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Abstract— A 3D shape signature is a compact represen-
tation for some essence of a shape. Shape signatures are
commonly utilized as a fast indexing mechanism for shape
retrieval. Effective shape signatures capture some global
geometric properties which are scale, translation and
rotation invariant. In this paper we introduce an effective
shape signature which is also pose-oblivious. This means
that the signature is also insensitive to transformations
which change the pose of a 3D shape such as skeletal artic-
ulations. Although some topology-based matching methods
can be considered pose-oblivious as well, our new signature
retains the simplicity and speed of signature indexing.
Moreover, contrary to topology-based methods, the new
signature is also insensitive to the topology change of the
shape, allowing us to match similar shapes with different
genus.

Our shape signature is a 2D histogram which is a
combination of the distribution of two scalar functions
defined on the boundary surface of the 3D shape. The first
is a definition of a novel function called thelocal-diameter
function. This function measures the diameter of the 3D
shape in the neighborhood of each vertex. The histogram of
this function is an informative measure of the shape which
is insensitive to pose changes. The second is thecentricity
function that measures the average geodesic distance from
one vertex to all other vertices on the mesh. We evaluate
and compare a number of methods for measuring the
similarity between two signatures, and demonstrate the
effectiveness of our pose-oblivious shape signature within
a 3D search engine application for different databases
containing hundreds of models.

Index Terms— Shape-signature, shape-matching, pose-
oblivious

I. I NTRODUCTION

The signature of a shape is a concise representation of
the shape that captures some of its essence. A signature
does not fully represent the shape, and it is impossible to
reconstruct the shape from it. However, if the signature
succeeds in expressing some of the shape’s properties
well, it can be used as a succinct shape representative in
various applications. A typical application area for using
shape signatures is 3D shape similarity and matching.
In these applications, signatures are extracted from 3D
geometric objects and used to determine shape similarity.
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Instead of comparing the full 3D objects’ models, only
the signatures are compared. This technique accelerates
the matching process in order of magnitude. More im-
portantly, the semantic meaning of similarity is defined
by the signature used for comparison. For this reason,
the properties of the shape signature itself are of great
importance to the success of fast and effective similarity
measurements between shapes.

For example, rigid-body-transformation invariance is
often desired for a 3D shape signature. Many of the
recently proposed shape signatures aimed at captur-
ing some essence of a shape while being rigid-body-
transformation invariant and often also uniform-scale
invariant [1], [2]. Nevertheless, frequently, 3D objects are
not rigid as in cups or chairs, but flexible to change their
spatial arrangement or pose. For instance, a human or
an animal 3D model may come in many different poses:
standing, running, sitting, lying etc.; a pair of scissors or
a box may be open or closed. These models represent
the same object although their pose is different. Many
shape signatures which are effective for matching rigid
objects, do not handle pose differences of flexible objects
well. In this work we concentrate on the pose-invariance
property which is important for shape signatures. We
define a signature which is rigid-body-transformation
invariant, and is expressive to identify and distinguish
between different shapes similar to top-performing previ-
ously defined shape signatures. However, it also remains
largely consistent through pose changes of the same
shape (see Figure 1), outperforming previous methods
when the database contains objects with pose changes
(see Table II).

Let Ψ be a transformation that changes the pose of
an objectO, such as skeletal articulations, andσ(O) the
signature ofO. Although our signature cannot guarantee
that σ(O)≡ σ(Ψ(O)), in general, the distance between
σ(O) and σ(Ψ(O)) is very small and certainly smaller
than that of current 3D shape signatures. Therefore, we
term our shape signaturepose-oblivious. The key to our
pose-oblivious signature definition is the use of pose-
oblivious features of the shape. These features are in
fact functions defined on the surface of the mesh, and
they remain largely consistent when the pose of the
object changes (Figure 3). The first is a novellocal-
diameterfunction (DF), which captures the local shape
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Fig. 1. The local diameter function (DF) signature compared,
for instance, to D2 measure from [2]. The DF is more expressive
regarding the distinction between shapes (a man or a dog), and is
more oblivious to pose changes.

of the object’s volume. This new function examines the
object’s diameter in the neighborhood of each point on
the surface.

The histogram of the DF function is an expressive
signature regarding the distinction between shapes, and
also carries the pose-oblivious property of the function
itself (Figure 1). Nevertheless, the spatial distribution
of the function is completely lost. To alleviate this, we
use a second measure, thecentricity function (CF), that
has been used previously [3]. This function measures
for each point on the boundary surface of the object,
the average of the geodesic distances to all other points
on the surface. We use the centricity function as a
positional measure and create a 2D signature which is
a histogram combining the two functions’ distributions.
This signature gives better discrimination results than
each function on its own.

II. SHAPE SIGNATURE PROPERTIES

Shape signatures that characterize the global shape of
a 3D model are oftenrigid-body transformand uniform
scale invariant. These include the volume-to-surface ra-
tio, statistical moments, and Fourier transform of the

boundary or the volume of the model [1], [4], [5]. These
signatures only use global properties to characterize the
overall shape of the object. Hence, they are not very
discriminative about object details. The concept of global
feature-based similarity has been refined by comparing
distributions of global features instead of the global
features directly using shape distributions [2]. Global
measures as well as shape distributions are easy to
implement, they can be indexed efficiently and allow for
very fast retrieval using the nearest neighbor algorithm
and others. Nevertheless, shape distributions have their
limitations as much of the shape information is lost by
projecting onto distribution descriptors (see e.g. [6]). In
general, designing expressive global measures is not easy
and there is still a constant effort to develop signatures
that are rigid body and scale invariant.

The semantics ofpose-invariancefor articulated ob-
jects is similar to rigid-body transformation invariance
in rigid objects. A human standing, walking or bending
still represents a human. Although 3D models of such
objects can be geometrically different, they should often
be considered the same or close. Hence, providing a
pose-oblivious shape signature is of major importance in
applications such as search engines and shape-matching.

In the context of shape-matching, other works have
shown pose-oblivious results. Specifically, thetopology
of 3D models is also an important shape characteristic
and is often pose-invariant. Pure topological signatures
such as the Genus, the number of connected components,
and in general, the Betti numbers of the shape [7], are
very crude descriptions and may sometimes even harm
shape similarity measures. The term ‘topology’ is often
used to describe the overall structure of the shape. To-
wards this end, graph-based and skeleton-based methods
attempt to extract a more succinct representation that
characterizes the shape components and the way they
are linked together [8], [3], [9], [10], [11], [12]. In such
methods, the object signature is typically represented in
the form of a relational data-structure such as a graph.
Hence, the similarity estimation problem is transformed
into a graph comparison problem. This facilitates artic-
ulated body matching, since topology is usually apose-
oblivious characteristic of the object. However, general
graph matching is a very difficult problem, and there is a
need to align the graphs or sometimes even sub-graphs.
The graph extraction process is often very sensitive to
topology changes and noise. Furthermore, the cost of
graph comparisons increases proportionally with graph
size, resulting in relatively slow comparison and retrieval
times.

In contrast, our proposed signature carries the effi-
ciency, simplicity and robustness of shape distribution
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methods [2], and is not sensitive to topology changes. It
is scale, rotation and translation invariant, in addition
to it being pose-oblivious. This signature gives very
good results using various metrics and models from the
Princeton Shape Benchmark database [13], and performs
even better when various poses of the same or similar
objects are used.

III. R ELATED WORK

The problem of similarity and matching of shapes
has been extensively studied in numerous fields such as
computer vision, robotics, molecular biology and others.
Many have focused primarily on matching shapes in 2D
images. Matching 3D models seems easier since it does
not require recognition - the geometry is given, and there
is no occlusion or disrupting external effects such as
lighting and reflections. On the other hand, 3D models
typically lack a simple parametrization domain, and
thus registration and feature correspondence are more
difficult. For a broad introduction to shape-matching
methods, please refer to any of several survey papers
[14], [15].

In computer graphics and geometry processing fields,
the matching of 3D shapes was developed mainly for
shape retrieval. Recently, new methods were developed
for the retrieval of 3D models in the context of a web
search engine, based on geometric properties rather than
textual ones [1], [16], [17], [13], [18]. In large shape
collections, it is inefficient to sequentially match all
objects in the database with the query object. For fast
and efficient retrieval, efficient indexing search structures
are needed. Numerous methods exist for analyzing 3D
shapes and extracting different types of shape descrip-
tors, or signatures, that can be compared to determine
similarity between models. These employ geometric or
topological attributes of the shape, or both.

Signatures which are primarily based on geometric
properties of the shape either use a global measure or the
distribution of a geometric property. Global properties
of the 3D models include statistical moments of the
boundary or the volume of the model [1], [19], and
Fourier descriptors [16], [20], [21]. Histograms and
shape distributions measure properties based on distance,
angle, area and volume measurements between random
surface points [2], [22]. An additional harmonic-based
representation was presented in [23], [24] which is
intrinsically rotation invariant and shown to provide
good matching performance. The Light Field Descriptor
(LFD) represents a model as a collection of images
rendered from uniformly sampled positions on a view
sphere [25]. By measuring theL1-difference between
all rotations and all pairings of positions it can also

be considered rotation-invariant. Nevertheless, none of
these methods is pose-invariant and they cannot support
articulated body matching.

Graph-based methods attempt to extract a structure
from a 3D shape generalizing it to a graph showing how
the shape components are linked together. Some of these
methods use discretization based either on voxels [8],
[10] or on Voronoi and Delaunay complexes [11], to
extract a skeleton or partition the object to its com-
ponents. These are then used to create the object’s
graph representation. Other methods use morse functions
on the surface to characterize its topology building a
multi-resolution Reeb graph [3], [9]. The graph-based
representations are often pose-oblivious. Nevertheless,
they are complex and sometimes error prone due to
discretization. They are susceptible to topology changes.
They rely on graph matching which is a hard problem,
and suffer from relatively slow comparison and retrieval
times.

In [26] the authors present a bending invariant rep-
resentation based on multidimensional scaling (MDS).
This representation is an embedding of the geometric
structure of a surface to a small dimensional Euclidean
space, in which geodesic distances are approximated by
Euclidean ones. The method aims at filtering out the
“pose” of the object by bringing all objects to a canonical
pose. This method gives good results on simple isometric
surfaces that share the same geometric structure, but is
too sensitive to modifications and hard to control on
general 3D meshes (see examples in Section VI for more
details).

Other methods take into account local features on the
boundary surface of the shape in the neighborhood of
points. Usually, these techniques are based on matching
local descriptors, such as Spin images or histograms
[27], [28], [29], [30], [31]. Since they describe local
surface measures they may also be oblivious to global
pose changes. However, they often do not perform well
on global shape matching since their local nature dose
not provide a good signature of the overall shape. Fur-
thermore, these methods can be inefficient for global
matching since they usually require large amounts of
storage space.

In [13], a benchmark model database was compiled
and a thorough comparison of different 3D matching
methods was introduced. For instance, the ground-truth
classification includes separate classes for humanoids
that are standing, have their arms up, or are walking.
Some applications expect all those models to be in
the same category. For those applications, our shape
signature can provide more effective retrieval, while
maintaining the efficiency, simplicity and robustness of



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?,DATE 4

Fig. 2. Examples of the cone of rays shot to the opposite side of
the mesh

shape distribution methods.

IV. T HE LOCAL DIAMETER SHAPE-FUNCTION

The idea of the local diameter shape-function is to
create a type of low pass filtering to a diameter measure,
which relates to the medial axis transform (MAT) [32]. In
general, the medial axis of a 3D object is a collection of
non-manifold sheets. Computing the medial axis and the
MAT of a surface mesh is an expensive process, and the
medial axis itself is difficult to handle [33], [34]. Discrete
approximations such as skeletons depend on voxelization
and are often sensitive to noise. Therefore, we replace
the local shape-radius by a measure of the localshape-
diameter, and use it as a function on the boundary of
the object.

We assume that a 3D object is defined using a
boundary surface (e.g. a triangular mesh) which is almost
watertight. On a smooth surface the exact diameter can
be defined by the distance to the antipodal surface
point using the opposite direction of the normal. On
a piecewise linear mesh, it is difficult to define the
exact antipodal point. Moreover, we want to express the
diameter of the object in the neighborhood of a point,
which is different from the exact distance to the antipodal
point.

The Local-Diameter Function:The local shape
diameter at a point on the boundary of the object is
defined using a robust statistics measure of the diameters
in a cone around the direction opposite to the normal of
the point (Figure 2). By testing over 1,000 meshes and
checking the effect on the shape signature we arrived
at a procedure with hard-coded parameters (no manual
tuning is required for various applications or data). First,
we use a large opening angle of 120◦ for the cones.
Second, we sample 50 rays for each cone. Third, we
remove outliers for various reasons. The top 30% and
bottom 10% of the values are discarded since some rays
may reach parts which are too close or too distant (up to
infinity if the mesh contains holes). We also check the
normal at the intersection point and ignore intersections
where the normal is pointing in a similar direction to the

origin-point of the ray (this may happen if there are self
intersections or internal parts). The final shape diameter
value is calculated as the average of the remaining rays”.

This definition of the diameter shape-function (DF)
is invariant to rigid body transformations. To create
a function which is also scale independent we divide
the function values by the maximum diameter of all
measures. Furthermore, the diameter shape-function is
insensitive to any deformation that does not alter the vol-
umetric shape locally. This includes articulated character
deformations, skeleton-based movements or piecewise-
rigid transformations. Still, there are positions on the
mesh where the measure can change after such deforma-
tions. For instance, at the tip of the elbow of a person
bending his arm the measure can change considerably.
To overcome this, we further smooth the function values
on the mesh by averaging the value of each vertex with
its neighbors (Figure 3 Top).

V. THE POSE-OBLIVIOUS SIGNATURE

The local diameter shape-function expresses a good
distinction between the different object parts, which is
oblivious to the object’s poses (see e.g. [35]). However,
a signature of a 3D shape must be a succinct represen-
tation of the shape, and there is a need to convert the
function defined on the boundary of the object to a shape
signature. This is done in a similar manner as shape
distribution measures in [2]. The key idea is to create an
approximation of the probability density function of the
values on the mesh. For shape distributions this is done
by sampling the values of the measure (e.g. D1 is the
distance of a point to the centroid of the object, D2 is the
distance between two random points), and then building
the histogram of values using 64 bins.

Calculating the local diameter on a sample point on
the mesh boundary involves ray shooting and averaging.
To create a histogram of the values we use a real
approximation of the function distribution on the mesh
instead of random sampling. We calculate the function
value for each of the vertices of the mesh and weight
each of them according to its influence on the boundary.
The influence of a vertex is defined as the area of the
triangles surrounding it divided by the whole boundary
area. We use a histogram of 64 entries and add the
weighted values in each bin to define the signature
vector.

This 64-entry DF vector is an expressive signature
which is pose oblivious as can be seen in Figures 1 and 3.
Still, by converting the function to a one-dimensional
histogram, a considerable amount of information is lost.
One of the most valuable pieces of information which is
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Fig. 3. Pose-oblivious functions and signatures. Top row contains four horses colored by the DF (diameter) values (blue is low, red is
high), and bottom row contains the visualization of the CF (centricity) values. In the middle we present the signature histograms (DF on
top, CF on bottom and CDF in the middle).

lost relates to the spatial distribution of the values of the
function. We seek to augment the volume-function values
with some geometric positioning indicator. Nevertheless,
the use of 3D positions or relative distances to the
centroid will damage the pose-oblivious nature of the
signature. Therefore, we use another relatively pose-
oblivious measure of spatial positioning - the normalized
centricity function (CF).

The Centricity Function: The centricity of each
vertex is defined as the average geodesic distance to
all other vertices. For geodesic distance calculations we
use a similar method to [3] including short-cut edges.
We then divide the centricity value of each vertex by
the maximum centricity value on the mesh to arrive at
a CF function value between 0 and 1. The combined
histogram of the CF and DF functions is a 2D array of
scalar values between[0,0] and [1,1]. This 2D array is
created by quantizing the values of the two functions
(32 values for CF and 64 for DF). Hence, each bin with
values(x,y) contains the approximated probability of a
point on the boundary of the mesh to have a DF value of
x and a CF value ofy. This 2D rectangular histogram is
visualized as a 2D image with entries mapped to colors
(see Figures 3 and 5).

Regarding implementation, the basic operation in the
DF calculation is the ray-mesh intersections. This opera-
tion is well known in ray-tracing and can be accelerated
accordingly using search structures. We used a spatial
octree built around the mesh to assist in intersection find-
ing. In general, this construction does not take more than
a few seconds even on large meshes, and consequently,

computing the diameter function even on large meshes
takes only a few minutes. As an example, computing
the diameter function for over 1000 meshes with up to
20K vertices (an average of around 5000), took around
24 hours, which is less than 2 minutes on average. The
computation of the CF function is more expensive, but
took at most 10 minutes for the large meshes (20K
vertices). We computed both the DF and CF functions
on all the vertices of a mesh. However, when pre-
processing time is a limiting factor, one can successfully
approximate both functions by computing exact values
only on a subset of vertices and using averaging.

Another important issue of a shape signature is its
robustness to the object’s representation. The local diam-
eter function is only meaningful on objects which define
a closed volume. This means that objects which contain
non-volumetric parts, or interior parts, may need some
pre-processing (e.g. plants in some of the PSB exam-
ples [13]). Other objects in the database may contain
holes or missing parts. Furthermore, our approach relies
on a good estimation of the normals of the processed
surface. Noisy models or unconnected polygon soups
can cause our signature to become less reliable. Our
outlier removal method prevent averaging rays with no
intersection at all (infinity-rays), and the smoothing helps
to correct discrepant values. This introduces robustness
to small cracks and holes in the boundary, meaning we
can work with meshes that do not need to be truly
watertight. Similarly, the centricity function calculation
is suitable for connected models, and hence we use
virtual linking-edges to connect different components in
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Fig. 4. A model containing a number of connected components and
in different tessellation does not affect the DF and CF signatures.

objects. Furthermore, by weighting the function values
by the area of influence of each vertex, the definition of
CF and DF signatures are not sensitive to the tessellation
of the object (Figure 4).

VI. EXPERIMENTAL RESULTS

The signature of a shape is usually used as an index
in a database of shapes and enables fast queries and re-
trieval. Hence, to achieve accurate results there is a need
to define the distance measure between two signatures.
For one-dimensional vectors, such as shape distributions
and also our DF and CF signatures, several options were
investigated in [2]. These include MinkowskiLn norms,
theχ2 measure, and Earth Mover’s distance [36]. For our
2D signature CDF we testedL1 andL2 by unfolding the
matrix as a 64×32 vector of values, and also correlation
coefficient [29] andχ2 measures. In fact, we found
that using different metrics on different signatures may
affect the query results and the success measures. In
our experiments we tested all different types of metrics
for each signature when possible. Although we show
all results (Tables I to III), we found that metrics such
as χ2 and the correlation coefficient usually give better
results. Although this calls for further investigation,
these metrics are more suitable for measuring distance
between histograms as they give some global measure
of difference as opposed to local point-to-point distance
such asLn norms.

In addition to our three signatures DF (1D histogram
of the diameter function), CF (1D histogram of the cen-
tricity function) and CDF (2D combined histogram), we
implemented the D1 and D2 signatures from [2] which
seem to give best shape distribution results. Furthermore,

Fig. 5. An example of different models in various poses with their
2D CDF signatures. It can be seen that models of the same class
have very similar histograms.

we compared our signature to two out of the three top
performing descriptors on the PSB as described in [13]:
The Light Field descriptor (LFD) [25] (implementation
taken from [37]), and the Spherical Harmonic descriptor
(SH) [24] (implementation taken from [38]).

To compare the effectiveness of the proposed signa-
tures, we executed a series of shape matching experi-
ments with three different databases of 3D models:

• Sub-PSBis a database containing around 400 mod-
els from the PSB database. We used the given base
classification, where we joined together classes like
“humans” and “humans with arms outstretched”.
We did not use some classes, such as “plants”, as
they included many non-volumetric objects or many
non-connected parts which needed considerable pre-
processing. Similarly, many models in the PSB
contain internal structures, resulting in erroneous
DF calculations.

• ISDB is a database of different articulated figures
of animals and humans containing about 80 models.

• CDB is the union of the two previous databases.
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Note that in the combined database, similar classes
from the two databases were merged together.

The models contained anywhere between 200 and
35,000 polygons. Not all models formed a single man-
ifold surface or even a well-defined solid region. Some
models contained cracks, self-intersections and/or miss-
ing polygons - none of which caused significant artifacts
during rendering with a z-buffer, but all of which are
problematic for some 3D shape matching algorithms.
The experiments were run on a PC with a 3GHz Pentium
4 processor and 1024MB of memory.

We evaluated several qualities of retrieval measure-
ments. We used the same parameters as in [13]. For more
details on these methods, the reader is referred to [13]:

• Nearest neighbor: the percentage of closest
matches that belong to the same class as the query.

• First-tier and second-tier: the percentage of mod-
els in the query’s class that appear within the topK
matches, whereK depends on the size of the query’s
class.

• E-measure: a composite measure of the precision
and recall for a fixed number (32) of retrieved
results.

• Discounted Cumulative Gain (DCG): a statistic
that weights correct results near the front of the
list more than correct results later in the ranked list
under the assumption that a user is less likely to
consider elements near the end of the list

We summarize the results into three tables, one for
each database. Table I (Figure 6) presents the results
for the sub-PSB database, Table II (Figure 7) for the
ISDB database, and Table III (Figure 8) for the com-
bined database. The two best measures for each quality
measurement are shown in bold in each column. Ex-
amining the results, we can see that the CDF signature
is compatible and only slightly worse than the best
measures for PSB-type models (Table I). However, for
pose variations, CDF (and in fact also DF) is much better
than the other measures (Table II). On the combined
CDB, even though the ISDB models consist of less than
20% of all the models, CDF remains one of the best
measures (Table III). In Table IV we summarize the
results by showing the two best signatures that achieve
highest results in each database and quality measure. In
most cases, the best results are achieved using the CDF
signature.

We also experimented with another ‘pose-invariant’
signature based on multidimensional scaling (MDS) de-
fined in [26]. Although this method gives good results
on isometric surfaces that share the same geometric
structure, it is too sensitive to topological changes and

Nearest First Second E-
Sub-PSB Neighbor Tier Tier Measure DCG

LFD 86.72% 47.35% 62.19% 37.75% 79.61%
SH 76.82% 40.63% 56.87% 32.08% 73.98%
CDF (χ2) 64.85% 39.63% 57.62% 32.11% 69.79%
CDF (L1) 56.25% 30.29% 46.10% 24.73% 65.58%
CDF (L2) 54.95% 31.39% 47.73% 25.07% 65.43%
CDF (CC) 55.99% 32.82% 49.06% 24.67% 65.65%
DF (χ2) 61.20% 38.41% 57.06% 29.62% 69.48%
DF (L1) 58.07% 36.03% 55.78% 28.56% 68.55%
DF (L2) 57.81% 34.50% 53.37% 27.03% 67.69%
DF (CC) 50.78% 27.93% 45.95% 22.22% 64.16%
CF (χ2) 33.07% 19.54% 34.93% 15.41% 55.83%
CF (L1) 29.69% 18.31% 32.82% 14.74% 54.68%
CF (L2) 29.43% 17.72% 32.33% 14.18% 54.39%
CF (CC) 27.86% 17.72% 31.66% 13.62% 54.03%
D2 (χ2) 58.03% 33.98% 47.92% 26.31% 65.19%
D2 (L1) 59.38% 32.70% 47.54% 25.99% 66.77%
D2 (L2) 59.11% 32.25% 47.56% 25.28% 66.19%
D2 (CC) 55.47% 31.89% 48.44% 25.06% 65.89%
D1 (χ2) 47.13% 28.31% 44.94% 22.17% 62.09%
D1 (L1) 47.14% 26.60% 44.04% 20.71% 61.35%
D1 (L2) 44.79% 26.08% 43.46% 19.88% 60.23%
D1 (CC) 41.41% 23.92% 42.68% 18.76% 59.24%

TABLE I

VARIOUS QUANTITATIVE MEASURES EVALUATED ON THE

SUB-PSBDATABASE FOR DIFFERENT SIGNATURES. OUR CDF

SIGNATURE IS SLIGHTLY LOWER IN PERFORMANCE COMPARED TO

TOP DESCRIPTORS SUCH ASSH AND LFD (SEEFIGURE 6).

Fig. 6. On PSB models (Table I), the CDF is still compatible with
the best descriptors.

hard to control on general meshes. In Figure 11 we
compare various examples of our signature and MDS
results.

VII. SEARCH ENGINE

To study our pose-oblivious signatures, we have de-
veloped a simple search engine for 3D polygonal models
(see Figure 9). The motivation is to provide a tool
with which users can retrieve models from a 3D model
repository based on their shape attributes. In the current
version, the user selects a 3D model from the database
and the application computes the dissimilarity measure
for all models in the database using the methods de-
scribed in this paper. The application then shows the
query model and the most similar models in the database.
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Nearest First Second E-
ISDB Neighbor Tier Tier Measure DCG

LFD 72.64% 44.37% 62.44% 38.70% 72.83%
SH 78.30% 46.64% 63.52% 40.71% 74.78%
CDF (χ2) 100.00% 98.34% 99.67% 61.90% 99.81%
CDF (L1) 100.00% 96.64% 99.29% 61.05% 99.56%
CDF (L2) 100.00% 96.18% 99.10% 61.45% 99.41%
CDF (CC) 100.00% 97.26% 99.69% 62.18% 99.63%
DF (χ2) 100.00% 95.62% 99.49% 59.92% 99.53%
DF (L1) 100.00% 96.03% 99.33% 60.20% 99.61%
DF (L2) 100.00% 95.83% 99.31% 59.92% 99.44%
DF (CC) 100.00% 97.87% 99.48% 61.44% 99.71%
CF (χ2) 97.17% 81.66% 87.30% 58.08% 91.92%
CF (L1) 98.11% 79.60% 86.90% 58.30% 91.52%
CF (L2) 97.17% 78.10% 83.91% 57.05% 90.29%
CF (CC) 97.17% 76.04% 83.35% 55.49% 89.72%
D2 (χ2) 53.77% 29.93% 48.24% 30.12% 62.67%
D2 (L1) 58.49% 31.14% 50.06% 30.22% 63.18%
D2 (L2) 56.60% 32.11% 50.41% 30.75% 63.48%
D2 (CC) 60.38% 30.94% 48.22% 30.75% 63.20%
D1 (χ2) 64.15% 44.94% 63.89% 39.44% 71.51%
D1 (L1) 62.26% 42.92% 62.95% 38.17% 70.71%
D1 (L2) 57.55% 41.31% 61.65% 37.42% 69.27%
D1 (CC) 56.60% 39.57% 60.42% 35.81% 67.56%

TABLE II

VARIOUS QUANTITATIVE MEASURES FOR DIFFERENT SIGNATURES

EVALUATED ON THE ISDB DATABASE, WHICH INCLUDES MANY

ARTICULATED CHARACTERS. THE CDF AND DF SIGNATURES

OUTPERFORM ALL OTHER DESCRIPTORS(SEEFIGURE 7).

Nearest First Second E-
CDB Neighbor Tier Tier Measure DCG

LFD 78.98% 42.15% 58.64% 33.29% 75.98%
SH 75.08% 36.93% 54.41% 29.42% 71.35%
CDF (χ2) 70.82% 44.89% 62.56% 34.89% 74.88%
CDF (L1) 65.91% 39.53% 55.53% 29.31% 71.96%
CDF (L2) 64.68% 39.77% 56.31% 29.09% 71.77%
CDF (CC) 65.09% 41.31% 57.54% 28.79% 71.64%
DF (χ2) 67.89% 42.73% 59.23% 30.62% 73.01%
DF (L1) 66.94% 42.66% 59.19% 30.67% 73.73%
DF (L2) 66.74% 42.08% 59.10% 29.20% 72.86%
DF (CC) 60.99% 37.56% 53.18% 25.86% 70.26%
CF (χ2) 44.91% 26.55% 40.42% 18.92% 61.07%
CF (L1) 42.92% 25.05% 38.71% 18.22% 60.01%
CF (L2) 42.09% 24.52% 37.59% 17.26% 59.37%
CF (CC) 41.27% 24.25% 37.12% 16.89% 58.93%
D2 (χ2) 57.29% 29.64% 43.67% 21.75% 63.34%
D2 (L1) 55.24% 28.76% 43.54% 21.75% 63.12%
D2 (L2) 54.21% 29.02% 44.05% 21.64% 62.87%
D2 (CC) 52.16% 28.77% 44.57% 21.29% 62.73%
D1 (χ2) 44.64% 27.16% 43.16% 19.86% 60.37%
D1 (L1) 43.94% 25.70% 41.88% 18.55% 59.66%
D1 (L2) 42.09% 25.26% 41.25% 17.70% 58.58%
D1 (CC) 39.63% 22.57% 39.96% 16.42% 57.46%

TABLE III

VARIOUS QUANTITATIVE MEASURES FOR DIFFERENT SIGNATURES

EVALUATED ON THE COMBINED DATABASE CDB, WHICH

INCLUDES ONLY 20% NEW MODELS COMPARED TO THE

SUB-PSB. STILL , CDF IS ONE OF THE BEST PERFORMING

DESCRIPTORS(SEEFIGURE 8).

Fig. 7. For articulated characters (the ISDB from Table II), the CDF
and DF outperform all other descriptors.

Fig. 8. On the combined database (Table III), the CDF is one of
the best descriptors.

Some example results obtained with this 3D search
engine are shown in Figure 10 at the end of the paper.
The images in the leftmost column show the query 3D
models, while the columns on the right show the closest
matches among the 3D models in our CDB database
using CDF signature. For instance, a query with a human
model (top row) returns all humans in various poses; a
query with an ant model returns a collection of ants and
spiders with one helicopter and a turtle. A query of an
airplane, which is a complex object with internal parts,
returns three chairs.

In all examples, the query time on close to 500
models took under a second. For larger databases, more
sophisticated indexing methods can further accelerate the
performance. Even though this 3D search engine is rather
simple, it shows the potential of pose-oblivious signa-
tures for more intuitive search results. A more thorough
examination of the results can be seen on our website at
http://www.faculty.idc.ac.il/arik/PoseOblivious/. In this
site we have pre-calculated all results of queries on the
CDB database and present them using images and html
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Nearest First Second E-
Databse Neighbor Tier Tier Measure DCG
Sub-PSB LFD / SH LFD / SH LFD / CDF LFD / CDF LFD / SH
ISDB CDF / DF CDF / DF CDF / DF CDF / DF CDF / DF
CDB LFD / SH CDF / DF CDF / DF CDF / LFD CDF / LFD

TABLE IV

A SUMMARY OF THE TWO BEST DESCRIPTORS IN VARIOUS

MEASUREMENTS ON THE THREE DATABASES. WE SEE THAT IN

MOST CASES THE BEST RESULTS ARE ACHIEVED WITH THECDF

SIGNATURE.

Fig. 9. A screen shot from the model search engine application.

browsing. This site compares the results of the queries
using CDF, LFD, SH and D2 descriptors.

VIII. D ISCUSSION ANDCONCLUSIONS

In this paper, we have described a new type of
3D-model shape signature. This signature is expressive
enough to discriminate between different models, and
carries a number of attractive properties: it is rigid-
body transformation and uniform scale invariant, it is
not sensitive to topology changes of the model, and
most importantly, it is pose-oblivious, i.e. it is insen-
sitive to pose changes of the same object. The new
signature achieves good performance and retrieval results
for different classes of 3D models with the efficiency of
comparing histogram signatures.

Evaluating the results on any database strongly de-
pends on the definition of the classes and the number of
models in each class. The PSB does not contain many
articulated models in different poses. For this reason we
created a new database with 80% of its models from the
PSB, and the rest, articulated models. Still, we show
that the shape-oblivious signature works well on the
combined database and is much better on both natural
or articulated objects. Its performance is reduced when
the models include internal parts (Table V). One possible

solution to this is to combine several signatures together
when building a 3D search engine.

A strong limitation of our approach is that the cal-
culation of the diameter function is unreliable on non-
volumetric models, or on models which contain internal
structures. For this reason we could not reliably process
many of the PSB models, and for the others, the results
were not accurate. In many ways, the definition of a
signature which is both effective and highly robust for
object representation, remains a challenge. We conclude
that although our shape signature achieves good results
for a general-purpose database of models, it is best suited
for a situation where articulated deformations are of
importance.

Nearest First Second E-
Neighbor Tier Tier Measure DCG

Humans (134) CDF 87.57% 57.01% 83.76% 31.44% 89.15%
LFD 86.30% 54.75% 80.97% 30.19% 87.64%

Human Hands (33) CDF 81.82% 66.86% 76.28% 66.86% 86.90%
LFD 81.82% 50.85% 69.60% 50.85% 81.16%

Horses (16) CDF 93.75% 67.50% 85.00% 55.52% 91.58%
LFD 75.00% 45.83% 75.42% 50.00% 74.29%

Insects (20) CDF 71.00% 23.11%33.78% 22.57% 61.96%
LFD 75.00% 28.42% 32.68% 24.71% 63.71%

Airplanes (29) CDF 44.83% 25.37%43.47% 26.90% 62.10%
LFD 96.55% 25.99% 31.28% 24.94% 70.70%

Guns (7) CDF 71.43% 40.48% 50.00% 20.30% 68.01%
LFD 100.00% 88.10% 92.86% 30.08% 97.63%

Chairs (33) CDF 45.45% 20.45% 34.38% 20.45% 59.28%
LFD 90.91% 43.37% 55.59% 43.37% 78.77%

Ships (21) CDF 23.81% 11.43% 19.52% 12.82% 45.84%
LFD 80.95% 39.52% 43.57% 32.23% 70.33%

TABLE V

QUALITY RESULTS FROM CLASSES OF MODELS INCDB OF THE

CDF AND LFD (LFD WAS TAKEN AS ONE OF THE TOP

PERFORMING SIGNATURES ON THECDB). NATURAL OR

ARTICULATED OBJECTS ARE MATCHED BETTER USINGCDF

WHILE FOR SOME COMPLEX ARTIFICIAL OBJECTSLFD CAN

OUTPERFORMCDF ALSO BECAUSE THE DIAMETER FUNCTION IS

LESS RELIABLE.

In the future, we would like to enhance the calcula-
tions of the diameter function to cope with non-hollow
objects as well. We would also like to investigate the
issue of comparing two-dimensional signatures and its
effect on the matching performance. Another possible di-
rection for research is the development of pose-oblivious
signatures that can deal with partial matching.
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[16] D. V. Vranić, D. Saupe, and J. Richter, “Tools for 3D object

retrieval: Karhunen-loeve transform and spherical harmonics,”
in Proceedings of IEEE 2001 Workshop on Multimedia Signal
Processing, 2001, pp. 293–298.

[17] N. Iyer, Y. Kalyanaraman, K. Lou, S. Jayanti, and K. Ramani,
“A reconfigurable 3D engineering shape search system part
i: Shape representation,” inProceedings of ASME DETC 03
Computers and Information in Engineering (CIE) Conference,
Chicago, Illinois, 2003.

[18] P. Min, “A 3D model search engine, ph.d. thesis,” Ph.D. disser-
tation, Department of Computer Science, Princeton University,
2004.

[19] G. Cybenko, A. Bhasin, and K. D. Cohen, “Pattern recognition
of 3D CAD objects,”Smart Engineering Systems Design, vol. 1,
pp. 1–13, 1997.
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Fig. 11. Comparison of our CDF signature (middle row) and the MDS embedding in 3D (third row) for nine objects from our database.
Examples (a)-(c) show that similar objects in similar poses can be mapped by MDS to different signature poses. The right foot is once in the
front and once in the back. This can cause the matching to fail. In this case, the MDS embedding enhanced the problem of distinguishing
between different poses. Examples (e) and (f) show that the MDS is extremely susceptible to topology changes. The geometry of these two
examples differs by two triangles, while the MDS embedded results exhibit large differences as can be seen. Examples (g)-(i) show the
inability of the MDS method to handle objects with complex geometry and a number of disconnected components. Lastly, examples (j)-(l)
show how sometimes for relatively simple objects, MDS can map similar objects to different signatures and different objects to similar
signatures. In this example using MDS, object (k) will match object (l) and would not match object (j). Note that the CDF signatures do
not demonstrate such problems.


