
A Typed Intermediate Language for
Compiling Multiple Inheritance

Juan Chen
Microsoft Research

juanchen@microsoft.com

Abstract
Type-preserving compilation can improve software reliability by
generating code that can be verified independently of the compiler.
Practical type-preserving compilation does not exist for languages
with multiple inheritance. This paper presents EMI , the first typed
intermediate language to support practical compilation of a pro-
gramming language with fully general multiple inheritance. The
paper demonstrates the practicality of EMI by showing that EMI

can be used to faithfully model standard implementation strategies
of multiple inheritance for C++, the most widely-used program-
ming language with general multiple inheritance.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Classes and Objects;
D.3.1 [Programming Languages]: Formal Definitions and Theory

General Terms Languages

Keywords Typed intermediate language, class and object encod-
ing, multiple inheritance

1. Introduction
Type-preserving compilation can improve software reliability by
generating code that can be verified independently of the com-
piler [15, 12, 9]. Techniques for practical type-preserving compi-
lation, however, do not exist for programming languages with mul-
tiple inheritance, such as C++, Eiffel, SELF, Cecil, and CLOS.

This paper describes EMI (Encoding for Multiple Inheritance),
the first typed intermediate language to support practical compila-
tion of a programming language with fully general multiple inheri-
tance. It demonstrates the practicality of EMI by showing that EMI

can be used to faithfully model standard implementation strategies
of multiple inheritance for C++, the most widely-used program-
ming language with general multiple inheritance.

In a language with multiple inheritance, a class may have multi-
ple superclasses. A subclass object contains embedded objects for
superclasses. Standard single-inheritance techniques assume that
an object and its embedded superclass object can share the same
base location within the object. With multiple inheritance, this is
impossible when there is more than one embedded superclass ob-
ject. Furthermore, there are different ways of handling multiple em-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’07 January 17–19, 2007, Nice, France.
Copyright c© 2007 ACM 1-59593-575-4/07/0001. . . $5.00.

bedded objects of the same superclass. Repeated inheritance allows
multiple copies of the same superclass in a subclass object. Shared
inheritance (virtual inheritance in C++) has only one shared copy
of a superclass, even if the subclass inherits the superclass more
than once. Languages may allow both types of inheritance in the
same subclass. With repeated inheritance, a single class name is
not sufficient to distinguish embedded objects because a subclass
object may have several embedded objects for the same superclass,
inherited via different ancestors.

To handle these difficulties, EMI introduces paths—sequences
of class names—to describe the location of an embedded object.
At compile time, most objects have unknown runtime types and
paths. EMI uses path abstractions to represent those objects. EMI

introduces special address arithmetic expressions to model pointer
adjustment that may occur during casting and dynamic dispatch
(so that we can adjust a pointer to a subclass object to point to an
embedded superclass object, or vice versa).

EMI borrows some concepts from LILC , a typed intermediate
language for compiling object-oriented languages with single in-
heritance of classes (presented in our previous POPL paper [4]).
Specifically, it preserves name-based notions such as classes and
subclassing, as LILC does. EMI also borrows notions such as exact
classes and subclassing-bounded quantification. However, it differs
from LILC in representing objects and inheritance.

Prior work on typed compilation of languages with multiple in-
heritance is not suitable for practical compilers. It does not address
implementation details such as object layout and pointer adjust-
ment. Some work requires non-standard semantics or implementa-
tion strategies. More discussion is in Section 5.

In the rest of the paper, Section 2 gives an informal overview
of EMI . The next two sections explain the syntax and semantics.
Section 5 discusses related work. Section 6 concludes.

A type-preserving translation from a source language to EMI ,
the complete semantics of EMI , and the proofs of properties of
EMI are presented in a companion technical report [2].

2. Overview
This section describes EMI informally. For simplicity, EMI fo-
cuses on only core features and omits non-virtual methods, static
members, constructors, access control, arrays, local variable as-
signment, etc. We use capital letters A-E to range over class names.

We first describe a typical object layout for multiple inheritance.
In an object of class E, the embedded objects for E’s direct super-
classes are listed in declaration order and followed by fields intro-
duced in E. Each embedded object has a pointer to a corresponding
vtable. A subclass object can share the vtable with the embedded
object if the two objects share addresses. Figure 1 shows the layout
of a class E that inherits both C and D. The notations f and m with
a class name subscript mean fields and virtual methods introduced

C

E

D

E,C

D
vtableD

vtableC

fC

fD
fE

mC
mE

mD

Figure 1. Multiple Inheritance

by the class respectively. The embedded C object is followed by
the D object and then by fE . The embedded C object and the E
object share a vtable that contains virtual methods introduced by C
and E.

Typically, casting a subclass object to a superclass object re-
quires changing the value of the object pointer. For example, to
cast an E object to the superclass D, we need to add an offset to
the value of the object pointer. The offset is the difference between
E and D. A virtual method call is similar, in that an adjustment may
be needed before passing the object to the virtual method. Note that
for an embedded object that shares the address with the subclass ob-
ject, no adjustment is necessary. For example, casting the E object
to superclass C does not need to change the object pointer.

With repeated inheritance, a subclass object may have multiple
embedded objects for the same superclass. Figure 2 shows that if
both C and D inherit a class A, then an E object has two embedded
A objects, one for C and the other for D. Class name A is not
sufficient to identify the two A objects.

C

E

D

E,C,A

D,A vtableD

vtableC

fC

fD
fE

A
fA

fA

mA
mc
mE

mA
mD

Figure 2. Repeated Inheritance

2.1 Basic Ideas of EMI

EMI , like LILC , carries class types all the way through compila-
tion. It uses record types to represent the actual layout of an ob-
ject. Objects and records of the corresponding record type may
be coerced to each other without any runtime effect. Objects are
lightweight and are preserved only to simplify the type system.

For each class C, a record type R(C) describes the layout of C.
R is not a type constructor in EMI , but a “macro” used by the type
checker. The layout in Figure 1 is represented as follows.

R(E) = {C : {vtable : Ptr{mC , mE}, fC},
D : {vtable : Ptr{mD}, fD}, fE}

The top-level fields C and D in R(E) describe the layouts of
the corresponding embedded objects. These fields are themselves
records, which are “inlined” into their enclosing record. Thus,
the fields in C and D (fC and fD) are at fixed offsets from the
beginning of the E object.

To represent indirection, EMI has pointer types: pointer type
“Ptr τ” represents pointers to heap values of type τ . These are used
in this example to represent the indirections to the vtables.

EMI uses paths—sequences of class names— to uniquely iden-
tify embedded objects. P and Q range over paths. A path P lists all
intermediate classes between two classes τs and τe (τs must be a

subclass of τe), represented as P : (τs, τe). We say that P is from
τs to τe. For example, in Figure 2 the two A objects have paths
E :: C :: A and E :: D :: A respectively. Both paths are from E
to A and they differ only in intermediate classes.

A path with a single class name C means a complete C object,
which is not embedded in another object. EMI uses class names as
labels in record type R(C), so that the path of an embedded object
corresponds to the label sequence to fetch the object in R(C). The
layout of class E in Figure 2 is:

R(E) = {C : {A : {vtable : Ptr{mA, mC , mE}, fA}, fC},
D : {A : {vtable : Ptr{mA, mD}, fA}, fD}, fE}

Following the label sequence “C, A” in R(E) we can get the
layout of the embedded A object with path E :: C :: A.

Note that vtable access may require the use of a path. This oc-
curs when an object shares its vtable with a superclass. In general,
each object shares its vtable with its first non-virtual superclass in
declaration order. One can find the vtable by following the chain of
first non-virtual superclasses until one reaches a class with no non-
virtual superclasses. For example, the vtable of the E object can be
accessed with path E :: C :: A.

In EMI , paths are used as types of objects. The path of an object
starts from the runtime type of the enclosing object and leads to
the object. We need this generality because an object with source
type C may be a complete C object, or an embedded C object in
a subclass object. In turn, using paths as object types allows us to
ensure the safety of dynamic dispatch.

EMI uses existential types with path abstraction to describe
objects with statically unknown paths. An object with source type
C has type ∃α � C. ∃ρ : (α, C). ρ in EMI , read as “there exists a
type α which is a subclass of C and a path ρ which is from α to C,
and the object has path ρ”. The notation “�” means subclassing.
The type variable α identifies the object’s runtime type, which must
be a subclass of C. The path variable ρ abstracts the path of the
object, which is from α to C.

If an object has a statically unknown runtime type and path, its
layout is only partially known at compile time. For example, the
object might share the vtable with an enclosing subclass object and
thus the vtable might contain methods for the unknown subclass.

The record type ApproxR(P) describes the approximate layout
of objects with path P : (τ, C) where P can be concrete or abstract.
ApproxR(P) is very similar to R(C). The two types differ in “this”
pointer types (Section 2.2) and embedded virtual superclass objects
(Section 2.3).

EMI has two expressions for pointer adjustment between super-
class and subclass objects. Suppose P : (τ, E) and D is a “direct”
non-virtual superclass of E, that is, E’s declaration lists D as one
of its superclasses. If a pointer o points to an E object with path
P , expression “o ⊕ D” adjusts o to a pointer to the embedded D
object with path P :: D. At run time, the expression adds to o the
offset between E and D. Adjusting to superclasses higher in the
class hierarchy is done by chaining such expressions. Expression
“o′ � D” adjusts back: if o′ points to an embedded D object with
path P :: D, the expression adjusts o′ to an E pointer with path P .

2.2 “This” Pointer Types

Each virtual method has a hidden parameter “this”. Calling method
m on an object o is translated to calling m with the pointer to o as
“this”. If a class C introduces a method m, the vtable of a C object
(complete or embedded) has an entry for m. The entry expects
a C pointer as “this”. To call m on a subclass object, the compiler
inserts code to adjust the subclass object to C. A challenge of typed
intermediate languages for OO languages is to give “this” pointers
appropriate types to guarantee the safety of dynamic dispatch.

Both runtime types and paths are important in “this” pointer
types. Suppose in Figure 2 the class A introduces a method foo

with implementation fooA and only class C overrides foo with
fooC . The foo method fetched from the embedded object with
path E :: C :: A calls fooC , which might access fields introduced
in C. Therefore, the “this” pointer in the method cannot point to
an arbitrary A object: it is unsafe to use a pointer to a complete A
object or to the embedded A object with path E :: D :: A.

Multiple inheritance may require “this” pointer adjustment
when subclasses override virtual methods. In the above exam-
ple, the implementation fooC in class C expects a C pointer. But
the foo method in the vtable of the embedded object with path
E :: C :: A expects an A pointer. One standard strategy is to put
an “adjuster thunk” for foo in the vtable of the embedded A object.
The thunk converts a pointer to an A object that is embedded in a
C object to a C pointer, and calls fooC on the C pointer.

The adjustment involves two kinds of “this” pointers: for
method implementations and for thunks (methods in vtables). Sub-
classes can inherit method implementations in superclasses. There-
fore, the “this” pointer of a method implementation in class C
(e.g. fooC) is given type ∃α � C. ∃ρ : (α, C). Ptr ρ, represent-
ing pointers to any C objects, complete or embedded.

For a thunk in the vtable of an object with path P , the “this”
pointer has type Ptr P , representing only pointers to objects with
the same path P . In the vtable of the object with path E :: C :: A,
the thunk for foo has “this” pointer type Ptr (E :: C :: A). No
subclass objects are allowed because of virtual inheritance (see
Section 2.3).

Thunks adjust “this” and then call method implementations. We
show the three cases of thunks with the above foo example:

Overriding Class C overrides foo with implementation fooC .
The “this” pointer in fooC has type ∃α � C. ∃ρ : (α, C). Ptr ρ.
The thunk for the embedded A object in C adjusts “this” (with path
E :: C :: A) to a C pointer thisC and then passes it (after packing
to the existential type required by fooC) to fooC :

foo : (this : Ptr (E :: C :: A), . . .){
thisC = this � A;
fooC(pack thisC to ∃α � C. ∃ρ : (α, C). Ptr ρ, . . .); }

Inheriting Class D inherits fooA from A. The “this” pointer
in fooA has type ∃α � A. ∃ρ : (α, A). Ptr ρ. The embedded A
object in D has path E :: D :: A and its vtable has a thunk for foo
with “this” pointer type Ptr (E :: D :: A). The thunk packs “this”
and calls fooA:

foo : (this : Ptr (E :: D :: A), . . .){
fooA(pack this to ∃α � A. ∃ρ : (α, A). Ptr ρ, . . .); }

Same class Class A introduces method foo with implementa-
tion fooA. The thunk for foo in the vtable of a complete A object
has “this” pointer type Ptr A. The thunk simply packs the “this”
pointer and calls fooA:

foo : (this : Ptr A, . . .){
fooA(pack this to ∃α � A. ∃ρ : (α, A). Ptr ρ, . . .); }

The thunks in the last two cases only change “this” pointer
types. They can share the same address with fooA to avoid calls
to fooA because “pack” is a runtime no-op.

2.3 Virtual Inheritance

With virtual inheritance, a subclass object has only one embedded
object of a superclass if the subclass inherits the superclass multiple
times. Figure 3 shows a class hierarchy with virtual inheritance.
Dotted lines mean virtual inheritance. Both C and D virtually
inherit B. Any E object has only one embedded B object, although
E inherits B from both C and D. The challenge is to let the
embedded C and D objects share the same B object in E. A
standard strategy is to put embedded objects for virtual superclasses
at the end of subclass objects. As a result, the offset between a C

C

E

D

B

B

E,C

D
vtableD

vtableB

vtableC

fC

fD
fE

fB

mD

vbptr
mC

disp to B

mE

vbptr

mB

disp to B

Figure 3. Virtual Inheritance

object and its embedded B object depends on the runtime type. The
offset in a complete C object is different from the one in a complete
E object. Each C object stores the offset and computes at run time
the location of its embedded B object.

In EMI , each vtable has a virtual base pointer (vbptr), which
points to a table of offsets between the object where the vtable is
fetched and embedded virtual superclass objects.1 In the layout of
class E in Figure 3, the vtable for C (or D) contains a vbptr that
points to a one-entry table and the entry is the offset between C (or
D) and B.

Virtual superclasses are “flattened” in the sense that, if class
E inherits C (virtually or not), and C has a virtual superclass B,
then E has a virtual superclass B. In Figure 3, the B object is not
embedded in C, but at the same level as the C object.

Paths that involve virtual superclasses use a pseudo class name
VB to separate virtual superclasses from non-virtual ones. In Fig-
ure 3, the B object in E has path E :: VB :: B. If E also has
a non-virtual superclass B, the B object with the non-virtual in-
heritance would have a different path E :: B. Because virtual su-
perclasses are flattened, VB must follow runtime types of objects.
“E :: C :: VB :: B” is invalid.

Casting a subclass object to a virtual superclass includes several
steps: (1) get the vtable from the object; (2) get the vbptr from the
vtable; (3) get the offset that corresponds to the target in the vbptr;
(4) add the offset to the object.

EMI has special expressions for address arithmetic related to
virtual inheritance. Expression “disp(P1, P2)” is a constant repre-
senting the offset between two objects with concrete paths (and
statically known runtime types). Path P1 represents a subclass ob-
ject. Path P2 represents a virtual superclass object and must be of
format E :: VB :: B. The expression has type “Disp(P1, P2)”.
Suppose e2 has type Disp(P1, P2). Expression “e1�e2” adjusts e1

with path P1 to a virtual superclass object with path P2, by adding
e2 to e1. Expression “e′1 ∪−e2” is the dual operation and it subtracts
e2 from e′1 if e′1 points to the virtual superclass object.

R(E) and ApproxR(P) for the class E in Figure 3 and P :
(τ, E) are defined as follows.

R(E) =
{C : {vtable : Ptr{vbptr : Ptr{B : Disp(E :: C, E :: VB :: B)},

mC , mE}, fC},
D : {vtable : Ptr{vbptr : Ptr{B : Disp(E :: D, E :: VB :: B)},

mD}, fD}, fE ,
V B : {B : {vtable : Ptr{mB}, fB}}}

ApproxR(P) =
{C : {vtable : Ptr{vbptr : Ptr{B : Disp(P :: C, τ :: VB :: B)},

mC , mE}, fC},
D : {vtable : Ptr{vbptr : Ptr{B : Disp(P :: D, τ :: VB :: B)},

mD}, fD}, fE}

1 Microsoft Visual C++ puts the vbptr in objects (instead of in vtables) and
the offsets are from the address of the “vbptr” to the virtual superclass
objects [7]. Another approach stores offsets in method entries of vtables [8,
14]. EMI can model both approaches easily.

The two record types differ in “this” pointer types and in types for
the offsets in vbptr. Also ApproxR(P) does not contain the em-
bedded B object because the location of the B object is statically
unknown. The B object is accessed through offsets in vbptr.

“This” pointer With virtual inheritance, “this” pointers are
typed the same way as with repeated inheritance. Note that if a class
E overrides a method foo introduced in a virtual superclass B with
implementation fooE , the thunk in the vtable of the embedded B
object needs to adjust a B pointer to an E pointer to call fooE . This
adjustment is possible only when the runtime type of the B object is
statically known. The B object does not contain the offset to adjust
itself to E. Therefore, “this” pointers in thunks have concrete paths,
not existential types that hide runtime types and paths.

The thunk in the embedded B object has a “this” pointer type
Ptr (E :: VB :: B). The thunk subtracts the offset disp(E,E ::
VB :: B) from “this” and gets an E pointer thisE . Then it calls
fooE after packing thisE :

foo : (this : Ptr (E :: VB :: B), . . .){
thisE = this ∪−disp(E, E :: VB :: B);
fooE(pack thisE to ∃α � E. ∃ρ : (α, E). Ptr ρ, . . .); }

3. Syntax
This section describes the formal syntax of EMI . Kinds and types
are as follows.

κ ::= Ω | Ωc | Ω1

P ::= ρ | C | C :: VB :: B | α :: VB :: B | P :: C

τ ::= int | P | Ptrφ τ | {lφi
i : τi}n

i=1 | (τ1, . . . , τn) → τ
| α | ∃ρ : (τs, τe). τ | ∃α � τ . τ ′ | Disp(P1, P2)

φ ::= I | M

A special kind Ωc classifies class names and type variables that
will be instantiated with class names. Well-formedness of types
requires that certain types have kind Ωc, for example, the bounds
of type variables and path variables. Kind Ω1 classifies word-sized
types to guarantee that the heap is updated one word at a time. Ωc

and Ω1 are subkinds of Ω.
Paths are used to type objects. A path is a path variable ρ, a class

name C, a path from a class to a virtual superclass C :: VB :: B,
a path from a type variable to a virtual superclass α :: VB :: B,
or appending a class name to a path P :: C. A path can only be
a sequence of class names, or a path variable or a type variable
followed by a sequence of class names. VB must appear between
the runtime type of an object (a class name or a type variable) and
a virtual superclass (another class name).

EMI has standard types such as pointer type “Ptrφ τ”, record
type “{lφi

i : τi}n
i=1”, and function type “(τ1, . . . , τn) → τ” to

represent object layout, vtable, and virtual methods.
Pointers and fields in record types have mutability annotations.

PtrM τ means the pointed-to value can be modified to a new value
of type τ . The annotation I means immutable. Annotations on
field labels mean mutability of the corresponding fields. In EMI ,
pointers to (embedded) objects, the vtable pointer, fields in the
vtable, and the “this” pointers are immutable. All other fields and
pointers are mutable. We often omit the annotation I .

EMI uses existential types that abstract unknown types and
paths to represent objects. A source type C is translated to an exis-
tential type ∃α � C. ∃ρ : (α, C). ρ in EMI . Type “∃α � τ . τ ′”
introduces a type variable α with a subclassing bound τ . Type
“∃ρ : (τs, τe). τ” introduces a path variable ρ from τs to τe. Uni-
versal types are not needed in EMI and can be added easily. Type
“Disp(P1, P2)” represents the offset between two embedded ob-
jects with paths P1 and P2 respectively. It is used to type offsets in
the virtual base table.

Expressions and values are as follows.

e ::= x | n | nullτ | � | new[τ] | e.l | ∗ e | ∗ e1 := e2 in e3

| x : τ = e1 in e2 | e(e1, . . . , en) | C(e) | c2r(e)
| (α, x) = open(e1) in e2 | (ρ, x) = open(e1) in e2

| pack τ as α � τu in (e : τ ′)
| pack P as ρ : (τs, τe) in (e : τ) | e • P
| e ⊕ C | e � C | e1 � e2 | e1 ∪−e2 | disp(P1, P2)

v ::= n | � | C(v) • P | v.l | pack τ as α � τu in (v : τ ′)
| nullτ | pack P as ρ : (τs, τe) in (v : τ) | disp(P1, P2)

hv ::= recd | fix g(xi : τi)
n
i=1 : τ = em

recd ::= {li = vi | li = recdi}n
i=1

EMI has standard expressions such as variable “x”, integer
“n”, null pointer “nullτ ”, label “�”, record allocation “new[τ]”,
field fetch “e.l”, pointer dereference “∗e”, assignment “∗e1 :=
e2 in e3”, let binding “x : τ = e1 in e2”, and function call
“e(e1, . . . , en)”. Record allocation “new[τ]” allocates a record of
type τ on the heap and initializes each field with the default value
of the field type. Expression “e.l” returns an interior pointer to the
field l of a record pointed to by e. Expression “∗e1 := e2 in e3”
assigns e2 as the new content of pointer e1. EMI uses “∗(e.l)” to
return the value of the field l of e and “∗(e1.l) := e2 in e3” to
assign the field.

Expressions “C(e)” and “c2r(e)” are coercions between object
pointers and record pointers. The former coerces a record pointer e
to a C pointer and the latter coerces an object pointer to a record
pointer. To create a C object, we allocate a record of type R(C)
using “new[R(C)]”, assign values to fields, and coerce the record
pointer to an object pointer using “C(e)”. To fetch a field or to call
a method, we first use “c2r(e)” to coerce the object pointer e to a
record pointer. These coercions have no runtime cost.

The pack and open expressions introduce and eliminate existen-
tial types respectively. Expressions “pack τ as α � τu in (e : τ ′)”
hides a type τ bounded by τu with a type variable α in e. Ex-
pression “(α, x) = open(e1) in e2” opens a package e1 and in-
troduces α for the hidden type. Both α and x are in scope in
e2. Expression “pack P as ρ : (τs, τe) in (e : τ)” hides path P
from τs to τe with path variable ρ in expression e. Expression
“(ρ, x) = open(e1) in e2” opens e1 and introduces a path variable
ρ for the hidden path and a value variable x for e1.

Address arithmetic expressions “e ⊕ C”, “e � C”, “e1 � e2”,
“e1∪−e2”, and “disp(P1, P2)” are used for adjusting between super-
class and subclass objects. The former two are for non-virtual su-
perclasses. The rest are for virtual superclasses. Expression “e•P ”
represents an embedded object in e following path P .

Records are allocated on the heap. Each field in a record “{li =
vi | li = recdi}n

i=1” is a word-sized value vi or an inlined record
recdi. For simplicity EMI does not support stack-allocated objects.

A function “fix g(xi : τi)
n
i=1 : τ = em” defines g with

formals x1, . . . , xn (of type τ1, . . . , τn respectively), return type
τ and function body em. The body em may call g recursively.

Class and program declarations are as follows. The notation
−→
Ψ

means a sequence of items in Ψ.

field ::= f : τ method ::= m : (τ1, . . . , τn) → τ

H ::=
−−−−→
�� hv class ::= C :

−→
A, virtual −→B {−−−→field,

−−−−−→
method}

Prog ::= (
−−−→
class; H; e)

A class declaration “C :
−→
A, virtual

−→
B{−−−→field,

−−−−−→
method}” de-

clares a class C with direct non-virtual superclasses
−→
A , direct vir-

tual superclasses
−→
B , fields

−−−→
field, and methods

−−−−−→
method. A field

declaration “f : τ” declares a field f with type τ . A method decla-
ration “m : (τ1, . . . , τn) → τ” declares a method m with formal
types τ1, . . . , τn and return type τ . Method declarations do not in-
clude explicit “this” pointer types. Method bodies are represented
as functions on the heap, not in class declarations.

A program declaration “(
−−−→
class; H ; e)” declares a program with

class declarations
−−−→
class, a heap H , and the “main” expression e.

The heap H maps labels to heap values.

4. Semantics
This section formalizes the semantics and properties of EMI .

4.1 Dynamic Semantics

Figure 4 shows selected evaluation rules. The programs in the first
column evaluate to the ones in the second column, if the side
conditions in the third column hold. Class declarations in programs
are omitted because they do not change during evaluation. The
notation “[δ1/δ2]” means replacing δ2 with δ1.

The notation “C(v) • P ” represents a pointer to the object
with path P in a complete C object. Given P = C :: C1 ::
. . . :: Cn, the object pointer models the same address as an interior
pointer v.C1 . . . Cn. As explained in Section 2, the label sequence
C1, . . . , Cn leads to the part of the record that represents the em-
bedded object with path P . The two pointers have different types.

Expression “new[τ]” allocates a record of type τ (with value
defaultτ) on the heap and returns a label to the record. The default
value for the vtable field in R(C) is a pointer to the vtable of
C. Expression “C(v)” coerces the record label to a C pointer
“C(v).C”. Expression “c2r” coerces an object pointer C(v) • P
to an interior pointer as described above.

Expression “∗(v.C1 . . . Cn.f)” fetches the value of a field f in
the embedded object and “∗(v.C1 . . . Cn.f) := v2 in e3” assigns
v2 to the field and evaluates e3.

Expression “(C(v) • P) ⊕ A” adjusts a pointer C(v) • P to
C(v) • (P :: A), which points to the embedded object for a non-
virtual superclass A. Expression “(C(v) • (P :: A)) � A” ad-
justs the A pointer back. Similarly, expression “(C(v) • P1) �
disp(P1, P2)” adjusts C(v) • P1 to a virtual superclass pointer
C(v) • P2. Expression “(C(v) • P2) ∪−disp(P1, P2)” adjusts back
to C(v) • P1.

Pointer-related expressions such as dereference, assignment,
and address arithmetic infinitely loop if the pointers are null. Future
versions of EMI will use exceptions.

4.2 Static Semantics

The type checker maintains several environments. A class declara-
tion table Θ maps class names to declarations. A kind environment
∆ tracks type and path variables. Each type variable has a subclass-
ing upper bound (a class name or a type variable introduced previ-
ously in ∆). Each path variable has a starting type and an ending
type. A heap environment Σ maps labels to types. A type environ-
ment Γ maps variables to types.

Well-formedness rules of paths are as follows. The judgment
Θ;∆ 	 P : (τs, τe) means that, under environments Θ and ∆,
P is a well-formed path from τs to τe. If VB appears in the path, a
virtual superclass must follow immediately. Paths are continuous: a
path P : (τ, C) can be concatenated only with a direct non-virtual
superclass of C.

ρ : (τ1, τ2) ∈ ∆

Θ;∆
 ρ : (τ1, τ2)

B is a virtual superclass of τ

Θ;∆
 τ :: VB :: B : (τ, B)

Θ;∆
 C : (C, C)

Θ; ∆
 P : (τ, C) Θ(C) =
−→
A, { } Ai ∈ −→

A

Θ;∆
 P :: Ai : (τ, Ai)

Well-formedness of types requires that the bounds for type
variables and the starting and the ending types of paths be of kind
Ωc. Type Disp(P1, P2) requires that P1 and P2 start from the
same type and that P2 lead to a virtual superclass (of the format

τ :: V B :: C). The judgment Θ;∆ 	 τ : κ means that, under
environments Θ and ∆, type τ has kind κ.

Subclassing rules are straightforward. The subclassing judg-
ment Θ;∆ 	 τ1 � τ2 means that, under environments Θ and ∆,
τ1 is a subclass of τ2. Subclassing between class names preserves
the class hierarchy in the source programs. Subclassing is reflexive
and transitive.

Subtyping in EMI includes standard record breadth subtyping
and depth subtyping (on immutable fields), function subtyping, and
pointer subtyping (on pointers to immutable values). Subtyping is
reflexive and transitive. The subtyping judgment Θ;∆ 	 τ1 ≤ τ2

means that, under environments Θ and ∆, τ1 is a subtype of τ2.
The structural subtyping guarantees validity of layout approxi-

mation. Subtyping between quantified types is unnecessary because
inheritance is represented by explicit pointer adjustments.

Figure 5 shows selected expression typing rules. The typing
judgment Θ;∆;Σ; Γ 	 e : τ means that, under environments Θ,
∆, Σ, and Γ, expression e has type τ .

A pointer to a complete C object has type Ptr C. A pointer to
an object with path P has type Ptr P .

Coercions A record pointer of type Ptr (R(C)) can be coerced
to and from an object pointer of type Ptr C by expressions C(e)
and c2r(e) respectively. If e has type Ptr P , that is, e pointers to an
embedded object with path P , c2r(e) returns a pointer to a record
of type ApproxR(P). The definitions of R and ApproxR for the
current layout strategy are in [2].

The compiler has the freedom to choose layout strategies and
to use other definitions of R and ApproxR, although the layout
information is part of the type system. The soundness of the type
system requires only that for any path P : (C, A), the real layout of
objects with P be a subtype of ApproxR(P) (P may contain VB).

Address arithmetic Expressions e ⊕ A and e � A adjust be-
tween an object pointer with type Ptr P and a pointer with type
Ptr (P :: A). Expressions e1 � e2 and e1 ∪−e2 adjust between an
object pointer with type Ptr P1 and a pointer with type Ptr P2, if e2

has type Disp(P1, P2). When both paths are concrete, expression
“disp(P1, P2)” has type Disp(P1, P2) and requires that P2 lead to
a virtual superclass.

A program (Θ;H ; e) is well-formed if its class declaration Θ
is well-formed, each heap value has the corresponding type in the
heap environment, and the main expression e is well-typed.

4.3 Properties of EMI

EMI has the following properties.
Theorem 1 (Soundness) If a program is well-formed, then it

will not get stuck.
Theorem 2 (Decidable type checking) It is decidable whether

Θ;∆;Σ; Γ 	 e : τ holds.

5. Related Work
Prior work on supporting typed compilation of multiple inheritance
cannot describe standard implementation techniques. None sup-
ports virtual inheritance. The model proposed by Chen et al. pre-
serves class names and uses paths to identify embedded objects [1].
It encodes objects with functions and cannot address object layout.
ML-ART uses row variables to abstract class extensions and seri-
alizes multiple inheritance to a sequence of single inheritance [10].
Fisher et al. proposed an untyped calculus to support inheritance
from unknown base classes [6]. They use dictionary lookups for
member access. Stone used indices (offsets) as first-class values to
fetch members from objects so that classes can be extended with-
out full knowledge of the base classes [13]. Compagnoni and Pierce
used intersection types to model multiple inheritance [5]. The lan-
guage does not preserve classes and subclassing. “This” pointer ad-
justment is hidden by intersection types and cannot be expressed.

Original Program New Program Side Conditions
(H; new[τ]) (H, �� defaultτ ; �) � /∈ H
(H; C(v)) (H; C(v) • C)
(H; c2r(C(v) • P)) (H; v.C1.Cn) P = C :: C1 :: . . . :: Cn

(H; ∗(�.l1.ln)) (H; v) H(�) = {. . . , l1 = {. . . , ln = v . . .}, . . .}
(H; ∗(�.l1.ln) := v′ in e3) (H′; e3) H′ = H except that H′(�).l1.ln = v′
(H; (C(v) • P) ⊕ A) (H; C(v) • (P :: A))
(H; (C(v) • P) � A) (H; C(v) • P ′) P = P ′ :: A
(H; (C(v) • P1) � v2) (H; C(v) • P2) v2 = disp(P1, P2)
(H; (C(v) • P2) ∪−v2) (H; C(v) • P1) v2 = disp(P1, P2)
(H; (α, x) = open(v) in e) (H; e[τ/α][v′/x]) v = pack τ as β � in (v′ :)
(H; (ρ, x) = open(v) in e) (H; e[P/ρ][v′/x]) v = pack P as ρ : in (v′ :)

Figure 4. Selected Evaluation Rules

Θ;∆;Σ; Γ
 � : Ptr(Σ(�))

Θ;∆;Σ; Γ
 e : Ptr(R(C))

Θ; ∆;Σ; Γ
 C(e) : Ptr C

Θ;∆; Σ; Γ
 e : Ptr C

Θ;∆;Σ; Γ
 c2r(e) : Ptr(R(C))

Θ;∆;Σ; Γ
 e : Ptr P Θ;∆
 P : (τ, C)

Θ;∆;Σ; Γ
 c2r(e) : Ptr(ApproxR(P))

Θ;∆;Σ; Γ
 e1 : ∃ρ′ : (τs, τe). τ ρ /∈ domain(∆) ρ /∈ free(τ ′)
Θ;∆, ρ : (τs, τe); Σ; Γ, x : τ [ρ/ρ′]
 e2 : τ ′

Θ;∆;Σ; Γ
 (ρ, x) = open(e1) in e2 : τ ′
Θ;∆
 P : (τs, τe) ρ /∈ domain(∆) Θ;∆;Σ; Γ
 e : τ ′[P/ρ]

Θ;∆;Σ; Γ
 pack P as ρ : (τs, τe) in (e : τ ′) : ∃ρ : (τs, τe). τ ′

Θ; ∆;Σ; Γ
 e1 : Ptr P1

Θ;∆;Σ; Γ
 e2 : Disp(P1, P2)

Θ;∆;Σ; Γ
 e1 � e2 : Ptr P2

Θ;∆;Σ; Γ
 e1 : Ptr P2

Θ;∆; Σ; Γ
 e2 : Disp(P1, P2)

Θ;∆;Σ; Γ
 e1 ∪−e2 : Ptr P1

Θ;∆; Σ; Γ
 e : Ptr C
Θ; •
 P : (C, τ)

Θ;∆;Σ; Γ
 e • P : Ptr P

Θ; ∆;Σ; Γ
 e : Ptr P Θ; ∆
 P : (τ, C)
A is a direct non-virtual superclass of C

Θ;∆;Σ; Γ
 e ⊕ A : Ptr(P :: A)

Θ; ∆;Σ; Γ
 e : Ptr(P :: A)

Θ; ∆;Σ; Γ
 e � A : Ptr P

Θ; •
 P1 : (C, τ1) Θ; •
 C :: VB :: B : (C, B)

Θ;∆;Σ; Γ
 disp(P1, C :: VB :: B) : Disp(P1, C :: VB :: B)

Figure 5. Selected Expression Typing Rules

LILCI extends LILC to support multiple inheritance of inter-
faces as in Java and C# [3]. Interfaces do not have object layout
problems because they contain no fields.

Rossie et al. [11] and Wasserrab et al. [16] formalized multiple
inheritance in C++ at the source language level. The formalizations
refer to no implementation details such as object layout and vbptr.

6. Conclusion
EMI is a typed intermediate language for compiling multiple in-
heritance, both repeated and shared inheritance. It uses paths to
type objects, existential types to represent path abstractions, and
special address arithmetic to model pointer adjustment. The type
system is sound. The type checking is decidable. The translation
from a source language to EMI preserves types. EMI can express
standard implementation strategies of multiple inheritance in C++,
including object layout, “this” pointer, pointer adjustment, and vir-
tual base pointer.

References
[1] C. Chen, R. Shi, and H. Xi. A typeful approach to object-oriented

programming with multiple inheritance. In Proc. 6th PADL, pages
23–38, 2004.

[2] J. Chen. A typed intermediate language for compiling multiple inher-
itance. Technical Report MSR-TR-2005-98, Microsoft Corporation.

[3] J. Chen and C. Chen. A typed intermediate language for supporting
multiple inheritance via interfaces. Technical Report MSR-TR-2004-
141, Microsoft Corporation.

[4] J. Chen and D. Tarditi. A simple typed intermediate language for
object-oriented languages. In Proc. 32nd POPL, pages 38–49, 2005.

[5] A. B. Compagnoni and B. C. Pierce. Higher-order intersection types
and multiple inheritance. Mathematical Structures in Computer
Science, 6(5):469–501, 1996.

[6] K. Fisher, J. H. Reppy, and J. G. Riecke. A calculus for compiling
and linking classes. In Proc. 9th ESOP, pages 135–149, 2000.

[7] J. Gray. C++: under the hood. http://msdn.microsoft.com/archive/
default.asp? url=/archive/en-us/dnarvc/html/jangrayhood.asp.

[8] S. B. Lippman. Inside the C++ object model. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA, 1996.

[9] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to
typed assembly language. ACM Trans. Prog. Lang. Syst., 21(3):527–
568, May 1999.

[10] D. Rémy. Programming objects with ML-ART, an extension to ML
with abstract and record types. In Proc. International Conference on
Theoretical Aspects of Computer Software, pages 321–346, 1994.

[11] J. G. Rossie and D. P. Friedman. An algebraic semantics of
subobjects. In Proc. OOPSLA, pages 187–199, 1995.

[12] Z. Shao. An overview of the FLINT/ML compiler. In ACM SIGPLAN
Workshop on Types in Compilation, 1997.

[13] C. A. Stone. Extensible objects without labels. ACM Trans. Prog.
Lang. Syst., 26(5):805–835, 2004.

[14] B. Stroustrup. Multiple inheritance for C++. In Proc. of the European
Unix Users Group Conference, Helsinki, 1987.

[15] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee.
TIL: A type-directed optimizing compiler for ML. In ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 181–192, 1996.

[16] D. Wasserrab, T. Nipkow, G. Snelting, and F. Tip. An operational
semantics and type safety proof for multiple inheritance in C++. In
Proc. OOPSLA, 2006.

