Online AutoAdmin (Physical Design Tuning)

Nicolas Bruno
Microsoft Research
nicolasb@microsoft.com

Surajit Chaudhuri
Microsoft Research
surajitc@microsoft.com

ABSTRACT
Existing solutions for the automated physical design problem require explicit invocations of tuning tools and critically depend on DBAs gathering representative workloads manually. In this demonstration, we show an alternative approach to the physical design problem. Specifically, we demonstrate a novel monitoring/tuning DBAs gathering representative workloads manually. In this demonstration, we show an alternative approach to the physical design problem. Specifically, we demonstrate a novel monitoring/tuning DBA component that we prototyped in Microsoft SQL Server 2005 as a server-side extension. This component is always-on and continuously modifies the current physical design reacting to varying workload or data characteristics. Our solution imposes low overhead and takes into account storage constraints, update statements, and the cost to create physical structures.

Categories and Subject Descriptors
H.2.2 [Physical Design]: Access Methods

General Terms
Algorithms, Design

Keywords
Continuous tuning, Physical Design, Online algorithms

1. INTRODUCTION
Database applications have become increasingly complex and varied. Presently, most database vendors (e.g., [1, 4, 5]) offer automated tools to tune the physical design of a database, with the objective of reducing the DBMS’ total cost of ownership. These automated tools are very sophisticated and useful, but still leave several significant decisions to DBAs. Specifically, DBAs need to continuously monitor and diagnose when to re-tune physical designs. Furthermore, to tune the database using these tools, DBAs need to explicitly gather representative workloads. Finally, DBAs need to decide when to deploy recommendations. The above tasks are difficult and in fact are becoming more problematic. Consider, as an increasingly common example, large installations that support multiple, intermittent database applications (e.g., some ISPs provide such backend service already). It is common that these hosted applications come and go, and usually exhibit unexpected spikes in their loads. In such cases, the hosting installation is best served if it can use its resources to accommodate the spikes. In terms of physical design, this entails perhaps building redundant structures for one application and subsequently redirecting resources to another application as the load pattern changes dynamically. As another example, some applications exhibit periodic, sometimes unexpected changes in the select/update mix in the workload. Consider, for instance, a bug-tracking system. The most popular usage of such a database is querying/browsing (select load), but the usage pattern completely changes on specific days when the test team finds and inserts large numbers of bugs (update load), e.g., on a bug-bash day. If we gather a representative workload over, say, a month, chances are that no index is globally useful for the bug database, as the gains in query processing are outweighed by the update costs during bug-bash periods. It is very difficult to explicitly and statically model the workload in these scenarios, and equally difficult to decide when to tune the database and deploy the resulting recommendations.

Since DBMSs support building online indexes while allowing query processing to continue, it is important to seek an even more automated solution to the physical design problem. There are, however, new and significant challenges to address. First, fully automated solutions need to be always-on, continuously monitoring changes in both the workload and the database state, and refining the physical design as needed. Note that this requires such solutions to have low overhead. Additionally, in contrast to current approaches, fully automated solutions must also balance the cost of transitioning between index configurations and the potential benefits of such indexes for the future workload. In particular, while we would like to react quickly to changes in the workload, reacting too quickly can result in unwanted oscillations, in which the same indexes are continuously created and dropped. A fully automatic solution must “do no harm” for stable workloads, but react fast to significant workload changes.

The online nature of our problem implies that we would lag behind optimal offline solutions “that know the future”. However, by carefully reacting to changes, we ensure that we do not suffer disproportionately although we do not know the future. Thus, we can bound the amount of loss that we incur. Our work was done as part of the AutoAdmin project at Microsoft Research (see details at http://research.microsoft.com/dmx/autoadmin/) and the technical details of our approach are explained in [3].

In Section 2 we present an architectural overview of our solution, which we prototyped in Microsoft SQL Server 2005. In Section 3 we provide additional details on the internal algorithms. Finally, in Section 4 we give some examples that would be showcased as part of the demonstration.
2. ARCHITECTURE

Figure 1 highlights the components in the database server that were modified or added to support online physical design tuning. Specifically, we use an extended metadata manager that additionally supports “candidate hypothetical indexes” which are not materialized (and therefore do not help during normal query processing), but are placeholders for tracking the benefit of alternatives. Additionally, we added to the internal representation of indexes (for both real and candidate hypothetical indexes) a small set of counters that are used to track the benefit of each alternative. Initially, when a new query is optimized, we piggyback on the optimization call and quickly identify a relevant set of candidate indexes that could improve performance (index analysis in the figure). For that purpose, we use AND/OR request trees and local transformations (see Section 3) and produce a compact set of updates to the index counters, to be performed every time the query is evaluated. Subsequently, during query execution, we leverage the preprocessing done during optimization and efficiently track the potential benefits that we lose by not having the candidate indexes materialized in addition to measuring the utility of existing indexes (cost/benefit adjustment in the figure). After each query (or after a variable number of query executions, if we need to throttle down the tuning process) we analyze the cost/benefit ratio and determine whether creating or dropping indexes would be beneficial (continuous tuner in Figure 1). If a design change is beneficial, we send the index creation or deletion request to an asynchronous task manager in Microsoft SQL Server, which would process the DDL at a later time based on system policies. Advanced DBAs can monitor the internal state of the continuous tuner by using a client application.

3. ALGORITHMIC DETAILS

We now briefly provide additional information on the internal algorithms of our solutions (due to space constraints our presentation is very brief; see [3] for more details).

We gather information during optimization (index analysis in Figure 1) by instrumenting the optimizer and intercepting optimization rules that generate access-path-requests. Such requests encode the logical properties of any physical plan that is able to implement the sub-tree rooted at the corresponding operator. Figure 2 shows an example tagged execution plan and the corresponding AND/OR tree for the following query:

SELECT S.b FROM R,S WHERE R.x=S.y AND R.a=S AND S.y=S

The requests generated during optimization allow us to make inferences about execution plans for varying physical designs, and do so without issuing additional optimization calls. The idea is as follows: if we produce any physical sub-plan p that implements a given request $ρ$, we can locally replace p with p the original physical sub-plan associated with $ρ$, and the resulting plan would be valid and logically equivalent to the original one. We know the cost of the original sub-plan (it was obtained during regular optimization) and can calculate the cost of the newly generated alternative using p. Therefore, we can infer how much would the original execution plan improve or degrade if we substituted the given sub-tree with the logically equivalent physical plan using p (exploiting local replacement). Thus, after optimization we identify a set of candidate indexes for the given query, and track the benefit that we lose by not having these materialized, as well as the utility of the current existing indexes (we use $Δ$ to denote these benefit/utility values).

Our approach then is to track the aggregated $Δ$ values as queries are executed for every candidate index under consideration (the set of “candidate indexes” itself varies over time depending on the workload). Figure 3 shows two examples of aggregated $Δ$ values over time for a given index. In the figure, we denote by B the cost of creating the corresponding index. Intuitively, if the aggregated benefit of having a candidate index exceeds its creation cost, we trigger an online creation of such index, since we gathered enough evidence that the index is useful. In contrast, if the benefit of having an index oscillates between some value $Δ_0$ and $Δ_0 + B$, we can confidently avoid creating the index, since the benefits are not significant enough (in this way, we can also bound how much we lag behind an optimal solution). By using this line of reasoning, we can obtain a strategy that is 3-competitive (i.e., no more than 3 times worse than the optimal strategy) for restricted scenarios [3]. However, we extend this core technique with heuristics that tackle the following additional challenges:

Interactions. Consider indexes $I_1 = (a, b, c)$ and $I_2 = (a, b, c, d)$. If we do not consider the inherent interaction between I_1 and I_2, we risk (i) underestimating $Δ$ values for I_2 by ignoring sub-optimal—but better than existing—plans that use I_2 for requests served optimally by I_1, (ii) overestimating $Δ$ values for I_1 after creating I_2 because I_2 can be a better alternative than the original one if I_1 is not present, and similarly (iii) underestimating $Δ$ values for I_2 if I_1 is removed from the current configuration. Also, $Δ$ trees in the
AND/OR request tree must be handled carefully, since any execution plan can only take advantage of one of the sub-trees. Naive strategies would overestimate the benefit of indexes below OR nodes.

Storage constraints. Additionally, if there is a storage constraint, we might not be able to create all the required indexes. In those situations, we need to (i) decide which indexes to create in case of competing alternatives, (ii) decide whether to drop an index \(I \) from the current configuration \(s \) even though it is somewhat useful to free up space for better alternatives, and (iii) consider index merging [2] to obtain additional indexes that might better trade off space and efficiency.

Reference [3] explains in detail the properties, challenges, and solutions mentioned above, which we omit due to space constraints.

4. THE DEMONSTRATION

In this demonstration, we showcase the integrated continuous tuning feature on a prototype built on top of Microsoft SQL Server 2005. We present scenarios that highlight the different challenges (discussed in earlier sections) and how we address those in our solution. We will exploit the GUI client tool for this demonstration.

The following examples are representative of tuning sessions that will be shown during the demonstration. Table 1 shows, for a few simple workloads, the online configuration schedules generated by our solution, and its total execution time (for illustration purposes, we also manually calculated the optimal schedule and evaluated its cost). We use the following notations: (i) \(kE(q_1), k \) represents \(k \) executions of query \(q_1 \), each one with cost \(c \), (ii) \(C(I) \), represents the creation of index \(I \) with cost \(c \), and (iii) \(D(I) \), represents the deletion of index \(I \). The workloads contain the following queries:

\[
q_1 = \text{SELECT } a, b, c \text{ FROM R WHERE } a = 100
\]

\[
q_2 = \text{SELECT } a, d, e, id \text{ FROM R WHERE } a = 100
\]

and the schedules start with only primary indexes and consider the following candidate indexes:

\[
I_2 = R(id, a, b, c, id) \quad I_2 = R(a, b, c, id) \quad I_3 = R(id, a, d, e)
\]

<table>
<thead>
<tr>
<th>Workload</th>
<th>Online Configuration Schedule</th>
<th>(C_{\text{opt}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_1)</td>
<td>(5E(q_1)[0.57]; C(I_1)[1.33]; 31E(q_1)[0.29]; C(I_2)[6.99]; 214E(q_1)[0.99]; 241E(q_2)[0.57]; 22E(I_2)[0.09])</td>
<td>85.77 (\text{Opt:62.92})</td>
</tr>
<tr>
<td>(W_2)</td>
<td>(4E(q_1)[0.57]; C(I_1)[1.33]; 14E(q_1)[0.57]; C(I_2)[0.96]; 232E(q_1)[0.09]; 9E(q_1)[0.29]; D(I_1); C(I_2)[8.96])</td>
<td>180.01 (\text{Opt:173.96})</td>
</tr>
<tr>
<td>(W_3)</td>
<td>(4E(q_1)[0.57]; C(I_1)[1.33]; 9E(q_1)[0.29]; D(I_1); C(I_2)[8.96])</td>
<td>79.71 (\text{Opt:69.21})</td>
</tr>
</tbody>
</table>

Table 1 starts with workload \(W_1 = 250q_1; 250q_2 \) (i.e., 250 instances of \(q_1 \) followed by 250 instances of \(q_2 \)). The total space for the database is 135 MB, which is just enough for a single 4-column index. We start executing \(q_1 \) five times at cost 0.57. For this query, both \(I_1 \) and \(I_2 \) are useful \(I_1 \) as a vertical partition for a scan request, and \(I_2 \) as a better overall alternative for a seek request). Note also that the cost to create \(I_1 \) (1.33) is significantly smaller than that of \(I_2 \) (8.96) because \(I_1 \) shares the same key columns with the primary index and therefore no intermediate sort is necessary. After five executions of \(q_1 \), the benefit of creating \(I_1 \) is larger than its creation cost of 1.33, so we create \(I_1 \). Subsequent executions of \(q_1 \) cost only 0.29, but \(q_1 \) can still be improved by index \(I_2 \). After such 38 executions, the benefit of \(I_2 \) is larger than its creation cost plus the residual benefit for the existing \(I_1 \), so we drop \(I_1 \) and create \(I_2 \). The remaining 207 executions of \(q_1 \) cost only 0.09. Right after that, query \(q_1 \) starts executing, and after 24 executions with cost 0.57, the benefit of index \(I_1 \) (over table \(S \)) is larger than its creation cost plus the residual cost of \(I_2 \), so we swap \(I_1 \) and \(I_2 \). The remaining 226 instances of \(q_1 \) are executed at cost 0.09.

The next three schedules in the table correspond to workload \(W_2 = 250q_1; q_2 \) (i.e., 250 interleaved executions of \(q_1 \) and \(q_2 \)). While 135MB only allow one 4-column index to be created (i.e., \(I_2 \) is too large), 138MB allows any index (but only one) to be created, and 150MB allow multiple indexes to be created. For 135MB, we start executing \((q_1; q_2) \) until we create \(I_1 \) which helps \(q_1 \). Index \(I_2 \) starts increasing its benefit with respect to \(I_1 \) and at some point replaces \(I_1 \). From this point on, the schedule executes \(q_1 \) at only 0.09, and \(q_2 \) at the original cost 0.57 (the relative benefits of indexes for \(q_2 \) are roughly the same to the corresponding ones for \(I_1 \), so the schedule does not change further and avoids oscillations). The overall cost is then 180.1. In contrast, if 138MB storage is available, the schedule starts similarly, but instead of changing \(I_1 \) by \(I_2 \), index merging produces \(I_3 \) which serves both queries simultaneously. The remaining 237 executions of \((q_1; q_2) \) cost 0.11 for each query, and the overall cost is reduced to just 79.71. Finally, when 150MB is available, both \(I_1 \) and \(I_2 \) are created initially, and after creating the merged index \(I_3 \) we are able to additionally create optimal indexes for both \(q_1 \) and \(q_2 \) (at small cost, since \(I_3 \) avoids intermediate sorts to create \(I_2 \) and \(I_3 \)). The remaining executions of \((q_1; q_2) \) cost 0.09 for each query, and the overall cost is still smaller at 75.36.

The demonstration will also present complex workloads (such as Figure 4 that shows the cost of a typical schedule over a complex TPC-H workload with select and update queries). Thus, the demonstration will highlight the key aspects of the online AutoAdvisor physical design tuning component showing how it adjusts to changing workload patterns with low overhead while paying close attention to important systems issues such oscillations, index interactions, and storage bounds.

5. REFERENCES