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Abstract

Storage systems and data centers are growing rapidly
and costing more, with higher energy bills. Users want de-
pendable access to a wide variety of diverse content, but
providers want to lower costs. Many studies have looked at
the tradeoffs between cost and dependability, but few have
looked carefully at how content request diversity changes
this relationship. In this paper, we model a disk array and
develop an analytical framework to study the relationships
between dependability, access diversity, and low cost. We
show how access diversity changes the relationship between
cost and dependability and that all three are in tension with
one another. It is possible to improve any two together, but
not all three simultaneously.

1. Introduction

Many studies of internet workloads observe poor access
locality. Some observe Zipf distributions [1] [5] [3], others
worse [2] [4]. Online data sets are growing in size, many
faster than even disk capacities, creating larger data centers
with larger energy needs.

Users want dependable service, where request times are
predictable and perceived performance does not change
wildly from one moment to the next. Access diversity as
a design objective is not very well-understood. Nor is its
relationship to cost and dependability.

This paper constructs an analytical model of a disk ar-
ray within a general system model. The general model has
inputs, outputs, and internal state. The inputs are a parame-
ter knob and request distribution and the outputs are a cost
and the response distribution. The objectives of depend-
ability, access diversity, and low cost can all be explained
through this general model. Dependability has two prop-
erties. First, for given inputs, the response times are pre-
dictable and only vary within a narrow range. Second, a
small change in the inputs will not induce a wild change
in the cost or response distribution. Access diversity is the
breadth of accesses across offered content. It measures how
widely the request distribution varies across files. Under

this definition, diversity is the inverse of locality. In the
analysis of this paper, we look exclusively at energy cost
because other costs remain equal under the parameters we
vary. Cost is an output of the system because it varies un-
derk and the request distribution. This paper explores the
relationships among these three objectives.

2. System model

In this section, we present an analytical model of a disk
array storage system. The system clusters popular data to
reduce power costs. Clustering distributes load to disks ina
bimodal way so that disks are either busy or idle all the time.
If energy cost is significant, this approach can save a lot of
money. Unfortunately, the success of this approach depends
on the popularity distribution of files. This section develops
a model to study the tradeoffs between dependability, access
diversity, and low cost.

The model fixes the number and kind of disks, eliminat-
ing capital cost as a varying factor. Energy is the only vary-
ing cost. The model does not consider disk failure. In this
model, each disk can be independently powered off. Once
a disk is off, its data can only be accessed by turning it on
then spinning up the platter. Therefore, requests to off disks
will incur significantly higher latencies than requests to on
disks. The average time to reactivate a disk is denoted by
1/µspin and these times follow an exponential distribution.
The request rate isλ and request intervals follow a Poisson
distribution. The workload is read-only. An on disk has
a service rateµon and the service times are exponentially
distributed.

Data is allocated to disks using an approach similar to
popular data concentration [6]. Disks are partitioned into
hot and cold sets. Popular data are allocated to hot disk sets
and unpopular data to cold disk sets. We term thiscluster-
ing. Within the hot and cold sets, data are evenly distributed
to balance load. To avoid constantly cycling on and off, cold
disks wait for a quiescent period before turning off. Note
that hot and cold do not mean on and off. Hot disks will
always be on, but cold disks may be on or off at any given
time. Cold disks try to turn off, while hot disks do not.

The energy consumed with clustering is denoted byec.



In addition, for comparison, we evaluate a baseline sys-
tem. In the baseline, all disks are hot. The energy con-
sumed by the baseline system is denoted byeb. Let D be
the amount of user data andC the storage capacity of a
disk. The system reserves some storage space for unex-
pected use and some service capacity for unexpected loads.
Let rp be the reserved portion of storage space. Letrv

be the reserved portion of service capacity. With these
terms and assumptions, the required number of disks is
n = max(D/(c(1 − rp)), λ/(µon ∗ (1 − rv))), where
D/C is the number of disks required to store data and
λ/(µon ∗ (1− rv)) is the number of disks required to serve
requests. The maximum of these two values determines the
required number of disks. Letp be the energy consumption
of a disk that is always on. Therefore, the energy consump-
tion of the always-on baseline system is:

eb = pn = p ∗ max(D/(c(1 − rp)), λ/(µon ∗ (1 − rv)))

The symbolm denotes the miss rate of hot disks. Let
k be the ratio of hot disks to total disks. All disks hold
the same amount of data and all requests are the same
size. Therefore, the request rate for a hot disk isλh =
λ(1 − m)/(nk) and the request rate for a cold disk is
λc = λm/(n(1 − k)). Frequently cycling disks on and
off may impair their reliability, so a disk stays on for time
of at leastTo after spinning up. Spinning up incurs extra
energy consumption. To compensate for this, the spin-up
interval of a cold diskTi = 1/λc is twiceTo. Under these
conditions and assumptions, the energy consumption with
clustering is:

ec = nkp + n(1 − k)pTo/Ti if Ti ≥ 2To

ec = nkp + n(1 − k) = np if Ti < 2To

Cost and response distribution are the two outputs. To
calculate them we use theM/M/1 model, which assumes
Poisson arrival and exponential service times. This model
derives both the mean response time and the standard de-
viation of the response time. For the baseline, the mean
response time isT = 1/(a − b), wherea is the service
rate andb the request rate. The standard deviation of the
response time isρ = 1/(a − b). With clustering, the mean
response time of a hot disk is1/(µon − λh). The mean re-
sponse time of a cold disk is1/(µspin−λc), if Ti ≥ 2To and
1/(µon − λc), if Ti < 2To. Of all requests, fraction1 − m
are served by the hot disks and fractionm are served by the
cold disks. Therefore, the mean response time of clustering
is:

Tc =
1 − m

µon − λh

+
m

µspin − λc

if Ti ≥ 2To

Tc =
1 − m

µon − λh

+
m

µon − λc

if Ti < 2To

(1)

denotation default value short description
λ0 50 requests/s total system request rate
D 137 TB total unique data
C 300 GB disk capacity
µon 2 service rate of an on-disk
µspin 1/60 service rate of an off-disk
rv 0.2 bandwidth reserved for peak
rp 0.2 storage for unexpected usage

Table 1. analysis: default parameters The values
used in analysis. λ0 of 50 is derived from the Maze
trace. There, the average request size is 18MB, for a load
of 900MB/s. We assume a sustained disk throughput of
36MB/s, for aµon of 2 requests per second.

Similarly, we can derive the standard deviation of re-
sponse time for clustering:

ρc =

√

(
1 − m

(µon − λh)
)2 + (

m

(µspin − λc)
)2 if Ti ≥ 2To

ρc =

√

(
1 − m

µon − λh

)2 + (
m

µon − λc

)2 if Ti < 2To

3. Analysis

The system described in section 2 can be analyzed as a
system of the general form described in section 1. The in-
puts are the workload and request distribution. The param-
eter values are summarized in table 1. Two are taken from
observations of the Maze1 file-sharing system. The average
request size is 18MB, from a trace taken from 2/18/2004 to
3/21/2004. The total unique data is 137TB, from a snapshot
taken on 12/27/2006.

Figure 1 shows the system response to inputs. The first
column for cost, the second for mean response time, and the
third for standard deviation of response time. Each column
has three rows, for decreasing request rates (λ) of λ0/1,
λ0/10, andλ0/100. In each graph, the outputs are shown
by contours on a plane of miss rate versus the ratio of hot to
total disks (k).

There are also workload curves, which show how the
miss rate (m) of a workload changes with changingk. The
curves are Zipf with differingα values. Consider the curve
with α of 1.2 in any one of the figures. Ask increases, more
disks become hot and fewer requests miss the hot disks.

Figures 1(a), 1(d), and 1(g) show how cost varies with
the inputs. All three show both decreasing costs in their
lower-left regions and aplain in their upper regions. The

1http://maze.pku.edu.cn



pattern of the lower region is explained by the fact that costs
drop as either the miss rate ork drops. When the miss
rate drops, cold disks receive requests less frequently and
are therefore more likely to hibernate longer. A decrease
of k means there are fewer hot disks that are always on.
Together, these effects reduce energy consumption. In the
plains of the upper regions, the cost value is flat at1, mean-
ing that the system does not save energy over the baseline.
This is because higher access diversity spreads load and de-
stroys locality. The cold disks cannot hibernate.

Figures 1(b), 1(e), and 1(h) show how the mean response
time output varies with the inputs. All three show both a
mountain region where mean response time is large and un-
stable and a large, flatplain where mean response time is
small and stable. The mountains of 1(e) and 1(h) are caused
by the lengthy response time of the off cold disks. When
the miss rate drops to these regions, cold disks begin to hi-
bernate because the request frequency is low (λ0/10 and
λ0/100).

In formula 1, if the miss rate,m, is large enough to con-
tribute to the aggregate mean response time, then the mean
response can be large. The upper and bottom plains are
formed in different ways. In the upper plains, the miss rate
is high. The cold disks receive frequent requests and cannot
hibernate. This makes the response time low. In the bottom
plain, the miss rate is low. Most of the requests are served
by hot disks, so the response time is low here too.

Figures 1(c), 1(f), and 1(i) show similar patterns for the
standard deviation of response time. They are caused by the
same set of factors.

property
dependability + + −

access diversity + − +

low cost − + +

Table 2. tradeoffs between properties. A ‘ +’ con-
notes a desirable change and a ‘−’ an undesirable change.

The three objectives are all desirable, but cannot be si-
multaneously maximized. Figure 1 shows the tension. For
dependability, the system should avoid the mountains of the
mean and standard deviation graphs. There, mean and stan-
dard deviation of response time increase and become more
sensitive to the workload and knob inputs. To increase ac-
cess diversity, the system must move upwards in them ver-
susk planes. Increasing diversity means decreasing locality.
Therefore, for a fixedk, the miss rate will increase. To get
low cost, the inputs must move left and downwards in them
versusk planes. In this region, there are fewer hot disks on
and the cold disks can hibernate. This is where the system
can most reduce energy costs.

The three subfigures with requests rates ofλ0/10 reveal
three tradeoffs. First, for dependability and access diversity,
low cost must be sacrificed. Dependability requires work-
loads to be above or below the mountain, and access diver-
sity moves the workloads upwards. These two forces push
the workloads into the top region, making it difficult to get
low cost. Second, for dependability and low cost, diversity
must be sacrificed. Dependability moves workloads above
or below the mountain. Low cost pushes workloads down
and to the left. Together, the system is forced downwards,
decreasing access diversity. Finally, for access diversity and
low cost, dependability must be sacrificed. Diversity moves
the inputs upwards and low cost moves them down and to
the left. To meet these conflicting requirements, the inputs
must enter the mountains, where dependability suffers.

The subfigures withλ0/1 andλ0/100 show similar be-
havior. Withλ0/1, the relationship between access diver-
sity and low cost intensifies. As a result, only less diversity
can decrease costs. Withλ0/100, the relationship between
diversity and cost relaxes.

Therefore, we can only pick two of dependability, access
diversity, and low cost. Table 2 shows the tradeoffs.

4. Conclusion

This paper develops a general analytical model for a disk
array. Within this model, we discovered tradeoffs between
the objectives of dependability, access diversity, and low
cost. Two can only be simultaneously improved by sacri-
ficing the third. The tension increases under higher load.
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Figure 1. system response to varying inputs (α, λ, k). Cost, mean response time, and standard deviation of response time
on the plane of the ratio of hot disksk and miss rate by varyingλ. Cost is a fraction ofec/eb. The contours in (a), (d), and (g) give
the costs, the contours in (b), (e), and (h) give the mean response time, and the contours in (c), (f), and (i) give the standard deviation
of response time. Zipf workload curves (differentα) are also plotted.


