the type t as reviewer #2 implied by foldt f . In fact,
foldt f is not a well-formed term. The only valid term here is folds→µ . r f , which
can only have type µ . (s→µ . r).

Apparently f (folds→µ . r f) is not a well-formed term, as f is of type
s→µ . r, and s and µ . (s→µ . r) are not the same. Thus the reduction steps
given by reviewer #2 can not happen, and does not form a “counter-example”
to the strong normalization property of Fµ.

Reviewer #2 also estimated the “error” associated with the above “counter-
example” is in the proof of Theorem 10, case (R-APP2), as v could be in the
form of λx :τ. foldτ x, and was overlooked by the proof. We thank reviewer #2
for pointing this out and will address it in the revision of the paper.

6 The Usage of Fµ

Now that Fµ is proved to be consistent and strongly normalizing, we discuss in
this section on how the unrestricted recursive types in it might be used.

The folding rule (FOLD) defined in Figure 6 is very user friendly—no
“goodness” checking is needed. Even “bad” recursive types are allowed, which
comes to the point here: instead of defining and exclude “bad” recursive types
and claiming that all usage of them “good”, we declare all recursive types “good”
and define and exclude “bad” usage of them.

The unfolding rule (UNFOLD) defined in Figure 6 (as duplicated here
below) is easy for the strong normalization proof in the previous sections to
proceed, but not exactly intuitive to use, as it requires a seemingly “dummy”
(µ .) header for the “actual” reasoning (e′) between unfolded recursive types.

∆; Γ `µ e :µα. τ ∆;Γ `µ e′ :µ . (τ [µα. τ/α]→ τ ′[µα′. τ ′/α′])
∆; Γ `µ unfoldµα′. τ ′ e e′ :µα′. τ ′

(UNFOLD)

From rule (UNFOLD) we can derive the following rules (UNFOLD1) and
(UNFOLD2). In fact, rule (UNFOLD2) can also be derived as special case of
rule (UNFOLD1).

∆; Γ `µ e :µα. τ ∆;Γ `µ e′ :µα′. τ ′

∆;Γ `µ e′′ :τ [µα. τ/α]→ τ ′[µα′. τ ′/α′]→ τ ′′[µα′′. τ ′′/α′′]
∆; Γ`µ unfold... e

′ (unfoldµ . τ ′[.../α′]→τ ′′[.../α′′] e (fold... e
′′)) :µα′′. τ ′′

(UNFOLD1)

∆;Γ `µ e :µα. τ ∆;Γ `µ e′ :τ [µα. τ/α]→ τ ′[µα′. τ ′/α′]
∆; Γ `µ unfoldµα′. τ ′ e (foldτ [µα. τ/α]→ τ ′[µα′. τ ′/α′] e′) :µα′. τ ′

(UNFOLD2)

Both of the these two derived rules, especially rule (UNFOLD2), are more
intuitive and user-friendly. It is obvious from these two rules that the user can
freely construct fucntion terms that converts between any unfolding form of
recrusive types.

Furthermore, it is easy to prove the equivalence between rule (UNFOLD)
and rule (UNFOLD1), i.e., define a variant of Fµ with following rule (UN-
FOLD1) instead of rule (UNFOLD), and show a two-way mapping between
the derivations of Fµ and the variant. We omit the term part in the following
derivations. It is trivial to prove

∆; Γ `µ τ [µα. τ/α]→ (τ [µα. τ/α]→ τ ′[µα′. τ ′/α′])→ τ ′[µα′. τ ′/α′].

and thus

∆; Γ `µ µα. τ ∆;Γ `µ µ . (τ [µα. τ/α]→ τ ′[µα′. τ ′/α′])

∆; Γ `µ τ [µα. τ/α]→ (τ [µα. τ/α]→ τ ′[µα′. τ ′/α′])→ τ ′[µα′. τ ′/α′]
∆; Γ `µ µα′. τ ′

But one might ask the following question: since rule (UNFOLD) can only
derive terms of recursive types, how can one use it in the derivation and derive
non-recursive types?

If one wants to obtain τ [µα. τ/α] from µα. τ , he should encapsulate the result
and instead obtain µ . τ [µα. τ/α]. If one originally wants to use τ [µα. τ/α] to
form a bigger derivation that leads to some non-recursive type τ ′, he should
encapsulate the other part of the derivation in using a dummy (µ .) header and
use that together with µ . τ [µα. τ/α] to build a derivation that leads to type
µ . τ ′. Due to strong normalization and Church-Rosser properties it follows that

·; · `µ e :µα. τ =⇒ ·; · `µ e′ :τ [µα. τ/α].

A special case of the above is

·; · `µ e :µ . τ =⇒ ·; · `µ e′ :τ .

which means any ground term of (potentially non-recursive) type τ hidden inside
µ . τ can be safely extracted.

7 Related Work and Conclusion

GTAL [6] is a closely-related work to this paper. The formation of unfolding
rules and the first stage of strong normalization proof for Fµ was partly inspired
by the GTAL and its plain-text version of termination proof. The core of GTAL
and Fµ are very similar, as the modal operator ◦ can be roughly viewed as (µ .).
It should be possible to apply the result in this paper to GTAL to 1) remove the
“modal” operator ◦ and let the unfolding form of µα. τ be τ [µα. τ/α] instead of
◦(τ [µα. τ/α]) and 2) allow reduction of sub-terms inside fold terms, so that it
can gain the Church-Rosser property.

Other than the work mentioned in the introduction section [1–5], there are
many other work such as Barthe et al. [8] that supports restricted forms of re-
cursive types by various forms of meta-logical checking other than typing. The
precise relation between those introduction-restricted systems and elimination-
restricted systems such as GTAL [6] and the Fµ system in this paper is not
entirely clear at this moment. Of particular interests here is the relative expres-
sive power of these two style of systems.

The Fµ strong normalization proof presented in this paper uses the following
three stages to map reduction steps between four sets of reduction rules in two
languages.

Fµ ↪→ =⇒ Fµ Ã =⇒ Fµ ⇀ =⇒ System F ↪→
This kind of reduction steps mapping technique has been widely used before,
such as those for λ-cube by Barendregt [9].

The proof, although rather straightforward, is somewhat tedious. It might
be possible to derive more elegant proof for strong normalization and other
properties using techniques such as logical relations, such as presented by Crary
and Harper [10].

Conclusion. We presented a new approach to add the support of unrestricted
recursive types. Using System F as an example, we extended it to Fµ and con-
struct detailed proof of its varitous properties, including strong normalization.
Our approach is general and applicable to other similar type systems and logics,
as well as hybrid verification systems such as XCAP [11, 12] or HTT [13, 14].

References

1. Coquand, T., Huet, G.: The calculus of constructions. Information and Compu-
tation 76 (1988) 95–120

2. Shao, Z., Saha, B., Trifonov, V., Papaspyrou, N.: A type system for certified bina-
ries. In: Proc. 29th ACM Symposium on Principles of Programming Languages,
ACM Press (January 2002) 217–232

3. Nakano, H.: A modality for recursion. In: Proc. 15th IEEE Symposium on Logic
in Computer Science, Santa Barbara, CA, USA (June 2000) 255–266

4. Appel, A.W., Mellies, P.A., Richards, C.D., Vouillon., J.: A very modal model
of a modern, major, general type system. In: Proc. 34th ACM Symposium on
Principles of Programming Languages, Nice, France (January 2007) 109–122

5. MacQueen, D., Plotkin, G., Sethi, R.: An ideal model for recursive polymorphic
types. In: Proc. 11th ACM Symposium on Principles of Programming Languages,
Salt Lake City, UT, USA (January 1984) 165–174

6. Hawbilitzel, C., Huang, H., Wittie, L., Chen, J.: A garbage-collecting typed assem-
bly language. In: Proc. 2007 ACM SIGPLAN International Workshop on Types in
Language Design and Implementation, New York, NY, USA, ACM Press (January
2007)

7. Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge University
Press (1989)

8. Barthe, G., Grégoire, B., Pastawski, F.: Cic[()]: Type-based termination of re-
cursive definitions in the calculus of inductive constructions. In: Proc. Logic for
Programming, Artificial Intelligence, and Reasoning, 13th International Confer-
ence, Phnom Penh, Cambodia. (November 2006) 257–271

9. Barendregt, H.P.: Lambda calculi with types. In Abramsky, S., Gabbay, D.,
Maibaum, T., eds.: Handbook of Logic in Computer Science (volume 2), Oxford
Univ. Press (1991)

10. Crary, K., Harper, R.: Syntactic logical relations for polymorphic and recursive
types. Electron. Notes Theor. Comput. Sci. 172 (2007) 259–299

11. Ni, Z., Shao, Z.: Certified assembly programming with embedded code pointers. In:
Proc. 33rd ACM Symposium on Principles of Programming Languages, Charleston,
South Carolina (January 2006)

12. Ni, Z., Yu, D., Shao, Z.: Using xcap for systems programming: Machine context
management. In: Proc. 20th International Conference on Theorem Proving in
Higher Order Logics, Kaiserslautern, Germany (September 2007) 189–206

13. Nanevski, A., Morrisett, G., Birkedal, L.: Polymorphism and separation in hoare
type theory. In: Proc. 11th ACM SIGPLAN International Conference on Functional
Programming, Portland, OR, USA, ACM Press (September 2006) 62–73

14. Nanevski, A., Ahmed, A., Morrisett, G., Birkedal, L.: Abstract predicates and
mutable adts in hoare type theory. In: Proc. 2007 European Symposium on Pro-
gramming, Braga, Portugal (March 2007) 189–204

A Complete Proof of Lemmas and Theorems

Here we supply the complete proof of those lemmas and theorems with in-
complete proof in the main paper.

Theorem 1 (System F Subject Reduction).
If Γ;∆ ` e :τ and e ↪→ e′ then ∆;Γ ` e′ :τ .

Theorem 2 (System F Progress).
If ·; · ` e :τ then either e = v or e ↪→ e′.

Theorem 3 (System F Strong Normalization).
If ·; · ` e :τ then the length of any reduction sequence starting with e is finite.

Lemma 4 (Fµ Subsitutions).

1. If ∆, α `µ τ and ∆ `µ τ ′ then ∆ `µ τ [τ ′/α];

2. If ∆, α; Γ `µ e :τ and ∆ `µ τ ′ then ∆;Γ[τ/α] `µ e[τ ′/α] :τ [τ ′/α];

3. If ∆;Γ, x :τ `µ e :τ ′ and ∆; Γ `µ e′ :τ then ∆;Γ `µ e[e′/x] :τ ′.

Proof. By induction on the derivations. Trivial. ¥

Theorem 5 (Fµ Subject Reduction).
If ∆;Γ `µ e :τ and e ↪→ e′ then ∆;Γ `µ e′ :τ .

Proof. Let D be the derivation of ∆; Γ `µ e :τ .
The proof is by induction on the derivation of e ↪→ e′.

case (R-APP). (λx :τ. e) e′ ↪→ e[e′/x].

Derivation D has the shape

∆; Γ, x :τ `µ e :τ ′

∆;Γ `µ λx :τ. e :τ → τ ′
∆;Γ `µ e′ :τ

∆;Γ `µ (λx :τ. e) e′ :τ ′
.

By Lemma 4 it follows that ∆; Γ `µ e[e′/x] :τ ′.

case (R-TAPP). (Λα. e) [τ] ↪→ e[τ/α].

Derivation D has the shape

∆, α; Γ `µ e :τ ′

∆;Γ `µ Λα. e :Πα. τ ′
∆ `µ τ

∆;Γ `µ (Λα. e) [τ] :τ ′[τ/α]
.

By Lemma 4 it follows that ∆; Γ[τ/α] `µ e[τ/α] :τ ′[τ/α].
Since α /∈ FTV (Γ), it follows that ∆; Γ `µ e[τ/α] :τ ′[τ/α].

case (R-LAM).
e ↪→ e′

λx :τ. e ↪→ λx :τ. e′ .

Derivation D has the shape
∆; Γ, x :τ `µ e :τ ′

∆;Γ `µ λx :τ. e :τ → τ ′
.

By induction hypothesis it follows that ∆; Γ, x :τ `µ e′ :τ ′, and thus

∆; Γ, x :τ `µ e′ :τ ′

∆;Γ `µ λx :τ. e′ :τ → τ ′
.

case (R-APP1).
e ↪→ e′

e e′′ ↪→ e′ e′′ .

Derivation D has the shape
∆; Γ `µ e :τ → τ ′ ∆;Γ `µ e′′ :τ

∆;Γ `µ e e′′ :τ ′
.

By induction hypothesis it follows that ∆; Γ `µ e′ :τ → τ ′, and thus

∆; Γ `µ e′ :τ → τ ′ ∆;Γ `µ e′′ :τ
∆;Γ `µ e′ e′′ :τ ′

.

case (R-APP2).
e ↪→ e′

v e ↪→ v e′ .

Derivation D has the shape
∆; Γ `µ v :τ → τ ′ ∆;Γ `µ e :τ

∆;Γ `µ v e :τ ′
.

By induction hypothesis it follows that ∆; Γ `µ e′ :τ , and thus

∆; Γ `µ v :τ → τ ′ ∆; Γ `µ e′ :τ
∆; Γ `µ v e′ :τ ′

.

case (R-TLAM).
e ↪→ e′

Λα. e ↪→ Λα. e′ .

Derivation D has the shape
∆, α; Γ `µ e :τ

∆;Γ `µ Λα. e :Πα. τ
.

By induction hypothesis it follows that ∆, α; Γ `µ e′ :τ , and thus

∆, α; Γ `µ e′ :τ
∆;Γ `µ Λα. e′ :Πα. τ

.

case (R-TAPP1).
e ↪→ e′

e [τ] ↪→ e′ [τ] .

Derivation D has the shape
∆; Γ `µ e :Πα. τ ′ ∆ `µ τ

∆;Γ `µ e [τ] :τ ′[τ/α]
.

By induction hypothesis it follows that ∆; Γ `µ e′ :Πα. τ ′, and thus

∆; Γ `µ e′ :Πα. τ ′ ∆ `µ τ

∆;Γ `µ e′ [τ] :τ ′[τ/α]
.

case (R-UNFOLD). unfoldτ0 (foldτ1 e) (foldτ1→τ2 e′) ↪→ foldτ2 (e′ e).

Derivation D has the shape

∆; Γ `µ e :τ [µα. τ/α]
∆; Γ `µ foldτ1 e :µα. τ

∆;Γ `µ e′ :τ [µα. τ/α]→ τ ′[µα′. τ ′/α′]
∆; Γ `µ foldτ1→τ2 e′ :µ . (τ [µα. τ/α]→ τ ′[µα′. τ ′/α′])

∆; Γ `µ unfoldτ0 (foldτ1 e) (foldτ1→τ2 e′) :µα′. τ ′

where τ0 = µα′. τ ′, τ1 = τ [µα. τ/α] and τ2 = τ ′[µα′. τ ′/α′].
It follows that

∆; Γ `µ e′ :τ [µα. τ/α]→ τ ′[µα′. τ ′/α′] ∆; Γ `µ e :τ [µα. τ/α]
∆; Γ `µ e′ e :τ ′[µα′. τ ′/α′]

∆; Γ `µ foldτ ′[µα′. τ ′/α′] (e′ e) :µα′. τ ′
.

case (R-FOLD).
e ↪→ e′

foldτ e ↪→ foldτ e′ .

Derivation D has the shape (where τ = τ ′[µα. τ ′/α])

∆; Γ `µ e :τ ′[µα. τ ′/α]
∆; Γ `µ foldτ ′[µα. τ ′/α] e :µα. τ ′

.

By induction hypothesis it follows that ∆; Γ `µ e′ :τ ′[µα. τ ′/α], and thus

∆; Γ `µ e′ :τ ′[µα. τ ′/α]
∆; Γ `µ foldτ ′[µα. τ ′/α] e′ :µα. τ ′

.

case (R-UNFOLD1).
e ↪→ e′

unfoldτ0 e′′ e ↪→ unfoldτ0 e′′ e′ .

Derivation D has the shape (where τ0 = µα′. τ ′)

∆; Γ `µ e′′ :µα. τ ∆; Γ `µ e :µ . (τ [µα. τ/α]→ τ ′[µα′. τ ′/α′])
∆; Γ `µ unfoldµα′. τ ′ e′′ e :µα′. τ ′

.

By induction hypothesis it follows that

∆; Γ `µ e′ :µ . (τ [µα. τ/α]→ τ ′[µα′. τ ′/α′])

and thus

∆; Γ `µ e′′ :µα. τ ∆;Γ `µ e′ :µ . (τ [µα. τ/α]→ τ ′[µα′. τ ′/α′])
∆; Γ `µ unfoldµα′. τ ′ e′′ e′ :µα′. τ ′

.

case (R-UNFOLD2).
e ↪→ e′

unfoldτ0 e v ↪→ unfoldτ0 e′ v
.

Derivation D has the shape (where τ0 = µα′. τ ′)

∆; Γ `µ e :µα. τ ∆;Γ `µ v :µ . (τ [µα. τ/α]→ τ ′[µα′. τ ′/α′])
∆; Γ `µ unfoldµα′. τ ′ e v :µα′. τ ′

.

By induction hypothesis it follows that ∆; Γ `µ e′ :µα. τ , and thus

∆; Γ `µ e′ :µα. τ ∆;Γ `µ v :µ . (τ [µα. τ/α]→ τ ′[µα′. τ ′/α′])
∆; Γ `µ unfoldµα′. τ ′ e′ v :µα′. τ ′

. ¥

Theorem 6 (Fµ Progress).
If ·; · `µ e :τ then either e = v or e ↪→ e′.

Proof. By induction on the derivation of ·; · `µ e :τ .
case (VAR). Trivial by contradiction.

case (LAM).
· · ·

·; · `µ λx :τ. e :τ → τ ′ .

v = λx :τ. e.

case (APP).
·; · `µ e :τ → τ ′ ·; · `µ e′ :τ

·; · `µ e e′ :τ ′
.

By induction hypothesis on ·; · `µ e :τ → τ ′ there are two possible cases.
case e = v. By ·; · `µ v :τ → τ ′ it follows that v = λx :τ. e′′, and thus

e e′ = v e′ = (λx :τ. e′′) e′ ↪→ e′′[e′/x].

case e ↪→ e′′. It follows that
e ↪→ e′′

e e′ ↪→ e′′ e′ .

case (TLAM).
· · ·

·; · `µ Λα. e :Πα. τ .

v = Λα. e.

case (TAPP).
·; · `µ e :Πα. τ · `µ τ ′

·; · `µ e [τ ′] :τ [τ ′/α]
.

By induction hypothesis on ·; · `µ e :Πα. τ there are two possible cases.
case e = v. By ·; · `µ v :Πα. τ it follows that v = Λα. e′, and thus

e [τ ′] = v [τ ′] = (Λα. e′) [τ ′] ↪→ e′[τ ′/α].

case e ↪→ e′. It follows that
e ↪→ e′

e [τ ′] ↪→ e′ [τ ′] .

case (FOLD).
· · ·

·; · `µ foldτ [µα. τ/α] e :µα. τ .

v = foldτ [µα. τ/α] e.

case (UNFOLD).

·; · `µ e :µα. τ ·; · `µ e′ :µ . (τ [µα. τ/α]→ τ ′[µα′. τ ′/α′])
·; · `µ unfoldµα′. τ ′ e e′ :µα′. τ ′

.

By induction hypothesis on ·; · `µ e′ :µ . (τ [µα. τ/α]→ τ ′[µα′. τ ′/α′]) there
are two sub-cases.

case e′ = v.
By induction hypothesis on ·; · `µ e :µα. τ there are again two sub-cases.

case e = v′.
By ·; · `µ v :µ . (τ [µα. τ/α]→ τ ′[µα′. τ ′/α′]) it follows that

v = foldτ [µα. τ/α]→ τ ′[µα′. τ ′/α′] e′′.

By ·; · `µ v′ :µα. τ it follows that v′ = foldτ [µα. τ/α] e′′′, and thus

unfoldµα′. τ ′ e e′

= unfoldµα′. τ ′ (foldτ [µα. τ/α] e′′′) (foldτ [µα. τ/α]→ τ ′[µα′. τ ′/α′] e′′)

↪→ foldτ ′[µα′. τ ′/α′] (e′′ e′′′).

case e ↪→ e′′. It follows that
e ↪→ e′′

unfoldµα′. τ ′ e v ↪→ unfoldµα′. τ ′ e′′ v
.

Then it follows that unfoldµα′. τ ′ e e′ ↪→ unfoldµα′. τ ′ e′′ e′.

case e′ ↪→ e′′. It follows that
e ↪→ e′′

unfoldµα′. τ ′ e e′ ↪→ unfoldµα′. τ ′ e e′′ . ¥

Lemma 7 (Translation Substituion Preservation).

1. pτ [τ ′/α]q = pτq[pτ ′q/α];

2. pe[τ/α]q = peq[pτq/α];

3. pe[e′/x]q = peq[pe′q/x].

Proof. By induction on the structure of τ and e. Trivial. ¥

Theorem 8 (Translation Type Wellformedness Preservation).
If ∆ `µ τ then ∆ ` pτq.

Proof. By induction on the structure of τ . Trivial. ¥

Theorem 9 (Translation Typing Preservation).
If ∆;Γ `µ e :τ then ∆; pΓq ` peq :pτq.

Proof. By induction on the derivation of ∆; Γ `µ e :τ .

case (VAR).
∆ `µ Γ(x)

∆; Γ `µ x :Γ(x)
.

By induction hypothesis it follows that ∆ ` pΓ(x)q.
By the definition of p·q it follows that ∆ ` pΓq(x) and thus

∆ ` pΓq(x)
∆; pΓq ` x :pΓq(x)

.

By the definition of p·q it follows that ∆; pΓq ` x :pΓ(x)q.

case (LAM).
∆; Γ, x :τ `µ e :τ ′

∆;Γ `µ λx :τ. e :τ → τ ′
.

By induction hypothesis it follows that ∆; pΓ, x :τq ` peq :pτ ′q.
By the definition of p·q it follows that ∆; pΓq, x :pτq ` peq :pτ ′q and thus

∆; pΓq, x :pτq ` peq :pτ ′q
∆; pΓq ` λx :pτq. peq :pτq→ pτ ′q .

It then follows that ∆; pΓq ` pλx :τ. eq :pτ → τ ′q.

case (APP).
∆; Γ `µ e :τ → τ ′ ∆;Γ `µ e′ :τ

∆;Γ `µ e e′ :τ ′
.

By induction hypothesis it follows that ∆; pΓq ` pe′q :pτq.
Depending on the shape of e, there are two sub-cases.

case e = λx :τ. foldτ x.

By ∆; Γ `µ λx :τ. foldτ x :τ → τ ′ it follows that τ ′ has the shape µα. τ ′′.

We have
∆; pΓq, x :Πα. α→α ` x :Πα. α→α

∆; pΓq ` λx :Πα. α→α. x : (Πα. α→α)→Πα. α→α

and

∆, α ` α

∆, α; pΓq, x :α ` x :α
∆, α; pΓq ` λx :α. x :α→α

∆; pΓq ` Λα. λx :α. x :Πα. α→α

.

It then follows that

∆; pΓq ` λx :Πα. α→α. x : (Πα. α→α)→Πα. α→α

∆; pΓq ` Λα. λx :α. x :Πα. α→α

∆; pΓq ` (λx :Πα. α→α. x) Λα. λx :α. x :Πα. α→α

.

By the definition of p·q it follows that ∆; pΓq ` p(λx :τ. foldτ x) e′q :pτ ′q.

case e 6= λx :τ. foldτ x.
By induction hypothesis it follows that ∆; pΓq ` peq :pτ → τ ′q.
It follows that ∆; pΓq ` peq :pτq→ pτ ′q and thus

∆; pΓq ` peq :pτq→ pτ ′q ∆; pΓq ` pe′q :pτq
∆; pΓq ` peq pe′q :pτ ′q .

It then follows that ∆; pΓq ` pe e′q :pτ ′q.

case (TLAM).
∆, α; Γ `µ e :τ

∆; Γ `µ Λα. e :Πα. τ
.

By induction hypothesis it follows that ∆, α; pΓq ` peq :pτq, and thus

∆, α; pΓq ` peq :pτq
∆; pΓq ` Λα. peq :Πα. pτq .

It then follows that ∆; pΓq ` pΛα. eq :pΠα. τq.

case (TAPP).
∆; Γ `µ e :Πα. τ ∆ `µ τ ′

∆;Γ `µ e [τ ′] :τ [τ ′/α]
.

By induction hypothesis it follows that ∆; pΓq ` peq :pΠα. τq.
It follows that ∆; pΓq ` peq :Πα. pτq.
By induction hypothesis it follows that ∆ ` pτ ′q, and thus

∆; pΓq ` peq :Πα. pτq ∆ ` pτ ′q
∆; pΓq ` peq [pτ ′q] :pτq[pτ ′q/α]

.

By Lemma 7 it follows that ∆; pΓq ` pe [τ ′]q :pτ [τ ′/α]q.

case (FOLD).
∆; Γ `µ e :τ [µα. τ/α]

∆; Γ `µ foldτ [µα. τ/α] e :µα. τ
.

We have

∆, α ` α

∆, α; pΓq, x :α ` x :α
∆, α; pΓq ` λx :α. x :α→α

∆; pΓq ` Λα. λx :α. x :Πα. α→α

.

It follows that ∆; pΓq ` pfoldτ [µα. τ/α] eq :pµα. τq.

case (UNFOLD).

∆; Γ `µ e :µα. τ ∆;Γ `µ e′ :µ . (τ [µα. τ/α]→ τ ′[µα′. τ ′/α′])
∆; Γ `µ unfoldµα′. τ ′ e e′ :µα′. τ ′

.

By induction hypothesis it follows that ∆; pΓq ` peq :pµα. τq.
It follows that ∆; pΓq ` peq :Πα. α→α.
By induction hypothesis it follows that

∆; pΓq ` pe′q :pµ . (τ [µα. τ/α]→ τ ′[µα′. τ ′/α′])q.

It follows that ∆; pΓq ` pe′q :Πα. α→α, and thus

∆; pΓq ` pe′q :Πα. α→α

∆; pΓq, :Πα. α→α ` pe′q :Πα. α→α

∆; pΓq`λ :Πα. α→α. pe′q : (Πα. α→α)→(Πα. α→α)
∆; pΓq` peq :Πα. α→α

∆; pΓq ` (λ :Πα. α→α. pe′q) peq :Πα. α→α

.

It then follows that ∆; pΓq ` punfoldµα′. τ ′ e e′q :pµα′. τ ′q. ¥

Theorem 10 (Translation Reduction Preservation).
If e ⇀ e′ then peq ↪→+ pe′q.

Proof. By induction on the derivation of e ⇀ e′.

case (R-APP). (λx :τ. e) e′ ⇀ e[e′/x].

Depending on the shape of e, there are two sub-cases.

case e = foldτ x.
By the definition of p·q and Lemma 7 it follows that

p(λx :τ. foldτ x) e′q = (λx :Πα. α→α. x) Λα. λx :α. x

↪→ Λα. λx :α. x = (Λα. λx :α. x)[pe′q/x] = pfoldτ xq[pe′q/x] = p(foldτ x)[e′/x]q.

case e 6= foldτ x.
By the definition of p·q and Lemma 7 it follows that

p(λx :τ. e) e′q = (λx :pτq. peq) pe′q ↪→ peq[pe′q/x] = pe[e′/x]q.

case (R-TAPP). (Λα. e) [τ] ⇀ e[τ/α].

By the definition of p·q and Lemma 7 it follows that

p(Λα. e) [τ]q = (Λα. peq) [pτq] ↪→ peq[pτq/α] = pe[τ/α]q.

case (R-LAM).
e ⇀ e′

λx :τ. e ⇀ λx :τ. e′ .

By induction hypothesis it follows that peq ↪→ e1 ↪→ . . . ↪→ en ↪→ pe′q.
It then follows that

peq ↪→ e1 ↪→ . . . ↪→ en ↪→ pe′q
λx :pτq. peq ↪→ λx :pτq. e1 ↪→ . . . ↪→ λx :pτq. en ↪→ λx :pτq. pe′q .

By the definition of p·q it follows that pλx :τ. eq ↪→+ pλx :τ. e′q.

case (R-APP1).
e ⇀ e′

e e′′ ⇀ e′ e′′ .

By induction hypothesis it follows that peq ↪→ e1 ↪→ . . . ↪→ en ↪→ pe′q.
It then follows that

peq ↪→ e1 ↪→ . . . ↪→ en ↪→ pe′q
peq pe′′q ↪→ e1 pe′′q ↪→ . . . ↪→ en pe′′q ↪→ pe′q pe′′q .

By the definition of p·q it follows that pe e′′q ↪→+ pe′ e′′q.

case (R-APP2).
e ⇀ e′

v e ⇀ v e′ .

By induction hypothesis it follows that peq ↪→ e1 ↪→ . . . ↪→ en ↪→ pe′q.
It then follows that

peq ↪→ e1 ↪→ . . . ↪→ en ↪→ pe′q
pvq peq ↪→ pvq e1 ↪→ . . . ↪→ pvq en ↪→ pvq pe′q .

By the definition of p·q it follows that pv eq ↪→+ pv e′q.

case (R-TLAM).
e ⇀ e′

Λα. e ⇀ Λα. e′ .

By induction hypothesis it follows that peq ↪→ e1 ↪→ . . . ↪→ en ↪→ pe′q.
It then follows that

peq ↪→ e1 ↪→ . . . ↪→ en ↪→ pe′q
Λα. peq ↪→ Λα. e1 ↪→ . . . ↪→ Λα. en ↪→ Λα. pe′q .

By the definition of p·q it follows that pΛα. eq ↪→+ pΛα. e′q.

case (R-TAPP1).
e ⇀ e′

e [τ] ⇀ e′ [τ] .

By induction hypothesis it follows that peq ↪→ e1 ↪→ . . . ↪→ en ↪→ pe′q.
It then follows that

peq ↪→ e1 ↪→ . . . ↪→ en ↪→ pe′q
peq [pτq] ↪→ e1 [pτq] ↪→ . . . ↪→ en [pτq] ↪→ pe′q [pτq]

.

By the definition of p·q it follows that pe [τ]q ↪→+ pe′ [τ]q.

case (R-UNFOLD). unfoldτ ′′ (foldτ e) (foldτ→τ ′ e′) ⇀ foldτ ′ (e′ e).

By the definition of p·q it follows that

punfoldτ ′′ (foldτ e) (foldτ→τ ′ e′)q = (λ :Πα. α→α. pfoldτ→τ ′ e′q) pfoldτ eq
= (λ :Πα. α→α. Λα. λx :α. x) (Λα. λx :α. x) ↪→ Λα. λx :α. x = pfoldτ ′ (e′ e)q.

case (R-UNFOLD1).
e ⇀ e′

unfoldτ e′′ e ⇀ unfoldτ e′′ e′ .

By induction hypothesis it follows that peq ↪→ e1 ↪→ . . . ↪→ en ↪→ pe′q.
It then follows that

peq ↪→ e1 ↪→ . . . ↪→ en ↪→ pe′q
unfoldτpe′′q peq ↪→ unfoldτpe′′q e1 ↪→ . . . ↪→ unfoldτpe′′q en ↪→ unfoldτpe′′q pe′q .

By the definition of p·q it follows that punfoldτ e′′ eq ↪→+ punfoldτ e′′ e′q.

case (R-UNFOLD2).
e ⇀ e′

unfoldτ e v ⇀ unfoldτ e′ v
.

By induction hypothesis it follows that peq ↪→ e1 ↪→ . . . ↪→ en ↪→ pe′q.
It then follows that

peq ↪→ e1 ↪→ . . . ↪→ en ↪→ pe′q
unfoldτpeq pvq ↪→ unfoldτe1 pvq ↪→ . . . ↪→ unfoldτen pvq ↪→ unfoldτpe′q pvq .

By the definition of p·q it follows that punfoldτ e vq ↪→+ punfoldτ e′ vq. ¥

Theorem 11 (Fµ Strong Normalization (⇀)).
If ·; · `µ e : τ then the length of any reduction sequence starting with e, without
using reduction rule (R-FOLD), is finite.

Lemma 12 ((R-FOLD1) Reduction Steps Finite).
The length of any Ã reduction sequences that uses rule (R-FOLD1) in every
step is finite.

Lemma 13 ((R-FOLD1) Translation Equivalence).
If the derivation of e Ã e′ uses reduction rule (R-FOLD1) then peq = pe′q.

Proof. By induction on the derivation of e Ã e′.

case (R-APP). (λx :τ. e) e′ Ã e[e′/x].

Trivial by contradiction.

case (R-TAPP). (Λα. e) [τ] Ã e[τ/α].

Trivial by contradiction.

case (R-LAM).
e Ã e′

λx :τ. e Ã λx :τ. e′ .

By induction hypothesis it follows that peq = pe′q.
It follows that pλx :τ. eq = λx :τ. peq = λx :τ. peq = pλx :τ. e′q.

case (R-APP1).
e Ã e′

e e′′ Ã e′ e′′ .

Depending on the shape of e, there are two sub-cases.

case e = λx :τ. foldτ x.
Trivial by contradiction since (λx :τ. foldτ x) is a normal value.

case e 6= λx :τ. foldτ x.
Depending on the shape of e′, there are two sub-cases.

case e′ = λx :τ. foldτ x.
The derivation of e Ã e′ must use rule (R-FOLD1).
By contradiction as e′ can not be of form (λx :τ. foldτ x).

case e′ 6= λx :τ. foldτ x.
By induction hypothesis it follows that peq = pe′q.
It follows that pe e′′q = peq pe′′q = pe′q pe′′q = pe′ e′′q.

case (R-APP2).
e Ã e′

v e Ã v e′ .

Depending on the shape of v, there are two sub-cases.

case v = λx :τ. foldτ x. It follows that

p(λx :τ. foldτ x) eq = (λx :Πα. α→α. x) pfoldτ eq
= (λx :Πα. α→α. x) Λα. λx :α. x

= (λx :Πα. α→α. x) pfoldτ e′q = p(λx :τ. foldτ x) e′q.

case v 6= λx :τ. foldτ x.
By induction hypothesis it follows that peq = pe′q.
It follows that pv eq = pvq peq = pvq pe′q = pv e′q.

case (R-TLAM).
e Ã e′

Λα. e Ã Λα. e′ .

By induction hypothesis it follows that peq = pe′q.
It follows that pΛα. eq = Λα. peq = Λα. pe′q = pΛα. e′q.

case (R-TAPP1).
e Ã e′

e [τ] Ã e′ [τ] .

By induction hypothesis it follows that peq = pe′q.
It follows that pe [τ]q = peq [pτq] = pe′q [pτq] = pe′ [τ]q.

case (R-FOLD1).

(λx :µα. τ . x) (foldτ [µα. τ/α] e) ↪→ (λx :τ [µα. τ/α]. foldτ [µα. τ/α] x) e.

By the definition of p·q it follows that

p(λx :µα. τ . x) (foldτ [µα. τ/α] e)q
= (λx :pµα. τq. x) pfoldτ [µα. τ/α] eq
= (λx :Πα. α→α. x) pfoldτ [µα. τ/α] eq
= p(λx :τ [µα. τ/α]. foldτ [µα. τ/α] x) eq.

case (R-UNFOLD). unfoldτ ′′ (foldτ e) (foldτ → τ ′ e′) Ã foldτ ′ (e′ e).

Trivial by contradiction.

case (R-UNFOLD1).
e Ã e′

unfoldτ e′′ e Ã unfoldτ e′′ e′ .

By induction hypothesis it follows that peq = pe′q.
It follows that

punfoldτ e′′ eq = (λ :Πα. α→α. peq) pe′′q
= (λ :Πα. α→α. pe′q) pe′′q = punfoldτ e′′ e′q.

case (R-UNFOLD2).
e Ã e′

unfoldτ e v Ã unfoldτ e′ v
.

By induction hypothesis it follows that peq = pe′q.
It follows that

punfoldτ e vq = (λ :Πα. α→α. pvq) peq
= (λ :Πα. α→α. pvq) pe′q = punfoldτ e′ vq. ¥

Theorem 14 (Fµ Strong Normalization (Ã)).
If ·; · `µ e : τ then the length of any reduction sequence starting with e, with-
out using reduction rule (R-FOLD), but might using the additional reduction
rule (R-FOLD1), is finite.

Lemma 15 (Coercion Substituion Preservation).

1. |e[τ/α]| = |e|[τ/α];

2. |e[e′/x]| = |e|[|e′|/x].

Proof. By induction on the structure of e.
case x′. |x′[τ/α]| = |x′| = x′ = x′[τ/α] = |x′|[τ/α].

If x = x′ then |x′[e′/x]| = |e′| = x′[|e′|/x] = |x′|[|e′|/x].

Otherwise |x′[e′/x]| = |x′| = x′ = x′[|e′|/x] = |x′|[|e′|/x].

case λx′ :τ ′. e. By induction hypothesis it follows that

|e[τ/α]| = |e|[τ/α] and |e[e′/x]| = |e|[|e′|/x].

|(λx′ :τ ′. e)[τ/α]| = |λx′ :τ ′. e[τ/α]| = λx′ :τ ′. |e[τ/α]|
= λx′ :τ ′. |e|[τ/α] = (λx′ :τ ′. |e|)[τ/α] = |(λx′ :τ ′. e)|[τ/α].

|(λx′ :τ ′. e)[e′/x]| = |λx′ :τ ′. e[e′/x]| = λx′ :τ ′. |e[e′/x]|
= λx′ :τ ′. |e|[|e′|/x] = (λx′ :τ ′. |e|)[|e′|/x] = |(λx′ :τ ′. e)|[|e′|/x].

case e e′′. By induction hypothesis it follows that

|e[τ/α]| = |e|[τ/α], |e[e′/x]| = |e|[|e′|/x],

|e′′[τ/α]| = |e′′|[τ/α] and |e′′[e′/x]| = |e′′|[|e′|/x].

|(e e′′)[τ/α]| = |e[τ/α] e′′[τ/α]| = |e[τ/α]| |e′′[τ/α]|
= |e|[τ/α] |e′′|[τ/α] = (|e| |e′′|)[τ/α] = |e e′′|[τ/α].

|(e e′′)[e′/x]| = |e[e′/x] e′′[e′/x]| = |e[e′/x]| |e′′[e′/x]|
= |e|[|e′|/x] |e′′|[|e′|/x] = (|e| |e′′|)[|e′|/x] = |e e′′|[|e′|/x].

case Λα′. e. By induction hypothesis it follows that

|e[τ/α]| = |e|[τ/α] and |e[e′/x]| = |e|[|e′|/x].

|(Λα′. e)[τ/α]| = |Λα′. e[τ/α]| = Λα′. |e[τ/α]|
= Λα′. |e|[τ/α] = (Λα′. |e|)[τ/α] = |(Λα′. e)|[τ/α].

|(Λα′. e)[e′/x]| = |Λα′. e[e′/x]| = Λα′. |e[e′/x]|
= Λα′. |e|[|e′|/x] = (Λα′. |e|)[|e′|/x] = |(Λα′. e)|[|e′|/x].

case e [τ ′]. By induction hypothesis it follows that

|e[τ/α]| = |e|[τ/α] and |e[e′/x]| = |e|[|e′|/x].

|(e [τ ′])[τ/α]| = |e[τ/α] [τ ′]| = |e[τ/α]| [τ ′]
= |e|[τ/α] [τ ′] = (|e| [τ ′])[τ/α] = |e [τ ′]|[τ/α].

|(e [τ ′])[e′/x]| = |e[e′/x] [τ ′]| = |e[e′/x]| [τ ′]
= |e|[|e′|/x] [τ ′] = (|e| [τ ′])[|e′|/x] = |e [τ ′]|[|e′|/x].

case foldτ ′ e. By induction hypothesis it follows that

|e[τ/α]| = |e|[τ/α] and |e[e′/x]| = |e|[|e′|/x].

|(foldτ ′ e)[τ/α]| = |foldτ ′ e[τ/α]| = (λx′ :τ ′. foldτ ′ x′) |e[τ/α]|
= (λx′ :τ ′. foldτ ′ x′) |e|[τ/α] = ((λx′ :τ ′. foldτ ′ x′) |e|)[τ/α] = |((foldτ ′ e)|[τ/α].

|(foldτ ′ e)[e′/x]| = |foldτ ′ e[e′/x]| = (λx′ :τ ′. foldτ ′ x′) |e[e′/x]|
=(λx′ :τ ′. foldτ ′ x′) |e|[|e′|/x]=((λx′ :τ ′. foldτ ′ x′) |e|)[|e′|/x]= |((foldτ ′ e)|[|e′|/x].

case unfoldτ ′ e e′′. By induction hypothesis it follows that

|e[τ/α]| = |e|[τ/α], |e[e′/x]| = |e|[|e′|/x],

|e′′[τ/α]| = |e′′|[τ/α] and |e′′[e′/x]| = |e′′|[|e′|/x].

|(unfoldτ ′ e e′′)[τ/α]| = |unfoldτ ′ e[τ/α] e′′[τ/α]|
= (λx :τ ′. x) (unfoldτ ′ |e[τ/α]| |e′′[τ/α]|)
= (λx :τ ′. x)[τ/α] (unfoldτ ′ |e|[τ/α] |e′′|[τ/α])

= ((λx :τ ′. x) (unfoldτ ′ |e| |e′′|))[τ/α] = |unfoldτ ′ e e′′|[τ/α].

|(unfoldτ ′ e e′′)[e′/x]| = |unfoldτ ′ e[e′/x] e′′[e′/x]|
= (λx :τ ′. x) (unfoldτ ′ |e[e′/x]| |e′′[e′/x]|)
= (λx :τ ′. x)[|e′|/x] (unfoldτ ′ |e|[|e′|/x] |e′′|[|e′|/x])

= ((λx :τ ′. x) (unfoldτ ′ |e| |e′′|))[|e′|/x] = |unfoldτ ′ e e′′|[|e′|/x]. ¥

Theorem 16 (Coercion Typing Preservation).
If ∆;Γ `µ e :τ then ∆;Γ `µ |e| :τ .

Proof. By induction on the derivation of ∆; Γ `µ e :τ .

case (VAR).
∆ `µ Γ(x)

∆; Γ `µ x :Γ(x)
.

By definition of | · | it follows that |x| = x and thus

∆ `µ Γ(|x|)
∆; Γ `µ |x| :Γ(|x|) .

It then follows that ∆; Γ `µ |x| :Γ(x).

case (LAM).
∆; Γ, x :τ `µ e :τ ′

∆;Γ `µ λx :τ. e :τ → τ ′
.

By induction hypothesis it follows that ∆; Γ, x :τ `µ |e| :τ ′ and thus

∆; Γ, x :τ `µ |e| :τ ′
∆;Γ `µ λx :τ. |e| :τ → τ ′

.

It then follows that ∆; Γ `µ |λx :τ. e| :τ → τ ′.

case (APP).
∆; Γ `µ e :τ → τ ′ ∆;Γ `µ e′ :τ

∆;Γ `µ e e′ :τ ′
.

By induction hypothesis it follows that ∆; Γ `µ |e| :τ → τ ′.
By induction hypothesis it follows that ∆; Γ `µ |e′| :τ and thus

∆; Γ `µ |e| :τ → τ ′ ∆;Γ `µ |e′| :τ
∆; Γ `µ |e| |e′| :τ ′ .

It then follows that ∆; Γ `µ |e e′| :τ ′.

case (TLAM).
∆, α; Γ `µ e :τ

∆; Γ `µ Λα. e :Πα. τ
.

By induction hypothesis it follows that ∆, α; Γ `µ |e| :τ , and thus

∆, α; Γ `µ |e| :τ
∆;Γ `µ Λα. |e| :Πα. τ

.

It then follows that ∆; Γ `µ |Λα. e| :Πα. τ .

case (TAPP).
∆; Γ `µ e :Πα. τ ∆ `µ τ ′

∆;Γ `µ e [τ ′] :τ [τ ′/α]
.

By induction hypothesis it follows that ∆; Γ `µ |e| :Πα. τ and thus

∆; Γ `µ |e| :Πα. τ ∆ `µ τ ′

∆;Γ `µ |e| [τ ′] :τ [τ ′/α]
.

It then follows that ∆; Γ `µ |e [τ ′]| :τ [τ ′/α].

case (FOLD).
∆; Γ `µ e :τ [µα. τ/α]

∆; Γ `µ foldτ [µα. τ/α] e :µα. τ
.

By induction hypothesis it follows that ∆; Γ `µ |e| :τ [µα. τ/α] and thus

∆; Γ, x :τ [µα. τ/α] `µ x :τ [µα. τ/α]
∆; Γ, x :τ [µα. τ/α] `µ foldτ [µα. τ/α] x :µα. τ

∆;Γ `µ λx :τ [µα. τ/α]. foldτ [µα. τ/α] x :τ [µα. τ/α]→µα. τ

∆; Γ `µ |e| :τ [µα. τ/α]

∆; Γ `µ (λx :τ [µα. τ/α]. foldτ [µα. τ/α] x) |e| :µα. τ

It then follows that ∆; Γ `µ |foldτ [µα. τ/α] e| :µα. τ .

case (UNFOLD).

∆; Γ `µ e :µα. τ ∆;Γ `µ e′ :µ . (τ [µα. τ/α]→ τ ′[µα′. τ ′/α′])
∆; Γ `µ unfoldµα′. τ ′ e e′ :µα′. τ ′

.

By induction hypothesis it follows that ∆; Γ `µ |e| :µα. τ .
By induction hypothesis it follows that

∆; Γ `µ |e′| :µ . (τ [µα. τ/α]→ τ ′[µα′. τ ′/α′])

and thus

∆; Γ `µ |e| :µα. τ ∆;Γ `µ |e′| :µ . (τ [µα. τ/α]→ τ ′[µα′. τ ′/α′])
∆; Γ `µ unfoldµα′. τ ′ |e| |e′| :µα′. τ ′

.

It follows that

∆; Γ, x :µα′. τ ′ `µ x :µα′. τ ′

∆; Γ `µ λx :µα′. τ ′. x : (µα′. τ ′)→µα′. τ ′
∆;Γ `µ unfoldµα′. τ ′ |e| |e′| :µα′. τ ′

∆;Γ `µ (λx :µα′. τ ′. x) (unfoldµα′. τ ′ |e| |e′|) :µα′. τ ′

It then follows that ∆; Γ `µ |unfoldµα′. τ ′ e e′| :µα′. τ ′. ¥

Theorem 17 (Coercion Reduction Preservation).
If e ↪→ e′ then |e| Ã+ |e′|.

Proof. By induction on the derivation of e ↪→ e′.

case (R-APP). (λx :τ. e) e′ ↪→ e[e′/x].

By the definition of | · | and Lemma 15 it follows that

|(λx :τ. e) e′| = (λx :τ. |e|) |e′| Ã |e|[|e′|/x] = |e[e′/x]|.

case (R-TAPP). (Λα. e) [τ] ↪→ e[τ/α].

By the definition of | · | and Lemma 15 it follows that

|(Λα. e) [τ]| = (Λα. |e|) [τ] Ã |e|[τ/α] = |e[τ/α]|.

case (R-LAM).
e ↪→ e′

λx :τ. e ↪→ λx :τ. e′ .

By induction hypothesis it follows that |e| Ã e1 Ã . . . Ã en Ã |e′|.
It then follows that

|e| Ã e1 Ã . . . Ã en Ã |e′|
λx :τ. |e| Ã λx :τ. e1 Ã . . . Ã λx :τ. en Ã λx :τ. |e′| .

By the definition of | · | it follows that |λx :τ. e| Ã+ |λx :τ. e′|.

case (R-APP1).
e ↪→ e′

e e′′ ↪→ e′ e′′ .

By induction hypothesis it follows that |e| Ã e1 Ã . . . Ã en Ã |e′|.
It then follows that

|e| Ã e1 Ã . . . Ã en Ã |e′|
|e| |e′′| Ã e1 |e′′| Ã . . . Ã en |e′′| Ã |e′| |e′′| .

By the definition of | · | it follows that |e e′′| Ã+ |e′ e′′|.

case (R-APP2).
e ↪→ e′

v e ↪→ v e′ .

By induction hypothesis it follows that |e| Ã e1 Ã . . . Ã en Ã |e′|.
It then follows that

|e| Ã e1 Ã . . . Ã en Ã |e′|
|v| |e| Ã |v| e1 Ã . . . Ã |v| en Ã |v| |e′| .

By the definition of | · | it follows that |v e| Ã+ |v e′|.

case (R-TLAM).
e ↪→ e′

Λα. e ↪→ Λα. e′ .

By induction hypothesis it follows that |e| Ã e1 Ã . . . Ã en Ã |e′|.
It then follows that

|e| Ã e1 Ã . . . Ã en Ã |e′|
Λα. |e| Ã Λα. e1 Ã . . . Ã Λα. en Ã Λα. |e′| .

By the definition of | · | it follows that |Λα. e| Ã+ |Λα. e′|.

case (R-TAPP1).
e ↪→ e′

e [τ] ↪→ e′ [τ] .

By induction hypothesis it follows that |e| Ã e1 Ã . . . Ã en Ã |e′|.
It then follows that

|e| Ã e1 Ã . . . Ã en Ã |e′|
|e| [τ] Ã e1 [τ] Ã . . . Ã en [τ] Ã |e′| [τ]

.

By the definition of | · | it follows that |e [τ]| Ã+ |e′ [τ]|.

case (R-UNFOLD). unfoldτ ′′ (foldτ e) (foldτ → τ ′ e′) ↪→ foldτ ′ (e′ e).

By the definition of | · | it follows that

|unfoldτ ′′ (foldτ e) (foldτ → τ ′ e′)|
= (λx :τ0. x) (unfoldτ ′′ |foldτ e| |foldτ → τ ′ e′|)
= (λx :τ0. x) (unfoldτ ′′ ((λx :τ. foldτ x) |e|) ((λx :τ → τ ′. foldτ → τ ′ x) |e′|))
Ã (λx :τ0. x) (unfoldτ ′′ (foldτ |e|) ((λx :τ → τ ′. foldτ → τ ′ x) |e′|))
Ã (λx :τ0. x) (unfoldτ ′′ (foldτ |e|) (foldτ → τ ′ |e′|))
Ã (λx :τ0. x) (foldτ ′ (|e′| |e|))
Ã (λx :τ ′. foldτ ′ x) (|e′| |e|) = (λx :τ ′. foldτ ′ x) |e′ e| = |foldτ ′ (e′ e)|.

Notice that here in the shaded step we use the additional reduction rule (R-
FOLD1) defined in the beginning of this section to lift the fold constructor, as
the coercion | · | would do.

case (R-FOLD).
e ↪→ e′

foldτ e ↪→ foldτ e′ .

By induction hypothesis it follows that |e| Ã e1 Ã . . . Ã en Ã |e′|.
It then follows that

|e| Ã e1 Ã . . . Ã |e′|
(λx :τ. foldτ x) |e| Ã (λx :τ. foldτ x) e1 Ã . . . Ã (λx :τ. foldτ x) |e′| .

By the definition of | · | it follows that |foldτ e| Ã+ |foldτ e′|.

case (R-UNFOLD1).
e ↪→ e′

unfoldτ e′′ e ↪→ unfoldτ e′′ e′ .

By induction hypothesis it follows that |e| Ã e1 Ã . . . Ã en Ã |e′|.
It then follows that

|e| Ã . . . Ã |e′|
(λx :τ. x) (unfoldτ |e′′| |e|) Ã . . . Ã (λx :τ. x) (unfoldτ |e′′| |e′|) .

By the definition of | · | it follows that |unfoldτ e′′ e| Ã+ |unfoldτ e′′ e′|.

case (R-UNFOLD2).
e ↪→ e′

unfoldτ e v ↪→ unfoldτ e′ v
.

By induction hypothesis it follows that |e| Ã e1 Ã . . . Ã en Ã |e′|.
It then follows that

|e| Ã . . . Ã |e′|
(λx :τ. x) (unfoldτ |e| |v|) Ã . . . Ã (λx :τ. x) (unfoldτ |e′| |v|) .

By the definition of | · | it follows that |unfoldτ e v| Ã+ |unfoldτ e′ v|. ¥

Theorem 18 (Fµ Strong Normalization (↪→)).
If ·; · `µ e :τ then the length of any reduction sequence starting with e is finite.

