
Online AutoAdmin (Physical Design Tuning)

Nicolas Bruno
Microsoft Research

nicolasb@microsoft.com

Surajit Chaudhuri
Microsoft Research

surajitc@microsoft.com

ABSTRACT
Existing solutions for the automated physical design problem re-
quire explicit invocations of tuning tools and critically depend on
DBAs gathering representative workloads manually. In thisdemon-
stration, we show an alternative approach to the physical design
problem. Specifically, we demonstrate a novel monitoring/tuning
DBMS component that we prototyped in Microsoft SQL Server
2005 as a server-side extension. This component is always-on and
continuously modifies the current physical design reactingto vary-
ing workload or data characteristics. Our solution imposeslow
overhead and takes into account storage constraints, update state-
ments, and the cost to create physical structures.

Categories and Subject Descriptors
H.2.2 [Physical Design]: Access Methods

General Terms
Algorithms, Design

Keywords
Continuous tuning, Physical Design, Online algorithms

1. INTRODUCTION
Database applications have become increasingly complex and

varied. Presently, most database vendors (e.g., [1, 4, 5]) offer au-
tomated tools to tune the physical design of a database, withthe
objective of reducing the DBMS’ total cost of ownership. These
automated tools are very sophisticated and useful, but still leave
several significant decisions to DBAs. Specifically, DBAs need to
continuously monitor and diagnose when to re-tune physicalde-
signs. Furthermore, to tune the database using these tools,DBAs
need to explicitly gather representative workloads. Finally, DBAs
need to decide when to deploy recommendations.

The above tasks are difficult and in fact are becoming more prob-
lematic. Consider, as an increasingly common example, large in-
stallations that support multiple, intermittent databaseapplications
(e.g., some ISPs provide such backend service already). It is com-
mon that these hosted applications come and go, and usually exhibit
unexpected spikes in their loads. In such cases, the hostinginstal-
lation is best served if it can use its resources to accommodate the
spikes. In terms of physical design, this entails perhaps building

Copyright is held by the author/owner(s).
SIGMOD’07,June 11–14, 2007, Beijing, China.
ACM 978-1-59593-686-8/07/0006.

redundant structures for one application and subsequentlyredirect-
ing resources to another application as the load pattern changes
dynamically. As another example, some applications exhibit pe-
riodic, sometimes unexpected changes in theselect/update mix
in the workload. Consider, for instance, a bug-tracking system.
The most popular usage of such a database is querying/browsing
(select load), but the usage pattern completely changes on spe-
cific days when the test team finds and inserts large numbers of
bugs (update load), e.g., on a bug-bash day. If we gather a repre-
sentative workload over, say, a month, chances are that no index is
globally useful for the bug database, as the gains in query process-
ing are outweighed by the update costs during bug-bash periods.
It is very difficult to explicitly and statically model the workload
in these scenarios, and equally difficult to decide when to tune the
database and deploy the resulting recommendations.

Since DBMSs support buildingonline indexeswhile allowing
query processing to continue, it is important to seek an evenmore
automated solution to the physical design problem. There are, how-
ever, new and significant challenges to address. First, fully au-
tomated solutions need to bealways-on, continuously monitoring
changes in both the workload and the database state, and refining
the physical design as needed. Note that this requires such solu-
tions to have low overhead. Additionally, in contrast to current ap-
proaches, fully automated solutions must also balance the cost of
transitioning between index configurations and the potential ben-
efits of such indexes for the future workload. In particular,while
we would like to react quickly to changes in the workload, reacting
too quickly can result in unwanted oscillations, in which the same
indexes are continuously created and dropped. A fully automatic
solution must “do no harm” for stable workloads, but react fast to
significant workload changes.

The online nature of our problem implies that we would lag be-
hind optimal offline solutions “that know the future”. However, by
carefully reacting to changes, we ensure that we do not suffer dis-
proportionately although we do not know the future. Thus, wecan
bound the amount of loss that we incur. Our work was done as
part of the AutoAdmin project at Microsoft Research (see details at
http://research.microsoft.com/dmx/autoadmin/) and the tech-
nical details of our approach are explained in [3].

In Section 2 we present an architectural overview of our solution,
which we prototyped in Microsoft SQL Server 2005. In Section3
we provide additional details on the internal algorithms. Finally, in
Section 4 we give some examples that would be showcased as part
of the demonstration.

DBMS

����� ����	�
�� �������� ���������������� �������� ����������� !�!"#$%$ &'$()*���+%(!�,-$(.��(&'�(%�-'-$/-��012��3�����24�25 �������
&"%��(60!78%9!"%�(�0+!9�

Figure 1: Continuous Tuning Architecture in a DBMS.

2. ARCHITECTURE
Figure 1 highlights the components in the database server that

were modified or added to support online physical design tuning.
Specifically, we use an extended metadata manager that addition-
ally supports “candidate hypothetical indexes” which are not ma-
terialized (and therefore do not help during normal query process-
ing), but are placeholders for tracking the benefit of alternatives.
Additionally, we added to the internal representation of indexes (for
both real and candidate hypothetical indexes) a small set ofcoun-
ters that are used to track the benefit of each alternative. Initially,
when a new query is optimized, we piggyback on the optimization
call and quickly identify a relevant set of candidate indexes that
could improve performance (index analysisin the figure). For that
purpose, we useAND/OR request treesand local transformations
(see Section 3) and produce a compact set of updates to the index
counters, to be performed every time the query is evaluated.Sub-
sequently, during query execution, we leverage the preprocessing
done during optimization and efficiently track the potential bene-
fits that we lose by not having the candidate indexes materialized
in addition to measuring the utility of existing indexes (cost/benefit
adjustmentin the figure). After each query (or after a variable num-
ber of query executions, if we need to throttle down the tuning
process) we analyze the cost/benefit ratio and determine whether
creating or dropping indexes would be beneficial (continuous tuner
in Figure 1). If a design change is beneficial, we send the index
creation or deletion request to an asynchronous task manager in
Microsoft SQL Server, which would process theDDL at a later time
based on system policies. Advanced DBAs can monitor the internal
state of the continuous tuner by using a client application.

3. ALGORITHMIC DETAILS
We now briefly provide additional information on the internal al-

gorithms of our solutions (due to space constraints our presentation
is very brief; see [3] for more details).

We gather information during optimization (index analysisin
Figure 1) by instrumenting the optimizer and intercepting optimiza-
tion rules that generateaccess-path-requests. Such requests encode
the logical properties of any physical plan that is able to implement
the sub-tree rooted at the corresponding operator. Figure 2shows
an example tagged execution plan and the correspondingAND/OR

tree for the following query:
SELECT S.b FROM R,S WHERE R.x=S.y AND R.a=5 AND S.y=8

The requests generated during optimization allow us to makein-
ferences about execution plans for varying physical designs, and
do so without issuing additional optimization calls. The idea is as

:;<=>;? @ABCD CECF GHIJKLMNOPQORSTUV:;J=WX QORSTUV>;Y=ZX>[JPV:X >[JPV>XCD=V \:;J]F^__`ab \:;<abc;cZKb dDX CE =V \V>;Y]^___`ab \>;?abc;cWKb dFXCF =eWcc SOfTKV\>;?]D`ab \>;Yab c;egKb hX
Figure 2: Execution plan andAND/OR request tree.

follows: if we produce any physical sub-planp that implements a
given requestρ, we canlocally replace withp the original physical
sub-plan associated withρ, and the resulting plan would be valid
and logically equivalent to the original one. We know the cost of
the original sub-plan (it was obtained during regular optimization)
and can calculate the cost of the newly generated alternative using
p. Therefore, we can infer how much would the original execution
plan improve or degrade if we substituted the given sub-treewith
the logically equivalent physical plan usingp (exploiting local re-
placement). Thus, after optimization we identify a set of candidate
indexes for the given query, and track the benefit that we loseby
not having these materialized, as well as the utility of the current
existing indexes (we use∆ to denote these benefit/utility values).

ij kjllmnokpqrstuvw
xryzm

ry { |
Figure 3: Tracking benefit/utility values for indexes.

Our approach then is to track the aggregated∆ values as queries
are executed for every candidate index under consideration(the
set of “candidate indexes” itself varies over time depending on the
workload). Figure 3 shows two examples of aggregated∆ values
over time for a given index. In the figure, we denote byB the cost
of creating the corresponding index. Intuitively, if the aggregated
benefit of having a candidate index exceeds its creation cost, we
trigger an online creation of such index, since we gathered enough
evidence that the index is useful. In contrast, if the benefitof hav-
ing an index oscillates between some value∆0 and∆0 + B, we
can confidently avoid creating the index, since the benefits are not
significant enough (in this way, we can also bound how much we
lag behind an optimal solution). By using this line of reasoning,
we can obtain a strategy that is 3-competitive (i.e., no morethan 3
times worse than the optimal strategy) for restricted scenarios [3].
However, we extend this core technique with heuristics thattackle
the following additional challenges:

Interactions. Consider indexesI1=(a, b, c) andI2=(a, b, c, d).
If we do not consider the inherent interaction betweenI1 andI2,
we risk (i) underestimating∆ values forI2 by ignoring sub-optimal
–but better than existing– plans that useI2 for requests served op-
timally by I1, (ii) overestimating∆ values forI1 after creatingI2

becauseI2 can be a better alternative than the original one ifI1 is
not present, and similarly (iii) underestimating∆ values forI2 if
I1 is removed from the current configuration. Also,OR trees in the

AND/OR request tree must be handled carefully, since any execution
plan can only take advantage of one of the sub-trees. Naive strate-
gies would overestimate the benefit of indexes belowOR nodes.

Storage constraints. Additionally, if there is a storage con-
straint, we might not be able to create all the required indexes. In
those situations, we need to (i) decide which indexes to create in
case of competing alternatives, (ii) decide whether to dropan index
I from the current configurations even though it is somewhat use-
ful to free up space for better alternatives, and (iii) consider index
merging [2] to obtain additional indexes that might better trade off
space and efficiency.

Reference [3] explains in detail the properties, challenges, and
solutions mentioned above, which we omit due to space constraints.

4. THE DEMONSTRATION
In this demonstration, we showcase the integrated continuous

tuning feature on a prototype built on top of Microsoft SQL Server
2005. We present scenarios that highlight the different challenges
(discussed in earlier sections) and how we address those in our so-
lution. We will exploit the GUI client tool for this demonstration.

The following examples are representative of tuning sessions that
will be shown during the demonstration. Table 1 shows, for a few
simple workloads, the online configuration schedules generated by
our solution, and its total execution time (for illustration purposes,
we also manually calculated the optimal schedule and evaluated its
cost). We use the following notations: (i)kE(q)[c] representsk
executions of queryq, each one with costc, (ii) C(I)[c] represents
the creation of indexI with costc, and (iii) D(I) represents the
deletion of indexI . The workloads contain the following queries:

q1 = SELECT a,b,c,id FROM R WHERE a<100
q2 = SELECT a,d,e,id FROM R WHERE a<100

and the schedules start with only primary indexes and consider the
following candidate indexes:

I1=R(id, a, b, c) I2=R(a, b, c, id) I3=R(id, a, d, e)
I4=R(a, d, e, id) I5=R(a, b, c, d, e, id)

Workload Online Configuration Schedule Conline

W1 5E(q1)[0.57];C(I1)[1.33]; 31E(q1)[0.29]; 85.77
135MB C(I2)[8.69]; 214E(q1)[0.09]; 24E(q2)[0.57]; [Opt=62.92]

D(I2); C(I4)[8.96]; 226E(q2)[0.09]

W2 4E(q1; q2)[0.57;0.57]; C(I1)[1.33]; 180.01
135MB 14E(q1; q2)[0.29;0.57]; D(I1); C(I2)[8.96]; [Opt=173.96]

232E(q1; q2)[0.09;0.57]

W2 4E(q1; q2)[0.57;0.57]; C(I1)[1.33]; 79.71
138MB 9E(q1; q2)[0.57;0.29]; D(I1); C(I5)[9.2]; [Opt=69.21]

237E(q1; q2)[0.12;0.12]

W2 4E(q1; q2)[0.57;0.57]; C(I1)[1.33];C(I3)[1.33]; 75.16
150MB 30E(q1; q2)[0.29;0.29]; C(I5)[9.2];E(q1)[0.12]; [Opt=56.86]

C(I2)[1.2];E(q2)[0.12];C(I4)[1.2];
215E(q1; q2)[0.09;0.09]

Table 1: Configuration schedules for simple workloads.

Table 1 starts with workloadW1=250q1; 250q2 (i.e., 250 in-
stances ofq1 followed by 250 instances ofq2). The total space
for the database is135 MB, which is just enough for a single 4-
column index. We start executingq1 five times at cost0.57. For this
query, bothI1 andI2 are useful (I1 as a vertical partition for a scan
request, andI2 as a better overall alternative for a seek request).
Note also that the cost to createI1 (1.33) is significantly smaller
than that ofI2 (8.96) becauseI1 shares the same key columns with
the primary index and therefore no intermediate sort is necessary.
After five executions ofq1, the benefit of creatingI1 is larger than
its creation cost of1.33, so we createI1. Subsequent executions of
q1 cost only0.29, but q1 can still be improved by indexI2. After

such 38 executions, the benefit ofI2 is larger than its creation cost
plus the residual benefit for the existingI1, so we dropI1 and cre-
ateI2. The remaining 207 executions ofq1 cost only0.09. Right
after that, queryq4 starts executing, and after 24 executions with
cost0.57, the benefit of indexI4 (over tableS) is larger than its
creation cost plus the residual cost ofI2, so we swapI4 andI2.
The remaining 226 instances ofq4 are executed at cost0.09.

The next three schedules in the table correspond to workload
W2 = 250[q1 ; q2] (i.e., 250 interleaved executions ofq1 andq2).
While 135MB only allow one 4-column index to be created (i.e.,I5

is too large),138MB allows any index (but only one) to be created,
and150MB allow multiple indexes to be created. For135MB, we
start executing(q1; q2) until we createI1 which helpsq1. Index
I2 starts increasing its benefit with respect toI1 and at some point
replacesI1. From this point on, the schedule executesq1 at only
0.09, andq2 at the original cost0.57 (the relative benefits of in-
dexes forq2 are roughly the same to the corresponding ones forI1,
so the schedule does not change further and avoids oscillations).
The overall cost is then 180.1. In contrast, if138MB storage is
available, the schedule starts similarly, but instead of changingI1

by I2, index merging producesI5 which serves both queries simul-
taneously. The remaining 237 executions of(q1, q2) cost 0.11 for
each query, and the overall cost is reduced to just 79.71. Finally,
when 150MB are available, bothI1 andI3 are created initially,
and after creating the merged indexI5 we are able to additionally
create optimal indexes for bothq1 andq2 (at small cost, sinceI5

avoids intermediate sorts to createI2 andI4). The remaining exe-
cutions of(q1, q2) cost 0.09 for each query, and the overall cost is
still smaller at 75.36.

The demonstration will also present complex workloads (such
as Figure 4 that shows the cost of a typical schedule over a com-
plex TPC-H workload with select and update queries). Thus, the
demonstration will highlight the key aspects of the online AutoAd-
min physical design tuning component showing how it adjuststo
changing workload patterns with low overhead while paying close
attention to important systems issues such oscillations, index inter-
actions, and storage bounds.

0

1000

2000

3000

4000

5000

1 11 21 31

Batch

E
st

im
at

ed
 C

o
st

Index Build

QP Cost

Figure 4: Online schedule for a complex TPC-H workload.

5. REFERENCES
[1] S. Agrawal et al. Database Tuning Advisor for Microsoft SQL

Server 2005.
[2] N. Bruno and S. Chaudhuri. Physical design refinement: The

“Merge-Reduce” approach. InIn Proceedings of EDBT, 2006.
[3] N. Bruno and S. Chaudhuri. An online approach to physical

design tuning. InIn Proceedings of ICDE, 2007.
[4] B. Dageville et al. Automatic SQL Tuning in Oracle 10g. InIn

Proceedings of VLDB, 2004.
[5] D. Zilio et al. DB2 design advisor: Integrated automatic

physical database design. InIn Proceedings of VLDB, 2004.

