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Abstract. Analysis of biological data often requires an understanding of
components of pathways and/or networks and their mutual dependency
relationships. Such systems are often analyzed and understood from
datasets made up of the states of the relevant components and a set of dis-
crete outcomes or results. The analysis of these systems can be assisted by
models that are consistent with the available data while being maximally
predictive for untested conditions. Here, we present a method to construct
such models for these types of systems. To maximize predictive capabil-
ity, we introduce a set of “don’t care” (dc) Boolean variables that must
be assigned values in order to obtain a concrete model. When a dc vari-
able is set to 1, this indicates that the information from the corresponding
component does not contribute to the observed result. Intuitively, more
dc variables that are set to 1 maximizes both the potential predictive ca-
pability as well as the possibility of obtaining an inconsistent model. We
thus formulate our problem as maximizing the number of dc variables that
are set to 1, while retaining a model solution that is consistent and can
explain all the given known data. This amounts to solving a quantified
Boolean formula (QBF) with three levels of quantifier alternations, with
a maximization goal for the dc variables. We have developed a prototype
implementation to support our new modeling approach and are applying
our method to part of a classical system in developmental biology describ-
ing fate specification of vulval precursor cells in the C. elegans nematode.
Our work indicates that biological instances can serve as challenging and
complex benchmarks for the formal-methods research community.

1 Introduction

Understanding a given complex system whose behavior can be observed, but
whose behavioral program is not directly available, is an important yet diffi-
cult task. Examples of such systems include complex web services, software for
which only the executable binary code is available, and legacy systems where
the code is available but may be written in a language that is rarely used nowa-
days or lacking sufficient documentation and support from the original system
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developers. Our current work was motivated by a project that uses methods
from software and system design to model and analyze biological systems. The
behaviors of biological systems can be observed; however, the workings of their
underlying behavioral programs are not directly available, and their elucidation
is the subject of much biological research.

Analysis of biological data often requires an understanding of components of
pathways and/or networks and their mutual dependency relationships. Such sys-
tems are often analyzed and understood from datasets made up of the states of
the relevant components and a set of discrete outcomes or results. One type of
biological example of such a system relates a “genotype” (the states of a set of
genes, that can be either mutated or normal) and a resulting character trait (a
“phenotype”). The understanding of the behavior of these systems is often con-
strained by the limited set of available condition-result data. The analysis of these
types of systems can be assisted by models that are consistent with the available
data while being maximally predictive for untested conditions. Here, we present
a method to construct such models for these types of systems. Furthermore, our
approach allows identifying those additional condition-result data that can most
effectively constrain the set of possible models to those that match the behavior
of the system. Our approach handles models with discrete variables, thus if the
actual system variables are continuous, we assume that the domain has been dis-
cretized either manually or using other computational methods.

To maximize predictive capability, we introduce a set of “don’t care” (dc)
Boolean variables that must be assigned values in order to obtain a concrete
model. When a dc variable is set to 1, this indicates that the information from the
corresponding component does not contribute to the observed result. Thus the
value of 1 denotes flexibility while the value of 0 denotes inflexibility. Intuitively,
increasing the number of dc variables that are set to 1 increases both the potential
predictive capability as well as the possibility of obtaining an inconsistent model.
We thus formulate our problem as maximizing the number of dc variables that
are set to 1, while retaining a model solution that is consistent and can explain
all the given data. This amounts to solving a quantified Boolean formula (QBF)
with three levels of quantifier alternations, with a maximization goal for the dc
variables. We first show how our problem can be solved using QBF solvers, and
later demonstrate how the special structure of our QBF instances can be used
to reduce the problem and allow a more efficient solution.

We are applying our method to part of a classical system in developmental biol-
ogy describing fate specification of vulval precursor cellsin the C. elegansnematode.
This is a well-characterized system that provides sufficient complexity to serve as
a test case for our studies. Our work indicates that biological instances can serve as
challenging and complex benchmarks for the formal-methods research community.

2 Example

This section introduces the problem statement, logical representation and pos-
sible solutions through a very simple example. For ease of presentation we make
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some simplifying assumptions in this section ; the more general case can be
treated by adjusting this framework.
Let Boolean variable x denote a possible genetic locus:

_ | 1 if mutated
=0 if wild-type

In this simple example we consider three possible genetic loci with corresponding
variables x1, x2, x3. We assume three possible phenotypic outcomes, denoted by
variable y € {1,2,3}. The possible phenotypic outcomes are assumed to be
disjoint, thus it is not possible to measure for example both y =1 and y = 2.

We assume two experiments were performed and show the direct logical rep-
resentation:

Experiment 1. z; is mutated and all others are wild-type. The phenotype
obtained was y = 1. The logical representation is:

r1=1AN22=0A23=0—9y=1

Experiment 2. x5 is mutated and all others are wild-type. The phenotype
obtained was y = 2. The logical representation is:

1 =0A22=1A23=0—9y=2

We are interested in representing and understanding the connection between
genotype and phenotype. For this purpose we would like to construct a model
that explains experimental results, and can make predictions about new experi-
ments.

Considering our simple example, a first attempt for a model is:

(r1=1A22=0A23=0—>y=1)A(x1=0A22=1Ax3=0—>y=2)

The above model, being a conjunction of the two formulas representing the
experimental results, is consistent with the respective experimental results, but
does not provide any additional predictions about new experiments. For example,
considering the experiment in which x5 and x3 are mutated while x; remains
wild-type, the model predicts nothing about the phenotype y. Formally, given
the assignment x1 = 0, xo = 1, x3 = 1 the model formula evaluates to true
for any assignments of the phenotype y, which can be assigned to values in the
range {1,2,3}. The meaning is that any phenotypic outcome is possible, which
amounts to no prediction.

To enable prediction the model should allow generalization from the experi-
mental results. Our second attempt for constructing a model is:

(r1=1—-y=0DA(x2=1—y=2)

1 Simplifying assumptions include single variable for phenotype representation instead
of cross product using several variables, single value for phenotype measurement
instead of disjunction of possible outcomes.
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The idea here is to generalize by recording explicitly only the information about
the mutations, omitting the wild-type background. The problem is that this
model is inconsistent. Specifically, for the experimental setup in which both x
and zy are mutated, obtained by assigning z; = 1, 3 = 1 to the formula, no
assignment to y can satisfy it since it implies both y = 1 and y = 2. Variable
y denotes a phenotype output, which we assume has disjoint values, thus it is
not possible to have two phenotypic outcomes simultaneously, and hence the
inconsistency.

A third and final attempt is to generalize as much as possible, but avoid incon-
sistent models. For this goal, we add dc variables, which are Boolean variables
of the form d € {0,1}. When d = 1 the phenotype of the system is unaffected by
this specific mutation in a given genetic background (we “don’t care” whether
it is mutated or not in this situation). When d = 0, the mutation is important
in this context.

In this formulation we construct for our example a general model as follows:

(1 =1A2y <= diNz3 <=d} —y = 1)\(x1 <= djATe = IAT3 <=ds — y = 2)

Let us explain the formula in some more detail. Here dg denotes the dc vari-
able for locus j in experiment ¢. A concrete model is obtained by assigning
values to all the dc variables d/. The expression z; <= d/ allows the flexi-
bility to determine whether or not it is important to keep variable x; in it’s
“normal” restrictive setting (z; = 0) for obtaining the outcome measured in
experiment i. If we set the dc variable dg to 1, then the expression xz; <= dg
evaluates to x; <=1 which is equivalent to true, since z; is a Boolean variable
and the expression holds for values 0 (since 0 <= 1) and 1 (since 1 <= 1). In
this case, the value of x; in experiment ¢ does not affect the phenotypic out-
come. If, on the other hand, we set dg to 0, the expression x; <= dg evaluates
to ; <= 0 which, for Boolean variable z;, is equivalent to z; = 0, meaning
that the value of variable x; in experiment i is important to the phenotypic
outcome.

Our first two attempts for constructing models are special cases in this for-
mulation. If all dc variables are set to 0, this corresponds to our first model,
which is not predictive, while assigning 1 to all dc variables corresponds to
the second model which is inconsistent [4 . To maximize the predictiveness of
consistent models, we would like to be able to maximize the number of dc vari-
ables that are set to 1, while maintaining the requirement that the model is
still consistent. A model is consistent if for any assignment to the variables
1, Ts, x3 there exists an assignment to the phenotype variable y such that the
formula evaluates to true. Intuitively, this corresponds to the fact that for any
experimental setup that can be prepared in the lab some phenotype will be
measured.

2 In general, assigning 1 to all the dc variables gives an inconsistent model, except
for the degenerate case in which there are no two experiments that differ on their
phenotypic outcome.
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In our example we have four dc variables : d?,d3,ds,d5 (two experimental
setups, each having two genetic loci that potentially can be mutated without
affecting the phenotypic outcome). The maximal number of dc variables that
can be assigned 1 while remaining with a consistent model is 3, since assigning
all 4 dc variables to 1 results in an inconsistent model. A possible solution with
3 dc variables set to 1 is d3 = 1, d} = 1, d3 = 1 and d} = 0. Assigning these
values for the dc variables we obtain :

(r1=1Nze<=1NAz3<=1-y=1)A(r1 <=0Az3=1A2z3<=1—>y=2)

:($1:1—>y:1)/\(x1=0/\962=1—>y:2)

Unlike the first attempted model that was consistent but not predictive, this
model is consistent and allows some predictions, for example for genotype z; = 0,
xo = 1, z3 = 1 the predicted phenotype is y = 2. The maximal number of dc
variables that can be assigned 1 while keeping the model consistent does not in
general determine a unique solution. In our example another maximal solution
isdi=1,d3=1,d3=1and d} = 0.

3 Problem Formulation

This section formalizes the concepts of logical representation and model con-
struction that were intuitively explained through the example in Section 2l It
defines the mathematical problem we are interested in and then shows how we
go about solving it.

We are interested in understanding the observable behavioral outcome of a
system (defined by output variables) as a function of the experimental setup
(defined by input variables) . The experimental setup for the system is controlled
by binary input variables x1, 2, - - - ;. The “normal” value of an input variable
is 0, and a change to the value (for example by a genetic mutation) is specified
by assigning 1 to the variable.

The outcome is represented by an output variable ¢, that can assume a discrete
and finite [ set of values. In the general case, the phenotypic output specified by
variable y can be a result of measuring several orthogonal phenotypic outputs,
designated by variables y1, y2, - - - Y, . In this case the value of the output behavior
y can be viewed as a cross product of the values of each of the orthogonal
phenotypes, y = y1 X Y2+ X Y.

Given a dataset consisting of the values for the input variables and a discrete
outcome result for the output variable we construct a formula of the form:

(1 =1 A2 <=diANag<=d5-- Nz, <=d}) — y =p1)A (1)

3 This is a simplifying assumption. If the outcomes are continuous values we assume
that the domain has been discretized according to some biological criteria either
manually or using other computational methods.
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(1 <=djAze=1Aw3 <=ds A2y <=dy) =y =pa) A
(#1 <=di-Axg=1-- Az, =1---Ax, <=d?) =y =ps) A

((:El <:dll/\£L'2 <:dl2/\$3:d?"-Al'n:l)—)y:pl)

Let us now explain in detail how we construct a concrete formula of the same
form as Formula[Ilabove from the experimental datasets that are available. Each
line in the formula corresponds to an experiment, composed of an experimental
setup and the phenotypic outcome measured. Each line is written as a logi-
cal implication, where the left-hand side of the implication corresponds to the
experimental setup defined by the input variables, while the right-hand side cor-
responds to the phenotypic output defined by the output variables. For a given
experiment, if the input variable x; was changed from its “normal” setting, the
left-hand side will contain the conjunct z; = 1, while for an input variable that
was set to its “normal” value z; = 0, we will introduce a new dc variable and
add the conjunct z; <= df Here d{ denotes the dc variable corresponding to
input variable j in experiment ¢. For experiment 4, if the phenotype measured
was p;, then the right-hand side of the corresponding implication will contain
the expression y = p;. The notation here can handle the more general case where
y is determined by the cross product of the orthogonal phenotypic outputs of
variables y1,ya2, - - Ym, in which case p; = (pi,1,D0i2- " Pi,m) Where p;j is the
phenotypic output for variable yy.

Consider for example the first line from the formula. It was constructed based
on an experiment in which variable x1 was perturbed, while all the other input
variables assumed their “normal” value, and the phenotypic outcome y = p;
was measured. Thus the corresponding logical representation we obtain for this
experiment is:

(11 =1Aag <=diNzz <=d3 - N1y <=d}) = y=p1)

Formula [I] describes the results of | different experiments. Each experiment
is not necessarily restricted to single variable changes, for example, experiment
s in the above formula shows a case were both input variables z, and z, were
changed, while the other input variables remain “normal”, as shown in the cor-
responding logical representation for the experiment:

(v <=dL-Azg=1--Azp =1 Az, <=d") =y =ps)

Our approach thus allows encoding experiments with any number of input
variables changes, including double, triple and higher degrees of variable changes.
It is also not necessary that all results for single variable changes appear in
the formula; the formula will just encode all the information that is available
in the experimental dataset. Another point worth noting is that our approach
can accommodate systems where the outcome may be nondeterministic. If an
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experiment is repeated several times with the same experimental setup and
different phenotypic outputs are observed, then the right-hand side for the corre-
sponding experiment in the formula will be a disjunction of the observed pheno-
types. Thus the notation y = p; can stand for a set of possible outcomes, where
p; = pi Vp?---Vp¥if k different outcomes were observed when the experiment
was repeated. Our current work does not consider a probabilistic distribution
related to the number of times each outcome is measured when repeating the
experiment, only the set of observed outcomes.

We call a formula of the type appearing in Formula [Tl a generic model
formula, since a concrete model is obtained from it by assigning values to all the
dc variables.

Definition 1. A model is a formula obtained from a generic model formula by
assigning values 0 or 1 to all the dc variables.

When assigning values to all the dc variables to obtain a model, the formula can
be simplified as follows. For each dc variable that is assigned the value 0 the
expression x; <= d] is replaced by x; = 0, while for each dc variable that is
assigned the value 1 the expression x; <= dg is replaced by true, which is then
used to further simplify the formula.

Definition 2. The prediction that model ¢ gives about a certain erperimental
setup, is obtained by assigning the values of all input variables according to the
experimental setup resulting in a formula ¢’ and then finding all the assignments
to the output variables that satisfy formula ¢'.

Definition 3. A model is consistent if for any assignment to the input vari-
ables x1,x3, - - - Ty, there exists an assignment to the output variables yi,ysa, -+ Ym
such that the formula evaluates to true.

Definition 4. A model with k dc variables set to 1 is maximally predictive
if it is consistent and any model with more than k dc variables set to 1 is incon-
sistent.

We are interested in developing efficient algorithms for finding a maximally pre-
dictive model, a topic that is studied in the next section.

4 Solutions

According to Definition [3] checking the consistency of a model ¢ amounts to
checking the satisfiability of the following quantified Boolean formula:

Vo1, 22, TpIY1, Y2 Ym@

The intuition behind these definitions is that we require that the x; variables
are universally quantified since they are input variables representing an experi-
mental setup that in principle can be set to any possible combination, while the
existential quantification of the y; output variables represents the fact that for
any experiment that is done there will be some phenotypic output measured in
the biological system.
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Proposition 1. For any given generic model formula, if there are no consistent
models with exactly k dc variables set to 1, then a maximally predictive model
has less than k dc variables set to 1.

Proof. Omitted from this version of the paper due to space limitations.

Given a generic model formula, the existence of a consistent model can be for-
mulated as a quantified Boolean formula as follows:

3d17d2---de$17$27...$n3y17y2...ym¢

This is a quantified Boolean formula with three levels of quantifier alternations.
The outermost existential quantification over the dc variables corresponds to fix-
ing a concrete model, the universal quantification over the input variables and
existential quantification over the output variables corresponds to the require-
ment that the fixed model is consistent.

If we encode in the formula x(k) the requirement that exactly k dc variables
are assigned to 1, then the question of the existence of a consistent model with
exactly k dc variables set to 1 is reduced to the satisfiability of the formula:

Jdi,dy - dpVry, T2, 203y, Y2 Ymd A X(K)

Given an algorithm for checking the satisfiability of such a formula, we can use
the result in Proposition[I] and perform a binary search on k, the number of dc
variables set to 1, to find the maximal k for which a consistent model exists, and
obtain a maximally predictive model.

4.1 Implementing the Basic Algorithm

As shown above our problem amounts to solving a quantified Boolean formula
with three levels of quantifier alternations, with a maximization goal for the dc
variables. We next provide some information on a direct implementation to solve
our problem, using two tools, one based on a binary decision diagrams (BDDs)
[1] as implemented in the TLV tool [13], the other directly on a QBF solver
using the Quaffle tool [20]. As will be shown later, the special structure of our
QBF instances can be used to reduce the problem and allow a more efficient
solution. We still explain the direct implementation for presentation purposes;
it also may be the case that for various extensions of the problem the direct
solution is required.

BDD Solver. TLV [13] is a symbolic model checker that uses binary decision
diagrams as the basic underlying data structure. One of the strong aspects of
TLV is that it provides a high-level scripting language called TLV-basic, which
is especially convenient for experimenting with the design and implementation
of new verification algorithms.

We have implemented in TLV the direct algorithm based on performing a
binary search on the value of k, the number of dc variables set to 1. Each
iteration solves the QBF formula described above with the constraint on the
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value of k. Universal and existential quantification are supported as existing
functions in TLV (forall, exists) and are based on direct manipulation of the
BDDs. The encoding of the generic model formula in TLV is straightforward as
all logical operators are directly supported. At the end of each iteration we get a
BDD that represents the (possibly empty) set of all consistent models with the
current value of dc variables set to 1. This turns out to be useful since at the end
of the algorithm we obtain the set of all maximally predictive models. The main
disadvantage of using TLV is in terms of performance. Solving QBF formulas
using BDD technology is not efficient, and for this reason we have experimented
with applying a QBF solver to our problem.

QBF Solver. To allow applying a QBF solver to our problem we have to encode
it in one of the standard formats accepted by these tools. QBF solvers typically
accept only Boolean variables, thus the output variables in our problem that
are not necessarily Boolean must be encoded using several Boolean variables.
The input variables and the dc variables are originally Boolean so they can
be accommodated directly. Another requirement of standard formats is that
the propositional part of the QBF formula is written as a CNF formula, which
requires some modifications to the generic model formula. To add the constraints
on the parameter k, the number of dc variables assigned to 1, we created a circuit
for performing the addition of dc variables and translated the circuit to CNF
using a canonical translation. We have experimented with the QBF solver Quaffle
[20] on some instances we have generated manually. We are currently working
on developing a program that will handle all the translations automatically,
and given a generic model formula in the high level representation as that of
Formula [I] and a value for the parameter k will generate an instance in the
standard QBF format. This will allow a much more effective use of the QBF
solvers, in fact our plan is to make these instances publicly available, since they
can serve as interesting benchmarks in QBF evaluations and libraries [6].

4.2 Improved Algorithm

We now show for deterministic systems@ how to find a maximally predictive
model in a more efficient way, by reducing the original problem to that of solving
a set of inequalities involving only the dc variables d] where each inequality is
of the form dz < C for an integer constant C. We start with a generic model
formula of the form of Formula[Il and construct the set of inequalities over the
dc variables. A generic model formula is of the following form:

(71 =1Azg <=di N3 <=ds - ANz <=d}) =y =p1)A

* We have also extended the algorithm to deal with the general case of nondeterministic
systems, allowing several phenotypic outputs for the same experimental setup. Due
to space limitations and to allow a simpler presentation this extension is omitted
from this version of the paper.
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(r1 <=dyANxa=1ANa3<=ds - ANy <=dfy) =y =pa) A

((x1 <:dll/\x2 <:dl2/\x3:d?'u/\xn:l)ﬂy:pl)

The formula is a conjunction of implications, each one appears in a separate line
in the formula above, each line corresponds to an experimental setup and phe-
notypic outcome measured. For each pair of lines ¢, j if the phenotypic outputs
are different, we add the following constraint:

Z d:-z + Z d;z» < Cy; (2)

zo=1 in line j zo=1 in line i

Here C; ; is the number of dc variables appearing in the sums of the left-hand
side of the inequality. This is equal to the number of input variables set to 1 in
experiment 4 plus the number of input variables set to 1 in experiment j minus
twice the number of input variables that are set to 1 in both experiments i and j.
We subtract this number since if an input variable is set to 1 in both experiments
i and j it was counted in the first two terms but there are no corresponding dc
variables in the generic model formula since they are added only when an input
variable is set to 0 in a given experiment.

Following this construction we obtain a set of inequalities on the dc variables.
The input variables and output variables do not appear in these inequalities.
The number of equations is at most quadratic in the number of experiments,
or equivalently in the number of lines in the generic model formula. We will
next prove that to find a maximally predictive model it is sufficient to solve the
obtained set of inequalities under the maximization goal for the number of dc
variables set to 1. Before stating and proving the relevant theorem we illustrate
its application to the simple example described in Section 2

The generic model formula we have for this example is:

(($1:1A$2 <:d%/\$3 <:d‘;’)—>y:1)
/\((iEl <:d%/\x2:1/\iE3 <:dg)—>y:2)

It was derived from two experiments that have different phenotypic outputs,
y =1 and y = 2. We therefore add the following inequality:

di +dj <2
We ask what is the maximal k that satisfies the inequality and
di+di+dy+dy =k

The maximal solution is k¥ = 3, and there are indeed solutions for the original
formula with 3 dc variables set to 1 and no solutions with all 4 dc variables set
to 1 as shown in
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Theorem 1. For a given generic model formula, a model ¢ defined by an assign-
ment D to the dc variables is consistent iff D satisfies the set of all inequalities
defined in Formula [3.

Proof. (=) Assume that the model ¢ defined by assignment D is consistent. By
Definition [3 this holds if the following formula is satisfiable:

Vo1, T2, TnIY1, Y2 Ym®

We need to show that D satisfies the set of inequalities. Assume towards con-
tradiction that there is an inequality constructed from the pair of experiments
i, j that does not hold:

Z dg + Z d;z < C@j

z,=1 in line j z,=1 in line i

This inequality does not hold if:

Z di + Z d‘;- =Cj

z,=1 in line j z,=1 in line i

We get this equation only in the case that D assigns 1 to all the dc variables
appearing in the left-hand side of the equation, since only then the sum of
these dc variables is equal to the number of these dc variables. Consider an
experimental setup that assigns the value 1 to the union of all input variables
that are assigned 1 in either experiment ¢ or experiment j (or both). All the other
input variables are set to 0. This experimental setup satisfies the left-hand side of
the implications for both lines ¢ and j in the formula ¢ and thus both phenotypes
defined by the right-hand side must occur, but the two original experiments i, j
have different phenotypic outcomes, since only in this case we constructed the
inequality. As a result for this new experimental setup no phenotype can satisfy
the model ¢, in contradiction to the assumption that ¢ is a consistent model.
Thus assignment D satisfies all the inequalities defined in Formula [2

(<)

Assume that assignment D satisfies the set of all inequalities defined in For-
mula[2l We need to show that the model ¢ defined by assignment D is consistent.
Assume towards contradiction that the model ¢ is not consistent, thus according
to Definition [3 the following formula is not satisfiable:

Vo1, 22, TpIY1, Y2 - Ym@

If the formula is not satisfiable there exists an assignment for the input variables
T1,T2, - - T, such that for any assignment of the output variables y1,y2 -+ - ym
the formula evaluates to false. The formula ¢ is composed of a conjunction
of implications. Consider the assignment to the input variables x1, s, -2, in
which for any assignment to the output variables the formula evaluates to false.
For this to occur there are at least two lines for which the left-hand side of the
implication is satisfied and the phenotypic outcomes are different. Otherwise
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assigning the output variables to the unique fate defined by the left-hand side
expressions that are true, will satisfy the formula. Considering these two lines,
for their left-hand side expressions to hold, the dc variables for the union of
input variables that are set to 1 in each of the experiments, must be set to 1 in
the assignment D. Thus denoting these two lines ¢ and j the following equation

is satisfied.
> av ¥ a-a,

z,=1 in line j z,=1 in line i

And this is a direct violation of one of the inequalities defined in Formula

Z d:z + Z d;z < Ci)j

zo=1 in line j zo=1 in line i

In contradiction to our assumption that D satisfies all inequalities defined in
Formula [2] therefor the model ¢ is consistent.

5 Biological Application

A great deal of biological research currently focuses on the analysis of molec-
ular and cellular pathways and networks. An understanding of components of
pathways and/or networks and their interdependencies is an important aspect
of these studies. For example, a set of genes that affect a similar process (either
positively or negatively) may be characterized by the effect of specific mutations
of these genes on the outcome of the process. Data describing the outcome of
combinations of such mutations may add additional information. Of particular
interest in constructing pathways and networks is information that distinguishes
between conditions in which the genotype of one genetic component in the path-
way (or activity of a gene or protein component) is or is not relevant to the
final outcome. Genetic epistasis analysis and analysis of modifier effects have
been used to great advantage to parse many pathways [9]. With the advent of
large-scale molecular-genetic data collection, the data space of genetic interac-
tions is becoming increasingly unwieldy, even for relatively simple processes. It
is, therefore, advantageous to identify methods by which dependency relation-
ships between pathway components can be analyzed and modeled. Models of
a subset of the data serve two general purposes: they may be used to predict
the outcome of genetic combinations that have not been tested, and they may
provide a means to readily identify the key combinatorial experiments that can
be performed to distinguish between two or more equally viable models.

We are applying our method to part of a classical system in developmental bi-
ology describing fate specification of cells in the C. elegans nematode. C. elegans
is widely studied in many labs worldwide where it serves as a model organism.
Various fundamental biological phenomena that also exist in higher-level organ-
isms can be studied in effective ways in C. elegans. The field has taken particular
advantage of the genetic approach to investigating biological processes whereby
a process is perturbed by genetic mutation and the genes involved in the normal
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process are thereby identified. In addition, because the animals are relatively
simple and the entire cell lineage is known, cell ablation experiments (in which
particular cells are removed from an intact animal using a laser) have also been
instrumental in discovering cell-cell interactions. The combinatorial effects of
various mutations on the process that they perturb individually and the effects
of combinations of mutations with cell ablations has generated a large body of
complex data. Further, the molecular nature and biochemical roles of many of
the gene products involved in developmental processes link the functional per-
turbation data to particular biochemical pathways and networks [19].

Our application focused on the process of fate specification of vulval precur-
sor cells. The vulva is a structure through which eggs are laid. This structure
derives from three cells within a set of six cells with an equivalent set of multiple
developmental potentials. Due to their potential to participate in the formation
of the vulva, they are known as vulval precursor cells (VPCs). Each cell has
the potential to acquire either a non-vulval fate (a 3° fate) or one of two vulval
cell fates (a 1° or 2° fate). The fate, 1°, 2° or 3° is expressed by the number of
divisions the cells undergoes and the axis of the divisions. The fate of the VPCs
is influenced by cell-cell signalling — signaling between neighboring VPCs, from
the gonadal anchor cell (AC), and from the hypodermis. Vulval development
was one of the first areas to which considerable effort was applied to achieve a
molecular understanding of how cells acquire their particular fates. The system,
though limited in cell number, provides sufficient complexity to serve as a test
case for our studies [16].

The VPC system has been one of the motivations for developing the current
work, after it has been modeled in a relatively detailed manner in [T0J5I7]. While
there are many advantages in modeling efforts such as those mentioned, in terms
of the insights that are gained, one of the remaining challenges is to integrate
effects of different genetic components.

As part of our initial effort to test our “don’t care” modeling approach, we
have encoded the results of a small subset of the experimental results on VPC
fate specification as reported in one of the key publications [I8] on this topic.
Our output variables are of the form y; € {1,2,3}, we have six such output
variable corresponding to the fates of each of the VPCs. An experiment consists
of recording the results of the pattern of fate specification among the 6 VPCs
after perturbations such as genetic mutations or cell ablations. In our initial
evaluation we used 8 input variables corresponding to gonad ablation (zg = 1 if
gonad ablated, xo = 0 if gonad intact), and the mutations lin-12(0), lin-12(d),
lin-15, lin-7, lin-8, lin-2 and lin-10, measured by input variables zi,z9, - z7
respectively. We have entered experimental data from [I§] about set-ups when
only one of the input variables was perturbed, and then using our basic algorithm
implementation solved for the maximal number of dc variables that can be set to
1 and found a maximally predictive model. We then compared the predictions
of the model for experiments involving perturbations to 2 or 3 of the input
variables with the actual data reported in [I8]. The initial results, which seem
encouraging in terms of predictive capabilities and runtime performance, should
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be interpreted very carefully, due to the limited size of the dataset. We are in
the process of evaluating the results taking into account more experiments from
[18], and also experiments reported in [I7I15].

6 Related Work

How to form a general description of a class of objects given a set of examples is
a basic problem in machine learning and has been studied in the artificial intel-
ligence community [T2/T1]. This problem is termed Generalization or Inductive
Learning and is viewed as a search through the hypothesis space. The general
framework considers both positive and negative training examples, while our
work currently is restricted to positive examples. Our method uses the ‘techno-
logical” advances made in the formal methods community using tools like BDDs
[1], QBF [14] and SAT solvers based on the DPLL method [32] to search the hy-
pothesis space efficiently. The connection between machine learning and circuit
design is explored in [8I4] demonstrating that logic-synthesis methods can be
applied effectively to certain learning problems and can compete with standard
machine learning programs.
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