Regularized Adaptation: Theory, Algorithms and Applications

Xiao Li

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

University of Washington

2007

Program Authorized to Offer Degree: Electrical Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Xiao Li

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final
examining committee have been made.

Chair of the Supervisory Committee:

Jeff Bilmes

Reading Committee:

Jeff Bilmes

Katrin Kirchhoff

Marina Meila

Date:

In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at
the University of Washington, I agree that the Library shall make its copies freely available for
inspection. I further agree that extensive copying of this dissertation is allowable only for scholarly
purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying
or reproduction of this dissertation may be referred to Proquest Information and Learning, 300
North Zeeb Road, Ann Arbor, MI 48106-1346, 1-800-521-0600, to whom the author has granted
“the right to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed copies
of the manuscript made from microform.”

Signature

Date

University of Washington

Abstract

Regularized Adaptation: Theory, Algorithms and Applications

Xiao Li

Chair of the Supervisory Committee:
Professor Jeff Bilmes
Electrical Engineering

Many statistical learning techniques assume that training and testing samples are generated from
the same underlying distribution. Often, however, an “unadapted classifier” is trained on samples
drawn from a training distribution that is different from the target (or test-time) distribution. More-
over, in many applications, while there may be essentially an unlimited amount of labeled “training
data,” only a small amount of labeled “adaptation data” drawn from the target distribution is avail-
able. The problem of adaptive learning (or adaptation) then, is to learn a new classifier utilizing the
unadapted classifier and the limited adaptation data, in an attempt to obtain as good classification
performance on the target distribution as possible.

The goal of this dissertation is to investigate theory, algorithms and applications of adaptive
learning. Specifically, we propose a Bayesian “fidelity prior” for classifier adaptation, which leads
to simple yet principled adaptation strategies for both generative and discriminative models. In the
PAC-Bayesian framework, this prior relates the generalization error bound to the KL-divergence
between training and target distributions. Furthermore, based on the fidelity prior, we develop “reg-
ularized adaptation” algorithms in particular for support vector machines and multi-layer percep-
trons. We evaluate these algorithms on a vowel classification corpus for speaker adaptation, and on
an object recognition corpus for lighting condition adaptation. Experiments show that regularized
adaptation yielded superior performance compared with other adaptation strategies.

The theoretical and algorithmic work on adaptive learning was originally motivated by the de-

velopment of the “Vocal Joystick™ (VJ), a voice based computer interface for individuals with motor

impairments. The final part of this dissertation describes the VJ engine architecture, with focus on
the signal processing and pattern recognition modules. We discuss the application of regularized
adaptation algorithms to a vowel classifier and a discrete sound recognizer in the VJ, which greatly
helped enhance the engine performance. In addition, we present other machine learning techniques
developed for the VJ, including a novel pitch tracking algorithm and an online adaptive filter algo-

rithm.

TABLE OF CONTENTS

Listof Figures e e e v
Listof Tablesl e e v
Chapter 1: Introduction| 1
1.1 Machine Learning Paradigms| 3
1.1.1 Supervised, unsupervised and semi-supervised learning 3

1.1.2 Inductive and transductive learning 5

1.1.3 Meta-learning 5

1.1.4 Adaptive learning|. 7

1.2 The Vocal Joystick 8

1.3 Contributions and Organization v 11

1.4 Collaborations and Publications/ 12
Chapter 2: Learning Theory Foundations, 14
2.1 Statistical Models for Classification’ 16
2.1.1 _Generativemodels/ 16

2.1.2 Discriminative models| Lo oo 17

2.2 Loss Functions for Parameter Estimation'. 18
2.2.1 Probability-based loss| 19

2.2.2 Margin-based loss| 20

2.3 Generalization Error Bounds| o 22
231 VCbounds e 23

2.3.2 PAC-Bayesianbounds 25

2.4 Regularization|. L. e 28
2.4.1 Structured risk minimization'o 28

2.4.2 Bayesianmodel selection oL oL 30

2.5 Information Theoretical Background 31
Chapter 3: Review of Practical Work on Adaptation 35
3.1 In Automatic Speech Recognition| 36

3.2 In Natural Language Processing| 40
3.3 InPattern Recognition 42
Chapter 4: A Fidelity Prior for Classifier Adaptation 44
4.1 A Bayesian Fidelity Prior 46
4.2 Generative Classifiers| 47
42.1 Gaussianmodels oL 49

422 Mixturemodels 50

4.2.3 Hidden Markovmodels|. L. 52

4.3 Discriminative Classifiers o 54
4.4 PAC-Bayesian Error Bound Analysis|. L. 57
4.4.1 Occam’s Razor bound for adaptation 58

4.4.2 PAC-Bayesian bounds for adaptation| 59

443 A VCPerspective v o v vt e e e e e e e e 62

4.5 Empirical Simulations of Adaptation Error Bounds 63
Chapter 5: Regularized Adaptation Algorithms| 65
5.1 GMM Adaptation e 65
5.2 Links between SVMsand MLPs, 68
5.3 SVM Adaptation e e e 72
5.3.1 Relatedworkl 72

5.3.2 Error weighting — an empirical attempt, 73

5.3.3 Regularized adaptation| L Lo 74

5.3.4 Algorithm derivation and implementation| 77

5.4 MLP Adaptation e 79
54.1 Relatedworkl 79

5.4.2 Regularized adaptation| 80

5.4.3 Algorithm derivation and implementation 81

5.5 Relation to Inverse Optimization Problem 83
5.6 Adaptation Experiments 85
5.6.1 Frame-level vowel classification 86

5.6.2 Objection recognitiont e e e e 93
Chapter 6: Application to the Vocal Joystick 98
6.1 Overview of Acoustic Parameters| 98
6.2 The VIEngine e 99

il

6.2.1 Signal processing e e 100

6.2.2 Pattern recognition| e e 104

6.2.3 Motioncontrol 106

6.3 Application of Regularized Adaptation Algorithms 107
Chapter 7: Other Machine Learning Techniques in the Vocal Joystick 109
7.1 Pitch Tracking 109
7.1.1 Graph structure and local probability models 110

7.1.2 Observation features 112

7.1.3 Parameter estimation and decoding|o 113

7.1.4 EXperiments e e e e e e e 116

7.2 Adaptive Filtering 116
7.2.1 Problem formulation, 118

7.22 Anatural strategy Lo 119

7.2.3 Anonline adaptive filter L L. 120

7.2.4 Experiments and Discussions, Lo 123

Chapter 8: Conclusions and Future Work 126
8.1 Summary of Main Contributions| L 0oL 126

82 Future Workl 129
Bibliography| e 132
Appendix A: Proofs L 147
A.l _Proofof Theorem2.3.3/ 147
A.2 Proof of Equation (2.22) 147
A.3 Proof of Theorem2.4.10 148
A4 Proof of Corollary 4.4.4 e 148
A.5 Proof of Corollary 4.4.5/. 148
A.6 Proofof Lemmad4.3.2/. 149
Appendix B: Algorithms 150
B.1 EM updating equations for GMM adaptation 150
B.2 Sequential minimal optimization for SVM adaptation| 152
B.3 Stochastic gradient descent for MLP adaptation| 152

iii

LIST OF FIGURES

Figure Number Page
2.1 Convex surrogates of the O-11loss 21
4.1 Empirical error bound study: 0 vs. logm for ¢ = 0.02 (upper figure) and ¢ = 0.1

(lower figure) e e 64
5.1 Multilayer perceptrons|o 70
5.2 Regularized SVM adaptation. Circles and stars represent the adaptation data; the

solid lines in (a), (b) and (c) respectively represent the entirely retrained model, the

unadapted model, and the adapted model learned using Equation (5.20). 76
5.3 Five objects (each from a different class) under six different lighting conditions| . . 94
6.1 Vowel-direction mapping 100
6.2 Voweltriangle/. e 100
6.3 The VJengine architecture. This dissertation mainly contributes to the signal process-

ing and pattern recognition module.|o Lo oL 101
6.4 Aninterface for VJ adaptation, oL L oL 108
7.1 Decoding graph 111
7.2 Training graph L 114
7.3 A modified Kalman filter for user intent tracking 121
7.4 Adaptive filtering simulation L L 124
7.5 Steering Snapshots: (i) 4-way system; (ii) 8-way system; (iii) 4-way system with

adaptive filtering L. L 125

Y

LIST OF TABLES

Table Number

1.1

5.1
5.2
5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

A comparative view of learning paradigms|. L.

Notation of a two-layer MLP,
Amounts of training, test and development data in VJ-Vowel

Dev-set error rates of unadapted 8-class MLPs with different numbers of hidden
units and window sizes. The highlighted entries include the best error rate and those
not significantly different from the best at the p < 0.002 level.

Test-set error rates (means and standard deviations over 10 speakers) of experi-
ment VJ-A, VI-B and VJ-C using 8-class MLPs, where the amounts of adaptation
data were balanced across classes; The highlighted entries include the best error rate
and those not significantly different from the best at the p < 0.001 level.|

Test-set error rates (means and standard deviations over 10 speakers), with different
number of classes of adaptation data available (unbalanced classes), and with ~ 350
samples per class (3K in total). Highlighted entries include the best error rate and
those not significantly different from the best at the p < 0.001 level|

Test-set error rates (means and standard deviations over 10 speakers) of experi-
ment VJ-A, VJ-B and VJ-C using SVMs with a Gaussian kernel (std=10). The
tradeoftf coefficient is C' = 100 in all cases. The highlighted entries include the best
error rate and those not significantly different from the best at the p < 0.001 level.

Experiment NORB-A using SVMs with a Gaussian kernel (std=500) (90 images per
lighting condition). The tradeoff coefficient is C' = 100 in all cases. The highlighted
entries in avg include the best error rate and those not significantly different from
the bestatthe p < 0.001 level.

Experiment NORB-B using SVMs with a Gaussian kernel (std=500) (180 images
per lighting condition). The tradeoff coefficient is C' = 100 in all cases. The high-
lighted entries in avg include the best error rate and those not significantly different
from the bestatthe p < 0.00L level.

Experiment NORB-A using 5-class MLPs (90 images per lighting condition). The
highlighted entries in avg include the best error rate and those not significantly
different from the best at the p < 0.001 level|

Experiment NORB-B using 5-class MLPs (180 images per lighting condition). The
highlighted entries in avg include the best error rate and those not significantly
different from the best at the p < 0.001 level.

88

90

92

96

96

7.1

7.2

8.1

Pitch estimation GER; The highlighted entries include the best error rate and those
not significantly different from the best at the p < 0.001 level.,

Voicing decision error rate; The highlighted entries include the best error rate and
those not significantly different from the best at the p < 0.001 level,|

The best-performing adaptation algorithms in two pattern classification tasks.

vi

117
128

ACKNOWLEDGMENTS

I am enormously grateful to my advisor Jeff Bilmes for accepting me as a graduate student when
I knew nothing about research, and for teaching me everything I know about research. I especially
thank him for never letting me give up, and never letting me get away with anything unpolished. I am
grateful to three other committee members, Katrin Kirchoff and Marina Meila and Maya Gupta for
providing very important comments on my work. And Mari Ostendorf for offering two inspirational
courses EES17 and EE596 that have greatly influenced my research interests.

My work would not have been possible without the collaborations from my colleagues Jonathan
Malkin and Susumu Harada, who have been working closely with me on the Vocal Joystick project.
Jonathan has made key contributions to the Vocal Joystick system, including catching a few critical
bugs I created. Susumu has rewritten the VJ engine, in an amazingly short time, with a new software
architecture, and has been a terrific source knowledge for user studies. I am also indebted to Kelley
Kilanski and Richard Wright for their great efforts in data collection. especially thank Kelley for
annotating thousands of recordings — a job that would have driven anyone crazy.

Many thanks to my fellow graduate students in the SSLI Lab. It has been a great pleasure
working with them side by side. Thank Gang Ji for his tremendous help in my early years of
graduate school. Thank Arindam Mandal, Chris Bartels, Dustin Hillard, Jonathan Malkin, Kevin
Duh, Sheila Reynolds for helping me practice for my final defense. Thank Xin Lei, Mei Yang, Karim
Filali, Arindam Mandal, Chris Bartels for ordering food together when working late at night and
for interesting discussions. Also thank other fellow students, Andrei Alexandrescu, Jeremy Kahn,
Mukund Narasimhan, Scott Otterson, Sarah Petersen, Raghu Kumaran and Amar Subramanya, for
deciding to stay packed and together in EE1-203 rather than being distributed to separate offices,
and for various other things — they have made SSLI a fun and stimulating place to work in.

I would like to express my gratitude to the sources of my financial support. My research was

funded in part by the National Science Foundation under Grant 11S-0326382, and later by a Mi-

vii

crosoft Research Fellowship. I would especially thank Alex Acero, Asela Guanawardana at Mi-
crosoft Research for their support in my fellowship application, the Speech Technologies group for
offering me internships.

Thank my dearest friends, Cathy and Christie, for their constant support thousands of miles
away; Xiaobei and Claire, for sharing with me their laughters and tears.

I am forever indebted to my parents, who always believed in me, and to Yeping, who made me
believe.

Finally, thank the Ph.D. comic strip by Jorge Cham for making me laugh through the toughest

moments of graduate school.

viii

”Reasonable people adapt themselves to the world. Unreasonable people attempt to

adapt the world to themselves. All progress, therefore, depends on unreasonable people.”

—- George Bernard Shaw

iX

Chapter 1

INTRODUCTION

Many concepts and techniques in machine learning are illuminated by human (or animal) learn-
ing behaviors [1]. Indeed, human’s ability to learn is a hallmark of intelligence. Perhaps the most
simple form of human learning is “trivial” memorization of experience. However, it is amazing how
much and how fast humans can memorize; they remember and recognize complicated objects and
sounds, such as faces and voices, with seemingly no difficulty even when they have experienced
these objects or sounds for only seconds. This makes us wonder what exactly are being memorized
— every single detail of an object or a sound, or only some salient characteristics? Humans not
only learn by memorization (which might involve extracting the most important characteristics of
a matter), but also generalize what they have learned. For example, in a classic experiment by [2],
a group of English-speaking children were able to correctly pluralize a novel word that they had
never encountered. It seems that humans are able to induce certain forms of “rules” based on par-
ticular examples, though it is mysterious how this induction process works in the brain. Even more
amazingly, humans are constantly transferring their knowledge and skills learned in one context to
another context [3]. For example, previous experience of learning to speak English may help learn
to speak French, and previous experience of learning to play violin may help learn to play piano.
And it has been hypothesized that the degree of knowledge transfer between initial and later learning
depends on the match between the elements across two tasks [4]. Yet another important character-
istic of human learning is the ability to adapt, which can be considered as a special case of transfer
of learning. Here by “adaptation” we mean the process of adjusting the knowledge or skills of prior
learning to a specific task. Suppose that a tennis player A wants to beat his rival player B (without
worrying about other players for the moment). After having practiced with a great number of play-
ers to improve his general tennis skill, A may want to adapt his skill toward the goal of beating B

by practicing with a few players whose styles are the closest to B.

As computers becomes more and more powerful, the idea that computers can imitate human
learning processes is no longer science fiction. In fact, there has been a surge of interest to study
machine learning paradigms that parallel human learning processes, such as efficient knowledge
representation, induction, and transfer. These techniques have greatly influenced the development
of more intelligent computer interfaces that can recognize objects and sounds, understand human
languages, predict weather and traffic, diagnose diseases, detect fraudulent financial transactions, or
even play chess.

This dissertation is particularly interested in the setting of adaptive learning, which is analogous
to the human learning process of adapting knowledge and skills toward a target task. Indeed, many
statistical learning techniques assume that training and testing samples are generated from the same
underlying distribution. Often, however, an “unadapted classifier” is trained on samples drawn from
a training distribution that is not the same as the target (or test-time) distribution. Moreover, in
many applications, while there may be essentially an unlimited amount of labeled “training data,”
only a small amount of labeled “adaptation data” drawn from the target distribution is available.
The problem of adaptation, then, is to learn a new classifier utilizing the unadapted classifier and
the limited adaptation data, in an attempt to obtain as good classification performance on the target
distribution as possible.

Adaptation is most useful in scenarios where a computer interface needs to be customized for a
target user or domain, or to be adjusted constantly in an evolutionary environment. In speech and
handwriting recognition, for example, an unadapted classifier may be trained on a database consist-
ing of samples from an enormous number of individuals. The target distribution would correspond
only to a specific user, from whom it would be unrealistic to obtain a large amount of labeled train-
ing data. A system, however, should be able to quickly adapt to that user by combining information
from the large corpus and as small an amount of adaptation data as possible. Taking text classifica-
tion as another example, it is often the case that a vast amount of labeled training data exists in one
domain, but the target task is to be conducted in another domain where data annotation is expen-
sive. Domain adaptation, which utilizes information from the original domain, may help reduce the
amount of new annotation efforts while achieving good performance in the target domain.

The theoretical and algorithmic work that will be presented in dissertation was originally moti-

vated from the development of the Vocal Joystick (VJ). The VI is a voice based computer interface

designed for individuals with motor impairments. Unlike conventional speech interfaces, the Vocal
Joystick exploits continuous aspects of human’s voice, such as intensity, pitch and vowel quality,
and produces continuous signals which can be used to control mouse pointers, robotic arms, or other
electro-mechanical devices. Moreover, similar to speech interfaces, the VJ almost always finds its
best performance when adapted to the target user, and this is where the work developed in this
dissertation comes into play.

This chapter serves as an introduction to this dissertation. Section 1.1/ gives a comparative view
of a number of machine learning paradigms, including adaptive learning which is the essence of
this dissertation. Section |[1.2/introduces the Vocal Joystick, a real-world application that motivated
this work, and states the potential learning and adaptation problems in the VJ system. Finally, the

last section summarizes the contributions and presents a roadmap of this dissertation.

1.1 Machine Learning Paradigms

A variety of machine learning paradigms have been studied in the past including supervised, un-
supervised, and semi-supervised learning, as well as transductive vs. inductive learning, and more
recently, multi-task learning or transfer learning, any of which may be seen from either a frequen-
tist or Bayesian perspective. A learning setting that has not received as much theoretical attention is
that of adaptive learning. This section offers a comparative review of these learning paradigms as
well as a brief introduction to adaptive learning. For a better understanding of how these learning

paradigms differ from or relate to each other, we view them from several different perspectives.

1.1.1 Supervised, unsupervised and semi-supervised learning

We first inspect the way that training samples are labeled, which essentially makes the distinction be-
tween supervised, unsupervised and semi-supervised learning. Supervised learning assumes that all
training samples are labeled, whereas unsupervised learning assumes none. Formally, in the former
setting both inputs and their labels {(x;,y;)}/", are given, while in the latter only inputs {x;}",
are available. It may be somewhat mysterious what the machine could possibly learn without any
labeled data. Unsupervised learning, in fact, often aims at building representations of the input that

can be used for prediction, decision making or data compression [5]. For example, density esti-

mation [6], clustering [7, 8], principle component (or surface) analysis [8], independent component
analysis [9] are all important forms of unsupervised learning.

Notice that in some cases there exists another label variable k;, parallel to y;, that provides
information on x; at a different level. For example, in Gaussian mixture models, we can have
y; representing the Gaussian mixture ID and k; representing the component ID in that Gaussian
mixture. In this regard, we should distinguish between the “fully supervised” case, where both y;
and k; are available, the “partially supervised” case, where y; is available but k; is not, and the “fully
unsupervised” case, where neither y; nor k; are present.

Semi-supervised learning, as what “semi” may have suggested, assumes that there exist both

m+n
i=m+1"

labeled training samples {(x;,y;)};", and unlabeled ones {x;} In many machine learning
applications, unlabeled data is abundant but labeling is expensive and time-consuming. The basic
idea of semi-supervised learning is to use the input distribution learned from the unlabeled data to
influence the supervised learning problem [10]. In the probabilistic framework, semi-supervised
learning can be treated as a missing data problem, which can be addressed by generative models
using the EM algorithm and extensions thereof [11-13]. Self-training [14] extends the idea of EM
to a wider range of classification models: it iteratively trains a seed classifier using the labeled data
(sometimes with regularization [15]), and uses high-confidence predictions on the unlabeled data
to expand the training set. Co-training [16] assumes that the input features can be split into two
conditionally independent subsets, and that each subset is sufficient for classification. Under these
assumptions, the algorithm trains two separate classifiers on these two subsets of features, and each
classifier’s predictions on new unlabeled samples are used to enlarge the training set of the other.
This approach often improves over self-training, as compared in [17]. Another school of methods
for semi-supervised learning are based on graphs [18], where nodes represent labeled and unlabeled
samples, and edges reflect the similarity between the samples. Given such a graph, we desire to find
a decision function that satisfies the constraints imposed by the labeled data and is smooth over the
entire graph [18-20].

Additionally, active learning is a similar setting as semi-supervised learning, but it allows an
intelligent choice of which samples to label. For example, query learning [21] or selective sampling

[22] generates or selects the most informative inputs for the human expert to label with the hope to

improve classification performance with the minimal amount of queries.

1.1.2 Inductive and transductive learning

A second perspective, which distinguishes inductive learning from transductive learning, has to do
with the scope in which a classifier is devised to work. Assume that we observe a set of samples
{(x4, y:) }i; drawn from a distribution p(x, y) in the sample space X’ x). Inductive learning aims
to learn a decision function f : X —) that not only correctly classifies observed samples, but
also generalizes to any unseen samples drawn from the same distribution. In other words, we desire
to learn an f that minimizes the expected risk, i.e., Rpyxy)(f) = E(xy)~p(x) [Q(f(X),y)], under
some loss function Q(-), which will be formally discussed in Chapter 2.

In transductive learning [23], we are further given a set of unlabeled inputs {Xi};’itr?ﬂ, and we

m+n

only care about predicting as accurately as possible the labels {y; };" " |

of these target inputs.
Since a transduction algorithm does not need to generalize, it is usually devised explicitly to find
the right labels instead of to construct a decision function. A transductive SVM [23-25], however,
outputs a decision function which can potentially handle unseen data. In fact, a transductive SVM
is in the strict sense an inductive learner, although it is by convention called “transductive” for its
intention to minimize the generalization error bound on the target inputs [23]. It is worth noting that
semi-supervised learning is often mistaken for transductive learning, as both learning paradigms

receive partially labeled data for training. In fact, semi-supervised learning can be either inductive

or transductive, depending on whether its goal is to generalize.

1.1.3 Meta-learning

Meta-learning, also referred to as multi-task learning or transfer learning, deals with the problem
of ”learning to learn”. This paradigm involves a higher level of generalization. While learning at
the base level desires to produce a learner that generalizes across samples drawn from a specific
distribution or domain, meta-learning emphasizes producing a meta-learner that generalizes across
distributions and domains. Here we discuss meta-learning in the context of inductive learning.

For a better understanding of the problem, we refer to a formulation presented in [26], but we
replace the notation therein with our own notation for consistency with the rest of this dissertation.
Assume that there are K different yet “related” tasks. Each task defines a distribution p*(x, y)

on the same sample space X x), from which a training set D* is generated. The tasks relate

to each other via a meta-parameter 6, the form of which will be discussed shortly. One setting of
meta-learning (mostly referred to as multi-task learning) is concerned with simultaneously learning
K specific tasks. The goal is to jointly find a meta-parameter 6 and a set of decision functions
f ke Fk | =1..K, that minimize the average expected risk, i.e.,

, 1
min —
0,f1eFL,...freFK K

Z Rp’“(xvy)(fk)’
k

subject to some “relatedness” constraint parameterized by 6. It has been theoretically proved that
learning multiple tasks jointly is guaranteed to have better generalization performance than learning
them independently, given that these tasks are related [26-30]. A second setting of meta-learning
assumes that p*, k& = 1..K, are sampled from a “meta-distribution” q(p) [26,27]. Under such an
assumption, the goal is to find a meta-parameter 6 that generalizes to unseen sample distributions
p(x,y) drawn from ¢(p), i.e.,

mein By q) [flgjfr Ry ()]

again subject to the relatedness constraint parameterized by 6.

In both cases, the relatedness constraint (parameterized by #) is the key to the success of meta-
learning. There are many ways to define this constraint by exploiting different types of “related-
ness”. From a frequentist perspective, [26] defines relatedness between tasks as an “internal repre-
sentation”. Specifically, it is assumed that F* = F for all k, where F is chosen from a family of
function spaces. For example, Fy can be represented by a space of multi-layer perceptrons where
the first two layers, parameterized by 6, are shared by all tasks, while the remaining layers are
task-dependent [26, 31]. Another form of relatedness is given by [32] and [30], where the deci-
sion function f* is assumed to be a linear combination of a task-independent and a task-dependent
component. Furthermore, [29] defines relatedness between tasks on the basis of similarity between
distributions. Formally, two distributions p*(x, y) and p'(x, 1) are related if there exists some trans-
formation 7' : X — X such that p*(x,y) = p'(T(x),y). On the other hand, there are various
Bayesian approaches to meta-learning, many of which are based on hierarchical Bayesian infer-
ence [33]. The constraint therein is that the decision functions f* from multiple tasks are generated
from the same prior distribution py(f). Empirical study of this approach to multi-task learning can

be found in a number of publications such as [34,35].

Table 1.1: A comparative view of learning paradigms

Paradigms given desire to learn

Supervised D = {(xi,9i) }1"q
Unsupervised D = {x;}]",
Semi-supervised | D = {(x;,v:)}7; U {x; /4"

i=m+1
D= {(wal)}gl or

Inductive D = {(xi,y:) }ity U{xi ?EJLH argmin Ry) (f)
f
where (x;,v;) ~ p(x,9)
Transductive D = {(xi, i)}ty U{Xi}?;—:?+1 labels of {Xi}?;ﬁ“

K
1
Meta-learning {D*}E | (fully or partially labeled) argmin 7 Z Ry e (f F)
07f17"7fK k=1

(setting I) where (x;, ;) ~ pF(x,y) s.t. ’relatedness” constraint by 6

Meta-learning {D*}K | (fully or partially labeled) | argmin E Frrag(f) [ir}f Ry x) (f "
0

(setting II) where (x;,y;) ~ p*(x,7), p¥ ~ q(p) | s.t. relatedness” constraint by 0

fir e arg}nin Rpir (x4 (f € F)

Adaptive and D = {(x;,vi)}™, arfgrrjlrin Rpaa(s) (f)
€

ad(

where (x;,y;) ~ p*(x,y)

1.1.4 Adaptive learning

Finally, we introduce the idea of adaptive learning (or adaptation); a detailed discussion will be given
in Chapter 4. As mentioned at the beginning of this chapter, adaptive learning is concerned with
situations where the target sample distribution denoted by p®?(x, y/), deviates from that of training,
denoted by p'"(x,y). In such a situation, no matter how much data is available from the training-
data distribution, it will not be possible to obtain an asymptotically consistent estimate. On the other
hand, training a model using only the adaptation data would [8] either lead to: (1) overfitting, due

to a high-variance parameter estimate of a complex model, or (2) high-bias due to estimating the

parameters of an excessively simple model. In this work, we assume the availability of an unadapted
decision function f!" learned using a sufficient amount of training-distribution data, as well as some
labeled adaptation data D drawn from the target distribution. The goal of adaptation is to learn an
optimal decision f%¢ function with regard to p®¢(x, y). In this paradigm, D are true samples from
the target distribution, while f*" is a good representative only of the training distribution, which may
at best be only similar but not identical to the target distribution. By combining these two sources

of information, one would hope to achieve better performance than using either one alone.

Adaptive learning is most akin to multi-task learning in that learning the unadapted model and
learning the adapted model can be viewed as two similar tasks, each with a different sample dis-
tribution. However, our setting of adaptive learning is not entirely the same as the problem of
simultaneously learning multiple tasks. First of all, we are only interested in the performance of
the target task rather than the average performance over all tasks. Secondly, the training data is
no longer available at adaptation time — the only information preserved from training is the un-
adapted model. Note that the second assumption is fairly common in real-world scenarios when it
is unrealistic to deliver a large amount of training data to end users.

These learning paradigms are summarized in Table|1.1, with a few points that we need to clarify:
(1) The first four learning paradigms differ from each other only by “what is given”, regardless of
“what they desire to learn” (thus we leave the corresponding entries empty); (2) We discussed meta-
learning and adaptive learning in the context of inductive learning, but both can be transductive.
(3) The notation R, ,)(f) denotes expect risk w.r.t. the sample distribution p(x, y), which will be

formally introduced in the next Chapter.

1.2 The Vocal Joystick

While this dissertation studies the problem of adaptation primarily from a machine learning perspec-
tive, the incentive of conducting such research was originated from the development of the Vocal
Joystick (VJ) — a computer interface for individuals with motor impairments. This section presents
the motivation and background of the VJ project. Notice that much of the text in this section was
written on the basis of a number of seminal publications by Bilmes and et. al. [36,37]. Furthermore,

the development of the Vocal Joystick was a joint work with a number of faculties and students at

the University of Washington. We will acknowledge their work in detail in Section 1.4

As human-computer interaction becomes ubiquitous, the concept of continuous interaction [38]
increasingly impacts the way we interact with everyday objects and appliances, and ultimately on
the way we live in the modern world. Many existing interfaces such as mouse pointers, joysticks
and touch-pads, however, are ill-suited for individual with motor impairments. There has been a
sustained interest in the computer-human interaction (CHI) society to develop hand-free computer
interfaces for this population. A sip-and-puff switch, for example, is a head-mounted accessory
used to actuate a binary-mode switch by a simple sip or puff [39,40]. This is often used in company
with a head-mouse, or a chin-joystick, which controls a standard computer mouse or joystick by
measuring the user’s head or chin movements [39,40]. Such interfaces remove the constraints on
the user’s ability to use hands, but often suffer from low communication bandwidths. An eye tracker
provides an attractive alternative that maps eye-gaze positions to mouse pointer positions, but it often
requires expensive hardware and elaborate calibration efforts before use [41].

A speech interface is a more natural solution, as speech is a major facility in human-human com-
munication. Such an interface recognizes and understands speech inputs using an automatic speech
recognizer and launches actions accordingly [42,43]. Standard spoken language commands, how-
ever, are most useful for discrete but not for continuous operations, and thus are ill-suited for manip-
ulating computers, windows-icons-mouse-pointer (WIMP) interfaces and other electro-mechanical
devices. For example, in order to move a cursor from the bottom-left to the upper-right of a screen,
a user would have to repeatedly utter “up” and “right”, or “stop” and “go” after setting an initial
movement direction and speed. An alternative strategy would be to verbalize the intent in a more
sophisticated manner, e.g., “move mouse two o’clock” [43], but this would increase the cognitive
load of the user by imposing syntax and semantic restrictions. More importantly, both strategies
suffer from the discontinuous nature of discrete command control and the inability to control the
movement speed efficiently.

Therefore, it is useful to develop a continuous voiced-based interface such that the computer
does not need to wait for a complete command to actuate an operation, but rather continuously listens
to the user and responds quietly to his/her interests. A number of systems have been proposed for
this purpose in the CHI community, among which [44] and [45] are the most similar to the VJ. Both

systems have utilized non-verbal acoustic parameters, such as duration and pitch of vocalization,

10

for continuous control of mouse pointers. After the movement direction is initialized by a discrete
command, a movement can be launched by any vowel articulation, and the movement continues
until the vowel articulation stops; in the meantime, the movement speed can be changed on-the-fly
by varying pitch [44]. The systems proposed by [43,46,47] work in a similar fashion, except that
they do not require continuous vowel articulation; once the movement direction has been set, the
mouse pointer moves automatically until a discrete command is received to stop the movement.
All these techniques, however, lack the ability to fluidly and continuously change the movement
direction and, in some cases, the movement speed without having to issue discrete commands.

The Vocal Joystick project, funded by NSF and conducted at the University of Washington,
aims to assist individuals with motor impairments using a more fluid control mechanism. This
voice-based interface is not confined to the use of natural languages, but exhaustively explores non-
verbal acoustic parameters of human voice such as intensity, pitch, vowel quality and discrete sounds
(comprised of phoneme combinations). We have utilized this interface to control mouse movement
using the following scheme: mouse movement is triggered when vowel activity is detected, and
continues until the vowel activity stops. At each time frame, the movement direction is determined
by vowel quality, while the step size is determined by loudness. Finally, a small set of discrete
sounds are used to execute mouse clicks. A more detailed description of the Vocal Joystick will be
given in Chapter 6.

The Vocal Joystick has the following advantages compared with speech interfaces: (1) The
V] offers control mechanisms for both continuous and discrete tasks; (2) it can select the vocal
parameters that maximally reduce confusability ; (3) it provides instantaneous feedback to a user
so that the interaction is mutually adaptive; and (4) it reduces the user’s cognitive load. Compared
with other continuous interfaces such as a head-mouse, a chin joystick or an eye tracker, the VJ
has a relatively high bandwidth, thereby providing more degrees of freedom in control. It is also
relatively cheap and requires less efforts in setup.

The design of the VJ system involves a variety of research areas, including phonetics, cognition
and perception science, signal processing, machine learning, control, user interface design and us-
ability. This dissertation focuses on several research problems at the pattern recognition level. First,
itis crucial for the VJ system to have a robust estimation of the vocal parameters, including loudness,

pitch, vowel quality, and discrete sound identity, and to develop an efficient user adaptation scheme

11

to improve classification and estimation performance. Secondly, it is sometimes necessary to have
an intelligent filtering algorithm applied to some of the vocal parameters, as it is often difficult for
a user to make the precise articulation he/she has intended, For example, in order to move along a
non-cardinal direction, the user may repeatedly alter between two cardinal vowels. A second reason
is that there often exist system errors in classification; an adaptive filter would greatly help infer the

true user intent from noisy estimates.

1.3 Contributions and Organization

This dissertation makes contributions to the problem of adaptive learning from the following three

aspects.

e The theoretical contribution of this work is that we present a Bayesian “fidelity prior” for clas-
sifier adaptation. This prior unifies the adaptation strategies for a variety of generative models
and conditional models, and relates the generalization error bound (or sample complexity
bound) to the KL-divergence between training and target distributions in the PAC-Bayesian

setting.

e The algorithmic contribution comes from the development of novel regularized adaptation al-
gorithms for SVMs and MLPs, both derived from an lower bound of the fidelity prior. These
algorithms perform remarkably well on a vowel classification dataset and an object recogni-
tion dataset compared to other state-of-the-art techniques in the literature. Note that we have
also implemented an regularized adaptation algorithm for GMMs, which is essentially the

same as the conventional MAP adaptation.

e Application-wise, this dissertation gives an overview of the development of the Vocal Joy-
stick system. The main research contribution to the VJ system from this dissertation is the
exploitation of machine learning techniques at the signal processing and pattern recognition
level. This is specifically concerned with building regularized adaptation tools for the vowel
classifier and for the discrete sound recognizer in the VJ engine. In addition, this work de-
scribes a novel pitch tracker based on graphical models, as well as an intelligent adaptive filter

that compensates for human and system errors.

12

The rest of the dissertation is organized as follows ' Chapter 2/ reviews theoretical foundations
based on which this work is constructed. Chapter 3/ reviews practical work on adaptation devel-
oped in the area of speech recognition and natural language processing. Chapter 4/ presents the
fidelity prior and its instantiations for generative models and discriminative models, and provides
PAC-Bayesian error bound analysis. Chapter S/describes in detail regularized adaptation algorithms
for SVMs and MLPs with experiments on two pattern classification tasks. Chapter 6/ introduces
the Vocal Joystick systems and the adaptation tools. Chapter [7 discusses other machine learning
techniques in the VJ system, including a pitch tracking algorithm and an online adaptive filtering
algorithm. Finally, Chapter |8 concludes and suggests directions for future work. In addition, non-
important proofs (which are trivially derived from others’ work) and algorithm derivations can be

found in the appendices.

1.4 Collaborations and Publications

Some of the work described in this dissertation has been published in conference proceedings. The
fidelity prior and the error bound analysis were published in [48], coauthored with Jeff Bilmes.
The regularized adaptation algorithm for MLPs, with evaluation on vowel classification, was first
proposed in [49], coauthored with Jeff Bilmes. An empirical design of SVM adaptation was pre-
sented in [50], coauthored with Jonathan Malkin and Jeff Bilmes. The pitch tracking algorithm
was published in [51], coauthored with Jonathan Malkin and Jeff Bilmes. The online adaptive filter
algorithm was published in [52], coauthored with Jonathan Malkin, Susumu Harada, Jeff Bilmes,
Richard Wright and James Landay.

As mentioned earlier, the development of the Vocal Joystick involved efforts from many other
researchers (faculties and students), and covers a broad spectrum of research areas. The first paper
[36] that offered a comprehensive description of the VI was a joint work by Jeff Bilmes, Xiao
Li, Jonathan Malkin, Kelley Kilanski, Richard Wright, Katrin Kirchhoff, Amarnag Subramanya,
Susumu Harada, James Landay, Patricia Dowden and Howard Chizeck. A sister paper [37] by
the same authors presented engineering details of the VJ system. Research on the motion control

module was primarily done by Jonathan Malkin, and was partially published in [53]. Research on the

! As a side note, this dissertation is in fact organized in inverse chronological order of the progress of my Ph.D. work.

13

VI user interface was primarily done by Susumu Harada, and was published in [54]. Furthermore,
research on data collection efforts can be found in [55], first authored by Kelley Kilanski. Finally, the
implementation of the VJ engine was a joint work with Jonathan Malkin and Susumu Harada. The
graphical user interface for adaptation presented in Figure |6.4/ was primarily designed by Susumu

Harada.

14

Chapter 2
LEARNING THEORY FOUNDATIONS

As introduced in Chapter |1, inductive learning is a machine learning paradigm that, given exam-
ples of inputs and corresponding outputs, learns to predict outputs on future inputs. The prediction
task is called classification when we predict qualitative outputs, and regression when we predict
quantitative outputs. Formally speaking, we assume that there exists a mapping from an input space
X to an output space), where) is a set of class labels in the case of classification, and a space of
real values in the case of regression. Inductive learning asks to discover this mapping (both function
structure and parameter values) based on a set of observed examples. This dissertation is concerned
with classification tasks in the context of inductive learning.

Throughout this work, all densities are taken w.r.t. the Lebesgue measure in their respective
spaces. We use p(z) as a short-cut for px (X = z), and E,(;)[-] as a short-cut for Ex., (x)[-]-
We also introduce the notion of convergence in probability. We say that X,, converges to X in
probability, denoted by X, P x ,if for any € > 0 and for any § > 0 there exists a natural number
M such that for all m > M,

Pr{|X,, — X| <e}>1—0.

Assume that we observe m samples D, = {(x;, yi)|(xi, vi) ~ p(x,y)}",, where x; € X are
input features and y; €) are class labels. Further assume that we are given a function space F
(either countable of uncountable) that contains some mappings f : X —) which we call decision
functions or classifiers. Our goal is to learn a decision function (or a classifier) f € F : X — Y
that not only correctly classifies the observed samples, but also generalizes to unseen samples drawn
from the same distribution. In other words, we desire to learn an decision function that minimizes

the expected risk (or, equivalently, the true risk),

1>

Ry () = By [RUF (%), 9)], 2.1)

where () is a loss function that measures the “cost” of a classification decision. Notice that the

15

difference between the expected risk of f and the Bayes risk, i.e. ir}f Rp(x,y) (f), consists of two

error terms:

Rp(x,y) (f) _ir}f Rp(x,y) (f) = <Rp(x,y) (f) _flgg-‘ Rp(x,y) (f)) + <]flg,f7:‘ Rp(x,y) (f) _ir}f Rp(x,y) (f))
2.2)

where the first term on the right hand side is called the estimation error, and the second the approxi-
mation error. Moreover, throughout this work, we use the 0-1 loss, i.e. Q((f(x),y) = I(f(x) # y),
in evaluating the classification performance. In this case the expected risk is the true classification
error rate. The 0-1 loss, however, is often computationally intractable as an optimization func-
tion [56]; surrogates of the 0-1 loss are typically used in actually training a classifier, which will be
discussed in Section [2.2/in detail.

Regardless of what loss function to use, the expected risk is hard to optimize directly as p(x, y)
is generally unknown. In practice, we often aim to find a decision function f that minimizes the

empirical risk which is defined as

1>

Z Q(f(xl)a yi)a (Xi7 yz) € Dm (23)

1
Remy ()2 3
In other words, f minimizes the average risk over a specific data set D,,. It has been shown that if
Q(-) satisfies certain property, then Remp(f) N Rp(x,y)(f) [57]. Furthermore, if 7 has a finite
VC dimension (to be defined in Section 2.3), then R(f) L, flgr (f) [23,58]. The sample size m,
however, is almost always far from sufficient. Such cases require the use of certain regularization
strategy to guarantee good generalization performance [23,58-61]. In fact, a fundamental problem
in machine learning is to bound the expected risk from above by the empirical risk plus a capacity
term. This class of bounds are called generalization error bounds or sample complexity bounds,
which provide theoretical justifications for regularization.

This chapter reviews the learning theory foundations on the basis of which our adaptation the-
orems and algorithms are developed. The organization of this chapter is as follows: Section 2.1
introduces different classification models, i.e., different ways of formulating the decision function
f(x). Section 2.2, without considering generalization ability yet, introduces a number of loss func-

tions () for parameter estimation. Section 2.3, the most crucial to this work, reviews two schools

of theory on generalization error bounds. Section 2.4/discusses the role of regularization in machine

16

learning. The last section gives mathematical basics that are necessary to understanding the rest of

the work.
2.1 Statistical Models for Classification

In this section, we discuss different formulations of the decision function f by using different statis-
tical models; how to estimate the parameters of these models (e.g., maximum likelihood estimation
or discriminative training) is an orthogonal issue which will be discussed in the next section. In

particular, we introduce two important approaches: generative models and discriminative models.

2.1.1 Generative models

In this case, the function space JF consists of models that describe sample distributions. A decision
function (or a classifier), therefore, is represented by a generative model, and the output of the
decision function is the class label that produces the highest joint probability:
“decision” = argmax Inp(x,y|f) = argmax Inp(x|y, f)p(y|f). 2.4
y y
Since the decision function is uniquely determined by the generative model, we slightly abuse nota-
tion to let f denote a generative model or its parameters, instead of a decision function.
Well-known examples of this approach include Bayesian networks and Markov random fields
[62], while the parametric form of p(x, y|f) varies depending on specific models. A Bayesian net-
work is a directed acyclic graph with vertices representing variables and edges representing depen-
dence relations among the VariableshThe joint distribution of all variables factorizes over variables
given their parents, i.e. p(X1.,) = H p(x;| parents(x;)). By having fewer edges in the graph, the
network makes stronger conditionaﬁlzilndependence assumptions and the resulting model has fewer
degrees of freedom. For example, Naive Bayes and hidden Markov models (HMMs), with simple
graph structures, are among the most popularly used statistical classifiers. A Markov random field is
similar to a Bayesian network except that it is an undirected graph, thereby capable of representing
certain distributions that a Bayesian network can not represent. In this case, the joint distribution
of the variables is the product of potential functions over cliques (the maximal fully-connected sub-

1
graphs). Formally, p(x1.,) = A H &k (x¢ky), where ¢ (x(y)) is the potential function for clique
k

17

k, and Z is a normalization constant. Again, the graph structure has a strong relation to the model
complexity.

Generative models have long been used in speech, text, vision and bioinformatics for their ability
to handle variable-length structured data. For example, a HMM with a fixed set of parameters can
generate an observation sequence of arbitrary length. Moreover, generative models has principled
ways to treat latent variables, typically using Expectation-Maximization (EM) [63, 64]. Despite
these advantages, this approach is in general sub-optimal for classification tasks, as it intends to
solve a more difficult density estimation problem rather than to optimize directly for classification
performance. One popular method to compensate for this problem is discriminative training of
generative model parameters [65—70], as will be discussed in the next section. Alternatively, struc-
tural discriminability is a structure learning approach that learns dependency relationships between

random variables (of a generative model) in a discriminative fashion [71,72].

2.1.2 Discriminative models

Discriminative models, on the other hand, directly model the conditional relationship of labels given
input features. One class of discriminative models represent this conditional relationship probabilis-
tically by modeling the conditional probability p(y|x, f) (here we let f denote a conditional model
or its parameters). The output of a decision function is the class label that yields the highest condi-
tional probability, i.e.

“decision” = argmax Inp(y|x, f) (2.5)
y

Log linear models, multi-layer perceptrons (MLPs), conditional maximum entropy (MaxEnt) mod-
els and conditional random fields (CRFs) all belong to probabilistic discriminative models. In fact,
the last layers of MLPs, MaxEnts and CRFs all can be considered as generalized log linear models.
In binary classification, a generalized log linear model assumes that

ply = +1Ix, f)
ply = —1Ix, f)

where ¢(-) represents a nonlinear transformation from the input space to a feature space Conse-

log = wlp(x) +b.

quently, the conditional distributions are in the form of

Py, 1) = 2 exp(y(w6(x) +5).

18

where Z is a normalization constant.

A second class of discriminative models directly model the decision boundary which is the
most relevant to classification. An affine decision function, for example, assumes that the decision
boundary is a hyperplane. Moreover, if applied in a transformed feature space, this approach can as

well model nonlinear decision boundaries. In such cases,

“decision” = sgn ((w, ¢(x)) + b) (2.6)

where w and b are affine parameters, and ¢(-) is again a nonlinear transformation. Given a fixed
o(+), f is represented (w, b). Non-probabilistic discriminative models include kernel methods such
as support vector machines (SVMs) and nearest neighbor methods, many of which, however, are
endowed with probabilistic interpretations.

Discriminative classifiers directly relate to classification and therefore often yield superior per-
formance. There has been research on combining the advantages of generative and discrimina-
tive models in an attempt to cope with structured data and latent variables while maintaining good
classification performance. In addition to methods such as discriminative training and structural
discriminability that we have mentioned, there are approaches that exploit generative models in

discriminative classifiers, e.g. the use of the Fisher kernel [73].

2.2 Loss Functions for Parameter Estimation

As mentioned before, a risk function using the 0-1 loss corresponds to classification error rate,
which is what we typically use in evaluating a classifier. Ideally, the objective of training should
be consistent with that of evaluation, thus we should choose to use the 0-1 loss in training so that
we are minimizing exactly the classification error rate. However, this procedure is computationally
intractable for many classes of models; surrogates of 0-1 loss are often used instead in order to
analytically solve the optimization problem. Here we introduce a number of loss functions, as well
as their associated training objectives. The first group of loss functions are based on probabilistic
models, while the second group are based on the notion of margin. For a thorough study of loss
functions and risk bounds, refer to [57]. Since this section is concerned with parameter estimation,

f herein denotes model parameters.

19

2.2.1 Probability-based loss

Historically, there has always been a strong association between a statistical model and its training

objective [74]. Joint likelihood loss", defined as

Q(f(X),y) = —1Dp(X,y|f), (2.7)

is naturally, and most commonly, used by generative models such as Naive Bayes and HMMs. It
is worth noting that other loss functions can be applied to estimating generative models as well,
as will be discussed shortly. The resulting training objective using the joint likelihood loss is
m

m}gx % Z In p(xi, yi| f), which is generally known as maximum likelihood estimation (MLE) [67].
MLE aian:s1 to find parameters that best describe the data, and is statistically consistent under the
assumptions that the model structure is correct, that the training data is generated from the true dis-
tribution, and that we have an infinite amount of such training data. Moreover, in generative models,
the joint likelihood function can often be decomposed into independent sub-problems which can be
optimized separately.

The major flaw of using the joint likelihood loss is that the model structure we choose can
be wrong, and the training data is rarely sufficient. Since ultimately we desire good classification
performance, we should ideally design a loss function to achieve this goal. To this end, conditional

likelihood loss, defined as
Q(f(x),y) = —Inp(ylx, f), (2.8)

directly evaluates a model’s predication performance. The resulting training objective becomes
1 m
max — E In p(yi|xi, f). Typically we use this objective when training discriminative probabilistic
m
=1

1=
models, such as MLPs, MaxEnt models and CRFs. In such cases, the training is also referred
to as “maximum likelihood estimation”, though the “likelihood” here actually means “conditional

likelihood” rather than “joint likelihood”. Notice that we can also apply this loss function when
1 m
training generative models, where we maximize — Z (p(xi, uilf)/ Z p(xi,y|f)>, leading to a
m
i=1 y
discriminative training technique termed maximum mutual information estimation (MMIE) [65, 67,

"We use the term “joint likelihood” in order to distinguish from the “conditional likelihood” which will be introduced
shortly. Moreover, the loss is actually the negative logarithm of the joint likelihood, where we omit the adjectives for
simplicity

20

75]. Usually there is no globally optimal solution to this objective; stochastic gradient descent [76],
or, in some cases, the extended Baulm-Welch algorithm [77] can be utilized to find a local optimum.

Although MMIE demonstrates significant performance advantages over the traditional MLE
approach [66], it aims at fitting class posterior distributions rather than directly minimizing error
rate. The minimum classification error (MCE) method uses a loss function that are more consistent

with error rate minimization [66,68], e.g.,

QU0 =0 (a6 D) + 1] 55 explant.)] W) 29)

y'#y
where g, (x, f) = Inp(y|x, f), and o(-) is a sigmoid function that yields a smooth loss function.
The intuition behind is that the prediction will be correct as long as g, (x, f), in which y is the true
class label, ranks the highest among all g,/(x), ¥’ €); and we can achieve this by maximizing the

difference, from one side, between g, (x, f) and its opponents.

2.2.2 Margin-based loss

Margin-based loss functions follow a general expression Q(f(x),y) = Q(yf(x)), where y f(x) is
known as the margin. It is easy to see that for binary classification, Q(f(x),y) = I(yf(x) > 0)
is equivalent to the 0-1 loss, the minimization of which is NP-hard for many non-trivial classes of
functions [56]. We can, however, replace the indicator function with a convex function Q(), leading
to convex surrogates of the 0-1 loss. The main advantage of this is to simultaneously deal with
computationally feasible algorithms and to avoid overfitting [57]. Indeed, many machine learning
algorithms adopt such an approach. For example, hinge loss used in SVM [23, 78], logistic loss
used in logistic regression [8] and exponential loss used in boosting [79, 80] are all in the form of
Q(yf(x)), where their respective Q(-) are convex surrogates of the indicator function as shown in
Figure 2.1. Next we introduce several such examples.

First, the hinge loss is defined as

QU (), y) = [1 = yf(x),0[+ (2.10)

It is easy to see that the hinge loss is convex but not differentiable, and constrained optimization is

hence required to solve the optimization problem. This loss is historically used in training SVMs,

21

8 T :

—0-1

== logistic

- - -hinge
6F exponential -
4, -
2 Tl DIl]

Sl

0 \ —=
-2 -15 -1 -0.5 0 0.5 1 15 2

Figure 2.1: Convex surrogates of the 0-1 loss

and is recently utilized in discriminative training of structured generative models such as Markov

networks [69] and Gaussian mixture models [70].

Secondly, the logistic loss is defined as

1
1+ exp(—yf(x))

Q(f(x),y) =In (2.11)

This coincides with the form of the conditional likelihood loss when the conditional probability
p(y|x, f) uses a sigmoid function. Notice that in Figure 2.1, we actually use a scaled version of the

logistic function so that the function value equals one at the point zero.

The exponential loss commonly used in boosting [79, 80] is given by
Q(f(x),y) = exp{—yf(x)} (2.12)

Note that it is important to inspect whether Remp(f) converges to Ry« ,(f) with sufficiently
large m under these surrogate loss functions; and to find quantitative relationships between the

estimation error Ry,) (f) — Ry (f) associated with the surrogate loss functions and that

inf
feF
associated with the 0-1 loss. These issues have been comprehensively investigated in (to name a

few) [57,81, 82].

22

2.3 Generalization Error Bounds

Recall that in the standard setting of inductive learning, we desire to learn f* € argmin R,y . (f)-
ferF

As p(x,y) is generally unknown, we can instead minimize the empirical risk f € argmin Remp(f)
feFr

on a training set D,,. A fundamental question in machine learning is to ask if empirical risk mini-

mization (ERM) is consistent, i.e., whether

N P
Ry (/) = Inf Ry (f) (2.13)

This gives rise to the notion of strict consistency of empirical risk minimization. Here we refrain
from giving its formal definition as presented in [23], as this would deviate our discussion away from
the main theme. Instead, we present a theorem which provides a sufficient and necessary condition

for strict consistency of ERM, and we present this in our own notation.

Theorem 2.3.1 (Key theorem of learning theory [23]) Let there exist the constant a and A such
that for all functions f € F, and for a given distribution p(X, y), the inequality a < Ry, (f) < A
holds true. Then the strict consistency of the ERM principle is equivalent to the uniform one-sided
convergence of Remp(f) to Ryxy)(f), i-e., for any e > 0 and for any 6 > 0 there exists a natural
M such that for all m > M,

holds true for all f € F.

This theorem equates strict consistency with uniform one-sided convergence, and provides a simpler
(and sufficient) way to gauge the learning performance which is to use the (¢, §)-bound as shown in
Equation (2.14). The (e, §)-bound is also referred to as a generalization error bound.

Here we particularly assume the 0-1 loss function, i.e.,

Rox)(f) = Epxyll(f(x) #y)]
Ui (2.15)
Remp(f) = D U(f(xi) # wi)

i=1
Since R,y is finite, Theorem 2.3.1!is satisfied. Moreover, we desire a small Remp(f) as well

as small € and § values, so that we can guarantee a small upper bound on R, ,)(f). It has been

23

proven that the following inequality holds true for f € F,

Pf{Rp(x,y)(f) < Remp(f) + @(F, f, D, m, 6)} >1-4§ (2.16)

where ®(F, f, Dy,, m,0) is a capacity term indicating the generalization performance of f (the
lower the capacity the better the generalization performance). In general, larger m and ¢ each lead
to smaller ®(-), while larger F (in terms of some capacity measure which will be defined shortly)
leads to larger ®(-). There is a tradeoff inherited in the generalization error bound (2.16): as the
function space F expands, the empirical error rate Remp(f) decreases but the capacity term ®(-)
may at the same time increase, meaning that the decision function f fits the training data better
but this is more likely an overfit. An alternative and sometimes equivalent way to measure the
generalization performance of a learning algorithm is to inspect the sample complexity of achieving
an (€, 0)-bound, which is the minimum number of samples needed such that the bound (2.16) holds
true; and the upper bound on this number is often referred to as a sample complexity bound.

There has been a surge of interest in discovering different forms of the capacity term. In the
following two subsections we introduce VC (Vapnik-Cervonenkis) bounds [23] and PAC-Bayesian

bounds [83] respectively.

2.3.1 VC bounds

We begin by introducing several important measures describing the capacity of a function space F.
Here F can be either countable or uncountable. Here we assume that) = +1, i.e. the output of

f(+) is binary.

Definition N (F, D,,) is defined to be the cardinality of the maximum set of functions f € F which
yield different outputs [f(x1), f(X2),..., f(xm)]T (each output is a vector of m binary elements)

when restricted to a sample set D,,,.

This quantity measures the capacity of a function space F with respect to a particular sample set.
More accurately, it measures the number of ways that a function class can separate a specific sam-
ple set into two classes. It is easy to see that N'(F,D,,) is a non-decreasing function of m, and
that N'(F, D,,) < 2™ since m samples can yield at most 2™ different outputs. Furthermore, this

quantity depends on the choice of D,,,. For example, consider a set of m = 3 samples in the input

24

space X = R?, and assume F consists of affine functions. If x;, x2 and x5 are not collinear (i.e.
they do not lie on a single line), then N (F, D3) is 23 = 8. If, however, x1, X2 and x3 are collinear,
N (F,Ds) would be at most 6.

The concepts of the VC entropy and the annealed entropy, defined on the basis of N (F,D,,),
are measures of the “expected capacity” of a function space, which no longer depend on a specific

sample set D,,.
Definition VC entropy Hr(m) 2 Epx,p)[InN(F, Dpy)]
Definition Annealed entropy H3™" (m) 2n Epix,y) N (F, D))

These two concepts, however, are distribution-dependent, which are hard to evaluate since the sam-
ple distribution is usually unknown. The growth function is a capacity concept independent of the

sample distribution by taking a supremum over all samples.

Definition Growth function G £(m) 2 sup N(F,Dp).
Dy €X™ xYm
Notice that sup N (F,Dy,) is often called the shattering coefficient, and the growth func-
Dy EXM XYM
tion is simply its logarithm. It is easy to prove that

Hr(m) < H(m) < Gz(m) (2.17)

where the first inequality immediately follows Jensen’s inequality [84], while the second inequality
is obvious. These concepts provide a quantitative measure (though hard to compute) for the func-
tion space F. In fact, Vapnik derived different capacity terms ®(-) in Equation (2.16) using these
measures. Generally, given fixed m and §, ®(-) is a monotonically increasing function of Hx(m),
HE"M(m), or Gx(m).

Next we briefly introduce the “three milestones”of learning theory [23].

H
1. A sufficient condition for consistency of the ERM principle is lim M =0

m— oo m

: . o HEN(m)
2. A sufficient condition for a fast rate of convergence is lim ————~ =0

m— o0 m

3. The necessary and sufficient condition for consistency of the ERM principle for any distribu-

G
tionis lim 7;(771)
m—o00 m

=0.

25

Finally, we present another capacity concept h, or VC dimension, upon which an upper bound

of the growth function is further constructed.

Definition VC dimension h 2 max{m : Gx(m) = mlIn2}, or equivalently, the maximum number

of points that can be shattered by F.

It is proved in [23] that for m > h, the inequality Gz(m) < h(In % + 1) holds true, leading to the

well-known VC bound theorem:

Theorem 2.3.2 For any function space (countable or uncountable) F, and for any f € F, the

following bound holds true,

(2.18)

m

Pf{Rpoc,y)(f) < Remp(f) + \/haﬂ@m/h))+ 1n(4/5)} >1-6

There are nice properties about this bound: (1) distribution-independent — it holds true regardless
of the distribution p(x, y); (2) algorithm-independent — it holds true regardless of a specific choice
of f. (3) data-independent — it holds true regardless of sample values D,,,. The only relevant factor
is the VC dimension of F, a measure that reflects the capacity of the function space. The lower the
VC dimension, the faster the rate of convergence, and the convergence rate is uniformly bounded
for all decision functions in the function space. In other words, the capacity term in Equation (2.16)
is essentially ®(-) = ®(h(F), m,), which does not depend on specific f or D,,. These indepen-
dence properties, however, come at the cost that such a bound is generally loose compared with an

algorithm-dependent, or a data-dependent bound which we will discuss next.

2.3.2 PAC-Bayesian bounds

The PAC-Bayesian framework [60,83,85] combines the advantages of Bayesian methods with PAC
learning [86]. This approach inherits the main characteristic of a Bayesian approach by incorporat-
ing domain knowledge in the form of a Bayesian prior 7(f), f € F. Here we use what we call a
“standard prior” 7(f) to denote the prior in the conventional sense. The standard prior is chosen
before seeing any training or test data, which should be distinguished from the “fidelity prior” which
will be introduced in Chapter 4. Furthermore, the PAC-Bayesian approach provides a generaliza-
tion error bound without assuming the truth of the prior. The simplest PAC-Bayesian bound is the

Occam’s Razor bound, which is only valid for countable function spaces, i.e., | F| < occ.

26

Theorem 2.3.3 (Occam’s Razor bound [83, 85]) For any probability distribution p(x,y) where
the samples are drawn in an i.i.d. fashion, for any prior distribution 7(f) defined on a countable

function space F, and for any f for which w(f) > 0, the following bound holds true

Pr{Rp<x,y>(f> < Remp(f) + \/ —Inmlf) - 1“5} >1-34. (2.19)

2m

A proof of this theorem is provided in Appendix A.1, which utilizes the union bound theorem,
thereby limiting the use of the Occam’s Razor bound to countable function spaces. The general
capacity term in Equation (2.16) is ®(-) = ®(F, f,m, §), in contrast to the VC bound where ®(-) =
®(F,m,d). Here ®(-) is no longer a capacity measure of the function space but a minimum-
description-length-type measure of individual decision functions. Consequently, the convergence
rate can be different at different points in the function space.

Similar to the VC bound, Theorem 2.3.3 presents a tradeoff between selecting a model that fits
the data well and selecting a model with a high prior probability. This offers some insight into
how to choose a prior distribution 7(f) — we should always assign higher prior probabilities to the
functions which are a-priori viewed as likely to fit the data well.

One limitation of the Occam’s Razor bound is that it is only valid for countable function spaces.
McAllester’s PAC-Bayes bound for Gibbs classifiers [60, 83, 85] works for both countable and un-
countable functions. A Gibbs classifier is a stochastic classifier given by f ~ ¢(f), meaning that
f is drawn randomly from q(f), where ¢(f) is a posterior distribution of f given the training data

D, In this setting, we define the stochastic expected risk as

Eq(f) [Rp(x,y)(f)] = Eq(f) [Ep(x,y) [Q(f(X), y)“

and the stochastic empirical risk as

m

> Q(f(x,y)],

=1

1
m

Ey(p)[Remp(f)] = Eq(p)l

and McAllester’s PAC-Bayes theorem bounds the difference, from one side, between these two

quantities.

27

Theorem 2.3.4 (PAC-Bayes bound for Gibbs classifiers [83]) For any prior distribution 7 (f) and

any posterior distribution q(f), the following holds true,

Pr{ Ey(n Booea) (D)) < By [Remp(F)] + V Platilintr) ~Tno + tnm + 2} ~1-4.

(2.20)

Proofs of this theorem can be obtained in [83, 85, 87]. The general capacity term in Equation (2.16)
becomes ®(-) = ®(F, f, D,,, m,0). In other words, this is a data-dependent bound, since g(f) is
in general estimated from data. However, the theorem holds true for any posterior distribution, i.e.,
it does not constrain how to estimate ¢(f) from data. In the case of a countable function space, if we
commit our choice of decision function to one point f” in the function space, i.e. ¢(f) = I(f = f'),

we have

— N —
In7(f") ln5+lnm+2}>1_5 221)

Pr{Rp(x,y)(f/) < Remp(f') + \/ 51
which is similar to Theorem 2.3.3. For an uncountable function space, however, the KL-divergence
D(q(f)||m(f)) is not well defined when ¢(f) = 6(f = f').

Additionally, we are often interested in a Bayesian predictive classifier, which is a deterministic
classifier in the form of fpgyes(x) 2 Eq(p)[f (x)]. Note that under this definition the actual decision
function is sgn fpayes(x). Seeger [87] has stated that for f : X — {%1}, the expected error of a
Bayesian predictive classifier is bounded by twice the stochastic expected error of a Gibbs classifier

under the same posterior distribution. Mathematically,

Ryx) (fBayes) < 2Eq () [Rpe) ()], (2.22)

we provide our proof of this inequality in Appendix|A.2. Therefore, the expected error of a Bayesian
predictive classifier is less than twice the bound in Theorem 2.3.5. Furthermore, Schapire [80]
provided a margin bound on Bayesian predictive classifiers directly, which was further improved by

Langford [88-90] in the PAC-Bayesian setting. The bound in [88] is given by

Theorem 2.3.5 (PAC-Bayes margin bound for Bayesian predictive classifiers [88]) For any

prior distribution 7(f) and any posterior distribution q(f), and for any margin threshold 6 > 0,

28

the following holds with probability 1 — §:

= 6—2 —1Inéd
By L Fayes (%) % ZI U pages(x) <)]+ \/ D(q(H)]|7(f)) Inm +Inm —In
i=1

m
(2.23)
where [Bayes(X) = Eqp) [f(x)]

2.4 Regularization

The previous section shows an important fact in statistical learning: minimizing only the empirical
risk can lead to bad generalization performance when the sample size is small. The error bound
theorems, however, have offered us theoretically-justified guidance to avoid this problem. The two
types of generalization error bounds introduced in the previous section lead to two different, yet

unifiable, approaches to regularization.

2.4.1 Structured risk minimization

According to the VC bound theorem, if two models describe the training data equally well, the
model with the smallest VC dimension has better generalization performance. We thus can use the
VC dimension as a regularizer in minimizing the empirical risk. Let /3 C Fo C ... C F be a

sequence of increasingly large function spaces. On one hand, we have
h(F1) < W(F2) < ... < W(F)

since if F; can shatter m points, then F; 1 must shatter at least m points. On the other hand, it is

easy to see that

R > min R > .. > R
}21}11 emp(f)—?elb_.nz emp(f) ;Iél}l__ emp(f)

In practice, we would like to minimize a “regularized risk” which take into account both the em-
pirical risk and the capacity of the model. Mathematically, we want to find the index of a function

space such that

i = angmin |((min Remp() + 77|

J
where) is a regularization coefficient. We further use h(f) to denote the VC dimension of the

minimum function space that contains f, i.e., h(f) = h(F;/) where ;' = min{j : f € F;}. Then

29

we have

(min Remp f)> +A-h(F;) > min (Remp(£+ AR f)) (2.24)

feF; feF;

Taking a min operation w.r.t. j on both sides, the inequality turns into an equality which follows,

min ((i Renp()) +3-005)) = min (in (Remp() =200)

J J feF;

(2.25)
= }rg]g_ <Remp(f) +A- h(f))

One of the most successful examples that implement the idea of structured risk minimization is
the use of large margin hyperplanes [23, 78]. It is relatively easy to derive an upper bound of the
VC dimension of hyperplanes, and this upper bound can be readily used as a regularizer in ERM.
To see this, we first introduce a theorem regarding the VC dimension of hyperplanes in canonical

form with a proof (by Scholkopf [61]) provided in Appendix |A.3.

T

Theorem 2.4.1 [23,61] Consider hyperplanes w* x = 0 in canonical form w.r.t. {x;}I", i.e.,

min |wlx;| =1
(2

T

For any w, the set of decision functions f(x) = sgn w* x satisfying the constraint ||w|| < A has a

VC dimension satisfying
h < R?A?
where R = max ||x;]|.
7
Taking into account both the empirical risk and the VC dimension, the optimal hyperplane can

be found by solving the following constrained quadratic optimization problem [78],

A 1 &
. n 2 - .
vrglllynf 2 ol + m Zil i

subjectto & > 1 —y;((w,x;) +b) and & > 0.

(2.26)

Here ¢; are slack variables introduced to represent the hinge loss, i.e., & = |1 — y;((w,x;) + b)|+.
This problem can be solved using the Lagrangian formulation, and is eventually reduced to a dual

optimization problem where w and b are eliminated:

m 1 m
moz}x Zai — B Z Oéz‘Oéjyiyj<Xi;Xj>
i=1 i,j=1 2.27)

m

. 1
subjectto 0 < o; < Y and z;aiyi =0

30

The solution is given by w = Y ", a;y;x;. The resulting hyperplane is determined by those

training samples with nonzero «; values, known as support vectors (SVs).

2.4.2 Bayesian model selection

An alternative approach to regularization is to take the Bayesian view of the world. We view the
model f as a random variable and we specify a prior distribution 7(f) before seeing the training

data. The posterior probability of a decision function is given by

(Dl f)m(f)
p(Dm)

In the case of a single, deterministic classifier, we perform maximum a posteriori (MAP) esti-

p(f|Dm) = (2.28)

mation which is essentially a regularized optimization criterion:
f* = argmin (Remp(f) —Aln 7r(f)> (2.29)
fer
Here we substituted In p(D,,|f) with a general risk Remp(f) which can use any loss function de-
pending on the classifier of interest. Furthermore, we added a regularization coefficient to control
how much we trust our prior knowledge. Note that this criterion resembles structured risk minimiza-
tion except that — In 7(f) replaces h(f) as the regularizer. When the function space is countable,
this model selection algorithm is justified by the Occam’s Razor bound (Theorem[2.3.3) — in order
to guarantee a low expected risk, it is desired to select the model with both a low empirical risk and
a high prior probability. Although there is not yet known that there exists an analogy of the Occam’s
Razor bound for single, deterministic classifiers in uncountable function spaces, we will show in
Chapter 5/ that it empirically works well to use Equation (2.29) in learning such classifiers.
Similarly, for Gibbs classifiers, McAllester’s PAC-Bayesian bound in Theorem [2.3.5/ suggests
the following training objective:
07 () = argmin (B [Rema(1)] + AD(a(F)[7(1)) 230
A similar training objective can be derived for Bayesian predictive classifiers. For example, maxi-
mum entropy discrimination [91] seeks a posterior distribution ¢(f) that minimizes D(q(f)||7(f))
under the constraints that Eq() [Ep,,)[(vif(xi) —7i)]] > 0, which is theoretically justified by the

corresponding error bounds [88,90].

31

In both cases, the prior distribution 7(f) plays a crucial role in the generalization ability of a
decision function. Choosing an appropriate prior distribution, just as choosing a right sub-function-
space in structured risk minimization, can yield an estimation that attains a low empirical error rate
as well as a low capacity term. In fact, structured risk minimization can be viewed as a special case
of Bayesian model selection, where the functions f € F; are assigned higher prior probabilities
than functions f € F;11 \ Fj;, and where all functions f € F;,q \ F; are assigned equal prior
probabilities. Moreover, the choice of a prior distribution has been traditionally a compromise
between a realistic assessment of beliefs and choosing a parametric form that simplifies analytical
calculations. Certain forms of the prior are preferred due to their mathematical tractability. For
example, in the case of generative models, a conjugate prior 7(f) w.r.t. the joint sample distribution
p(x,y|f) is often used, so that the posterior p(f|x,y) belongs to the same functional family as
the prior. In Langford’s PAC-Bayesian margin bound [92], a Gaussian prior is chosen to simplify

mathematical derivations.
2.5 Information Theoretical Background

This section gives information theoretical basics that are necessary to understanding the rest of the
work. Information theory was originally presented by Shannon in his paper “A Mathematical Theory
of Communication”, though the discussion of this section is mainly based on Cover’s work [84].
Regarding the notation used in this section, we again use p(z) as a short-cut for px (X = x), and
we in general use scalar representations (e.g. x), but bear in mind that all concepts and theorems are
valid for vector variables.

The key concept in information theory is entropy, which measures the randomness of an event.
Definition The entropy of a random variable X € X’ is defined as H(X) = — E,,,[log p(z)].

If |X| < oo, X denotes the alphabet of X; otherwise X denotes the support set of X and p(x)
denotes the probability density function. Note that the term “differential entropy” and the symbol
h(X) are often used to represent the entropy in cases | X| = co. Here we ignore this distinction and
use H (X)) for both cases.

The conditional entropy measures the randomness of a random variable given another random

variable.

32

Definition The conditional entropy is defined as H(X[Y') = — E,(,) [log p(z|y)].

It is easy to derive the chainrule H(X,Y) = H(X|Y) + H(Y).

Definition The relative entropy, or the Kullback-Leibler (KL) divergence, between two distribu-
p(w‘)}

tions p(z) and ¢(x) of a random variable X, is defined as D(p()||q(x)) = E,)[log @

In the above definition, we use the convention that Ologg = 0 and plog% = oo. The relative
entropy satisfies many important mathematical properties. For example, D (p(z)||q(z)) > 0, where
the equality holds true iff p(z) = ¢(z) for all x € X. Also, D(p(x)||¢(z)) is a convex function of

p(z), as well as of ¢(x). Similarly, we define the conditional relative entropy as follows.

Definition The conditional relative entropy between two conditional distributions p(x|y) and g(x|y)

. B o PE1Y)
is defined as D(p(z|y)||q(z|y)) = Ep(z) [log q(x\y)]

The chain rule is also applicable to relative entropy: D(p(x,y)||q(x,y)) = D(p(x|y)||q(z|y)) +

D(p(y)llq(y))-

Next, we study the information theoretical quantities for Gaussian distributions. It is well known

that the Gaussian distribution maximizes entropy among all distributions with the first moment
equality constraints, and hence is a natural choice of the underlying distribution for many data gen-
erating processes. The entropy of a multivariate Gaussian distribution NV (x; 11, ¥) is 3 log(2me)?| 3,
where d denotes the dimensionality. The relative entropy of two Gaussian distributions follows

KL-divergence of normal distributions [93]: If p(x|0;) = N(x;u1,%1) and p(x|f2) =
N (x; 12, ¥2), where x € R?, then

X 1 d
DN (x; 1, B[N (x; p2, E2)) = 1 GETDJF tr (S155 " 4 (2 —)55 (e —M1))‘§
(2.31)

In particular, if 3; = 3o, the relatively entropy is a Mahalanobis distance between two Gaussian

means.

1
—(p2 — 1) 85 (2 —) (2.32)

DN (x; p1, 20) [N (x5 2, 22)) = 5

If we treat the relative entropy as a function of (g, 32), then its functional form equals that of

the negative logarithm of a normal-Wishart density on (u9, ¥2) plus a constant. To see this we write

33

the general form of a normal-Wishart density? as
-1 (a—d)/ Ty—1 1 -1
W™ (u, X|v, 7,0, B) o |X|” exp{——(—v)'x (M—V)}GXP{—§ tr(BX ")} (2.33)
where (7, v, a, B) are hyperparameters. It is easy to see that we have
DN (x; 1, Z1) | (3 2, B2)) = W (g, Salv, 7,0, B) + C

where =1, v=p,a=d+1,B=%and C = —%1n|21| — g. Moreover, if Yo = X1, the
relative entropy is proportional to the negative logarithm of a Gaussian distribution.

In fact, the relative entropy can be conveniently calculated if the probability density p(x|0),
given parameters 6, belongs to the exponential family of distributions, i.e., p(z]|0) = exp{a(z) +
b(0) + c(x)d(#)}. In particular, if ¢(x) = =z, the distribution is said to be in canonical form.
Many distributions, such as Gaussian, Poisson, binomial, and Gamma distributions, belong to the
exponential family in canonical form.

KL-divergence of exponential family distributions: If p(x|0;) = exp{a(z)+b(61)+c(z)d(61)},
and p(z|f2) = exp{a(z) + b(f2) + c(x)d(62)}, i.e. two exponential family distributions with the

same parametric form but with different parameters, then

DN (p(x[61)||p(x|62)) = |b(61) — b(62) — ZEZS (d(61) — d(62)) (2.34)
Proof
_ exp{a(w) +6(61) + (w)d(el)}
= Ep(z)[(61) = b(02) + c(z)(d (91) — d(0)] (2.36)
= 02~ b(62) ~ B — d(8) 237)
The last equality follows since for exponential family distributions E[c(x)] = — Z//EZ; B

Another useful result is the KL-divergence of normal-Wishart distributions.
KL-divergence of normal-Wishart distributions: If p(u, 2|\;) = W™ (u, X|u1, 1, a,%1)
and p(p, B[A2) = W, Blpz, 1, a, 3

DN (p(p, Z|A1)|[p(p, E[A2)) = gtr(zlﬁgl) - g(m —)2 e —) (2.38)

2Since X is a covariance matrix rather than a precision matrix, we actually use an inverse-Wishart density

34

In particular, if 3X; = Yo, we have

1 _
DN (p(S Ip(1 BlA2)) = 5 (12 = 1) 557 (2 = 1) (239)
Finally, we introduce several important inequalities that will be referred to in later chapters.

Theorem 2.5.1 (Jensen’s inequality [84]) If f is a convex function and x is a random variable,

then

By [f(2)] = f(Epo)la))

Using the fact that aloga is strictly convex, and applying Jensen’s inequality, we arrive at the

following theorem.

Theorem 2.5.2 (Log sum inequality [84]) For non-negative numbers, a; and b;, i = 1...n, we

have
n n n
a; D i G
E a; log — > g a; | log === —
=1 e bi (z‘l Z) ° 2 i1 bi

with equality zjf% = const.

7

Theorem 2.5.3 (Hoeffding’s inequality, Hoeffding 1963) Suppose X, ... X,, are independent
random variables with finite first and second moments. Furthermore assume that the X; are bounded;
ie. assume for 1 < ¢ < n that Pr (XZ- € [as, b1]> = 1. Then for the sum of these variables
S = X1+ -+ X, we have the inequality
2n2t?
Pr(S —E[S] > nt Sexp(—)
(5 = BlS] 2 nt) 21 (bi — ai)?

holds true for positive values of t .

35

Chapter 3

REVIEW OF PRACTICAL WORK ON ADAPTATION

There has already been a vast amount of practical work on adaptation in areas of automatic
speech recognition (ASR), natural language processing (NLP) and pattern recognition in general.

This chapter provides a brief literature review on techniques developed in these areas.

Practical methods of adaptation generally fall into two categories. The first category of methods
apply adaptation in the feature space to explicitly account for sources of variation. In speech recog-
nition, for example, to discover the sources of speaker variation, it is necessary to understand how
speech is produced. In fact, speech is produced as air is expelled from the lungs, pushed through
the vibrating vocal folds, and then "filtered” by the vocal tract (VT). The length of the VT has a
substantial effect on the spectrum of the observed acoustic signal, and is a major cause of speaker
variability. Vocal tract length normalization is a standard method in ASR that explicitly compensates
for the difference in VT length [94, 95]. This is often achieved by applying wrapping techniques
to the frequency axis. An analogous example in computer vision is illumination variation, which
has historically been a challenging problem in object recognition [96]. The difference in illumi-
nation between the training set and the test images can be accounted for by extracting somewhat
illumination-invariant representations, such as the quotient image [97] and the spherical harmonic
subspace [98].

Although feature-space adaptation is in general very powerful as it directly addresses the essence
of the problem, the design of which strongly relies on domain knowledge. In contrast, a second
category of methods apply adaptation in the model space without assuming any knowledge of the
cause of mismatch. Such methods are conceptually simple to develop, and are potentially applicable
to different types of adaptation problems. Essentially, model-space adaptation retrains or transform
unadapted model parameters to match the characteristics of the adaptation data, while applying
certain regularization to avoid overfitting. This category includes a large number of adaptation

techniques in areas of ASR, NLP and pattern recognition, as well as the work that will be developed

36

in this dissertation. The following text reviews some major model-space adaptation methods, and

overviews our proposed approach.
3.1 In Automatic Speech Recognition

The idea of adaptation has been largely investigated in ASR, especially for systems using continuous
HMMs where the observation distributions are represented by Gaussian mixture models (GMMs).
A major difficulty in speech recognition is speaker variability due to different vocal tract lengths,
accents and idiosyncrasies (as well as mismatch in channel and noise conditions). Speaker adapta-
tion, which enables the unadapted model to capture the characteristics of the target speaker using a
small amount of adaptation data, has become one of the crucial techniques that any state-of-the-art
ASR system cannot do without.

Maximum likelihood linear regression (MLLR) is one popular framework for adapting Gaussian
mixture HMMs [99,100], where clusters of model parameters are transformed through shared affine
functions. These transformations shift the means and alter the covariance matrices of the Gaussians
so that each HMM state is more likely to generate the adaptation data. During recognition, a speaker-
dependent transformation is applied to the unadapted model to generate a speaker-dependent model.
Formally, we use x; to denote the input feature vector of the i*" adaptation sample, and use y; and
k; to denote its hidden Gaussian mixture ID (or equivalently state ID) and hidden component ID
respectively. The Gaussian parameters are represented by f = (ty k, Xy.%), Where 11, 1, denotes the
mean of the k" component of the 4" Gaussian mixture; and similarly for X, ;. Furthermore, we
use a superscript ¢r to indicate unadapted model parameters, and we temporarily assume that all

Gaussian components share the same transformation. Mathematically, the adapted mean is given by

fy e = Ay +b=WE, (3.1)
where £ = [l il - 1ig 1]7 is the extended unadapted mean; and the adapted covariance
matrix is given by

Sy = HSI HT (3.2)

The goal is to find W and H that maximize the incomplete likelihood of the adaptation data, i.e.,

1 | FT W, H)
max np(Xi.,|f", W, H) (3.3)

37

The optimal parameters are found using an EM approach [63] which iteratively maximizes a lower

bound of the incomplete likelihood in Equation (3.3)

max SN Ly k(i) N (i fiy s Sy) (3.4)

y k=1

where L, 1. (7) 2 p(yi = y, ki = k|X1.m, f9). It is worth noting that covariance adaptation is
generally less effective than mean adaptation and is less commonly used [101]. Moreover, MLLR
adaptation can be applied in a flexible manner. For example, when the adaptation data is extremely
limited, we can apply a global transformation (W, i) to all Gaussian means and covariance matri-
ces; and when the adaptation is abundant, we use different transformations for different clusters of
GMMs. A standard approach is to use a regression class tree [102], which clusters model parame-
ters hierarchically and controls the number of transformations based on the amount of adaptation
data available.

A second important model-space adaptation technique is Bayesian maximum a posteriori (MAP)
[103-105], which involves the use of prior knowledge about model parameters. According to the

Bayes rule, maximizing the posterior probability p(f|x1.,) is equivalent to

max (lnp(xlsz) + lnp(f)> (3.5)

where p(x1.,|f) is the incomplete likelihood and p(f) is a prior distribution of f. There are three
key problems regarding MAP estimation [104]: (1) how to define the functional form of the prior;
(2) how to estimate the hyper-parameters of the prior; and (3) how to estimate model parameters
given (1) and (2). The first problem is typically solved by using the conjugate prior of the complete
likelihood so that the posterior belongs to the same functional family as the prior. In our case the
complete likelihood is a Gaussian, and its conjugate prior is given by Equation (2.33) which is

repeated below for convenience.

wt (/Ly,ka Zy,k|yy,ka Ty,ks Qy ks By,k)

(3.6)
oc B[wrm D2 exp{—T85 (g — vy 1) TS (- v)} exp{—5 tr(By xS}

Given such a prior, it is not difficult to estimate the model parameters using the EM algorithm, as

38

described in [104]. The updated mean and covariance matrix at each EM iteration are given by

g = Ty kVyk + Zj}l Ly,k’(.i)xz' 3.7)
Tyk + D iey Ly (2)

$ _ Byxt ZZZI Ly,k(i)(xi - ﬂy,k)(xi - ﬂy,k)T + Ty,k(Vy,k - /A‘y,k)(’/y,k - ﬂy,k)r% 8
y,k — _ d m L . -)
Ay k + ity Ly k(9)

It can be seen that the updated parameters are determined by two components, namely the hyper-
parameters and the adaptation data, and that 7, , serves as a weight associated with the kth com-
ponent of the y** Gaussian mixture. Now the remaining question is how to estimate the hyper-
parameters vy i, T, k, Gy, and B, ;. There are different way of doing this, depending on different
types of applications [103]. Since we are interested in speaker adaptation, these hyper-parameters
can be derived from the unadapted model parameters. Specifically, [103] proposed a set of estimates,

which are re-written in our notation as

Ty.k +1

ayp = . (3.9)

Uyk = Mgk (3.10)
T

By, = %’“zgjk 3.11)

The hyper-parameter 7, ;. are empirically estimated from data [103]. In practice, to increase robust-
ness, the values of 7, ;; are often constrained to be identical across all i and k (i.e. all Gaussians in
the system) [103]. Notice that a fundamental property of MAP adaptation is its asymptotical conver-
gence to maximum likelihood estimation when the amount of adaptation data increases. However,
without any structural assumption, MAP adaptation only updates parameters of those Gaussians that
have observations and thus converges slowly in a system with many Gaussians.

There are various techniques to combine the structural information captured by linear regression
with the prior knowledge utilized by Bayesics. Maximum a posteriori linear regression (MAPLR)
and its variations [106—108] improve over MLLR by assuming a prior distribution on affine trans-
formation parameters. Mathematically,

mas <1np<xl:m|f", W, H) + o p(W, H)) (3.12)

)

Again, conjugate priors p(W) and p(H) (assumed independent) are typically used, which are in this

case Wishart distributions.

39

Additionally, instead of using point estimates of the transformation parameters in prediction,
researchers have been applying full Bayesian inference in some situations to enhance the robustness
of adaptation [109-111]. Specifically, let T" represent some transformation applied to the unadapted
model f", eg., T = (W, H) in the case of MLLR. At test time, there are two ways of com-
puting the posterior probability of a state sequence given an input sequence. One is to compute
P(Y1:m|X1:ms fir T) where T is a point estimate of the transformation parameters learned using
methods like MLLR or MAPLR. The other way is to apply full Bayesian inference which marginal-

izes out the transform parameters as follows,

p(y1;m|X1:m7 ftr) = /Tp(ylzmxlzma ftr’ T)Q(T) (3.13)

where ¢(7T') is a posterior distribution estimated from the adaptation data. This latter approach is in
general more robust to estimation and modeling errors when only a limited amount of adaptation
data is available [109, 110].

Another important family of adaptation techniques are conducted in the framework of speaker
adaptive training (SAT) [112]. This framework utilizes speaker adaptation techniques, such as
MLLR or MAPLR, during training to explicitly address speaker-induced variations. Specifically,

SAT jointly estimates a compact unadapted model fI" and a set of speaker-dependent transforma-

tions 71, T2, ..., TX (applied to f/") that maximize the likelihood of all speaker-specific training
sets x5 i.e.
K
k tr k
L ; Inp(xy., | £, T%) (3.14)

Since speaker variability has been explicitly accounted for by the transformations in training, the
resulting f&" only needs to address intrinsic phonetic variability and is hence more compact than a
conventional speaker-independent model. During recognition, fX" is treated as the unadapted model,
and a transformation for the target speaker is estimated using the adaptation data. SAT is in fact a
practical application of multi-task learning we introduced in Chapter 1.

There are a few extensions to this framework based on the notion of speaker clusters” [113,
114]. For example, [114] proposed cluster adaptive training where all Gaussian components in
the system are partitioned into R Gaussian classes, and all training speakers are partitioned into

P speaker clusters. It is assumed that a speaker-dependent model (either in adaptive training or in

40

recognition) is a linear combination of cluster-conditional models, and that all Gaussian components
in the same Gaussian class share the same set of weights. Specifically, for “model-based clusters”
[114], the adapted mean of a Gaussian component (indexed as (y, k) for consistency with earlier
equations) is given by
P
fiyge = AWk (3.15)
p=1

where “Z, & 18 the mean from the pt" speaker cluster, A, isits associated weight, and (y, k) € {1..R}
indicates which Gaussian class the Gaussian component (y, k) belongs to. Similarly, for "transform-

based clusters” [114], the adapted mean of a Gaussian component is given by

P

iy = AR WPl (3.16)
p=1

where £ is the unadapted mean, and W7 is the affine transformation from the p'* speaker cluster
and)\;(X’y) is its associated weight. In both cases, we want to estimate the class-conditional para-
meters, i.e. ,u; r or W7, and the weights A}, that maximize the likelihood function as expressed by
Equation (3.4). The only difference is that the parameters /i therein is replaced by Equation (3.15)
or (3.16). There is no simple solution to jointly estimating the cluster-dependent parameters and the
weights; an iterative approach is typically used where one set of parameters are updated while the
other set of parameters are fixed [114].

In a similar spirit, eigenvoice [115] also constrains a speaker-dependent model to be a linear
combination of a number of basis models. The difference is that it creates a speaker-dependent
supervecctor by concatenating the mean vectors of all HMM Gaussian components, then performs
principle component analysis on the supervectors of all training speakers, producing the so-called
eigenvoices. During recognition, a new speaker’s supervector is a linear combination of eigenvoices
where the weights are estimated to maximize the likelihood of the adaptation data. Eigen-analysis
also has been applied to a transformed feature space using the “kernel trick” [116], or applied to a

space of affine transformations which leads to eigen-space MLLR [117,118].

3.2 In Natural Language Processing

In NLP applications, the domain adaptation problem arises very frequently as great human efforts

have been spent annotating text resources for morphological, syntactic and semantic information

41

[119]. This section reviews a few model-space algorithms for domain adaptation.

First, a simple approach to n-gram language model adaptation is Bayesian MAP adaptation
[120], as shown in Equation (3.5). In n-gram language models, the underlying goal is to produce
conditional probability representations of the form p(w; = j|h), where wy € {1..j} is the word at
position ¢ and h; is the history. In a trigram model, for example, h; = (w¢—1, w;—2). For each value
of hy = h, we define w, 2 p(wy = jlhy = h) for simplicity, and obviously Z;V:1 wjip = 1. The

conjugate prior for this distribution is the Dirichlet distribution [121]

N
i—1
9(W1ihs Walhs - - WNlL, @2, .o QN o wjafh : (3.17)
j=1
and the adapted n-gram probabilities are computed as
. (aj —1) +c(h, j)
Wj = N N .
23:1(043' -1)+ 23:1 c(h, j)

where c(h, j) is the expected count of the ngram (h; = h,w; = j) in the adaptation data. The

(3.18)

unadapted model parameters can be utilized in choosing the hyperparameters of the Dirichlet distri-
bution, as was discussed in [120].

The use of a prior distribution on model parameters has also been applied to the adaptation of
conditional models. Here again we use x; to denote an input feature vector and use y; to denote
its label. In NLP applications, x; is usually word-level features such as word IDs and context word
IDs, and y; can be a part-of-speech tag, a capitalization indicator, or a name entity indicator depend-
ing on specific applications. The goal is to adapt the conditional model parameters to maximize
P(f1X1:m, Y1:m) X D(Y1:m|X1:m, f)p(f) W.r.t. the adaptation data. For example, [122] presented
an algorithm for adapting conditional maximum entropy models for automatic capitalization. This
algorithm incorporates the information from the unadapted model by using a Gaussian prior on the

feature weights w;, j = 1..N, resulting in the following adaption objective,

(y —u)?
max <lnp(ylzm|xlzm7w1:N) - Z]2]) (319)
Wwi1:N] J]

where wy.y are the unadapted feature weights.
Furthermore, analogous to speaker clustering in speech recognition, there are mixture model

based approaches to both n-gram model adaptation [123] and conditional maximum entropy model

42

adaptation [119]. In a recent work [119], three distributions are modeled in parallel, an in-domain
distribution p(¥) (x,), an out-of-domain distribution p{®) (x,), and a general distribution p9) (x, /).
The training distribution is assumed to be a mixture of p(¥) and p(9); and the target distribution is
assumed to be a mixture of p(®) and p(9). In both cases, the mixture component identity is modeled
using a hidden variable z. Letting superscript tr and ad denote training and adaptation samples

respectively, the learning objective is given by
ma (0 p(ot i) + (ot . 1))

n m
_ m?x(zln S p(ul Al = o)43 I Y plyd, 20 = o], >);
=1

i=1 ze{ig} z€{o,g9}
(3.20)

and the optimal parameters are estimated using the conditional EM algorithm [124].
It is worth mentioning that feature-space adaptation techniques, which capture intrinsic struc-
tures at the syntax and semantic level, have drawn increasing attention in parsing, part-of-speech

tagging and other NLP applications [125, 126], though they are beyond the scope of this work.
3.3 In Pattern Recognition

So far, we have seen work on adaptation of Gaussian mixture HMMs (for acoustic modeling), of n-
gram models (for language modeling) and of conditional MaxEnt models (for POS-tagging or other
NLP applications). There are many other statistical models that are actively used in various pattern
classification tasks, such as support vector machines (SVMs) and multi-layer perceptrons (MLPS).
Here we overview adaptation techniques developed for these classifiers, and more descriptions will
be given in Chapter 5 along with the discussion of our work.

The adaptation of MLPs has been tackled from a meta-learning perspective. Both [31] and [26]
proposed to construct MLPs whose input-to-hidden layer is shared by multiple related tasks. This
layer represents an “internal representation” which, once learned, is fixed for future learning. In
this regard, MLP adaptation amounts to training the hidden-to-output layer for the target task while
keeping the input-to-hidden layer “representation”. This approach has been explicitly applied to
adaptation tasks in [127]. Another popular approach to MLP adaptation is adding augmentative
layers whose parameters are estimated from the adaptation data. The linear input network approach

[128,129], for example, applies a linear transformation to the input space, where the transformation

43

parameters are learned using the adaptation data.

SVM adaptation, on the other hand, is typically done by combining the support vectors from
the unadapted model with a subset of the adaptation data, and then retraining an SVM using the
combined data [130-133]. Specifically, [130] combined the old SVs with the adaptation samples
mis-classified by the unadapted classifier, while [131] chose to use the correctly-classified samples
instead. In [132] and [133], the old SVs and the adaptation data were weighted differently in the
optimization objective. Chapter 5 will give a detailed review of these algorithms and discuss how
they relate to our proposed approaches.

In summary, adaptation algorithms have been developed for a variety of statistical models, in-
cluding Gaussian mixture models (GMMs), hidden Markov models (HMMs), support vector ma-
chines (SVMs), multi-layer perceptrons (MLPs) and conditional maximum entropy (MaxEnt) mod-
els, each of which has been approached differently. While these algorithms have demonstrated em-
pirically the effectiveness of adaptation, it is curious to ask whether there is a principled approach
that unifies these different treatments. Moreover, a more fundamental question would be whether
we can relate the adaptation error bound to the divergence between training and target distributions.

We seek answers to these questions in the next chapter.

44

Chapter 4
A FIDELITY PRIOR FOR CLASSIFIER ADAPTATION

Recall that (x,y) € X x {£1} is a pair of (input, label) variables with a joint distribution
p(x,7). Inductive learning aims to learn a decision function f € F that not only correctly classi-
fies observed samples drawn from p(x,y), but also generalizes to unseen samples drawn from the
same distribution. In other words, we desire to learn an f that minimizes the true risk R x ,)(f)
under certain loss function Q(-). In practice, this is often approached by minimizing the empiri-
cal risk Remp(f) on a training set, while utilizing certain regularization strategy to guarantee good
generalization performance, as was discussed in Chapter 2.

The target (or test-time) distribution, however, is often different from the training distribution.
Sometimes, the difference only resides in the input distribution p(x), while the conditional relation
p(y|x) remains the same. In several learning paradigms, this type of difference has been partially
accounted for by explicitly taking into account the test input distribution [19,134]. A learning setting
that has not received as much theoretical attention is that of “adaptive learning”, which studies a
more general case where both p(x) and p(y|x) at test time vary from their training counterparts.
This is in fact a common assumption in ASR, where the training set consists of enormous speakers
but the application only sees one speaker at a time. Another distinctive assumption of adaptive
learning is that while there may be essentially an unlimited amount of labeled training distribution
data, only a small amount of labeled adaptation data drawn from the target distribution is available.

To formally define the adaptive learning paradigm, we let p*"(x,%) and p®?(x,y) denote the
training and target distributions respectively, and we assume that two sources of information are

given in a priori:

1. An “unadapted classifier” f* € argmin;cz Ry (f), which is trained using a sufficient

amount of training data (but this data is in general not preserved for adaptation);

2. “Adaptation data” D%l = {(x4,9:)| (x4, 95) ~ p“d(x, y) .

45

The goal of adaptation is to produce an “adapted classifier” f (a point estimate) that is as close as

possible to our “desired classifier”,

fad € argminfe}— Rpad (f)

In this setting, adaptation is supervised, as both training and adaptation data are labeled; it is also
inductive, as the adapted classifier is desired to generalize to unseen data drawn from p®?(x, /). But
adaptation can be unsupervised or transductive with modified assumptions. There are two extreme
strategies for learning f . First, we can train a classifier that minimizes the empirical risk Remp(f)
on (x;,y;) € D, but this might cause overfitting with small m; even if we apply certain forms
of regularization to reduce the variance, the estimate f might have a high bias if the regularizer
makes “wrong” preferences. At the other extreme, we can simply let f = £, but this might yield a
high empirical risk on D¢ (again due to high bias), especially when p®?(x, 3) significantly differs
from p'"(x, y). This work seeks a strategy between these two extremes in which one would hope to
achieve better performance.

As was reviewed in Chapter 3, there has been a vast amount of practical work on adaptation in
the areas of ASR, NLP and pattern recognition, involving a variety of generative and discriminative
classifiers. It is interesting to ask whether there is a principled and unified approach to adaptation
that is applicable to different types of classifiers. Moreover, a more fundamental question would
be whether we can relate the adaptation sample complexity to the divergence between training and
target distributions. This chapter makes an attempt to answer these questions. We utilize the concept
of “accuracy-regularization”, where we seek a classifier that, on one hand, attains low empirical risk
on adaptation data, and on the other hand, has good generalization ability as measured by a regu-
larizer. Specifically, we use a Bayesian “fidelity prior” as the regularizer, which leads to principled
adaptation strategies for a variety of classifiers. Furthermore, in the PAC-Bayesian setting, this prior
relates the adaptation error bound (or sample complexity bound) to the divergence between training
and target distributions. The rest of the chapter is organized as follows. Section 4.1 introduces our
proposed fidelity prior; Section 4.2 and Section 4.3 discuss its instantiations for generative and dis-
criminative classifiers respectively; and Section 4.4/ provides PAC-Bayesian error bound analysis.
Throughout this work, we use the symbol ’¢7’ to indicate parameters of the unadapted classifier and

use “ad’ to denote parameters of our desired classifier for the target distribution.

46

4.1 A Bayesian Fidelity Prior

We approach the adaptation problem from a Bayesian perspective by assuming that f itself is a ran-
dom variable with a “standard” prior distribution 7r(f) (which is chosen before seeing any training
or test data, usually based on domain knowledge), where 7(f) is defined on a function space F (ei-
ther countable of uncountable). In adaptation, we utilize the concept of “accuracy-regularization”,
where we minimize the empirical risk on the adaptation data while maximizing a fidelity prior
Pad(f) (which will be defined shortly) as follows,

?1612 Remp(f) — Anpgg(f)|- 4.1)

Note that both 7 (f) and pgq(f) are Bayesian priors; the difference is that the former is chosen
before training the unadapted classifier, whereas the latter is chosen after the unadapted classifier is

obtained. Specifically, the fidelity prior is defined as

I psa(f) 2 Byer ey I (15, 9)] + 7 4.2)

In this definition, p'" (x, y) again is the training distribution, p(f|x, y) is the posterior probability of a
classifier given a sample, and +y is a normalization constant such that pgq(f) sums to unity. This prior
essentially can be viewed as an approximate posterior of a classifier given a training distribution.
This resembles the idea of the hierarchical Bayes approach, e.g. [33]. The key difference is that
the fidelity prior is an expected log posterior of a classifier given a sample, while in [33] the prior
was the posterior of classifier given a specific sample set. The reason we choose such a prior is
that, as will be seen shortly, prq(f) incorporates information from both the standard prior 7(f)
and the unadapted classifier f”, and that it assigns higher probabilities to classifiers “closer to”
ft". More importantly, the choice of this prior analytically relates pgq(f°?) (the prior probability of
the desired classifier), and hence the generalization error bound at ¢, to the divergence between
training and target distributions. Our adaptation objective in Equation (4.1), therefore, becomes a
tradeoff between the goodness of data fitting and the fidelity to the unadapted classifier. This fidelity
prior leads to a unified adaptation strategy applicable to a variety of classifiers. Next, we discuss its

instantiations for generative and discriminative classifiers respectively.

"We called it a "divergence prior” in [48]

47

4.2 Generative Classifiers

We first explore the instantiation of pgq(f) for classifiers using generative models. In such a case,
the function space F consists of generative models f that describe the sample distribution p(x, y| f)
(here we slightly abuse notation by letting f denote a generative model instead of a decision func-

tion). The classification decision is made via
argmax Inp(x, y|f)
yey
If we use the joint likelihood loss (Equation (2.7)), then the unadapted model

ftr € arfgemfin Rptr(x7y)(f)

is the true model generating the training distribution, i.e., p(x,y|f*") = p!"(x,y). Similarly, we
have p(x,y|f*) = p®¥(x,7). Note that by doing this, we implicitly assume that our function
space F contains the true generative models in both cases, which is standard in PAC learning [86].

Furthermore, applying Bayes rule, the posterior probability in Equation (4.2) can be expressed as

oyl H(f) G ylf)m(f)
p(x,y) S Gyl f)m(f) df

p(flx,y) = (4.3)

where 7(f) is again the standard prior chosen before seeing the training data. Plugging Equa-

tion (4.3) into (4.2) leads to the following theorem,

Theorem 4.2.1 For generative classifiers, the fidelity prior defined in Equation (4.2) satisfies

—Inpga(f) = D(f(x ylf")llpGx,ylf) —Inw(f) - B (4.4)

where 3 > 0 is a constant.

Proof

() =~ [plxylf")Inp(7lx) dxdy - 7
— x tr np(x,y|f)7r(f)‘p(x,y]f”’)
- /p() Il p(x, y|fr) p(%,y)
= D(p(x,ylf)p(x,ylf)) —nx(f) = D, y|f)llp(x,9)) =~

Jdxdy — 4.5)

48

Letting 8 = D(p(x, y| /") [p(x, y)) + 7, we have

1= / paa(f)df = / exp{—D(p(x, yl /7). 1)) + mna(f) + B} df
F

(4.6)
< [ewln(s) + By df =
f

The inequality follows that D (p(x, y| f1")||p(x, y)) > 0. Furthermore, since D (p(x, y|f")||p(x,v)) =

0 is only achieved at f = f'" in the integral, the inequality 3 > 0 is strict.

This fidelity prior is essentially determined by the KL-divergence between the sample distribu-
tion generated by the unadapted model and that generated from the model of interest, and it favors
those models similar to the unadapted model. In particular, we inspect the prior probability of our
desired model, i.e., In pgq(f2?) = —D(p'"|[p®®) + In7(f°?) + 3, from which we can draw some
intuitive insights about why using the fidelity prior would help. As implied in the above equation,
if D(p'||[p®) < B, we have pgsq(f?4) > m(f9), and thus we are more likely to learn the desired
model using the fidelity prior than using the standard prior. Since 3 > 0, for any f!", there must
exist distributions p®? for which the above statement is true. In Section 4.4, we will elaborate on
this implication from an error bound perspective.

Consequently, our adaptation objective for generative classifiers becomes

min Remp(f) + AD(p(x,ylf)lp(x, ylf)) = An(f) 4.7)

This is similar to the objective in [93, 135] for iterative training of GMM and HMM parameters.
The key difference is that [93, 93] takes a frequentist approach where the KL-divergence is treated
as an “entropic distance”, while we take a Bayesian approach where the KL-divergence is derived
from a prior distribution of the classifier. When 7(f) is uniform?, this objective asks to minimize
the empirical risk as well as the KL-divergence between the joint distributions.

In the following text, we discuss instantiations of the fidelity prior and the resulting adaptation
objectives for specific sample distributions. We assume that p(x, y|f") and p(x, y|f°?) belong to
the same distribution family (e.g. Gaussian distributions) but with different parameters. In learning
the adapted model, we keep the parametric form of the model and search for the optimal parameters.

Hence f here is represented by model parameters.

2 Although improper on unbounded support, a uniform prior does not cause problems in a Bayesian analysis as long
as the posterior corresponding to this prior is integrable.

49

4.2.1 Gaussian models

The KL-divergence, and hence the fidelity prior, can be expressed analytically if the class-conditional
distributions are Gaussians, i.e., p(x|y, ") ~ N(x; i, X4) and p(x|y, f) ~ N(x; 1y, 5y). We
also define the class prior probabilities p(y|f*") = w} and p(y|f) = w,. Thus f is represented by

(wyaﬂyvzy)-

Corollary 4.2.2 For class-conditional Gaussian models, the fidelity prior psy(f) defined in Equa-

tion (4.4) satisfies

WIS,) .
- lnpﬁd(f) = = In tg{,‘ + tr (E:f/rzy ! + (,uy - :U“Zn)TZy 1(Ngtf)) —d
25 sy

tr (4.3)
w
+> WL —Inn(f) -3
y “y
where (3 > 0. In particular, if w, = wy , Dy = Y we have
1 r r—1 T
—Inppa(f) =Y 5wy Gy = 1)) Sy (g —) — () = 8 (4.9)

Y

Proof Applying Theorem4.2.1, we have

—Inpaa(f) = DG ylf)llp(xylf) —Inz(f) - 6
= D(p(xly, f")llp(xly, f)) + Dyl f)pylf)) - lnﬁ(f)—ﬂ

= D W DN (x; ply, SN (% 1y, 5 +Zw“"1n —Inw(f) - B
! (4.10)

Further application of Equation (2.31) proves the corollary. [|

When 7(f) is uniform, we can discard it and renormalize pgq(f). Therein, the prior distribution
of the mean and covariance matrix of a conditional Gaussians becomes a normal-Wishart distrib-
ution, as shown in Equation (2.31). This prior distribution has long been used in MAP adaptation
of Gaussian models for speech recognition [104] due to its nice mathematical properties as a con-
jugate prior; here we have derived it from the fidelity prior. If w, = w?tf, Yy = EZ, the problem
becomes to adapt Gaussian means only, and the fidelity prior becomes a joint Gaussian with a block
diagonal covariance matrix on the concatenated means [uf’;, p'"]T. This implies that the accuracy-

regularization optimization objective for Gaussian mean adaptation asks to minimize the negative

50

log likelihood as well as a Mahalanobis distance from the unadapted means (a generalized /5-norm).

This objective has a simple, closed-form solution since both terms are quadratic.

The above corollary can be easily extended to any class-conditional distributions that belong to
the exponential family, i.e., p(x|y, f) = p(x|0y) = exp{a(x) + b(8,) + d(6,)c(x)} where 0, is the
parameters describing the y*" class-conditional distribution, and p(y|f) = w,,. Thus f is represented

by (wy, 6,). The KL-divergence can be conveniently calculated using Equation (2.34)

V(;y)

D(p(x,yl.f")lp(x, yf)) Zw” o)

(d(6y) — d(617)) — (b(By) — b(6!T)) +Z wlr ln
This is a general form applicable to many well-known distributions including the Gaussian models

we discussed above.

4.2.2 Mixture models

In practice, mixture models are more useful for their ability to approximate arbitrary distributions.

Mathematically, p(x|y, f) = Z ¢y kD(%x|0y.1), Where ¢, ., kK = 1..K, are component responsibili-
k
ties for class y, and 6, ;, are model parameters for the k" component in class y. Furthermore, as in

the previous case, we let p(y|f) = wy. Thus f is represented by (wy, ¢y k, 0y 1). There is no close-
form solution to the KL-divergence of mixture models. However, we have the following corollary
which offers a lower bound on the fidelity prior (i.e., an upper bound on — In pg4(f)). The same
result can be found in [93, 136, 137].

Corollary 4.2.3 For class-conditional mixture models, the prior psq(f) defined in Equation (4.4)
satisfies
—Inpga(f) < ZW" Z wie D(p(x10,7) [p(x10y 1))
r tr 4.11)
tr t'r‘ 1 y trl 1 o
+zy:wyz e I —— +Zw nwy nr(f)— 0

Cy,m(k)

where 3 > 0 and (m(1),...,m(K)) is any permutation of (1, ..., K).

51

Proof Using the log sum inequality (Theorem 2.5.2)), we have

D(p(x, y|f")lp(x, 91 £))
= D(p&|y, f)pxly,) + D@yl)pylf))

Zk Ctrkp(xwtrk) wtr
— wt’r‘/ (X gt’r') In Y, Y, dX + wt'r‘ In 7@!
Z Cy P (X[0y) S Cy,kp(x|0y, Z y
tr 9t
Zw”/ ykp x]%’:k)l S d +Zwt’"ln

Cy,m(k)P (X|9y m(

= Zwtrz i (X\G P[0y k) +Zw”2 kln +Zwtrln—

k Cy,m(k)
(4. 12)

IN

Applying Theorem 4.2.1/ completes the proof. |

This corollary holds for an arbitrary alignment m (k) of the mixture components. We can always
choose the alignment, based on the similarity between the mixture components, that yields the

minimum KL-divergence. In other words, at each EM iteration, we need to find

tr
m(-) —argmln (Zwt’"z i (x|c9 P(X10y k) +Zwtrz klnk>
(k)

In fact, if we initialize f = f® which is a common practice in adaptation, we can empirically
assume that m(k) = k.

Moreover, The corollary implicitly assumes that K, the number of components per mixture, is
fixed, but this can be easily extended to the case where K grows or shrinks during adaptation. Sup-
pose that the adapted model is desired to have L components per mixture (where L # K), whose pa-
rameters are initialized either from the unadapted model or from the adaptation data. With other con-
ditions unchanged, evaluating the fidelity prior is again reduced to computing D (p(x, y| f")||p(x, y|f))
as in Equation (4.12) except that the number of mixture components of p(x|y, f) changes from K
to L. To this end, we first compute the least common multiple of K and L, denoted as M. Then
we “clone” each component in f" into M /K copies, each with a scaled component responsibility
(K/M)cZ”k Likewise, we clone each component in f into M /L copies and scale the responsibili-
ties accordingly. In this way, the number of mixture components becomes equal, and the inequality
in (4.12) still applies. Note that in adaptation, we need to tie the clone components of f to keep their

parameters identical, and we merge them back to L components when adaptation finishes.

52

The above result offers an upper bound on the KL and hence a lower bound on the fidelity prior.
We can replace — In pgq(f) with this lower bound in the accuracy-regularization objective in Equa-
tion (4.1) in learning mixture models. In particular, we can derive such a regularizer for Gaussian
mixture models where only Gaussian means are adapted. For class-conditional Gaussian mixture
models with fixed (across training and adaptation) class prior probabilities wfj", fixed component re-
sponsibilities cé’jk, fixed covariance matrices Egk and a fixed alignment m(k) = k, the regularizer

is of the form
1 1
D59 D okl =) 'S (s —) — o (f) = (4.13)
Yy Kk

4.2.3 Hidden Markov models

A hidden Markov models (HMM) is a generative model describing two statistically dependent ran-
dom processes. The first is an observable process {x1, X2, ... }, and the second is a homogeneous
hidden Markov process {y1,y2, . . . }, where y; takes values in a finite state space Y = {1,2,...,n}.
Note that we use such notation for consistency with the rest of the work. In an HMM, we have the
conditional independence statements x; 1 {x1.4—1,y1.¢—1 }|y: and yrp1 1L {x1.4—1,y1:t—1}|ys. Here
Al B|C means that A is independent of B given C. The joint likelihood of all random variables,

as mentioned in Chapter 2, is given by

p(X1, X2, .., X7, Y1, Y2, yrlf) = Py Gty £) TTs PWelye—1, £p(xelys, f)

(4.14)

The standard parametric representation of an HMM is f = (7, A, B). The parameter 7 is a row
vector of state prior probabilities, 7 = [w1, . ..,wy], Where w; = p(y1 = i|f); A = (a; ;) is a state
transition probability matrix where a; ; = p(yi+1 = jlyr = i, f); and B = {b1,...,b,} is a set

where b; represents the observation distribution of state j, i.e., b;(t) 2 p(x¢|yr = 1, f). We further

define a number of KL-divergences defined using 7, A and B respectively.
A - t wir
D tr 2 tr 1 [
() 2 3w

n tr

a:.

tr ,J

> aiin -t
j=1

DOI|bi) = D(p(xefol)|Ip(xelb:))

D(aj"[as)

53

The KL-divergence rate between two HMMs is defined as

1
Jim = D(p(xrr | 1) lp(x1r|f)) (4.15)

To study this quantity, we first inspect the KL-divergence w.r.t. a finite sequence of observations.

D(p(xv.r|f*)|lp(x17|f))
= Dlplxursrl) llpGer el f) = Dol) Iptnarlxr £) o
< D(p(xvr, vzl) lpxir, yirlf))
= D(p(xvrlyrr, fO)llpxerlyir, £) + D@ f7)p(yir] 1))

It has been proved by induction [136, 138] that the above is further upper bounded by

T-2

D(x'||m) + 7' (Z(A““)t> (da+dp) + (AT ldp 4.17)
t=0

where d4 = [D(a¥"||a1)..D(a!"||a,)]T, and dg = [D(b{7||b1).. D (6L ||by)] T .
With modest assumptions, Equation (4.17) can be plugged into Equation (4.15) to obtain an
upper bound on the KL-divergence rate of HMMs; the key is that the bound has to be well defined

when T" — oo. If the Markov process is stationary, i.e., there exists a stationary distribution vector

v such that v A = v™ and lim 77 A* = 7, then [136] proved that

t—o00

lim 1 |:D(p(X1:Tftr)Hp(xlzT|f)):|

T—oo T
T-2
. 1 tr tr tryt tr\T—1 4.18
< jim D" |+ 7 <;<A> (da + d) + (A)Tdy 4.18)

= 7"(da +dp)

Furthermore, [138] extended this derivation to left-to-right HMMs with final non-emitting states,
which is a common setting in speech recognition. Under such conditions, [138] proved that the KL-
divergence (rather than the KL-divergence rate) between two HMMs is well defined and is upper

bounded by
dim D(p(xir| /™) lpGerl f) < D' [[m) + 77 (1= A™)Hda+dp) (@419)

We can utilize this bound in our regularized adaptation objective for HMMs.

54

4.3 Discriminative Classifiers

Generative approaches are often suboptimal from a classification objective perspective, as they ask
to solve a more difficult density estimation problem. Discriminative approaches, which directly
model the conditional relationship of class label given input features, often give better classification
performance. The classification decision is made via Equation (2.5) or Equation (2.6). As mentioned
in Chapter 2| one class of discriminative classifiers, including MLPs, MaxEnt models and CRFs, use
probabilistic models p(y|x, f). Although other classifiers such as kernel methods in general do not
explicitly model posterior probabilities, their outputs can be given probabilistic interpretations. For
example, there have been approaches to fit SVM outputs to a probability function (e.g. sigmoid) to
enable post-processing [139]. Here we assume that p(y|x, f) exists in all cases.

Analogous to our discussion on generative classifiers, if we use the conditional likelihood loss
Q(-) = —Inp(y|x, f), the unadapted model is then the frue model that describes the conditional
distribution in training, i.e., p(y|x,) = p'" (y|x) = p" (x, y)/p'" (x); and similarly p(y|x, fo¢) =

p®@(y|x). Furthermore, the posterior probability can be expressed as

~oplylx, Hip(f,x) plylx, f)m(f) plylx, f)m(f)
U ==y~ e Telmnena

where we have assumed that f and x are independent random variables. Rasmussen [140] has
derived the same posterior expression (see Equation (2.5) therein) under such an assumption, which
is standard in most, if not all, pattern classification tasks. Note that given y, variables f and x are
no longer independent.

This factorization leads to a result analogous to Theorem 4.2.1: Assuming that p!"(x,y) is

known, the fidelity prior for discriminative classifiers satisfies

—Inpaa(f) = D(p(ylx, f)|lp(ylx, f)) —Inw(f) — 5 (4.21)

where 3 > 0. The proof of this can be obtained in a similar fashion:

Cnpra(f) = — / P (%, 9) I p(%, y) dxdy — o

_ iy m [P 9T plylx, f7) <y — 492
[e | BEES Tololx, e ap| W =1 422

= D((ylx, f)llp(ylx, f)) = Inx(f) = D(p" (y|x)|lp(ylx)) —~

55

Letting 8 = D(p"" (x, y)|[p(y[x)) + 7, we have

1= / paa(f) df = / exp{—D(p(ylx, I |p(lx, £)) + na(f) + B df < (@423)
F

Therefore we have 3 > 0.

The training distribution p'”(x, y/), however, is generally unknown to discriminative models (the
only information preserved from the training data is f" which reflects only the conditional distribu-
tion), thereby making D (p(y|x, f")||p(y|x, f)) uncomputable. The major goal of this section is to
derive such an upper bound on D(p(y|x, f")||p(y|x, f)), and hence on — In pg4(f), that does not
require the knowledge of p'"(x,y). Then we can replace — In pgq(f) with this upper bound in the
accuracy-regularization objective.

Many discriminative classifiers, including log linear models, conditional maximum entropy
models, CRFs, MLPs and SVMs, can be viewed as hyperplane classifiers in a transformed fea-
ture space: f(x) = sgn (Wl ¢(x) +b), where f = (w,b) and ¢(x) is a nonlinear transformation
applied to the input space. In MLPs, for example, ¢(x) is represented by hidden neurons, and in
SVMs ¢(x) is implicitly determined by a reproducing kernel. For consistency, we use x in this
section to represent features, but x can be readily replaced by ¢(x) for nonlinear cases. Moreover,
for binary classification problems, a sigmoid function

1
- 1 4 e—y(wTx+b)

pylx, f) (4.24)

is often used to model conditional distributions for such classifiers (while a softmax function is
often used for the multi-class case). Plugging Equation (4.24) into Equation (4.21)), we arrive at the

following theorem.

Theorem 4.3.1 For hyperplane classifiers sgn (W' x + b), the fidelity prior in Equation (4.21) sat-
isfies

—Inpsg(f) < allw —w"|| + b= b"| —In7(f) — 3 (4.25)

where o = Exwp”(x)[HXH]'

1
Proof First we show that for any ¢ > 0 and b > 0, | In %| < |Ina — Inb|. This is because

1§1+Z§% ifa>b
a 14_; A (4.26)
3 < b <1 otherwise

56

Taking logarithm on both sides will prove the above inequality. Utilizing this inequality and the fact
that e* > 0 for any x, we have

1+ e—y(wa-l-b)

D(p(ylx, f)p(ylx, f)) = [p"(x,y)In 4 o—sw i) dx dy

[P (x,y)|In e~ YWIx+h) e VW) | dx dy

[(x5, 9)ly(w' = w) x +y (b — b)| dx dy

I y)ly(wh —w) x| dx dy + [p" (%, y)[y(b"" — b)| dx dy
[w —w | [p" (x)||x|| dx + b — 0"

= afw—-w"[[+[b-0"| |

IA

IN

(4.27)
Therefore, the accuracy-regularization optimization objective becomes
N Al
min Remp(w, b) + ?IHW —wi|| + ?2\1) — b = Ny Inm(w, b) (4.28)

where \| and)}, are regularization coefficients. Assuming that 7(w, b) is uniform (only for simplic-
ity), this optimization objective asks to minimize the empirical risk as well as the ¢2-norms. Notice
that for a random variable x, ||x|| is convex (not necessarily strictly) in x and is differentiable every-
where except x = 0. In practice, it is often more convenient to use the square of the {3-norm in the
optimization objective as follows,

A2

5 10— b2 — Xy In7(w, b). (4.29)

) A
min Remp(W,b) + leW — wter +
w,b 2

Since ||x||? is strictly convex and is differentiable everywhere, using the /> norm square gives great
mathematical convenience. Moreover, considering the problem of minimizing Equation (4.28) and
(4.29) with the assumption that Remp (W, b) is twice differentiable in (w, b), we can in fact prove
that for any choice of \| and A} in Equation (4.28), there always exist A; and)2 in Equation (4.29)
such that a locally optimal solution to (4.28) is also a locally optimal solution to (4.29). To see this,

it is sufficient to prove the following lemma.

Lemma 4.3.2 For a twice differentiable function g(x). Consider the problem of minimizing J; and

Jo defined as

/% (4.30)

57

For any X' > 0in Jy, there always exists X\ > 0 in Jy such that a locally optimal solution to Jy(x)

is also a locally optimal solution to Ja(x).

The proof is provided in Appendix|A.6. Replacing x with (w, b), and replacing g(x) with Remp (W, b),
we reach the earlier conclusion.
Before we evaluate regularized adaptation algorithms in Chapter 5, we derive generalization

error bounds for adaptation in the PAC-Bayesian framework.
4.4 PAC-Bayesian Error Bound Analysis

As described in Chapter 2, a fundamental problem in machine learning is to study the generalization
performance of a classifier in terms of an error bound or, equivalently, a sample complexity bound.
A PAC-Bayesian approach [60] incorporates domain knowledge in the form of a Bayesian prior and
provides a guarantee on generalization error regardless of the truth of the prior. In this chapter, we
are particularly interested in how well an adapted classifier generalizes to unseen data drawn from
the target distribution. We derive error bounds for adaptation by using our proposed prior in the
PAC-Bayesian setting. Specifically, for a countable function space, we apply the Occam’s Razor
bound (Theorem [2.3.3) which bounds the true error of a single classifier; while for a continuous
function space, we apply McAllester’s PAC-Bayes bound (Theorem 2.3.5) which bounds the true
stochastic error of a Gibbs classifier.

There is one issue we need to clarify before moving on. All PAC-Bayesian theorems [60] assume
a finite loss function, i.e. Q(-) € [a,b], in order to utilize Hoeffding inequality or its alternatives
[60, 85, 87]. Moreover, Q(-) € [0,1] is often used instead since any Q(-) € [a, b] can be shifted and
scaled to be in this interval . In Section 2.3, we particularly assumed that Q(f(x),y) = I(f(x) # v),

and we keep this assumption throughout this section. In other words, we have

Rpad(x,y) (f) = Epad (X7 y)[I(f(X) 7& y)]

m (4.31)
Remp(f) = — S I(f(xi) #)i (xi,y) € D2

m 4
=1
PAC-Bayesian theorems (see Chapter 2) can be utilized to upper bound R ea(x ,)(f) by Remp(f)
plus a capacity term ®(F, f, D,,, m,9), Le.,

Ryuity)(f) < Remp(f) + (F, f, Dy, m, 8)

58

Note that f can be estimated using a different loss function, but the above bound on the expected
0-1 loss is valid regardless of the loss function used in training. In practice, surrogates of the 0-1
loss are often used, as there exists a quantitative relationship between the risk as accessed using the

0-1 loss and the risk as accessed using the surrogates [57].

4.4.1 Occam’s Razor bound for adaptation

The Occam’s Razor bound (Theorem 2.3.3) implies that, in order to guarantee a small true error, we
should intuitively assign high prior probabilities to those models which are a-priori viewed as likely
to fit the data well. The use of the fidelity prior in adaptation follows this intuition. To derive a
generalization error bound for adaptation, we replace the standard prior 7(f) in Equation (2.19) by
our proposed fidelity prior pgq(f). We in particular study a countable function space of generative

models in this subsection.
Corollary 4.4.1 For a countable function space of generative models, for any prior distribution
w(f) and for any f for which w(f) > 0, the following bound holds with probability of at least 1 — 6,

D(p(x, y|f)lp(x,y|f)) —In7w(f) = 8 —1Ind

2m

Ryaa(f) < Remp(f) + \/ (4.32)

This result has important implications: for the set of classifiers

G={feF: D ylfNpkxylf)) < B},

their error bounds in Equation (4.32) which use the fidelity prior are tighter than those in Equa-
tion (2.19) which use the standard prior. Since 5 > 0, G is always nonempty. For classifiers in the
complementary set G, however, we reach the opposite argument. An important question to ask is:
to which set does our estimated classifier belongs? We are particularly interested in ¢, i.e., the
optimal classifier w.r.t. the target distribution. If D(p'"||[p®?) < 3, we have f%¢ € G and we achieve
better generalization performance at f®® by using the fidelity prior. Practically speaking, this im-
plies that it is better to utilize adaptation unless the training and target distributions are different to
a certain extent (determined by [3). Recall that 3 normalizes pgq(f) to unity. This constant can be
analytically calculated for some models (e.g. Gaussian models), while approximations are needed
for general cases. Additionally, we can derive a similar bound for discriminative classifiers, where

the divergence in Equation (4.32) is between conditional distributions instead of joint distributions.

59

4.4.2 PAC-Bayesian bounds for adaptation

McAllester’s PAC-Bayesian bound for Gibbs classifiers (Theorem 2.3.5) is applicable to both count-
able and uncountable function spaces. A Gibbs classifier is a stochastic classifier drawn from a
posterior distribution ¢(f). Consequently the true error and empirical error also become stochas-
tic in the form of E¢_,(s)[R(f)] and Efq(f)[Remp(f)]. Again, the choice of a prior distribution
7(f) is critical in order to achieve a small error bound. Intuitively we should choose a distribution
7(f) such that E¢_ () [Remp(f)] is small. As a ramification of this theorem, PAC-Bayesian margin
bounds have been developed which provide theoretical foundations for SVMs [92]. The key idea
involves choosing a prior 7(f) and a posterior ¢(f) such that, in addition to our intuition above, it
is easy to compute D(q(f)||7(f)) and Efq(f)[Remp(f)]. Usually g(f) is chosen to be in the same
family as 7(f).

In this section, we obtain error bounds for adaptation in a similar fashion as [92] but with simpler
derivations. Since the derivation requires specification of a classifier, we first investigate generative
Gaussian models where only Gaussian means are adapted. We further assume equal class prior prob-
abilities w,=w_=1/2, equal covariance matrices ¥ =Y_=%'", and opposite means j=—p_=,
thereby leading to a linear decision boundary f(x) = sgn (Etr*l pTx). In such a case, f is rep-
resented by p only. We make such assumptions only to simplify the calculation of the stochastic
error in this work, while similar bounds can be derived for more general cases. Next, we present a

corollary of Theorem 2.3.5/followed by a proof and discussions.

Corollary 4.4.2 (PAC-Bayesian bound for symmetric Gaussian model adaptation) Assume class-
conditional Gaussian models with equal and fixed class prior probabilities w'" = 1/2, equal and
fixed covariance matrices X', and opposite means ji, = —p_ = u. Define an approximate pos-
terior distribution on p with the form q(u) = N'(w; ¢/, X'"). Then there exists a prior distribution

such that for any 1/, the following bound holds true with probability of at least 1 — 0.

1 _
, 5(Iull_'utr)TEtr 1(u/_utr)_1n5+lnm+2

E, R C LN =
q(u)[p“d(/‘)] = 72 ((XiTZtr_lxi)l/Z)+ 2m —1

(4.33)

2
where F(t) = [° —te = ds and (x;,y;) € DL

1
t \or

60

Proof McAllester’s PAC-Bayesian bound allows us to choose any prior distribution. Here we use
pad(f) in Equation (4.4), where we assume a uniform 7(f) and renormalize pgq(f) accordingly.
This results in a Gaussian distribution on p, i.e., psq(pt) = N (u; u'", X"). Furthermore, by defini-

tion q(u) = N(p; 1/,). It is easy to compute the KL-divergence

D(g(wlpsa()) = DN (s o, EIIN (s 47, 27))
— %(ul _ Ntr)TEtr_l(MI o Mtr)

which gives the second term in Equation (4.33)).

(4.34)

On the other hand, to calculate E ¢, ¢y [Remp(f)]), we first inspect the decision function regard-

ing sample (x;,y;), i.e.,
-1 _1
sgn <yi(:u+ o Xi) = sgn (iniTEtr M>~

. -1 . .
Since an affine transformation of a multivariate Gaussian is still a Gaussian, yixiTZ” /4 1S a uni-

variate Gaussian with the following mean and variance:

_ A —
i = yxintTh 4.35)
=2 é (yixg“ztr_l)ztr (inlTZtr_l)T — X?Etr_lxi

This is the key difference from the derivation of [92]. The stochastic empirical error hence becomes
1 & 1
Ejgip[Bemp(f)] = — D B s Ly 7 < 0)]
i=1
1 m
= — Z Ey A (ti.07) (T < 0)] (4.36)
1 = i
- o (2)

52
where F(t) = [° —t=e 2 ds, and (x;,y;) € DX. |}

1
t Ver

Next we remark on the role of x': Given the Gaussian assumption in Equation (4.37), q(u)
is solely determined by hyperparameter ;/. The learning problem, therefore, is reduced to the
estimation of ./, which is a tradeoff between fitting the adaptation data, via reducing F’ (/;) and
staying in vicinity of the unadapted parameter p!". z

Lastly, we derive an adaptation error bound for hyperplane classifiers, which is an important

representative for discriminative classifiers (see Section 4.3). In this case, f = (w,b) where we

assume that w and b are independent variables.

61

Corollary 4.4.3 (PAC-Bayesian bound for hyperplane adaptation) Consider hyperplane classi-

fiers wl'x + b, and define an approximate posterior distribution on (w,b) with the form

q(w,b) = N(w; w/, SN (b; b, 2)

4.37)

Then there exists a prior distribution such that for any (w',b'), the following bound holds true with

probability of at least 1 — 0.

Hw/ _ Wtr||2 4 |b’ _ btr|2

2

—Inéd+Inm+2

1~ o vl w + 1)
Ey(w.i) [Ro(x <—>» F -
q(,b)[p(,y)(f)] m; (”xiH2+1)

2

where F(t) = [\/%76_37 ds, and (x;,y;) € DI,

2m — 1

(4.38)

Proof We use a Gaussian prior p(w, b) centered at (w'", b'") with an identity covariance matrix.

Note that the choice of this prior relates to previous work on margin bounds; [92] used a Gaussian

prior centered at zero, and [141] estimated Gaussian priors based on previous training subsets. The

key difference is that we choose a Gaussian centered at the unadapted parameters. Mathematically,

p(w,b) = N(w;w' I)-N(b;b", 1), and g(w, b) = N(w;w’, I)-N(b; b/, 1). The KL-divergence

of two such Gaussian distributions is easily obtained as

D(q(Nllp(f)) =

HW’ . wtrH2 + ’b/ - 6’2

(4.39)

Secondly, the stochastic empirical risk can be calculated similar to the Gaussian model case.

1 m
E g Bemp(f)] = — > Ewenwiw', 1) Boonrestr,1) ([(WX + b) < 0)]

i=1

1 m
= E Z EtNN(yi(x;W’er/),HxiH2+1) [I(t < O)]

=1
1o~ yi(xIw +
- Sy rdREtl)
m =1

VIill* +1

52
where F(t) = [\/%677 ds, and (x;,y;) € DX, |

(4.40)

Similarly to the last corollary, g(w, b) is solely determined by hyperparameters w’ and b', the es-

timation of which is a tradeoff between the goodness of data fitting and the fidelity to the unadapted

model.

62

4.4.3 A VC perspective

The adaptation can also be viewed from a structured risk minimization perspective. Recall that
structured risk minimization asks to search through a sequence of function spaces 71 C Fo C ... C
JF, and find an index j that minimizes Equation (2.25). Finding an optimal F; is a tradeoff between
reducing the VC dimension and reducing the empirical risk; choosing a small j will decrease, or at
least not increase, the VC dimension at the cost of a potential increase in the empirical risk. The
question is how to design the structure of F;, j = 1, 2,..., such that the increase in the empirical
risk is maximally suppressed. A natural strategy is to choose a set of functions that all include the
unadapted model, i.e., fi" € JF; for all j. This is because f*" minimizes the expected risk w.r.t. the
training distribution, and it may as well yield a low expect risk w.r.t. the target distribution, provided
that these two distributions do not diverge too much.

T

Consider linear classifiers f(x) = sgn (w' x) in canonical form with respect to a set of inputs

{Xi}?il, i.e.,
min |w!x;| = 1
(2
We can construct a sequence of constrained function spaces ||w — w"||? < ¢;, where ¢; < cp <

... < oo. All F; in this sequence satisfy w!" € F;. We have the following corollary derived from

Theorem 2.4.1

Corollary 4.4.4 Consider linear classifiers f(x) = sgn (w’

x) such that min |(w — w")T'x;| = 1
(2

for all {x;}™ . For any w'", the decision function f satisfying the constraint |w — w'"|| < c has

a VC dimension satisfying

h < R¥(|w" | +¢)?
where R = max ||x;]|.
(2

A proof of this corollary can be found in Appendix |A.4, which makes a slight modification to
Appendix ‘A.3 (Scholkopf’s proof of VC dimension). Moreover, if we use linear classifiers (w —

< ¢, we can achieve the same

wi")T'x = 0 instead of w'x = 0 with the constraint that ||w — w'"||?

upper bound on VC dimension as in Theorem 2.4.1.

Corollary 4.4.5 Consider linear classifiers f(x) = sgn (w — w'")'x) such that min |(w —
(2

wiTx;| = 1 for all {x;}™,. For any W', the decision function f satisfying the constraint

63

|lw — w'"|| < ¢ has a VC dimension satisfying

h < R%*?
where R = max [|% -
Again, a proof is provided in Appendix |A.5/as a reference.
4.5 Empirical Simulations of Adaptation Error Bounds

We simulated empirical adaptation error bounds for a Gaussian model classifier. Given an unadapted
model, and an adaptation set with m samples randomly generated from a target distribution, we
learned an adapted classifier using our regularized adaptation objective in Equation (4.7), where
the log joint likelihood loss and a uniform 7 (f) were used, and where \’s for different m’s were
discovered using a development set with 5,000 samples. We computed the empirical error Remp(f)
on the adaptation set, and estimated the true error R(f) on a testing set with 10,000 samples (both

corresponding to the 0-1 loss). We then estimated

§ = E[I(R(f) > Remp(f) + €)]

using 1,000 separate runs (10,000 samples each).

Figure 4.1 plots & vs. logm for ¢ = 0.02 and ¢ = 0.1 with different D(p'"||p??) and m on
simulated 2D-Gaussians. The A = 0 line corresponds to retraining from scratch (no adaptation),
and also to large KL-divergences, as then optimal A discovery produces A = 0. Although we do not
yet have a theoretical result to bound R(f) by Remp(f) in the Gaussian model case, as the function
space is continuous, we have empirically shown that fewer samples were needed for smaller KL

values to achieve the same confidence §.

64

Figure 4.1: Empirical error bound study: ¢ vs. logm for e = 0.02 (upper figure) and € = 0.1 (lower

figure)

—+— Retrain (A=0)
=0~ KL=2.3e-2
——KL=1.0e-2
= KL=2.5e-3
——KL=0

0.7

0.6

1.5 25 3 35 4
Iog10 m
| —+— Retrain (1=0) 1
| -0 KL=2.3e-2 ||
——KL=1.0e-2
-A-- KL=2.5e-3
[—— KL=0 1
b——4 ¢—6—% @
2.5 3 3.5 4
Iogm m

65

Chapter 5
REGULARIZED ADAPTATION ALGORITHMS

In Chapter 4, we proposed a general adaptation objective, i.e., ;réljg_ Remp(f)—XInpgq(f), where
f represents model parameters and pgq(f) is the fidelity prior. In practice, while optimizing this
objective is often intractable, we can minimize its upper bounds instead, e.g. using Equation (4.11)
for mixture models and Equation (4.25) for log linear models. This chapter discusses the instantia-
tions of these algorithms for Gaussian mixture models (GMMs), support vector machines (SVMs)
and multi-layer perceptrons (MLPs) (Section 5.1/ through Section 5.4), with focus on the last two
classifiers as they have received relatively less attention on adaptation techniques (see our discussion
in Chapter [1). Furthermore, in Section 5.5, we briefly discuss the relationship between adaptation
and inverse problems studied in the field of combinatorial optimization. Finally, we present MLP
and SVM adaptation experiments on a vowel classification dataset (for speaker adaptation) and an

object recognition dataset (for lighting condition adaptation).
5.1 GMM Adaptation

A general strategy for adapting generative models is given by Equation (4.7) in Chapter 4, where
we use the joint likelihood loss Q(f(x),y) = —Inp(x,y|f) to compute the empirical risk on the
adaptation data, and we regularize using the fidelity prior presented in Equation (4.4). In particular,
we apply this “regularized adaptation” algorithm to Gaussian mixture models, where p(x|y, f) =

Z Cy kN (X5 fy 1, 2y 1), and p(y| f) = w, (following our notation in Chapter 4).
k

Here we investigate the case where the adaptation is partially supervised. In other words, for
each input x;, the class membership y; is present but the component membership k; is missing.
Consequently, the computation of the empirical risk involves marginalizing the complete likelihood
over k; before taking logarithm, i.e.

1 & 1 &
Remp(f) = —— ;lnp(xz, vilf) = —— ;hazkjp(xz,yz, ki = hlf) (5.1)

66

which can be not optimized directly. We can, however, iteratively minimize an upper bound of this
using the expectation-maximization (EM) algorithm [142]. Specifically, we let (%) 2 I(y; = vy)
denote an indicator function which equals one only when x; belongs to class y, and let Ly, (7) 2
p(k; = k|xi,y; = vy, f9) denote the component occupancy probability of sample (x;,y; = y) which
is calculated using model parameter in the previous update. Then an upper bound of the empirical

risk can be derived using Jensen’s inequality:

Remp(f) = = > 376,000 ploxt, 91 =, ki = KIf)
k

i=1 y
__t chgy(l) lnz ka(l)p(xiyLyi — Y ki =kl|f)
m i=1 y k k\y(z) 5.2)

IN

o iZ%(i) > Lyl 1 POk =y i = KL)
Ly (3)
= _ZZ 25 Lk|y) Inp(xi,y; =y, ki = k|f) + C

where C' is a constant independent of the model parameters to be adapted. Furthermore, the com-

plete likelihood can be factorized as

p(xiyi =y ki =kIf) = plyi = y)p(ks = klyi = y)p(xalki =k, yi = y) 5.3
= wyy kN (X33 Ly e Xy k)
which decomposes the adaptation objective into several independent optimization problems.
Rem(f) < =2 5 25 My =220 Zé i) Ly (3) Iy
(5.4)

_ZZ Zé Lk:\y lnN(Xzaﬂykazyk)"i‘C

On the other hand, Corollary 4.2.3 provides a bound on the fidelity prior for GMMs. Exacting out

the terms independent of the model parameters, and assuming a uniform standard prior 7(f), we

—Inpgq(f) < - Zwif Inw, — waf thyfk Incy
Y Y k

+ Y wy Y DN (% sy Sy N (%35 g s Sy) + O
Y k

have

(5.5)

Combining these two bounds, we obtain an upper bound on our regularized adaptation objective

Remp(f) — Alnpgg(f), which is convex in all model parameters. The derivation of EM update

67

equations then becomes straightforward. At each E-step, we compute Ly, (i) using the current

model parameters f9,

Wi(/] Cy k (Xla Mg ko EZ k)

Zwy y, kN X “y k> Egvk)

and accumulate sufficient statistics requlred by the M-step updates; and at each M-step, we re-

Lkly() (5-6)

estimate the model parameters as follows,

m

1)
p. Z 3y (7) +)\wff
o — i=1
Y 1+
1 .)
E Z 5y(Z)Lk|y('l) +)\W:Zrczrk
. i=1
Cyk = 1
— > 0y(i) + Ay
=1
1
ey Z Oy (4) Ly (1) %; + /\wffcgrkuy k
N i=1
My k = 1 ™m
E Z 6y(l)Lk|y(l) + sztfctyrk
A=l
1 .) . R . .
- Z Oy (8) Ly () (%5 — fy) (%5 — fy)" + Al cly (2”16 + (pty e — Fg k) (1 g — My,k)T)
Ey,k — =1 : —
E Z 6y(Z)Lk|y(7/) + AWZTCZT]C
i=1

(5.7)

A derivation of the M-step updates is presented in Appendix B.1. These solutions are essentially the

same as the MAP estimates presented in [104], as we have shown in Chapter 4/that the fidelity prior

for GMM:s is equivalent to the conjugate prior for GMMs with an appropriate setting of hyperpara-
meters.

Furthermore, for the estimation of ¢, , ji, 1 and X, ., we can replace EM with Viterbi updates

by assigning inputs to their most likely Gaussian components (in their respective classes), and re-

estimate parameters of a Gaussian component using only its members. In this way, the updates are

greatly simplified. For example, for Gaussian means we have
m
fgke =Y Ty =y ki = k)x; + (1 — o)l (5.8)
i=1

where « is a tradeoff parameter similar to .

68

It is worth noting that the EM (or Viterbi) algorithm can also be applied to fully unsupervised
adaptation, where both y; and k; are missing for x;. In this case, we can simply replace 6, (i)
by a posterior probability p(y; = y|x;) in all update equations above. Unsupervised adaptation,
however, can be problematic for classifying i.i.d. samples. This is because without any contextual
constraints, an unadapted model is likely to make consistent errors, and fully unsupervised adap-
tation may amplify these errors rather than correcting them. For non-i.i.d. samples, however, we
can impose high-level constraints, e.g. in the form of p(y1.,,,), which are vital to the effectiveness of
unsupervised adaptation. In continuous speech recognition, for example, p(y1.,) is determined by a
set of pronunciation models, which model the likelihood of a phoneme sequence in a word, and by a
language model, which models the likelihood of a word sequence. In this case, the errors committed
by the acoustic model may be corrected by the pronunciation models or the language model. In our
classification experiments (Section 7.1.4)), however, we are not coping with structured data, and we

hence assume that y;.,, are independent variables and are known in adaptation.
5.2 Links between SVMs and MLPs

The accuracy-regularization view of classification establishes a strong relationship between SVMs,
MLPs, CRFs and MaxEnt models [143, 144]. We are particularly interested in the links between
SVMs and MLPs, for a binary classification problem, the decision functions of SVMs and MLPs

take on the same form:
f(x) = (w,¢(x)) +b (5.9)

where ¢(+) is a nonlinear transformation from the input space to a feature space in which linear
classification takes place. Given this mapping, the objective of SVM training coincides with that of

training the last layer of an MLP with weight decay [145], both of which can be expressed as

)

DY 1 —
min 2Hw\|2+m;cz(f(xi),yi> (5.10)

where ||w||? is the squared f» norm, @Q(-) is a loss function, and) is an accuracy-regularization
tradeoff coefficient. Here f is represented by (w, b) as shown in Equation (5.9). There are several
key differences between SVMs from MLPs: (1) the choice of the nonlinear transformation ¢(-);

(2) how the parameters of ¢(-) are estimated; (3) the choice of the loss function Q(+); and (4) how

69

the parameters of f (i.e., w and b) are estimated. We discuss these aspects for SVMs and MLPs
respectively in the following text.

For SVMs, ¢(-) is an input-to-feature space mapping that is implicitly determined by a repro-
ducing kernel in the form of k(x,x’) = (¢(x), ¢(x’)) [61,78,146]. The kernel function k(x,x")
measures certain “similarity” between two inputs. For example, the linear kernel has the form
k(x,x’) = (x,x’), and the Gaussian kernel has the form k(x,x’) = —”X;i’gdw. The parameters of
the kernel function, such as o in the Gaussian kernel, are usually empirically chosen using cross-
validation, though there are strategies for automatically optimizing kernel parameters [147] which

are beyond the scope of this work.

In training a binary SVM, we typically assume a hinge loss function,

A

& = Q(f(x:),yi) = 10,1 — yi f(xi)]+- (5.11)

where &; are called slack variables. Since the hinge loss is not differentiable, gradient based opti-
mization methods can not directly be applied. The training objective, however, can be formulated
as a constrained convex optimization problem which has a globally optimal solution. Specifically,
min ~[|w|? + ci@
wbhé 2 i
subjectto y;((w, d(x)) +b) +& — 1 > 0;
& >0,

(5.12)

1
where C = v Introducing the Lagrangian form, we arrive at the optimal solution as follows,
m

F) = (W, 0(x)) +b= O qiid(xi), d(x)) +b =D azyik(xi,x) +b (5.13)
i=1 =1

where x; with nonzero «; are called “support vectors” (SVs) and where the “kernel trick” is used so
that ¢(-) is never explicitly evaluated [61,78, 146]. The Lagrange multipliers «; are obtained in the

dual space by solving the following quadratic programming problem:

m m
1
ngix g ozi—§ E Oéiajyiyjk(xz’axj)

i=1 i=1
subject to Z iy = 0; (5.14)
i=1

OgaigC

70

Figure 5.1: Multilayer perceptrons

Additionally, to handle multi-class classification, we can apply the “one-against-others” training
scheme, i.e., we learn a binary classifier, for each class, using all training samples labeled as either
positive or negative w.r.t. this class. We adopt this scheme in our classification experiments since
it is easy to implement and empirically works well [61]. But there are alternative approaches such
as building pairwise classifiers [148] or using a training objective designed explicitly for multiclass
classification [69, 149].

Secondly, we inspect these aspects in a two-layer MLP. For consistency with a binary SVM,
we study a binary MLP which is depicted in Figure 5.1. In this example, we have D input units
represented by a vector x, N hidden units represented by a vector ¢(x), and one output unit z in-
dicating a binary decision. The weight vector and bias of the hidden-to-output layer are denoted by
w and b respectively, and those of the input-to-hidden layer are denoted by V = [vy ... vy and
d = [dy...dn]T. The forward-propagation of an MLP works as follows: the input vector goes
through an affine transform followed by a non-linearity, producing a hidden node vector. Mathe-
matically, ¢, (x) = oc((vp,X) + dp), n = 1..N, where o(-) is a sigmoid function. In the same way,
the hidden-to-output layer produces a binary output z = o(f(x)) = o((w, ¢(x)) + b), where the
sigmoid converts f(x) to a valid posterior probability, i.e., z = p(y = +1|x, f).

Under this setting, we see that the form of ¢(-) is fully determined once the number of hidden

71

units is fixed. Note that there can be other choices of ¢(-) for general neural networks, such as the
use of radius basis functions [145]. Moreover, the parameters in ¢(-), namely the input-to-hidden
layer weights, can be optimized systematically using the back-propagation algorithm [145,150].

In training an MLP, we minimize the conditional likelihood loss (or equivalently the logistic
loss) Q(f(xi),yi) = p(yi|xi, f) which is equivalent to minimizing the relative entropy between the
true class membership distribution and the MLP output. To see this,

Lyi=+1y Liy=—1y
i +1n_ o ln i . (5.15)
plyi = +1]xi, f) = ply = <1y,)

— Inp(yilxi, f) = Iy,—413 In

It has been proved that by minimizing the relative entropy using a sufficient amount of training data,
we can obtain an MLP whose output converges to the true posterior probability [145]. Notice that
a sigmoid function is not convex, but its the logarithm is. Therefore, the training objective in Equa-
tion (5.10) is convex in the hidden-to-output layer parameters but not in the input-to-hidden layer
parameters. Stochastic gradient descent or second order gradient methods [145, 150] are usually
applied to find a local optimum.

The objective in Equation (5.10), in fact, can be readily extended to multi-class classification. In
this case, the hidden-to-output weight vector is replaced by a weight matrix and the output sigmoid

function is replace by a logistic function, i.e., the k™ output is expressed as

exp{wfx + by}
K

Z exp{wix + by}
k=1

(5.16)

2k =

It again has the desired property that 2z converges to the true posterior probability if we minimize
the relative entropy using a sufficiently large amount of training data.

As the community learns more about both MLPs and SVMs, their interpretation appears to be
converging towards one idea. In fact, [143] showed that training an MLP with either weight decay
or early stopping can be viewed as max-margin training, and [151] showed that the use of relative
entropy as a loss function also has a max-margin interpretation.

As a side note, CRFs [152] and MaxEnt models [153, 154] has the same decision function form
as Equation (5.9), and the same general training objective as Equation (5.10). In both cases, the
choice of ¢(x) is more flexible than that in SVMs or MLPs; it may essentially be any feature

function, thereby facilitating the incorporation domain knowledge in the model.

72

Although the training algorithms for MLPs and SVMs are well studied, their respective adap-
tation algorithms are perhaps relatively under-investigated. In the next two sections, we present
simple and principled adaptation algorithms derived from Chapter 2| for adapting SVMs and MLPs
respectively. These algorithms, as we will see, provide a unified view of many existing SVM and

MLP adaptation strategies.

5.3 SVM Adaptation

This section investigates SVM adaptation algorithms. We first review related work in the literature,

and then present our algorithms derived from Chapter 4.

5.3.1 Related work

Most works on SVM adaptation in the literature follow an incremental learning or sequential learn-
ing paradigm (see [155] for early work on incremental learning). Incremental SVM learning was
originally proposed to scale up inductive learning algorithms for very large datasets [132,156,157].
As discussed in the last section, exact SVM training requires to solve a quadratic programming
problem in a number of coefficients equal to the number of training samples, thereby making large-
scale learning problems difficult. Since only the support vectors (SVs) contribute to the decision
boundary, training using these SVs would give exactly the same decision function as training on the
whole data set. This makes SVM amenable to incremental learning, e.g. chunking [61], where the
SVs of the previous subset are combined with a new subset in the next learning step.

The adaptation problem can be tackled in the same fashion — an adapted model can be learned
using a combination of the SVs of the unadapted model and a subset of the adaptation data [130,
131]. In particular, [130] combined the old SVs with only mis-classified samples from the adaptation
data; those correctly classified by the unadapted model are discarded since, to some extent, they are
redundant given the SVs from the unadapted model. In Section 7.1.4, a classifier trained in this
fashion will be referred to as a “boosted” classifier since it strongly relates to the idea of boosting
[79, 80]. In contrast, [131] took an exactly opposite strategy, which discarded the mis-classified
adaptation samples while keeping the correctly-classified ones. The justification for this approach,

however, was not clearly stated.

73

In this work, we would like to note that the original setting of incremental learning and the
setting of adaptation are not entirely the same. The former aims to minimize the expected risk of
the training distribution (which is presumably the same as the target distribution), while the latter
aims to minimize the expected risk of the target distribution (which is different from the training
distribution). The two data selection strategies [130] and [131] are more often used for incremental
learning, but are not necessarily optimal for adaptation. In fact, there is no reason we should discard
any adaptation data, because each sample is a true representative of the target distribution.

An improved incremental learning approach applicable to the problem of adaptation was in-
troduced in [132]. In this work, the old SV set and the new data set are weighted differently in
optimization. In the same spirit, [133] proposed an auxiliary data technique explicitly for scenarios
where two data sources can have different distributions. This approach is the most similar to our
work, as will be discussed shortly. A more general approach was proposed in our work [50], where
each old SV was assigned a different weight, according to its likelihood with respect to the target

distribution. We discuss this algorithm in the following subsection.

5.3.2 Error weighting — an empirical attempt

Specifically, we weight the slack variables to make an error on the training data less costly than
one on the adaptation data. Again we only consider a binary classifier. We define SV'" as the SVs
obtained from the training data, and (w'", b'") the resulting affine function parameters. Similarly,
we define SV as the SVs learned using only the adaptation data, and (w'*, b**) the resulting affine
function parameters. Recall that the adaptation data is denoted as D¢ where m is the sample size.

We then modify the objective function in Equation (5.12) to the following,

min 1IIW\|2+C<|S£T|M@+Z&)
whbe 2
subject to ;i ((W, p(x;)) +b) + ¢ —1>0; (x4,4:) € SV (5.17)
yi((W, (%)) +b) + & — 1> 05 (xi,4:) € Dyl
G>0;62>0

where p; are weights for the slack variables of the old support vectors. In this way, we can adjust

how important the role that the unadapted model plays in the adapted classifier. In an extreme case,

74

where p; = 1 for all ¢, the above objective is equivalent to training a SVM using all old SVs and all
adaptation data. At the other extreme, where p; = 0 for all 7, the adaptation leads to a completely
new SVM trained using only the adaptation data. Between these two extremes, we would like to
weight each sample in SV by how likely it is to be generated from the adaptation data distribution.

For example, we can use

pi = g((W', o(x;)) + b%), (5.18)

where (w'® b'¢) is the SVM trained on the adaptation data only, and g(-) is a monotonically increas-
ing function converting a real number to a probability. For efficiency, we use an indicator function
g(x) = I(x > d), where d is a regularization threshold. In such a setting, all SV are selected
when d = —oo, while none are selected when d = 4oc0. For comparison, in our experiments in
Section|7.1.4/we also include the case where d = 0. In other words, we first retrain a rough classifier
(w's b'*) using only the adaptation data; then we use (W', b*) as a seed to select more samples

(from SV'") to enhance this classifier. We will call this algorithm as “enhanced” in Section 7.1.4.

5.3.3 Regularized adaptation

In Chapter 4, inspired by the fidelity prior for log linear models, we proposed a regularized adap-
tation objective in Equation (4.29) repeated below for convenience. This leads to a simple yet
principled approach to SVM adaptation. Here we let Ay = 0, meaning that b is estimated solely
from the adaptation data. Moreover, we choose the value of Ay = A by cross-validation. What

follows is the resulting adaptation objective.

. 1 tr|2 -
min §\|w—w I ‘f‘CZfi

wabvsi i1
: | 5.19
subjectto & > 1 — yi((w, d(x)) +b); (xi,y;) € D, (5.19)
£ > 0;
where w'” is the unadapted model. In contrast to SVM training, instead of minimizing ||w/||%, now

we penalize the deviation from the unadapted model w'”. Note that there is a similar formulation
referred to as “biased regularization” in [61] and used for incremental training of SVMs in [141].
Next, we show that the regularized adaptation objective in Equation (5.19) corresponds to max-

margin training with a modified constraint. We first study Equation (5.19). We let f'"(x;) 2

75

(Wi ¢(x;)) + b denote the unadapted model, where w'" and b'" are presumed to be fixed during
adaptation. Letting w = w —w'” and b = b— b!", and plugging them into Equation (5.19), we have
1 m
: — 112
- C .
min oW+ ;:1 &

subjectto & > 1 — y;((W+ Wi, ¢(x;)) + b+ b"); & >0

— (5.20)
1 m
. 112
min —||wl|*+C ;
mn IO e

subjectto & > 1 —y;f(x;) — yif"(xi); & > 0.
where f(x;) = (W, ¢(x;)) +b. We see that this is equivalent to the standard SVM training objective
with a modified constraint. Similarly, we can derive the same constraints for Equation (5.27).

Figure 5.2 graphically illustrates how regularized adaptation works using an example of a linear
SVM classifier on 2D input features. In the figure, (a) shows the adaptation data (depicted as solid
circles and stars) and the decision function learned only using these samples, i.e., (W', x) + b'; (b)
shows the unadapted decision function (w'", x) + b'", and those adaptation samples that have large
margins w.r.t. to this decision boundary (depicted as hollow circles and stars) — little penalty should
be put on these samples according to Equation (5.20); and (c) shows the adapted decision function
obtained by training on the most relevant samples (depicted as solid circles and stars).

Before we present how to implement this adaptation algorithm, we would like to note that a
number of existing SVM adaptation strategies including [130,131] can be unified by a generalization
of the constraints in SVM training.
min LwiP oS e
wh 2 — !
subject to & > h(xi, yi); (%, i) € Dyt

& > 0;

(5.21)

where as usual D%¢ denotes the adaptation set with 1 samples. Next we will illustrate that different

forms of 1(+, -) yield different adaptation strategies.

o If we let ¢(x;,v;) = 1 — y; f(xi), then Equation (5.21) is equivalent to Equation (5.10) with
the hinge loss. The resulting adaptation algorithm only uses the adaptation data and entirely

ignores information from the training data.

76

using adaptation
data only

°® * © O
)
* *]
had *
% unadapted model
(b)

adatped model

Figure 5.2: Regularized SVM adaptation. Circles and stars represent the adaptation data; the solid
lines in (a), (b) and (c) respectively represent the entirely retrained model, the unadapted model, and

the adapted model learned using Equation (5.20).

o If we let ¥(x;,y;) = L(yif"(x;) < 0)(1 — yif(x;)), where I(-) is the indicator function,
an adaptation sample is used only when it is misclassified by the unadapted model. If the
objective minimizes the empirical risk on both old support vectors and the adaptation data,

this method is equivalent to the method used in [130].

e Finally, our new approach combines the margin of the unadapted model and that of the model
we are optimizing, creating a form of “soft boosting”. Specifically, we let (x;,y;) = 1 —

yi f(xi) — i f1(x;). Intuitively, if an adaptation sample has a large margin with respect to the

77

decision boundary of the unadapted model, we decrease the importance of any margin error
made by the adapted model in its total contribution to the loss. In other words, if y; f*"(x;) is

large and positive, then we penalize little on this sample even if y; f(x;) < 1.

5.3.4 Algorithm derivation and implementation

This subsection discusses the derivation and implementation of the regularized adaptation algorithm
proposed in Equation (5.19). Applying Lagrange multipliers o;; > 0 (to enforce the margin con-

straints) and u; > 0 (to enforce positivity of &;), we have

m

:;\w—w“HMCZ&—Zai(yi«w,m >>+b—1+§z) Zm (5.22)

=1 i=1

Taking derivatives with respect to w, b and &; and setting them to zeros,

d.J L

T 0 = w=w"+ ; 1 ;Y (%)

d.J “

Z7 § e — (5.23)
5% 0 = 2 a;y; =0

oJ

67& =0 = (C- QG — Wy = 0

Using the “kernel trick” [61], we obtain the optimal decision function as

P = sen (w00 + b)

1SV

= Sgn< Z O‘?yfr +Zazyz X, X +b>
=1

where (x!",y!") are support vectors from the unadapted model and " are their corresponding

(5.24)

weights which are fixed during adaptation. The Lagrangian multipliers «; are to be optimized in the
dual space using the adaptation data D¢, Plugging Equations (5.23) back into Equation (5.22), we

arrive at an optimization problem in the dual space.

m m SV
mx D5 3D ko) ~ e 3 ekt
! = i=1 j=1
5.25
subject to Zaiyi:m ()

=1
OSOJZ'SC

78

m
Fixing parameters from the unadapted model, and using the fact that Z a;y; = 0, the above is
i=1
equivalent to
m 1 m m
max D 1= yif T (xi))ei — 3 >N aiogyiyk(xi, x;)) (5.26)
¢ i=1 =1 j=1

under the same constraints. We see that this differs from Equation (5.14) only in that «; in the first
term are weighted differently.

Alternatively, since the support vectors from the unadapted model are available at adaptation
time, we can as well update their weights, i.e. a?’“ in Equation (5.24). Note that we do this by

minimizing the empirical risk on both the old support vectors and the adaptation data, leading to the

following objective

|Svtr‘ ‘SV”‘ |SV”‘
max > a“Zaz“ 2 2 el kG x)
i, i=1

1 |SVET|
t ¢
—fZZa,oz]yzy] X;, Xj) Z:ozzyZ Z aT Tk: (xi, f)
(5.27)
i=1 j=1
SV

subject to Z A"yl = 0; Z%’yi = 0;
=1 i
0<al<C;0<a; <C

In our experiments, we call this the “extended regularized” algorithm. However, for SVMs using
linear kernel, the old support vectors do not have to be saved — only the w and b are necessary to
classification — and the “extended regularized” algorithm is not applicable in this case.

Regarding implementation, our optimization algorithm is developed based on SVMTorch [158],
which uses a slightly modified version of the sequential minimal optimization (SMO) algorithm
[159]. SMO is a conceptually simple algorithm with better scaling properties than a standard chunk-
ing algorithm. In the inner loop of the quadratic programming, SMO empirically chooses two a;’s
at a time and optimizes them analytically. For reference Appendix B.2 gives the updating formula
for our regularized adaptation algorithm which is derived based the SMO algorithm [159].

Although SMO greatly expedites the optimization process, the algorithm can still converge
slowly especially when using nonlinear kernels on very large datasets (e.g, over 20K samples).
Moreover, it is sometimes expensive to store and transfer a SVM classifier as the number of SVs in

general scales up with the number of training samples [61]. Since the regularized adaptation algo-

79

rithm and many other algorithms require the evaluation of f'"(x;) at every adaptation sample i, the

time and space efficiency can be adversely affected by the scale of the unadapted model.

5.4 MLP Adaptation

This section discusses adaptation algorithms for MLP classifiers. Analogous to the last section, we

first review related work and then present our proposed regularized adaptation algorithm.

5.4.1 Related work

The problem of MLP adaptation has been investigated in the machine learning community in the
context of multi-task learning [26,28,31], and in the speech community for adapting hybrid HMM-
MLP systems [127-129,160]. A common adaptation strategy is either retraining part of the original
network or adding augmentative layers. The network parameters to be retrained or added can be
estimated via back-propagation [145, 150]. First, there is RSI (retrained speaker-independent), dis-
cussed in [128]. This approach starts from the unadapted (speaker-independent) model and retrains
the entire network, while early stopping [143] can be applied to avoid overfitting. Next, there is
RLL (retrained last layer) [26,31, 127] which starts from the unadapted model and retrains only
the hidden-to-output layer of the MLP. The intuition is that the input-to-hidden layer provides an
“internal representation” which is common to all tasks, while the hidden-to-output layer provides a
task-dependent decision function constructed on the basis of this internal representation [26]. The
method in [127] also enables the selection of the most active hidden neurons, and it only adapts
the last-layer weights associated with these neurons. Finally, another popular approach LIN (linear
input network) [128, 129] augments the unadapted network with an additional linear transforma-
tion input layer. It is this layer that is trained using the adaptation data; the original network stays
unchanged. In this case, the number of free parameters is often further reduced using parameter
tying. For example, in vowel classification or speech recognition, the input feature vector is often a
concatenation of feature vectors from a number of consecutive frames. The transformation matrix,
therefore, is often constrained to be a block diagonal matrix with identical block-wise sub-matrices.

In many real-world tasks, these methods have shown significant performance improvements over

merely using the unadapted model. None of them, however, has worked universally the best in all

80

adaptation scenarios. One reason is that the number of free parameters to estimate depends on the
MLP architecture. For example, in object recognition tasks, the input layer often has a very high
dimension D that equals the number of pixels in a raw image. In such a case, the LIN algorithm
that directly estimates a gigantic D x D transformation matrix is likely to fail. Although parameter
tying might mitigate the overfitting problem, it is not clear how to perform typing on an input image.
The second reason is that the amount of labeled adaptation data may vary from task to task, but the
degrees of freedom in the above algorithms are more or less fixed, which can easily cause overfitting

or underfitting.

5.4.2 Regularized adaptation

In this work, we apply a regularized adaptation algorithm which is amenable to changes in MLP
architecture and in the amount of adaptation data available. The adaptation objective is derived
from Equation (4.29), where we use the relative entropy as the @Q(-) function and where we let
Ao = A similar to the case of SVMs.

In fact, we can extend this algorithm to a multi-class, two-layer MLP where we regularize the
weight matrix in each layer of the network. We regularize the input-to-hidden layers only because
we have found it to be practically advantageous as will be shown in Section|7.1.4/— this regularizer
is not derived from our fidelity prior. Here we use the same notation as was defined in Section 5.2.
Since we are considering K classes, the hidden-to-output layer now consists of K weight vectors
and biases, forming a weight matrix W and a bias vector b.!" Similarly, the input-to-hidden layer
weight matrix and bias vector are denoted by V and d respectively. We also introduce a set of
variables regarding sample 7 in Table 5.1

Given the above notation, the adaptation objective is expressed as

h2o0

A Xizh 1S tik
. N W_wt?“ 2 N V_vtT‘ 2 - t: 1 2y
S W v LS (S

) (5.28)

where we use separate tradeoff coefficients *2° and A" for regularizing the input-to-hidden and

hidden-to-output layers respectively, and where || A|> = tr(AAT). Due to mathematical tractability

»1”

'In fact, we can incorporate the bias into the weight vector if adding as another dimension in the vector ¢(x). In
this work, we use explicit bias terms for consistency with the SVM notation.

81

Table 5.1: Notation of a two-layer MLP

X;: input vector representing D input units;
ci: ¢ =Vx;+die,cip=(vp,X;) +dp,n=1.N;
¢;: hidden vector representing /N units, where ¢; ,, = 0(c;), n = 1..N;

a;: a; =Wo¢; +b;ie., Q) = <Wk, ¢1> +b, k=1.K
exp{—a;}

K 9
Zj:l exp{—a;;}

z;: output vector representing K output units, z; , = k=1.K;

t;: target label vector, where ¢; ;, = I(k = y;)

of the /o-norm, the above adaptation objective can be easily optimized using the back-propagation
algorithm [145, 150] (stochastic gradient descent or second-order gradient methods), which is typi-
cally much faster than the quadratic-programming-like procedures needed for SVM optimization in
terms of total computation time.

Many adaptation algorithms introduced in the past can fit in the regularized adaptation frame-
work. First, the RSI algorithm, in which both layers are re-estimated, is akin to A2 = X2 = (.
Next, the RLL algorithm in which only the last layer is re-estimated is akin to A\"** = 0 and
\i2h oo, Finally, since a cascade of linear transforms is a linear transform, the method of LIN is
akin to A\"2° — oo and \"2" = (0. We also define in this work a new method, entitled RFL (retrained
first layer) which also corresponds to A*2° — oo and A2 = 0. Of course, all of these methods are

generalized by varying the \2° and A*?" tradeoff coefficients.

5.4.3 Algorithm derivation and implementation

This subsection discusses the derivation and implementation of the regularized adaptation algorithm

in Equation (5.28). For convenience we define the last term in the objective as
Zik

K
t.
Ji 23 i log - (5.29)
k=1

Now we apply the back-propagation algorithm. The first step is to compute the first-order derivatives

w.r.t. the model parameters to be adapted. Taking derivatives of J; with respect to the hidden-to-

82

output layer parameters wy, and by, we have

Next, taking derivatives of .J; w.r.t.

On the other hand, it is straightforward to derive the derivative of |[w — w

of O
3Wk N 8ai,k !
K 8:]1 8Zi7j
- 9z i Oa i
j= 1,7 i,k
K
Lij (5.30)
= Z(— L) (2105 % — ZijZik)
,_ Zi,§
7=1
= (Zz,k_ti,k’) o
or _
8bk - ik ik

0J;
ovy,

0J;
od,,

the input-to-hidden layer parameters v,, and d,, gives

_ ok
N 861"” !
o X 6Jl 8ai7k ‘
B Oa; Ocip
k=1" ’
K (5.31)

= ¢in(l—din) Z(sz — i k) Whn - X

- ¢i,n(1 - (z)z,n)

k=1

(zik — tik)Whop,

M=

i
I

)12, Given these deriva-

tives, the second step is to update the model parameters using stochastic gradient descent. In other

words, we apply gradient descent using online processing where the parameters are updated every

sample, in contrast to batch processing where each update is averaged over all samples. Online

processing often yields better performance since the parameters are updated much more frequently

than in the batch mode. Additionally, bunch processing is a compromise between the two, in which

each update is averaged over a ’bunch” of samples. The inner loop of the gradient descent algorithm

for online processing is written as follows. For ¢ = 1..m,

Wi

by,

Wi — U((Zi,k —tik) - i + A0 (wy, — Wff))

by —n(zik — tik)

Gin(L = Gin) > (Zi — tig)Whn - Xi + N2 (v, — v;;’">> (5.34)

Vn—77<

dn - 77<¢z,n(1 - (z)z,n)

k

k

(5.32)

(5.33)

Z(Zi,k - tz’,k)wk,n> (5.35)

83

where 7 is the learning rate. We will give the update formula for a general L-layer MLP in Appen-
dix B.3!

Given a two-layer MLP with D input units, /N hidden units and K output units, the space
complexity of the MLP is O((D + K)N). The time complexity of the adaptation inner loop is
O((D + K)Nm), where m (the number of adaptation samples), while the number of outer loops
(or learning epoches) may vary. In general, MLPs are more efficient than SVMs on large datasets,

while SVMs perform better on sparse data.

5.5 Relation to Inverse Optimization Problem

Before we move on to the experiment section, we discuss the relationship between adaptation and
inverse combinatorial optimization [161-163]. We use the shortest path problem as an example of
combinatorial optimization problems. Assume that we have a graph in which nodes represent loca-
tions and edges represent roads connecting locations. Further assume that there is a cost associated
with each road, which depends on length, road condition, traffic condition and etc. The shortest
path problem is to find a path between two locations with the minimum sum of costs. Formally,
considering a directed graph, we let (i, j) € E denote a directed edge from i to j, and let ¢;; denote
the cost associated with this edge. We further define a set of binary variables z;; indicating whether
the edge from i to j is selected. The problem of finding the shortest path from s to ¢ is equivalent
to finding x;; such that > cijT;; is minimized under the constraint that z;; constitute a valid path

from s to ¢. This can be formulated as a linear programming problem [164]:

min E Cij L5
Tij

(i,5)EE
1 1=35
s.t. Z Tij — Z Zji =4 0 i#sandi #t (5.36)
ji(i,5)ER j:(Ji)EE 1 et

0<uz; <1V(i,j) e E
If the graph does not have any negative cost cycle, the above linear programming problem has an 0-1
optimal solution [164]. More generally, a family of optimization problems (including the shortest
path problem) can be formulated as

- T
5.37
min g(c x) (5.37)

84

where A is a set of feasible solutions.

The inverse optimization problem is such that for a feasible solution to the original optimization
problem, we want to discover under what cost vectors will this feasible solution become an optimal
solution. The inverse problem has a number of variations [162—164], one of which is to find a new
cost vector ¢, with minimal deviation from some known cost vector cg, such that a given solution

Xg is an optimal solution to (5.37), i.e.,

min e — coll .
s.t. g(c,xp) =)r(neiﬂ g(c,x)
It has been shown by [163, 164] if (5.37) is a linear programming problem, e.g. the shortest path
problem, then its inverse problem under norm p = 1 and p = oo is also a linear programming
problem.
Slightly twisting the roles of these variables, we see that the inverse optimization problem

closely relates to regularized adaptation. We replace v with clasri labels y1., in a classification
problem, replace ¢ with affine parameters (w, b), and let g(-) = Z Q(f(xi),yi), where f(x;) =
wlx; + b. In adaptation, we are given cg = (w'", b'") which ils:linown a-priori, and we aim to
estimate new parameters (w,b), with minimal deviation from (w!",b!"), such that the true class
labels vg = y1.,,, becomes an optimal solution w.r.t. g(-). Formally,

min ||w — wir||?
w

s.t. ZQ(f(xi)7yi) = min ZQ(f(Xi)vyg);
i=1 =1

1:m€ym =

(5.39)

where (x;,y;), i = 1..m, are samples from the adaptation set D%,
We can prove that for binary classification and for certain loss functions, a decision function f
satisfying the constraint in (5.39) has zero classification error on the adaptation data. To see this,

since (x;,y;) are i.i.d., the constraint is equivalent to

Q(f(xi),y:) = min Q(f(x;),y.), i=1..m (5.40)

yi==%1
We are especially interested in the hinge loss and the log loss, using which the above constraint is
equivalent to

yif(x;) = max y.f(x;), i=1.m (5.41)
yi==*1

85

Since y; € {%1}, it must be that any decision function f satisfying Equation (5.41) satisfies
y; f(x;) > 0 for all 4, which implies zero classification error. On the other hand, it is easy to
see that a decision function with zero classification error on the adaptation data must satisfy the
constraint in (5.39). This suggests that if w'" already achieves zero classification error on D¢, then
w! itself is the optimal solution to the inverse optimization problem in Equation (5.39), which is
intuitively correct.

In practice, (5.40) is often too strict a constraint to allow any feasible solution. For example,
when Df,‘f is non-separable, there is no decision function that satisfies (5.41). We therefore would
like to relax the constraint a bit so that the problem generalizes to non-separable cases. We introduce
a slack variable &; > 0 to each of the constraints in (5.40). This slack variable represents how much
the loss of the correct label exceeds the minimal loss of all possible labels, and we certainly want

these slack variables to be as small as possible. The inverse optimization problem hence becomes

m
min 5w — wi"||2 + Z&

v i=1
st Q(f(xi),yi) = min Q(f(xi),;) + & (5.42)
[TASNY

& >0

This leads to an adaptation objective for potential applications such as parsing and structure learning
of graphical models. A large-margin training objective with constraints in a similar fashion has been

proposed in [69].

5.6 Adaptation Experiments

This section presents two sets of adaptation experiments, one on a vowel classification task and the
other on an object recognition task. The general experimental paradigm is as follows: for each task,
we learn the best unadapted model on the training set, and then perform adaptation and evaluation
via cross-validation (CV) on the test set. In other words, we divide the test set into n folds, we
repeatedly choose one fold as the adaptation set and the remaining folds as the test set.

The first task involves a reasonably large training set of about 300K samples. As we found that
training a SVM on such a dataset was prohibitive, we used sub-sampled data to learn the unadapted

model, and we will focus more attention on the use of MLPs in this task. The second task involves a

86

rather sparse training set of 2700 image samples with high-dimensional features. As we will see, an
unadapted SVM is advantageous over an unadapted MLP in this case. Since the performances of the
unadapted SVM and MLP are different, it is to some extent unfair to compare the performances of
their respective adapted models. Our goal here is to compare various adaptation algorithms applied

to the same unadapted classifier.

5.6.1 Frame-level vowel classification

We have briefly introduced the Vocal Joystick in Chapter |1, and we will elaborate on this topic in
Chapter 6. Along with the development of the VJ system, we have collected a large corpus of vowel
utterances which can be potentially used in pattern recognition and machine learning research [55].
This section discusses the application of our proposed regularized adaptation algorithms to a vowel

classification task based on this corpus.

The VJ-vowel corpus

The Vocal Joystick (VJ) [36] is a human-computer interface system that enables individuals with
motor impairments to control computing devices (mice pointers, etc.) with continuous aspects of
their voice (pitch, vowel quality). Within this project, we needed a frame-level vowel classifier. To
this end, we initially used speech data from the TIMIT speech corpus [165] to train such a classifier.
However, we empirical found that using TIMIT is not best-suited for training the VJ vowel classifier.
This is because the vowels used by the VJ often need to be pronounced in a drawn-out manner,
while the vowels in TIMIT are usually short and are often spoken with much co-articulation present.
Therefore, we made a large data collection effort in a controlled environment that yields a new vowel
corpus that was representative of the utterances a user of the VJ-system would use. The result of
the data collection effort is a vowel corpus of approximately 11 hours of recorded data comprised of
approximately 23,500 sound files of monophthongs and vowel combinations (e.g. diphthongs) with
variations in duration, pitch and intensity. A full description of this corpus and the data collection
methodologies can be found in [55].

To test our machine learning algorithms, we extracted from the VJ corpus a dataset of 8 monoph-

thong vowels: /&/, /a/, la/, /ol, /u/, /i, /i/, and /e/. All speakers articulated each vowel with all

Table 5.2: Amounts of training, test and development data in VJ-Vowel

speakers | # samples in total | non-silent audio
Training set 21 420K 1.16 hrs
Test set 10 200K 0.56 hrs
Development set 4 80K 0.22 hrs

87

combinations of the following: (a) long/short (in duration); (b) falling/level/rising (in pitch); (c)
loud/normal/quiet (in intensity). In other words, there are 2 x 3 x 3 = 18 utterances for each vowel
class and each speaker. We allocated 21 speakers to the training set (for training the unadapted
model), 10 speakers to the test set (for CV-style adaptation and evaluation) and 4 speakers to the
development set (for parameter tuning). In this thesis, we use exactly the same test set for MLP,
SVM and GMM adaptation experiments so that the results are comparable. Unlike earlier experi-
ments [48,49], the audio files in this test set were recorded without phonetician’s supervision, which
we think is a more realistic scenario in real-world applications. The training and development sets,
however, were collected with phonetician’s supervision. The number of samples in each set is listed
in Table 5.2. For a particular speaker in the development set and the test set, we performed 6-fold
adaptation-evaluation experiments (same as cross-validation) with different amounts of adaptation
data. Specifically, experiment VJ-A, VIJ-B and VJ-C used approximately 1K, 2K and 3K sam-
ples per speaker for adaptation respectively, while all experiments used the same 17K samples per
speaker for evaluation. We repeated this for all 6 folds and computed the average error rate for each
speaker. We then computed the mean and standard deviations of these averaged error rates over
10 speakers. In this regard, the standard deviation reflects the variation in adaptation performance
across different speakers (which is typically rather high). To test the significance of the mean error

rates, we also conducted difference of proportion significance test.

Regarding input features, we created a frame every 10ms, each with a length of 25ms. We
then extracted standard mel frequency cepstral coefficients (MFCCs) plus their deltas each frame,

producing a 26-dimensional vector. Moreover, an input vector x; is formed by concatenating

88

Table 5.3: Dev-set error rates of unadapted 8-class MLPs with different numbers of hidden units
and window sizes. The highlighted entries include the best error rate and those not significantly

different from the best at the p < 0.002 level.

hidden/win 1 3 5 7 9
25 29.92 2720 26.03 2585 25.92
50 28.07 27.30 25.75 25.27 26.07
100 27.83 26.80 26.87 26.30 26.37
200 27.80 26.53 264 26.03 2597
400 27.37 2623 2597 2590 25.83

MFCCs+deltas from a consecutive W frames centered at ¢, where W is the window size.

MLP experiments

First, we trained an unadapted two-layer MLP with different configurations. We varied the number
of window size W on one hand, and the number of hidden nodes /V on the other. For each setting, we
also tuned the regularization coefficients \"?° and A*?", and found that the impact of regularization
was negligible in this case (probably because the training set is large). Note that all above parameters
were tuned using the development set. The results are reported in Table 5.3, which shows that the
best result comes from using a window size of 7 and using 50 hidden units. When applied to the
test set, this configuration obtained an error rate of 33.14%. This error rate is quite high considering
there are only 8 vowel classes. By listening to the waveforms, we found that although most of
the vowel utterances from the same speaker were distinguishable from one another, it was fairly
common that a vowel articulated by one speaker sounded similar to a different vowel articulated by
another speaker, especially in the case of /a/ and /a/. In other words, the Bayes error of a speaker-
independent classifier tends to be high on this dataset.

Next, we conducted adaptation experiments based on the best vowel classifier we obtained. and
compared the following algorithms: (1) unadapted; (2) retrained with weight decay using only

the adaptation data; (3) LIN (linear input network) [128]; (4) RSI (retrained speaker independent)

89

Table 5.4: Test-set error rates (means and standard deviations over 10 speakers) of experiment VJ-
A, VI-B and VIJ-C using 8-class MLPs, where the amounts of adaptation data were balanced across
classes; The highlighted entries include the best error rate and those not significantly different from

the best at the p < 0.001 level.

samples per speaker 1K 2K 3K

Unadapted 33.14 4 9.38 33.14 4 9.38 33.14+9.38
Retrained 23.80 4 5.17 17.94 + 4.80 14.31 +3.97

()\h20=10—3)\i2h=0) ()\h2o=10—4)\z’2h=0) (/\hzozo /\itho)
LIN 21.87 4 5.02 18.28 + 4.89 16.56 + 4.05
RSI (\"20=0, \i2h=() 18.97 £ 5.09 15.70 + 4.25 12.90 + 3.64
RLL (\'2°=0, \"2h=00) 21.84 +£5.74 18.40 + 4.65 15.83 4+ 3.77
RFL (\"20=00, \2"=() 18.64 + 5.37 15.20 4+ 4.23 12.18 + 3.51
Regularized 18.64 +5.37 15.20 + 4.27 12.30 + 3.68
(V20200 N2h=0) (V120200 \2h=10"2) (\P20=c0 Ai2h=10%)

[128]; (5) RLL (retrained last layer) [127]; (6) RFL (retrained first layer), which we introduce in this
work since it is a natural instantiation of regularized adaptation; and (7) regularized as presented
in Equation (5.28)). For (2) and (7), we first chose the best 20 and \2" values on the development
set, and then applied them to the test set. In all cases, we computed the average error rates over these
6 adaptation/evaluation folds. We then repeated this for all 10 test speakers, and the final results are
means and standard deviations of these error rates over 10 speakers.

Table 5.4 shows results for experiment VJ-A, VJ-B and VJ-C which used different amounts of
adaptation data, i.e. 1K, 2K and 3K samples per speaker respectively (corresponding to 10s, 20s
and 30s for all 8 vowels spoken by each speaker). The amounts of adaptation data were balanced
across all 8 classes. As shown in the table, all adaptation algorithms outperformed the unadapted
model, while their performance kept improving as more adaptation data became available. Overall,
“regularized” performed the best in terms of mean error rate, and RFL worked almost as well. Note

that the high standard deviations are largely due to the variation in unadapted model performance

90

Table 5.5: Test-set error rates (means and standard deviations over 10 speakers), with different
number of classes of adaptation data available (unbalanced classes), and with ~ 350 samples per

class (3K in total). Highlighted entries include the best error rate and those not significantly different

from the best at the p < 0.001 level.

vowel classes in Dgf 1 2 3 4
Unadapted 33.14 £ 938 33.14 £9.38 33.14 £9.38 33.14 £9.38
LIN 41.01 £4.25 4130+ 636 39.46+594 3535+6.80
RSI 3742 £5.20 40.78 £=4.43 4043 £4.78 36.76 £5.57
RLL 3824 +5.63 43.63 £540 44.62+531 4191 £6.32
RFL 3489 +£5.52 34.68 £4.30 34.67+534 27.23+6.15
Regularized 33.14 £9.38 33.14 +9.38 33.14 £9.38 25.44 +5.95
2o — o V2o — o 2o — o A2o — o
Ni2h — oo N2k — oo A2 — oo A\i2h — 102
vowel classes in D3¢ 5 6 7 8
Unadapted 33.14 +£9.38 33.14 £9.38 33.14 +£9.38 33.14 +£9.38
LIN 2782+ 676 27.194+440 21294450 16.5644.05
RSI 29.80 £8.08 26.86 =5.41 17.44+£528 12.90 4+ 3.64
RLL 3527 +8.72 31414+£5.10 2255+5.10 15.83 +£3.77
RFL 21.85+746 21.144+546 13.73+4.22 1218 +3.51
Regularized 20.32 £ 6.28 20.23 +5.29 13.07 £4.20 12.30 £ 3.68
A2o — oo A2o — oo A20 — oo 2o — o
N2h —10=2 N\i2h — 10-2 \i2h — 10—4)\i2h — 104

when tested on different speakers (as indicated by the standard deviation of the unadapted model).
Furthermore, for the Vocal Joystick application, we also trained a 4-class MLP. The unadapted
model had an error rate of 8.11 4 2.37%. Regularized adaptation obtained 3.06 + 3.73%, 2.21 +

2.25% and 1.98 4+ 2.02% using 1K, 2K and 3K adaptation samples per speaker respectively.

91

An alternative approach to measure adaptation performance is to vary the fraction of the number
of vowel classes available to adapt on (e.g., it may be desirable to adapt using data from only
samples from 3 of those 8 vowel classes). This approach is more akin to the situation in ASR,
where limited adaptation data almost assuredly means that certain categories (phones or words) are
not available. Table |5.5/shows results when the amounts of adaptation data were unbalanced across
the 8 classes. Column 7 means a system was adapted only with 7 out of the 8 possible number of
classes. We experimented with different random orders that the vowel classes became available
for adaptation and observed similar patterns in results, and here we only report the results for one
such order. As the table shows, when the number of vowel classes available was no larger than 3,
the best strategy was to use the unadapted model; when this number was above 3, regularized”
performed significantly better than any of the other algorithms up to all 8 vowel classes at which
point “regularized” and RFL performed equally well. It is also interesting to notice that the best
configuration for the regularized algorithm was almost always \"2° = oo and A2 ~ 0, meaning

that the last layer of the MLP is fixed and the first layer had moderate or no regularization.

SVM experiments

We first attempted to train an unadapted SVM using the entire training set, but found it unlikely to
finish within weeks. We then used 80K samples randomly selected from the training set, and trained
an unadapted SVM with Gaussian kernel. We empirically chose std = 10 using the development
set and fixed this parameter in adaptation. In a similar way, we chose the regularization coefficient
C' = 100. The unadapted model had an error rate of 38.21%.

We then applied different SVM adaptation algorithms to the unadapted model. Specifically, we
tried (1) unadapted; (2) retrained which trains a new SVM using the adaptation data only; (3)
boosted [130] which combines the misclassified adaptation samples with the old SVs in training an
adapted classifier; (4) enhanced which corresponds to the algorithm we proposed in Section 5.3.2;
(5) regularized which follows Equation (5.19); and finally (6) extended regularized which follows
Equation (5.27). As shown in Table 5.6, “retrained”, “enhanced” and “regularized” worked very
well in general, while “regularized” had a non-trivial gain over others when the adaptation data was

very limited. Furthermore, we see that “regularized” performed better than “extended regularized.”

92

Table 5.6: Test-set error rates (means and standard deviations over 10 speakers) of experiment VJ-A,
VJ-B and VJ-C using SVMs with a Gaussian kernel (std=10). The tradeoff coefficient is C' = 100

in all cases. The highlighted entries include the best error rate and those not significantly different

from the best at the p < 0.001 level.

adaptation samples per speaker 1K 2K 3K
Unadapted 38.21 +11.41 | 38.21 £11.41 | 38.21+ 11.41
Retrained 2470 £4.33 | 1894 £3.56 | 14.00+ 3.32
Boosted 29.66 = 8.16 | 26.54 £6.71 | 28.85 £5.24
Enhanced 26.16 =4.44 | 19.24 £4.54 | 1441 +£3.24
Regularized 23.28+ 6.67 | 19.01 +=4.87 | 15.00 £ 3.82
Ext. Regularized 28.55+8.36 | 2538 +6.71 | 20.36 4+ 5.33

This is probably because the training set had 80K samples, resulting in approximately 8K support
vectors after SVM training, while the adaptation set only had 1K-3K adaptation samples; thus the

“extended regularized” algorithm would penalize more on the training set than on the adaptation set.

Additionally, it is interesting to compare the above with the maximum likelihood linear regres-
sion (MLLR) algorithm described in Chapter|3/for GMM adaptation, since MLLR has been the most
successful in adapting Gaussian mixtures in speech recognition systems. To this end, we constructed
a simple GMM classifier, where we empirically selected the maximum number of mixture compo-
nents to be 32 in all 8 class-conditional Gaussian mixtures. The parameters of these Gaussians are
estimated using the maximum likelihood criterion. The baseline (speaker-independent) classifica-
tion error rate was 39.62%. We then implemented a native MLLR for Gaussian mean adaptation,
where we let all Gaussian components in the same mixture share the same affine transform. The
error rates after applying MLLR were 28.59 +3.87%, 24.28 +4.09% and 20.05 £ 3.76% for 1K, 2K
and 3K samples per speaker respectively. As we can see, although the GMM baseline performance
was nearly as good as that of the SVM we just described, the adaptation performance of MLLR was

not as effective as the regularized adaptation algorithm for SVMs.

93

5.6.2 Objection recognition

The recognition of generic object classes with invariance to poses and lighting conditions is one of
the major challenges in computer vision [96]. In this dissertation, we apply our proposed algorithms
to lighting condition adaptation, where a small number of images under a specific lighting condition
are used as the adaptation data, and where the adapted classifier is used to recognize object classes

under the same lighting condition. First, we describe the corpus used in our experiments.

The NORB Corpus

Here we will frequently use the terms class, object and image. For example, consider animals” as
a class, then “elephant”, tiger” and “bear” are three different objects belonging to this class. For
each object, there can be a good number of images taken under different lighting conditions and
from different angles. Our corpus is a subset of the normalized NORB dataset [166], where the
images were segmented, normalized and then composed in the center of 96x96 pixel background
images. Our dataset consists of images from 5 classes, i.e., airplanes, cars, trucks, human figures
and animal figures, each with 10 objects (5 for training and 5 for testing). The images of each
object were captured under 6 lighting conditions and with 18 poses (3 different elevations and 6
azimuths). Figure 5.3 shows images of 5 objects (one per class) under different lighting conditions,
but keep in mind that each example has images shot with other poses.

The training and test set each have 2,700 images, i.e., 450 images per lighting condition. We
performed two sets of experiments with different amounts of adaptation data. In experiment NORB-
A, we adapted using images from only one object per class, and evaluated on the remaining images.
In other words, 90 images were used as the adaptation data for each lighting condition, and the
remaining 360 images were used for evaluation. We performed five-fold cross-validation, each
time choosing a different object for adaptation. In experiment NORB-B, we adapted using images
from two objects per class. In other words, 180 images were used for adaptation and 270 images
for evaluation, and we performed ten-fold cross-validation. In either case, the final error rate was
averaged over the number of folds. We did not further increase the size of the adaptation sets due to

limited data.

The images in the original NORB dataset each have 162 different poses.

94

6 lighting conditions

= v §
e v
- S
2 v & e
B o o &
E EEEN

5 classes

Figure 5.3: Five objects (each from a different class) under six different lighting conditions

Regarding input features, since finding pose and lighting-invariant features for object recognition
is beyond the scope of our work, we simply down-sampled the images to 32x32 pixels and used raw
pixel values as input features. This resolution was reported by [166] as the best setting for SVM
classification. Each feature element takes integer values in the range of [0, 255], and we treated

them as real numbers.

95

SVM Experiments

We first trained an unadapted SVM, on 2,700 training images, using Gaussian kernel with std=500.
This kernel parameter was empirically chosen using cross-validation on the training set, and was
fixed during adaptation. Note that using scaled inputs would change this value. The regularization
coefficient C' was tuned through cross-validation as well. However, we found that this dataset was
well separable and that any C' > 0 yielded the same performance; thus we simply used C' = 100 in
both training and adaptation.

We compared different SVM adaptation algorithms as were described in the vowel classification
experiments, namely (1) unadapted, (2) retrained, (3) boosted, (4) enhanced, (5) regularized, and (6)
extended regularized. On this dataset where the adaptation sample size was extremely small, the last
strategy worked fairly well since the old support vectors therein served as extra “adaptation data”.
As shown in Table 5.7/ and Table 5.8, “extended regularized” worked consistently the best for both
experiment NORB-A and NORB-B, and “boosted”, which also utilizes the old support vectors, gave
the second best results. In experiment NORB-B, where the amount of the adaptation data doubled,
“extended regularized” still outperformed others while “regularized” became the second best in a

few cases. In addition, increasing the amount of adaptation data increased accuracy consistently.

MLP experiments

For completeness, we also tried MLP classifiers on this image dataset, although the performance was
much worse than that using SVMs. We first trained an unadapted, two-layer MLP with 1024 input
nodes and 5 output nodes. We varied the number of hidden units from 10 to 100 with a step size of
10, and from 100 to 500 with a step size of 50. Each experiment was accompanied by a search for
the best regularization coefficients A*2° and *?". We found that N = 30 was the minimum number
of hidden units that yielded the best performance, and the corresponding regularization coefficients
were \'2° = 5 x 1073 and A" = 10~2. This unadapt MLP had an average error rate of 21.4% on
the test set.

We then conducted experiments NORB-A and NORB-B using different MLP adaptation algo-
rithms, including (1) unadapted, (2) retrained (from scratch) with weight decay, (3) RSI (from the

unadapted model), and (4) regularized. Here we ignored LIN since intuitively it was likely to cause

96

Table 5.7: Experiment NORB-A using SVMs with a Gaussian kernel (std=500) (90 images per
lighting condition). The tradeoff coefficient is C' = 100 in all cases. The highlighted entries in avg

include the best error rate and those not significantly different from the best at the p < 0.001 level.

Lighting 0 1 2 3 4 5 avg

Unadapted 11.1 113 165 109 158 9.3 | 125
Retrained 309 245 364 293 29.1 30.6 | 30.1
Boosted 103 106 149 104 133 93 |115
Enhanced 21.8 169 315 206 231 176|219
Regularized 132 133 17.1 137 16.6 119 | 148
Ext. Regularized | 9.8 9.8 14.1 10.1 125 94 | 11.0

Table 5.8: Experiment NORB-B using SVMs with a Gaussian kernel (std=500) (180 images per
lighting condition). The tradeoff coefficient is C' = 100 in all cases. The highlighted entries in avg

include the best error rate and those not significantly different from the best at the p < 0.001 level.

Lighting 0 1 2 3 4 5 avg

Unadapted 1.1 11.3 165 109 158 9.3 | 125

Retrained 182 145 227 193 206 184 | 189
Boosted 99 102 13.6 10.1 115 9.1 | 10.7
Enhanced 154 11.8 192 156 156 12.0| 149

Regularized 114 112 147 123 146 164 | 134

Ext. Regularized || 8.8 9.2 11.8 99 140 8.7 | 104

overfitting by estimating a 1024 x 1024 transformation matrix. In choosing the tradeoff coeffi-
cients \"2° and \2" for the “regularized” experiments, we found that many values gave statistically
identical performance, and we chose the highest such values in order to maximize the degree of reg-
ularization. As shown in Table 5.9 and 5.10, RSI and regularized worked identically (statistically)

the best in both experiment sets.

97

Table 5.9: Experiment NORB-A using 5-class MLPs (90 images per lighting condition). The high-
lighted entries in avg include the best error rate and those not significantly different from the best

at the p < 0.001 level.

Lighting 0 1 2 3 4 5 avg
Unadapted 20.1 234 342 212 158 137|214
Retrained (\2°=0, \2"=0) 350 342 77.1 374 334 345|419
RSI (\'20=0, \"2h=()) 174 208 285 183 168 158 | 19.6
Regularized (*2°=c0, A?"=10"2) || 17.6 20.7 26.1 183 16.5 159 | 19.2

Table 5.10: Experiment NORB-B using 5-class MLPs (180 images per lighting condition). The
highlighted entries in avg include the best error rate and those not significantly different from the

best at the p < 0.001 level.

Lighting 0 1 2 3 4 5 avg
Unadapted 20.1 234 342 212 158 137|214
Retrained (\"2° = 0, \"?" = () 283 272 610 272 252 260|325
RSI (\'20=0, \"2h=()) 163 200 275 174 157 14.7|18.6
Regularized (\"2°=00, A\2"=1072) | 164 193 256 17.0 15.1 149 | 18.0

98

Chapter 6
APPLICATION TO THE VOCAL JOYSTICK

In Chapter 4/ and Chapter 5, we presented a principled approach to adaptation and discussed in
detail the derived algorithms for GMMs, SVMs and MLPs. The motivation of conducting such re-
search was originated from the development of the Vocal Joystick — a voice based human-computer
interface for individuals with motor impairments.

In Chapter |1, we discussed the importance of developing voice-based computer interfaces that
are capable of controlling continuous tasks. The Vocal Joystick is such an interface developed at the
University of Washington [36,37]. Unlike standard ASR, our system goes beyond the capabilities
of sequences of discrete speech sounds, and exploits continuous vocal characteristics such as inten-
sity, pitch and vowel quality which are then mapped to continuous control parameters This chapter
describes the Vocal Joystick engine as well as the role of adaptation in the VI system. Specifically,
Section 6.1/overviews four major acoustic parameters in the VJ system; Section 6.2/describes engine
organization, with focus on the signal processing and pattern recognition modules. The last section

discusses why adaptation is important and how our proposed algorithms are applied.

6.1 Overview of Acoustic Parameters

The key characteristic of the Vocal Joystick is that unlike conventional ASR systems, which recog-
nize sequences of words, it processes continuous acoustic parameters every audio frame and trans-
forms them into various control parameters. There are four major acoustic parameters currently
used in the VI system, intensity, pitch, vowel quality and discrete sound identity.

Intensity, computed as the average energy of an acoustic signal, is a measure of “loudness”.
The average energy, along with zero-crossings, plays an important role in voice activity detection
(VAD) and determines the start-and-end of a mouse movement. Intensity is also used to control the
movement speed. For example, a loud voice corresponds to a large movement while a quiet voice

corresponds to a nudge.

99

The second parameter is pitch. Pitch is the auditory percept of tone, and is often calculated as
the inverse of the smallest period of an acoustic signal. Currently pitch is not used in the VJ-mouse
system, but is potentially useful in systems that require more degrees of freedom in control, e.g. an

robotic arm with three joints.

The third parameter is vowel quality. Vowels are voicing phonemes generated by vibration of
the vocal folds [167]. They are the most intense and the most audible sounds in speech. They
usually function as syllable nuclei, carrying information of energy and pitch. Consonants, on the
other hand, are speech phonemes produced by constriction of the passage through the throat and the
mouth, which are in general less audible than vowels. The use of vowels, therefore, may lead to a
classification system with high discriminability and noise-robustness. In this work, vowel quality
is used to control the direction of a mouse movement. we choose to use four vowels /a&/, /a/, /u/
and /i/ (in the IPA alphabet [168]) to control four cardinal directions in a 2-D space (up, left, down
and right), as illustrated in Figure 6.1. Furthermore, four additional vowels, /a/, /o/, /#/ and /e/,
are designated for diagonal directions. The “vowel triangle”, depicted in Figure 6.2, shows the
articulatory properties of these vowels in terms of tongue positions in the mouth. The vowel triangle
roughly reflects the relative locations of these vowels in acoustic space. We chose to use /&/, /a/,
/u/ and /i/ for cardinal directions because they are at the four corners of the vowel triangle and are

presumably the most far apart in acoustic space.

Finally, certain combined vowels and consonants, which we call discrete sounds, can be used
to control discrete actions, e.g., mouse clicks and toggles. In this regard, discrete sounds are akin
to voice commands except that they are not confined to be verbal. In fact, they can be chosen
in a way that maximally reduces confusability. This can be achieved by incorporating phonetic
knowledge, e.g., the articulation similarity of different phonemes, or model knowledge since the

confusion patterns may depend on the classifier.

6.2 The V] Engine

Utilizing the acoustic parameters introduced above, we have developed a VJ-mouse control scheme
which works as follows: mouse movement is triggered when vowel activity is detected, and con-

tinues until the vowel activity stops. At each time frame, the movement direction is determined by

100

x
e a
I< [>a
+ 0]
u

Figure 6.1: Vowel-direction mapping

Vowel Advancement

Front Central Back
- . u
5) High I +
£ e/ o)
© Mid T
% — | a a
>

x®x

Low //

Figure 6.2: Vowel triangle

vowel quality, while the step size is determined by intensity. Finally, a small set of discrete sounds
are used to execute mouse clicks. Now we present the VI engine in more detail. A general picture of
the VJ engine is shown in Figure |6.3, which consists of three main components: signal processing,

pattern recognition and motion control.

6.2.1 Signal processing

The goal of the signal processing module is to perform voice activity detection (VAD), and to extract
low-level features such as average energy, number of zero-crossings, normalized autocovariance

coefficients (NACCs) and mel frequency cepstral coefficients (MFCCs) [169, 170], all of which are

101

Pattern Recognition

Signal Processing

Low-level Features: ‘ Energy smoothing ‘
Acoustic Energy
) ‘ e ‘ ——>» Zero-crossings ‘ Pitch estimation ‘
Signal NCCCs
‘ fieatirciExymetion ‘ MFCCs ‘ Vowel classification ‘

‘ Discrete sound reco. ‘

v

Vocal Parameters:
Intensity
Pitch
Vowel probabilities
Discrete sound ID

v

Motion Control

: Motion Parameters:
Computer ! Direction
1
1

Mouse
Movement

Interface Driver Speed

Discrete commands Transformation

Figure 6.3: The VJ engine architecture. This dissertation mainly contributes to the signal processing

and pattern recognition module.

inputs to the pattern recognition module. To this end, we sample an incoming acoustic signal at a
rate of 16kHz, and generate a frame every 10ms using a 40ms rectangular window. We choose such
a window length only to guarantee that it is at least twice of the longest possible pitch period, as
suggested by [169] — since the pitch of a normal human voice ranges between 50Hz and 500Hz, we
use a window length of 20ms x 2 = 40ms. Such a choice makes it relatively easy to obtain reliable
pitch estimates, but it is entirely possible to use a shorter window. Note that this window is used for

computing all low-level features except MFCCs which use a 25ms Hamming window instead.

Let s¢(l) denote sample [of frame ¢, where | = 1..L and L = 16kHz x 40ms = 640 is the

102

rectangular window length. For each frame, we first compute the average energy as

L
1
er = zz|8t<l>|2 (6.1)
I=1
and the number of zero-crossings as
L—1
=Y I(si()se(l+1) <0) (6.2)

=1
Both e; and z; are strong indicators of voice activity — the larger the values of e; and z;, the more
likely voice activity occurs. We then use a set of empirical thresholds to categorize a frame into

9 9 9

“active”, ’pre-active”, “temporarily inactive” and "truly inactive” as follows.

e Frame t is active if e; > ape and z; > z,, where e is an estimate of the

noise T €o noise

background noise level, ay is a constant multiplier, and e, and z, are constant floor values.
An active frame is believed to contain voice activity, for which we extract low-level features
such as NACCs and MFCCs, and for which we conduct pattern recognition functions based

on the extracted features of the current frame and sometimes of previous frames as well.

e Frame ¢ is pre-active if Al€hpise T €0 < € < apeppige + €o and 2¢ > 2,, Where q; is a
constant multiplier and a; < ap. All low-level features are extracted in such a state, but no
pattern recognition functions are actuated. The main purpose of creating the pre-active state
is to indicate that the frame following a pre-active frame might be active and hence low-level
features of the pre-active frame need to be computed and cached for potential use in the near

future. Note that ”pre-active” is only necessary in a real-time system.

e Frame ¢ is temporarily inactive if e; < ajep,iqe + €0 OF 2t < z,. However, we still generate
low-level features (again without executing pattern recognition functions) until the number
of consecutive inactive frames exceeds a threshold. Only at this point do we believe that
the voice activity has fully stopped, and do we call it a truly inactive state; otherwise the
observed “temporarily inactive” frames might merely correspond to a pause in an utterance,
which we should not consider as the end of a voice activity. Once the number of consecutive

temporarily inactive frames exceeds the threshold, we stop generating NACCs and MFCCs,

103

and we send the the cached low-level features of the proceeding voice activity segment to a

discrete sound recognizer.

As stated above, we extract NACCs and MFCCs when a frame is active, pre-active, or temporar-
ily inactive. NACCs are input features to the pitch tracker in the pattern recognition module. For
a better understanding of these features, we first introduce autocorrelation coefficients [169, 170],
which show how well a signal correlates with itself at a range of different delays, and we expect
a periodic signal has the highest correlation with itself at the pitch period. Mathematically, the

autocorrelation coefficient for lag ¢ > 0 is defined as

~

1 ,
Ti = T 2 st()se(l + 1)

The autocorrelation method is an unbiased estimator, but the variance gets larger as ¢ gets closer to
L [169-171]. Therefore, we often need to use an excessively large window for short lags to maintain
significance for large lags. To compensate for this problem, autocovariance coefficients ! [42,169]
use an extended window Lex¢ > L such that the summation interval does not shrink for large lags.
Here we use Lext = L + tmax = 640 + 320 = 960, where imax = 320 is the maximum lag
(corresponding to 50Hz). NACCs, which are utilized in [172] and the current VJ engine, are simply

energy-normalized autocovariance coefficients. Mathematically,

D ssil+)

brj = =t
’J -
! !
\/ €t,06t,5

where ¢; ; = Zlel |s¢(l + j)|?, and it is easy to see that in Equation (6.1) e; = €} .

(6.3)

Finally, MFCCs and their dynamic features are extracted using a standard method described
in [42]. Note again that we replace the 40ms rectangular window by a 25ms Hamming window.
These features are inputs to the vowel classifier and the discrete sound recognizer in the pattern

recognition module.

! Auto-covariance is also called modified autocorrelation or sometimes cross-correlation, but the latter is a misnomer
as cross-correlation usually refers to the correlation between two signals

104

6.2.2 Pattern recognition

The pattern recognition module serves as an interface which takes the above low-level features as
input and estimates acoustic parameters we introduced in Section 6.1, including intensity, pitch,
vowel quality posterior probabilities and discrete sound identity, as shown in Figure 6.3. In the
following text we will discuss in detail how these acoustic parameters are estimated, but we will
leave to Chapter 7 the discussion of a novel pitch estimation algorithm, and an online adaptive filter

algorithm applied to the vowel classifier outputs.

First of all, intensity is simply a smoothed version of the average energy e;, which is obtained

by applying a low-pass FIR filter on e;.

Next, the pitch trajectory is estimated using NACCs. Specifically, the current VJ engine selects
local pitch candidates for frame ¢ based on ¢;; in Equation (6.3). — if ¢;. achieves its highest
value at ig, it is likely that 7y corresponds to the true pitch period. Local estimates, however, are not
always reliable. This is because multiples of the pitch period can also yield high ¢; . values, some-
times leading to pitch halving errors; on the other hand, pitch harmonics can cause pitch doubling
errors. A more reliable method is to apply dynamic programming, which takes into account con-
text information to obtain globally optimal estimates [172]. Many pitch trackers based on dynamic
programming require meticulous design of local cost and transition cost functions. The forms of
these functions are often empirically determined and their parameters are tuned accordingly. Para-
meter tuning usually requires great effort without a guarantee of optimal performance. Chapter [7
will present a graphical model framework to automatically learn pitch tracking parameters in the

maximum likelihood sense.

Given the pitch estimate, we can immediately decide whether a frame is voiced or unvoiced. For
each voiced frame, we perform vowel classification using a two-layer MLP with 50 hidden nodes
as described in the previous chapter. The MLP takes 7 consecutive frames of MFCCs and their
dynamic features as input, denoted as x;, and outputs a vowel posterior probability vector z; where
2, = p(k|x;) is the posterior probability of vowel class k. In one configuration, we use a 4-class
MLP, corresponding to /&/, /a/, /u/ and /i/, whereas a second configuration uses a 8-class MLP which
include the other four vowel classes /a/, /o/, /i/ and /e/. These MLP classifiers were trained on the

VJ-vowel corpus described in Chapter 5. In Chapter [7, we will discuss an online adaptive filter

105

algorithm applied to z;. This algorithm utilizes context information and enables the VJ system to
produce movements in arbitrary directions.

Lastly, we launch a discrete sound recognizer when we have detected the end of voice activity
(by inspecting the number of consecutive temporarily inactive frames, as mentioned in the signal
processing module). Discrete sound recognition is essentially a problem of isolated-word recog-
nition except that in our case we can compose any “word” using a set of phonemes. The current
VJ engine adopts a vocabulary that only contains unvoiced consonants, each defined as a different
discrete sound. The purpose that we do not include any voiced phonemes in the discrete sounds
is to maximally reduce confusion with the vowels used in continuous control. For example, using
“open” as a discrete sound would cause a continuous movement since it starts with the vowel /o/;
even using discrete sounds such as /ko/ can be problematic occasionally, as in user studies we have
observed situations where the starting /k/ was indiscernible or was simply omitted and the following
/a/ was recognized as a vowel resulting in a mouse movement.

Given a vocabulary of discrete sounds, our goal is to find the one that best matches an input

signal. Letting x;.7 denote the input features and k the discrete sound identity, we want to find
k= argmax p(k|x1.7) = argmax p(x1.7|k)p(k). (6.4)
k k

Here we use Gaussian-mixture HMMs to represent p(x1.7|k), and we train these HMMs on TIMIT
[165] — a phonetically-rich, continuous speech corpus with time-alignment information. The ut-
terances in TIMIT were sampled at 16kHz which is compatible with the setting of the VJ system.
We defined 42 phonemes, with 3 states per phoneme and 12 Gaussian components per state, leading
to 126 Gaussian mixtures. MFCCs and their deltas were extracted using the VJ frontend and were
input to HTK [173] for HMM estimation.

The above formulation is based on the assumption that x;.7 is the acoustic signal of an in-
vocabulary discrete sound. However, it is rather common that some inputs do not fall within the
vocabulary that the recognizer is designed to handle. An out-of-vocabulary utterance may consist of
a vowel articulation (intended for a continuous movement), extraneous speech or background noise.
A rejection mechanism, therefore, is indispensable to the reliable functioning of the discrete sound
recognizer. Numerous strategies for rejecting garbage utterances in isolated word recognition have

been proposed in the literature, including the use of filler models [174,175] and the use of confidence

106

measures [176,177]. However, we found the filler-model approach less effective for the VJ engine.
The main reason is that many false positives in our system are caused by breathing, coughing,
spike noise or other random unvoiced-consonant-like sounds (since our vocabulary consists of pure
unvoiced consonants). In most cases, these random sounds match one of the vocabulary items better
than the filler model (which in our case was trained on TIMIT — a speech corpus containing a wide
variety of vowels and consonants). On the other hand, the use of confidence measures alone is not
stable. Here we describe several complementary rejection mechanisms designed specifically for the

VI engine.

e We make a first pass of rejection by discarding an utterance whose duration is out of a pre-

defined range, where the range is vocabulary-dependent and is determined empirically.

e The second rejection mechanism is strongly related to the choice of the vocabulary. We
currently use one unvoiced consonant per discrete sound, e.g., /ch/ and /t/. Based on this
assumption, we impose thresholds on the average number of zero-crossings and on the
portion of unvoiced frames in an utterance. The utterance is rejected if these numbers are

below their respective pre-defined thresholds.

e The above two rejection mechanisms have significantly reduced false positives caused by
vowel articulation, but are still vulnerable to unvoiced-consonant-like sounds such as breath-
ing. Thus we create a confidence measure using the posterior probability of the best model
candidate. Specifically, we accept an utterance only if p(l%\xlzm) is above a threshold, where

k is defined by Equation (6.4).

6.2.3 Motion control

Finally, the motion control module determines how to transform these acoustic parameters into mo-
tion parameters such as direction and speed. For the VJ-mouse application, we produce a 2-D motion
vector v; = (Axz, Ay)T (relative movement) for each vowel frame, where ||v;|| = \/m is
determined by intensity and /vy is determined by vowel quality. How to map intensity to the norm

of the motion vector has been investigated in [53]; here we focus on mapping vowel quality to the

107

angle of the motion vector, which is necessary to understanding our proposed online adaptive filter
algorithm in Chapter 7. In other words, we assume Az? 4+ Ay? = 1.

A soft classification strategy is adopted to map vowel quality to movement direction. We cate-
gorize the vowel space and assign directions to vowel classes as shown in Figure 6.1. Given a vowel
posterior probability vector z; output by the MLP classifier, we map z; to a unit motion vector using

a linear transformation defined as follows

Ax = (24, W)

Ay = (Ztva>

. . 211
where w, and w, are two weight vectors whose elements satisfy w,; = cos — and w,; =

. 2m . ..
sin —; here n is the number of vowel classes, and the vowel categories ¢ = 0,1,...,n — 1 are
n

indexed counterclockwise with respect to Figure 6.1, starting from /a/.
6.3 Application of Regularized Adaptation Algorithms

In the VJ system, vowel quality and discrete sound identity are used for continuous and discrete
control respectively. Therein, inaccuracies can arise due to speaker variability owing to different
vocal tract lengths and speaking styles. A vowel class articulated by one user might partially overlap
in acoustic space with a different vowel class from another user. This imposes limitations on a purely
user-independent vowel classifier. The problem is even more pronounced for the discrete sound
recognizer. This is because our current user-independent discrete sound recognizer was trained
on a continuous speech corpus in which consonants are often articulated in the context of vowels,
while our target application only anticipates unvoiced consonants spoken in an isolated manner.
This mismatch can severely degrade the recognition performance. To mitigate these problems, we
have designed an adaptation procedure where each user is asked to pronounce a small number of
adaptation samples. The current system asks for 200 samples per vowel class (corresponding to
a 2-second utterance for each vowel) and one utterance per discrete sound, but these numbers are
reconfigurable. Figure 6.4/ shows the user interface for adaptation.

Once the adaptation data is collected, we launch the regularized adaptation algorithms for the
MLP-based vowel classifier and for the HMM-based discrete sound recognizer. MLP adaptation

uses the update formula in Equation (5.32). For HMM adaptation, due to limited adaptation data,

108

i¥ Vocal Joystick Control Panel M=1:3

IPA symbols

ol ot L] La]

of vowels:

(7] o]
Username: E
¥

E |:| Smoothing
[Auto add new user] l e] ["ch" [] Record
Run adaptation ‘ ‘ Run VJ (mouse) ‘ ‘ Run VJ (key) ‘

Figure 6.4: An interface for VJ adaptation

we only adapt Gaussian means according to the update formula in (5.7). Along with the collection
of vowel data, we also compute the average intensity for each vowel, and use these intensity values
as the intensity-to-speed normalization factors in the motion control module [53]. Similarly, along
with the collection of discrete sound data, we compute the utterance length and the number of zero-
crossings for each vocabulary item, and utilize these values for adapting the discrete sound rejection
system.

With the aid of adaptation, the VJ system has become more accurate, as supported by the evi-
dence in the vowel classification experiments in Chapter |5, and more reliable to use, as shown in a
number of user studies [36,37,54]. Our website http://ssli.ee.washington.edu/vj/video_demos.htm
has a dozen of video clips that demonstrate using the VJ-mouse to accomplish various real-world

tasks, such as browsing a website or playing a computer game.

109

Chapter 7
OTHER MACHINE LEARNING TECHNIQUES IN THE VOCAL JOYSTICK

The previous chapter presented the VJ engine architecture. There are two components in the
pattern recognition module yet to be explained in this chapter. The first component is a pitch tracker
that estimates the pitch trajectory of an acoustic signal. Section [7.1 will present a Bayesian net-
work that automatically optimizes pitch tracker parameters in the maximum likelihood sense. This
framework not only expedites the training of the pitch tracker, but also yields remarkably good
performance for both pitch estimation and voicing decision. The second component, as will be
presented in Section (7.2, involves an online adaptive filter applied to the vowel classifier outputs.
This algorithm utilizes context information and applies real-time inference in a continuous space.
The VJ system using this algorithm is endowed with the ability to produce movements in arbitrary
directions and the ability to draw smooth curves. This is in contrast to previous VJ settings whereby

vowel quality was used to determine mouse movement in only a finite discrete set of directions.
7.1 Pitch Tracking

Pitch tracking has drawn increased attention in speech coding, synthesis and recognition. In the
VIJ system, pitch can be utilized to provide an additional degree of freedom. Developing a robust
pitch tracker, therefore, is important to the development of potential VJ-based applications such as
VJ-robotic-arms.

Many state-of-the-art pitch trackers resemble the methodology proposed by [172], which con-
sists of three steps: pre-processing, pitch candidate generation and post-processing by dynamic
programming (DP). The first step involves signal conditioning techniques. The second step selects
pitch candidates and computes their “scores” by applying certain pitch detection algorithms (PDA)
to the local frame acoustics. In the post-processing step, the cost C; ; of proposing pitch candidate

7 at frame ¢ is computed as follows,

Cy; = Flool(5) + miin{Ct_M + F"(i,4)} (7.1

110

where the local cost function F'°® takes into account the scores obtained from the second step,
and the transition cost function F""%" models the penalty of transitioning from candidate i of the

previous frame to candidate j of the current frame.

The forms of these cost functions are usually empirically determined and their parameters are
often tuned by algorithms such as gradient descent [172]. This process, however, remains a difficult
and time-consuming task. First, F/°°* has to be optimized each time a different PDA is applied. For
example, PDAs can be designed in several domains including time, spectral, cepstral and their com-
binations [178]. While classic PDAs like the normalized autocovariance coefficients (NACCs) [179]
are popularly used, new algorithms such as ACOLS [180], JTFA [181] and YIN [182], are increas-
ingly coming into play. In order to evaluate, compare and eventually implement these techniques, a
large amount of time has to be spent deciding the form of F'°“® and tuning its parameters. Second,
ideally F'"%" should be adapted when the pitch tracker is exposed to another language, or applied
to another application. This is because different languages and applications may follow very differ-
ent pitch transition patterns. Therefore, the local and transition cost functions optimized for certain
PDAs and applications may not be the most appropriate for others.

This section presents a strategy for optimizing the parameters of these cost functions using a
more principled approach. Extending the idea of [183], we present a graphical model framework
to learn a pitch tracker from data. Therein, a PDA or a pitch transition pattern can be easily incor-
porated into the system with parameters automatically estimated using statistical methods. Further-
more, since the parameters are optimized in the maximum likelihood sense, both pitch estimation
and voicing decision give better performance. The Graphical Model Toolkit (GMTK) [184] was

utilized to implement our framework.

7.1.1 Graph structure and local probability models

Graphical models are a flexible, concise, and expressive probabilistic modeling framework with
which one may rapidly specify a vast collection of statistical models. Our graphical model frame-
work for pitch tracking is depicted in Figure 7.1, where the shaded nodes represent variables ob-

served at decode time and the unshaded nodes are hidden. These variables are defined as follows.

111

R>=1 Rr=1

Prologue

Frame 1 Frame 2 Frame T

Figure 7.1: Decoding graph

e Variable Q) is discrete with cardinality IV, which corresponds to N — 1 voiced states (indexed
as 1..N — 1) plus one unvoiced state (indexed as V) at frame ¢. The N — 1 voiced states are
determined by N — 1 possible pitch periods as explained in Chapter 6. In the graph, @; has

T A .
no parents, but has a prior distribution 7] = P(Q; = i).

e Variable Dy is discrete with cardinality M, corresponding to M transition patterns coarsely
quantized from N? possible (Qi—1, Q) pairs. The dependency between Q;—1, Q; and D is
represented by a deterministic table. Specifically, the set {1..N} x {1..N} is partitioned into
M non-overlapping subsets S,,, m = 1..M, and we define P(D; = m|Q¢—1 = 1,Qr = j) =

1, Iff (4, j) € Sy, In this work, we use a simple partition scheme:

St = {(i.j):i=N,j#N}
So = {(i,j):i# N,j=N} (7.2)
Sm = {(,j): Ly <j—i<Uy}; m=3..M,
where L, and U, are (respectively) lower and upper bounds evenly spaced at integers be-
tween —N + 2 and N — 2. In other words, S; corresponds to unvoiced-to-voiced transitions;
Sa corresponds to voiced-to-unvoiced transitions; S,,, m = 3..M correspond to pitch tran-

sitions (or voiced-to-voiced transitions) clustered into M — 2 patterns based on pitch period

112

difference; and the unvoiced-to-unvoiced transition belong to the same subset as pitch transi-

tions where ¢ = j.

e There is a dummy binary variable R; with a parent D;. The conditional probability 7¢, for
this dependency is defined as
> #(i,d)

P(R; = 1|D; = m) = — A5 : (73)

M
S #G.))

m=1(i,j)€Sm

A

d
Tm,

where #(i,j) is the number of occurrences of event {Q;—1 = ¢,Q; = j} in the training
data. The purpose of this dummy node is to provide soft evidence [185, 186] for D,, and this
evidence is encoded using the histogram of the M pitch transition patterns. Note that for the
purposes of inference and decoding, the results should be identical with a 7% multiplied by
any positive scalar. We keep this expression of soft evidence, as it is amenable to standard

smoothing methods (see the Subseciton 7.1.3).

e Finally, variables Of and O¢ are continuous, and are children of Q; and D; respectively. They

are both computed directly from an acoustic signal, which will be discussed in the next.

In graphical model semantics, Figure 7.1 captures dependencies between pitch values and local
acoustics, and between pitch transition patterns and acoustical changes. Also, by modelling Q;_1
and @); as parents of D; and adding soft evidence Ry, the prior probabilities of pitch and pitch

transition are simultaneously modeled in the graph, which would otherwise be hard to accomplish.

7.1.2 Observation features

The observation features O are crucial to the success of a pitch tracking algorithm. As discussed in
the previous chapter, autocorrelation coefficients or their extended forms [179,180,182] are effective
features which result in time-domain PDAs. For example, in the case of NACCs, we let ¢y =
(De1,Pt2, .-, ¢t7N)T where ¢;;,7 = 1..IN — 1, is the NACC of the it" candidate pitch period, and
Ot N 2 izllna]l\;c_l ¢y ;. If frame ¢ is voiced and the it" candidate corresponds to the true pitch period,

then ¢y ; is likely to have a high value (close to one) according to Equation (6.3). On the other hand,

113

if frame ¢ is unvoiced, then ¢; y is likely to be small since all ¢;;, i = 1..N — 1, tend to be small.

We represent such relationships using Gaussian distributions as follows.

N(ppi:1,8%) i=1.N—-1
PO = ¢4|Qy = 1) = (Geis 1,5 3 (7.4)
N(¢isu,v?) i=N

where £ is the minimum value of ¢; y in all training data. Note that these two means, 1 and p, are
set in advance and are fixed during the training of other parameters. Since ¢;; < 1,7 =1..N —1,a
high ¢; ; will lead to a high observation probability for state 7. Similarly since ¢y v > p, alow ¢ v

implies a high observation probability for state /N, meaning that frame ¢ is likely to be unvoiced.

The observation feature Of is the delta energy Ae; = e; — e;—1. The choice of this feature
is based on the empirical observation (justified by our experiments) that there is a correlation be-
tween pitch transition and delta energy. For example, an utterance with decreasing pitch tends to
have a decreasing energy, and an unvoiced-to-voiced transition tends to have an increasing energy.
Therefore, the delta energy to some extent reflects pitch transition patterns and can improve pitch

estimation. The corresponding observation distribution is modeled as

P(Of = Aei|Dy = m) = N(Aet; pm, 02), (7.5)

where p,, is the mean of the Gaussian of the m" transition pattern, and o2 is a variance variable

shared by all Gaussians.

7.1.3 Parameter estimation and decoding

The graph structure for training differs slightly from that for decoding. As shown in Figure 7.2, all
variables in training are observed except D;. In fact, D; can be considered ’observed” as well be-
cause its value is deterministic given QQ;—1 and ;. This graph structure implies several conditional

independence relationships that enable the decomposition of the complete likelihood in training.

114

Prologue

Frame 1 Frame 2 Frame T

Figure 7.2: Training graph

Mathematically, we desire to learn parameters that maximize

In P(Q1.7, 0.1, O4.1)

T
— 10p(Q1.0]) + Y| p(Q OF) + np(0F1Q1-1.20)

t=2

T T M
= ZlnP(QbOz])""Zln[ZP(O;g’Dt :m@t—h@)] (7.6)
t=1 t=2

m=1

T
= ZlnP(Qt =q)+ ZlnP(O? = ¢¢|Q: = @)

t=1 =1

T M
+3 "> PO} = Aet| Dy = m)P(Dy = m| Qi1 = -1, Q¢ =)]
t=2 m=1

~

Recall that P(D; = m|Q¢—1 = q—1,®@: = q¢) is an indicator function which equals one
iff (¢4—1,q:) € Sm. Therefore, only the corresponding pitch transition pattern can survive the
summation over m. Plugging Equation (7.4) and Equation (7.5) into Equation (7.6) and taking
derivatives with respect to the parameters, we get the maximum likelihood estimation of 7r2-q , 52, 72,
p; and o2, Furthermore, 7, in Equation (7.3) can be easily estimated during training by counting a
histogram of pitch transition patterns.

One issue associated with parameter estimation is that certain pitch values or pitch transitions

115

may not exist in the training set. To compensate for this problem, we apply Dirichlet smoothing
[187] to obtain robust estimates of prior probabilities of both pitch and pitch transition. For the
latter case, we have

B 7l + A

d
™1+ MA @7

T
The choice of A depends on the amount of training data available. By choosing a very large A, the

prior will be close to a uniform distribution. In the case of pitch priors, we treat the voiced and

unvoiced states separately.

1l —7L) + A
Nodm/U-m)+A) vy
79(new) = N 1+ (N-1A (7.8)
i=N

1
N
In practice, we choose a relative small \ for 7¢, such that 7%, ~ 7 and choose a relatively large

A for 7! such that 7! is close to a uniform distribution (this is because 7 are usually biased due to

the number of training set speakers is very limited).

With regard to decoding, we use the graph in Figure 7.1. We define the forward probability as
a(j) = P(Q¢ = 5,0 ,,04,, Ro.), and the forward pass is derived as follows,

a1(j) =mjP(O] = ¢:|Q1 = j);
ay(j) =mjP(Of = ¢|Qr = j) - Z [ZW%P(OI? = Aet| Dy = m)- (7.9)

i

P(Di = m|Quy 1,y — j)at_m)}

Again, P(D; = m|Q;—1 = i, Q¢ = j) is an indicator function. The optimal pitch period sequence is
obtained via backtracking after the DP terminates. Notice that if we let C} ; = — In o (), Equation
(7.9) is equivalent to the DP in Equation (7.1), and the Gaussian assumption of local probabilities
leads to a quadratic form of the cost functions. With parameters optimized in the maximum like-
lihood sense, these functions give remarkably good performance as we will see in Section 7.1.4.
It is worth noting that these cost functions can take on other forms under a different distribution
assumption, and the parameters can be efficiently estimated as long as good sufficient statistics exist

for that distribution.

116

7.1.4 Experiments

This subsection presents pitch estimation experiments on a database with laryngograph waveforms.
A Laryngograph monitors and records the opening and closure of vocal folds, and is a relatively
reliable measure of the fundamental frequency. Two databases were combined to create training
and test sets for our graphical-model based pitch tracker. One is “Mocha-TIMIT,” [188] developed
at Queen Margaret University College, and the other was developed at the Hong Kong University of
Science and Technology for tone-estimation research, both with laryngograph recordings.

A total of 1192 continuous English speech utterances (440K frames) from two male and two
female speakers were allocated to the training set. The test set was comprised of 4 subsets, corre-
sponding to the same four speakers, amounting to 647 utterances (240K frames) different from the
training set. To obtain the ground truth of pitch values, we filtered out the humming noise generated
by the electronic devices in a laryngograph, then applied ESPS pitch tracking tool “get_f0” [172] to
these waveforms.

Our training and decoding were implemented using GMTK. We ran both get_f0O and our graphical-
model based pitch tracker on the speech waveforms of the test set, and compared the results with
the ground truth generated using get_fO on the laryngograph waveforms. The pitch trackers were
evaluated in two aspects: pitch estimation and voicing decision [189]. Pitch estimation error rate is
measured in terms of gross error rate (GER), which is the percentage of pitch estimates that devi-
ate from the ground truth by a certain amount (20% in our experiments). The voicing decision is
measured in terms of the percentage of both unvoiced-to-voiced and voiced-to-unvoiced errors. As
is shown in Table 7.1/ and Table [7.2, both pitch estimation GERs and voicing detection error rates
of our pitch tracker were lower than those of get_fO for all four speakers. Moreover, the graphical
structures with and without Of = Ae; features are almost not significantly different. The former

structure worked slightly better in pitch estimation and the latter slightly better in voicing decision.

7.2 Adaptive Filtering

One challenge faced by our earlier VJ systems [36] is that a mouse movement was constrained to be
in a number of (four or eight) principle directions. As shown in Figure|6.1, we categorized vowel

qualities and mapped them to a discrete set of directions. Although we were using soft classification,

117

Table 7.1: Pitch estimation GER; The highlighted entries include the best error rate and those not

significantly different from the best at the p < 0.001 level.

speaker female 1 female2 malel male?2
get_f0 5.83 2.11 3.73 1.51
GM without Ae 3.61 1.53 1.06 0.86
GM with Ae 3.38 1.55 1.17 0.86

Table 7.2: Voicing decision error rate; The highlighted entries include the best error rate and those

not significantly different from the best at the p < 0.001 level.

speaker female 1 female2 malel male?2
get_f0 13.07 12.92 25.66 12.84
GM without Ae 8.58 11.81 24.57 6.00
GM with Ae 9.12 12.59 2437 5.94

which theoretically could produce movements in arbitrary directions if given “neutral” vowels as
input, in practice the chance of having such outputs is very small due to the nature of the classifier
(as will be explained soon). Additionally, we have found that it can be difficult for a user to articulate
such interpolated vowels in a continuous and precise manner. Therefore, tasks like drawing a smooth

curve was beyond the ability of the early VJ system.

This section introduces an adaptive filtering algorithm in the Vocal Joystick setting that utilizes
context information and applies real-time inference in a continuous space. Here by “adaptive”
we mean that the filter parameters are updated on the fly during actual inference. This should be
distinguished from the term “adaptation” in earlier chapters, which is part of a training process.
The VJ system using this algorithm is endowed with the ability to produce movements in arbitrary
directions and the ability to draw smooth curves. We first formally introduce the problem; then we
describe and compare two VJ system configurations and present in detail our proposed algorithm;

finally we discuss qualitative tests and provide comments.

118

7.2.1 Problem formulation

As mentioned in Chapter |6, we want to produce a sequence of relative movements given a vowel
articulation. To this end, we utilize a vowel classifier g(x;) that produces a vowel posterior prob-
ability vector z; given input x; at frame ¢. Then, a transformation v; = f(z;) maps z; to a unit
motion vector v¢. In the VJ system, we use a linear transformation as shown in Equation (6.5) for
simplicity. The goal of the VJ mouse control can be formulated as follows: assuming that a user’s

intended unit motion vector at time ¢ is vi", we desire that

flg(xe)) = vi™ (7.10)

Several stages in this process, however, can encounter errors or constraints, posing potential
challenges in VJ control. The first possible error is due to human imprecision in articulation. As
mentioned in the introduction, it is sometimes difficult for a user to precisely make the vowel that
will produce his/her intended motion vector. An analogy is when a beginning violinist plays a note
on a violin, it is quite likely to be out of tune. Second, the vowel classifier may not be accurate, lead-
ing to system errors in classification. The analogous scenario is that the violin itself may be out of
tune. More importantly, there are inherent system constraints in the classification process. Since g(-)
is usually a nonlinear transformation and f(-) is a linear transformation, some values of f(g(x))
will be more likely to occur than others given that x; is uniformly distributed. Consequently, the
mouse will be more likely to move along certain directions. Taking the violin analogy again, imag-
ine we replace the violin with a piano, we will then lose the ability to produce certain pitches and
pitch variations because of the constraints imposed by the pitch-quantized equal-tempered keyboard.

Our design goals for the VJ system are that it should maximally reduce these errors and con-
straints by considering the following factors: (1) producibility, the system should use easily-producible
vowels, reducing the effect of human imprecision; (2) discriminability, the system should use dis-
tinct vowels, reducing the chance of system errors; (3) flexibility, the system should provide enough
degrees of freedom in direction control; (4) predictability, the system should work in a relatively
intuitive way; and (5) cognitive load, the system should try to minimize the user’s cognitive load.
There certainly exist tradeoffs between these factors — for example, to increase flexibility, we may

want to increase the number of vowel classes, but this may sacrifice producibility, discriminability,

119

and cognitive load. The adaptive filtering algorithm we propose in Subsection 7.2.3| provides a way

to balance these tradeoffs.

7.2.2 A natural strategy

A natural strategy associated with the soft classification scheme is to choose a number of vowel
classes, e.g. four or eight, and map them to directions as in Figure 6.1. Specifically, we let g(-) be
a two-layer MLP classifier, which ideally will output posterior probabilities of the classes if trained
using the minimum relative entropy objective [145]. We also apply a supervised speaker adaptation
algorithm for MLPs to improve classification accuracies (Chapter|5). Furthermore, we apply a linear

transformation f(-) as defined in Equation (6.5).

We first chose to use four vowel classes at the corners of the vowel triangle, namely /&/, /a/, /u/
and /i/, to maximize discriminability. As suggested in the previous section, a significant drawback
of this system is the lack of flexibility. Due to the nature of MLP classifiers, the posterior probability
of one vowel class is usually much higher than the others. This results in a system that witnesses
mouse movements only along four cardinal directions. We therefore call it a “4-way” system.

To increase flexibility, we developed an “8-way” system using all eight vowel classes, namely
/®/, lal, lal, lol, lu/, /il, /i/ and /e/. The 8-way system relaxes the constraints imposed by the 4-way
system to a great extent. For example, if we want to move the cursor along the up-right direction,
in the 4-way system we might have to do it in a zig-zag pattern by saying “/&/-/a/” repeatedly,
while in the 8-way system we can simply say “/a/”. The 8-way system, however, is obviously less
advantageous compared with the 4-way system in terms of producibility and discriminability. In
fact, we found that many users have trouble producing certain vowels, such as /a/ and /i/. Even
when a user can produce all eight vowels, it is sometimes hard to distinguish them since they are
less separated in vowel space. Frame-level vowel classification experiments in Chapter S/ showed
that the 8-way system has a classification error rate of 8.16% (for 2-second data per vowel) while
that of the first system is only 0.19%.

The next question is, can we combine the advantages of both systems? In other words, we
desire a system that allows mouse movements in more directions but using only four explicit vowel

classes. To this end, it is helpful to infer the user’s intended motion vector by incorporating context

120

13

information. For example, when the user says “/&/-/a/-/&/-/a/-..” in a target acquisition task, it is

likely that he wants to move the mouse diagonally.

7.2.3 An online adaptive filter

There has been research on plan recognition which aims to infer the plans of an intelligent agent
from observations of the agent’s actions [190]. A recent trend in approaching the plan recognition
problem is to first construct a dynamic Bayesian network (DBN) for plan execution and then to
apply inference on this model [191, 192]. To model the plan hierarchy, [192] adopts a model of
abstract Markov policies that enables an abstract policy to invoke more refined policies. In such
techniques, however, user intent is usually modeled in a finite state space, and inference is often
achieved via sampling. This poses problems to the situation where user intent is best expressed as a

continuous variable.

We introduce an adaptive filter algorithm of inferring intended values y; from noisy estimates
z;. Then we replace z; with y; in Equation (6.5) in an attempt to obtain the intended motion vector
vi" The model we use is essentially a hierarchical DBN. The idea is to predict the current y; by
a “plan” variable, a continuous version of the “abstract policy” used in [192], and then update y;
based on the current measurement. The system dynamics can be modeled in such a way that the
standard Kalman filter algorithm [193] is directly applicable, and hence y; can be exactly inferred
in the maximum likelihood sense. This dynamic model is “adaptive” in the sense that the model
parameters are updated on the fly as will be seen.

Specifically, as shown in Figure 7.3, we model the dynamics of the system using two variables
in parallel. Variable y, represents a user’s intent, and variable g; represents the long-term trend of
y¢ (or the “’plan”). In other words, y; can be considered a local goal and g; a global goal, both
of which are not directly observable. We assume that y; can be predicted by g;_; with certain
deviation, i.e. y; = g:_1 + W, where w; is a defined as a multivariate Gaussian with covariance
matrix Q(t) = E[usu]] for computational simplicity. This deviation is caused by plan changes,
human imprecision, system constraints (e.g. only allowing mouse movements in certain directions)
or the user’s intentional adjustments to compensate for previous errors. On the other hand, g; can

be determined by applying a low-pass filter on y;. The dynamics of y; and g; are thereby modeled

121

Zt+1

Ct-1 Ct Ct+1

Figure 7.3: A modified Kalman filter for user intent tracking

by linear equations.

g1 | _ D] (L—a(®)I| g | |0 (7.11)

Yit1 I 0 Yt uy
Furthermore, z; is a measurement variable, representing the noisy estimate of y;. Specifically z; =
y: + e, where deviation e; is due to system errors or environmental noise. For simplicity, we
assume that e, is generated from a multivariate Gaussian distribution with covariance matrix R(t) =
Elee!],
If we define x; = [g, y¢]T, wy = [0,u,]T, and Q'(t) = E[w,w]], we get the standard state-

space model. The dynamic and observation models hence become

Xi+1 = A(t)Xt+Wt (712)

zy — CXt+Vt (713)

122

where

A — a()I (1 - a(t)I .
I 0

C = [0 1} (7.15)

with a(t) € [0,1] being a scalar. In this way, y; can be obtained in the maximum likelihood sense

using the standard Kalman filter algorithm [193].

Resjes1 = Kepre + K1 (2o — C Kepqpy) (7.16)
where
)A(t—l-l\t = A(t)fit\t
K1 2 Py 1y C(CT Py C + R())™ (7.17)
Py = Apt\tAT +Q'(t)" ‘
Pipyr = =K1 CT)Pyy,

It is worth mentioning that we infer y; instead of g; because y; does not have phase delay with
respect to z; whereas g; does, as will be illustrated by a simulation in the next section.

The choice of the model parameters is rather application-specific. First, matrix A(¢) decides
how stable the plan variable g; is. In the extreme case where a(t) = 1, g; becomes a constant. In
target acquisition tasks (e.g. browsing websites by clicking on hyperlinks), the goal is to get to a
target position as quickly as possible starting from the current position. This can be achieved by
moving the cursor along the direction that points to the target. In this case, the plan is to move
cursor along a fixed direction, and we can use a function a(¢) monotonically increasing over time,
e.g. a(t) =1—c/(t + c), so that g; converges to a constant as time goes. Note that A() is always
reset to its initial value once a pause or a stop in articulation is detected. In steering tasks, however,
the goal is to move the cursor along certain track which can be an arbitrary curve. In such tasks, the
plan may change constantly, and we thus let a(t) = «, where o € [0, 1] is empirically chosen to
determine the smoothness of the plan or to be determined by a separate acoustic parameter such as
pitch.

The covariance matrix Q(t) adjusts the tradeoff between the smoothness of the estimate trajec-

tory and the loyalty to the measurement trajectory. If the variance of u; is small, y; will converge

123

to its long-term trend g; and the trajectory of the estimates becomes smooth; otherwise y; will be
more loyal to the measurements z;. This parameter also adjusts the tradeoff between the system’s
automation degree and the system’s predictability to humans. Increased automation management is
not always desirable since it yields increased unpredictability to humans, which explains why “even
perfect intent inference might not be good enough” [194]. Finally, the covariance matrix R(t) de-
pends on the classifier confusion matrix and the environmental noise condition, both of which can

be estimated using principled approaches.

7.2.4 Experiments and Discussions

To illustrate the behavior of the adaptive filter, we ran a simulation for a univariate random process.
The measurement z; = sin{;t + e;, where e; ~ N(0,0.01). The black trajectory in Figure 7.4
represents this noisy sinusoid function for £ = 1 : 100. Assume that the values +1 and -1 represent
two principle directions, and that the oscillating pattern implies the user’s effort to find a direction
in between, represented by the value 0. We hope that our model can aid the user to approach and
stabilize in this desired direction. Here we let a(t) = 1—1/t, E[u;u]] = 0.1/t, and E[e;e]] = 0.01.
The estimated plan variable g; is depicted as the blue trajectory, and y; is depicted as the red
trajectory in Figure 7.4, The y; variable (the red), which is inferred by our algorithm, is loyal
to the z; (the black) at the beginning and approaches g; (the blue) as time goes. This plot also
illustrates that y; is synchronized with z;, while g; is not.

As a test using real-world applications, the authors used the 4-way system, the 8-way system,
and the 4-way system enhanced by adaptive filtering to browse a website. The VJ engine uses a
two-layer MLP classifier with 50 hidden units and 7 frames of MFCC features as input. As can
be seen in the video demonstration in [195], the adaptive filter manifested more control flexibility
while using only four vowels. Using this system, the user achieved fairly stable movements along
directions other than the four cardinal ones by oscillating between two vowels. The video also shows
the case where the cursor path became a smooth curve when the user transitioned from one vowel

to another.

The curve-drawing capability of the adaptive filter is more pronounced in a steering task. This

involves using the VJ mouse to steer along two different shapes, a circle and a square tilted by an

124

— — —measurement variable

15

intent variable

————— plan variable

_1.5 1 1 1 1
0 20 40 60 80 100

Figure 7.4: Adaptive filtering simulation

angle, shown as the blue paths in Figure [7.2.4. The circle had a radius of 300 pixels on a 800 x
600 screen, and the square was rotated 30 degrees counterclockwise with each side approximately
532 pixels. The cursor always started at the leftmost part of each shape, and its movement was
constrained to be within a “tube”, with a radius of 30 pixels, centered at the reference shape. The
session would fail once the cursor hit the wall of that tube. The users (again the authors), though
having experience with the early VJ system, were relatively novice users of the adaptive filter. As
shown in the Figure 7.2.4, the 8-way system and the system with adaptive filtering produced much
smoother paths compared with the 4-way system, but the adaptive filter approach achieved this by
using only four vowels. Furthermore, the task completion times were very similar across all three
systems. The average completion time of tracing the circle is 21-23 seconds for all three systems,

while that of tracing the tilted square is 22-28 seconds.

We found in the steering tasks, however, that the adaptive filter enhanced flexibility at the cost

of predictability. In other words, the way the system works is not as intuitive as those using the

125

0]

(i) Q : (i)
(ii) (i) (ii)

Shejehedene

(iii) . (iii)

(a) Userl (b) User II (c) User III

Figure 7.5: Steering Snapshots: (i) 4-way system; (ii) 8-way system,; (iii) 4-way system with adap-

tive filtering

natural control strategy; the smoothness of the curve is sometimes hard to control. However, we
believe the predictability can be significantly increased if given more time to learn this system —
analogous once again to learning to play a violin, individuals with motor impairments, moreover,
are often quite motivated to learn novel user interface technologies. Given the experience we had
using all three systems, we are encouraged by the prospect of beginning a large-scale user study to
thoroughly evaluate user preferences and learnability of these control strategies. In addition, we will

consider using a different vocal parameter, such as pitch, to determine the smoothness parameters.

126

Chapter 8
CONCLUSIONS AND FUTURE WORK

This chapter summarizes the main conclusions of the dissertation, discusses its impact and lim-

itations, and suggests directions for future research.

8.1 Summary of Main Contributions

Adaptation of statistical classifiers is critical when a target (or testing) distribution is different from
the distribution that governs training data. In such cases, a classifier optimized for the training
distribution needs to be adapted for optimal use in the target distribution. While a vast amount of
practical work on adaptation has been done in the areas of speech recognition, natural language
processing and pattern recognition, there lacks a unified and principled approach that is applicable
to a variety of classifiers, and there lacks a quantitative relationship between the adaptation sample
size and the divergence between training and target distributions.

The first contribution of this dissertation is the use of the Bayesian “fidelity prior” that unifies
adaptation strategies for a number of different classifiers, as was discussed in Chapter 4. Loosely
speaking, this prior measures how likely a classifier is given a training distribution, and directly
relates to the KL-divergence between the training and target distributions. In situations where direct
optimization is intractable, we replace the fidelity prior with its lower bound in the optimization
objective. Specifically, we developed adaptation criteria for a school of generative models including
Gaussian models, Gaussian mixture models and hidden Markov models. These criteria resemble the
objectives of MAP adaptation [104] but were derived from a different perspective — to minimize
the KL-divergence. With regard to discriminative models, we focused our attention on generalized
log linear models, and derived a simple adaptation criterion that can be used for adapting SVMs,
MLPs and CRFs, while a similar strategy for adapting MaxEnt models has been proposed in [122].

Furthermore, in the PAC-Bayesian setting, we derived several generalization error bounds for

adaptation. For a countable function space, we utilized the Occam’s Razor bound that bounds the

127

true error by the empirical error plus a capacity term which depends on the prior of the model.
Applying the fidelity prior in this setting, the capacity term becomes a monotonically increasing
function of the KL-divergence between the training distribution and the distribution determined by
the model of interest. An implication of this bound is that unless the KL-divergence between training
and target distributions is larger than a threshold (denoted as (in Corollary 4.4.1)), it is theoretically
better to use the fidelity prior than using the standard prior in learning an adapted model. Next,
we derived PAC-Bayesian bounds for Gibbs classifiers which are applicable to both countable and
uncountable function spaces, as shown in Corollary 4.4.2 and Corollary 4.4.3. Although we do
not yet have a theoretical result to bound the true error for an uncountable function space of point-
estimate classifiers, we have empirically shown that fewer samples were needed for smaller KL
values to achieve the same confidence.

The second contribution comes from the derivation of regularized adaptation algorithms and
applying them to two pattern classification tasks. In Chapter |5 we derived updating formula for
adapting GMMs, SVMs and MLPs respectively, and we concentrated on the last two classifiers as
they had received relatively less attention from the adaptation perspective. We compared a number
of SVM and MLP adaptation algorithms in a vowel classification task and an object recognition
task. Our first finding is that without adaptation, MLPs outperformed SVMs in vowel classification,
whereas SVMs worked significantly better than MLPs in object recognition. Secondly, an adapted
classifier was in general advantageous over its unadapted and retrained counterparts. Finally, when
comparing different adaptation techniques, we found that regularized adaptation in general worked
very well, as shown in Table 8.1 which summarizes the best SVM and MLP adaptation algorithms
in the pattern classification tasks. Additionally, in situations where the amounts of adaptation data
were unbalanced across classes, regularized adaptation for MLPs had a pronounced advantage over
any other MLP adaptation techniques we were aware of.

Yet another important contribution of this dissertation is the co-development of the Vocal Joy-
stick and the application of regularized adaptation to the VJ system. The VJ is a human-computer
interface for individuals with motor impairments. The key feature of the VJ is that it continuously
generates acoustic parameters and transforms them into various control parameters. This results
in a highly responsive, continuous interaction where a change in vocal characteristics initiated by

a user is reflected immediately upon the interface. The contributions of this dissertation to the VJ

128

Table 8.1: The best-performing adaptation algorithms in two pattern classification tasks.

classifier/task || Vowel classification | Object recognition

SVM Regularized (5.19); | Extended regularized (old SV coeffs are updated);
Retrained Boosted [130]
MLP Regularized (5.28); | Regularized (5.28);

Retrained first layer | Retrained speaker-independent

engine are primarily in the signal processing and pattern recognition modules. Chapter|6 described
engineering details of voice activity detection, low-level feature extraction, and acoustic parameter
estimation which includes pitch tracking, vowel classification, and discrete sound recognition and
rejection. While many of these techniques have been well-studied in the literature, applying them
to a new problem (the VJ) requires careful considerations and great engineering efforts. The design
and implementation of these modules was a trial-and-error process that involved the developer’s
own experience with the VJ as well as feedback from a number of user studies [36,37,49, 53, 54].
The greatest impact of this work to the VJ is the development of efficient adaptation techniques,
which is in fact the original motivation of this dissertation. The regularized adaptation algorithms
for GMMs and MLPs described in Chapter 5/ have been successfully integrated into the VJ engine,

and have yielded substantial benefits to system performance.

Furthermore, we extended our discussions on the pattern recognition module in Chapter 7, where
we presented novel algorithms on pitch tracking and on post-processing of vowel classification out-
puts. More specifically, we described a graphical model framework to automatically learn pitch
tracking parameters. In this framework, probabilistic dependencies between pitch, pitch transition
and acoustical observations are expressed using the language of graphical models. Moreover, the
introduction of soft evidence has greatly enhanced the modeling power of the graph and hence the
pitch estimation performance. Experiments have shown that our algorithm significantly outper-
formed “get_f0” (a standard pitch tracking tool) in both pitch estimation and voicing decision. The
second algorithm introduced in Chapter 7 is a novel adaptive filter applied to vowel classification

outputs. The algorithm enables the VJ to produce movements in arbitrary directions and to draw

129

smooth curves without phase delay. This adaptive filter is essentially a Kalman filter in which a
global-intent variable is modeled in parallel to a local-intent variable, and in which model parame-
ters are adapted on-the-fly. Although there has not been a large-scale user study to conclude on user
preferences (compared to the 4-way and the 8-way systems), this technique has by no doubt offered

an alternative control strategy which is potentially useful in applications such as drawing.

8.2 Future Work

This section discusses a number of limitations of this dissertation work, and suggests directions for

future research.

From the theoretical perspective, a major goal of this dissertation is to study the relationship
between adaptation error bounds and the divergence between training and target distributions. To
this end, we have utilized PAC-Bayesian theorems [60] to relate the error bounds to KL-divergence.
The limitation therein is that the Occam’s Razor bound is only valid for a countable function space,
while McAllester’s PAC-Bayesian bounds are concerned with Gibbs classifiers or Bayesian predic-
tion classifiers. In practice, we are often more interested in point-estimate classifiers in an uncount-
able function space, such as GMMs, SVMs and MLPs, but PAC-Bayesian theorems are not directly
applicable to such situations. An alternative approach is to develop such error bounds in the line of
VC theorems [23], where the capacity measures, such as VC entropy or VC dimension, are applica-
ble to both countable and uncountable function spaces. This dissertation has made an initial attempt
by deriving the VC dimension of linear classifiers in a constrained function space (for adaptation),
but it is somewhat difficult to relate the error bound to the divergence between training and target
distributions. One way to circumvent this problem is to use other distortion measures between train-
ing and target domains rather than the KL-divergence, as proposed in [196]. Another direction is to
study the problem from the multi-task learning point of view [26,28,30,31,35], as discussed in the
introduction. Future work should investigate these avenues.

Algorithm-wise, while regularized adaptation is a principled and simple framework that is amenable
to variations in the amount of adaptation data, it still depends on cross-validation to discover the
best tradeoff coefficients. It would be interesting to quantify the relationship between the accuracy-

regularization frontier [197] (or the regularization path) and the adaptation sample size. Moreover,

130

we have found that adapting the input-to-hidden layer of an MLP gives surprisingly good perfor-
mance compared to adapting only the hidden-to-output layer, but we have not yet related this reg-
ularization strategy to the fidelity prior — only the regularization of the hidden-to-output layer is
directly derived from the fidelity prior. Also, this method gives rise to a potential strategy for adapt-
ing SVMs, i.e., to adapt kernel parameters or the kernel itself, since the kernel function of an SVM
is analogous to the input-to-hidden layer of an MLP. Kernel adaptation can be potentially achieved
by exploiting kernel learning techniques such as [147].

With regard to the Vocal Joystick, there are a couple of components in the pattern recognition
module that deserve further research. First, the pitch tracker should ideally be trained on a corpus
that matches the target application. For example, the V] may require more drastic pitch changes in
certain applications, but such pitch transition patterns are rarely seen in speech databases. On the
other hand, it would be expensive and time-consuming to collect a ”VJ-pitch” corpus with laryngo-
graph waveforms. A more realistic solution would be to fine-tune the graphical model parameters
empirically in the context of a VJ application. Second, our user-independent discrete sound recog-
nizer was trained on TIMIT, a continuous speech corpus, which is again inconsistent with our target
application. Although adaptation can mitigate the mismatch problem, the recognition and rejection
performance is more or less affected by the poor unadapted model. An effective way to improve
the discrete sound recognizer, therefore, is to collect a ”VJ-discrete-sound” corpus and to retrain the
HMMs accordingly. Moreover, the discrete sound vocabulary plays an important role in the rejec-
tion mechanism, the design of which has been a tradeoff between avoiding confusion with vowels
(for continuous control) and avoiding confusion with garbage sounds such as breathing and spike
noise. The current vocabulary, by using unvoiced consonants only, has maximally reduced false
positives caused by vowels, but is somewhat vulnerable to environmental noise. It is worth revis-
iting the problem and designing a vocabulary that balances this tradeoff. Additionally, exploiting
information external to the VJ engine is likely to help enhance the performance of the pattern recog-
nition module. For example, given the layout of a computer screen and the current mouse pointer
position, it would be easier to predict what the next action would be; but this has to be done in a
more controlled environment.

Finally, we would like to note that the problem addressed by this dissertation is one single

aspect of adaptive learning. There are many other aspects that have drawn increasing attention in

131

machine learning, e.g., semi-supervised and unsupervised adaptation [10, 14,15, 198], feature-based
adaptation [125,126] and multi-task learning [26-30]. While the time scale of a Ph.D. is too short to
explore all these problems, I am excited at the prospect of continuing research on adaptive learning

in the future.

132

(1]

(2]

(3]

[4]

(5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

BIBLIOGRAPHY

J. Paredis, “Learning at the crossroads of biology and computation,” in Proc. Ist Intl. Symp.
on Intelligence in Neural and Biological Systems, May 1995, pp. 56-63.

J. Berko, “The child’s learning of english morphology,” Word, vol. 14, 1958.

S. M. Cormier and J. D. Hagman (Eds.), Transfer of learning: Contemporary research and
applications, Academic Press, 1987.

R. Clark, “Learning vs. performance: Retention and transfer of knowledge and skills from
long-term memory,” in Building Expertise, Cognitive Methods for Training and Performance
Improvement, 1998.

Z. Ghahramani, “Unsupervised learning,” in Advanced Lectures on Machine Learning,
O. Bousquet, G. Rétsch, and U. von Luxburg, Eds. 2004, vol. 3176 of Lecture Notes in
Computer Science, Springer.

B. Silverman, Density Estimation for Statistics and Data Analysis, Chapman and Hall,
London, 1986.

L. Kaufman and P. Rousseeuw, Finding groups in Data: an introduction to cluster analysis,
Wiley, New York, 1990.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, Springer, 2001.

A. Hyv arinen and E. Oja, “Independent component analysis: algorithms and applications,”
Neural Networks, vol. 13, 2000.

X. Zhu, “Semi-supervised learning literature survey,” Tech. Rep., Computer Sciences, Uni-
versity of Wisconsin-Madison, 2006.

D. Miller and H. Uyar, “A mixture of experts classifier with learning based on both labeled
and unlabeled data,” in Advances in Neural Information Processing Systems, 1996.

V. Roth and V. Steinhage, “Nonlinear discriminant analysis using kernel functions,” in
Advances in Neural Information Processing Systems, 1999.

K. Nigam, A. McCallum, S. Thrun, and T. Mitchell, “Text classification from labeled and
unlabeled documents using em,” Machine Learning, vol. 39, pp. 103134, 2000.

133

[14] M. R. Amini and P. Gallinari, “Semi-supervised logistic regression,” in I15th European
Conference on Artificial Intelligence, 2002.

[15] Y. Grandvalet and Y. Bengio, “Semi-supervised learning by entropy minimization,” in Ad-
vances in Neural Information Processing Systems, 2004.

[16] A.Blum and T. Mitchell, “Combining labeled and unlabeled data with co-training,” in COLT:
Proceedings of the Workshop on Computational Learning Theory, 1998.

[17] K. Nigam and R. Ghani, “Analyzing the effectiveness and applicability of co-training,” in
Ninth International Conference on Information and Knowledge Management, 2000.

[18] A.Blum and S. Chawla, “Learning from labeled and unlabeled data using graph mincut,” in
Proc. Intl. Conf. on Machine Learning, 2001.

[19] D. Zhou, O. Bousquet, J. Weston T. N. Lal, and B. Schlkopf, “Learning with local and global
consistency,” in NIPS, 2003.

[20] X.Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using gaussian fields and
harmonic functions,” in Proc. Intl. Conf. on Machine Learning, 2003.

[21] D. Angluin, “Queries revisited,” Theoretical Computer Science, vol. 313, no. 2, 2004.

[22] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, “Selective sampling using the query by
committee algorithm,” Machine Learning, vol. 28, pp. 133-168, 1997.

[23] V. N. Vapnik, Statistical Learning Theory, Wiley-Interscience, 1998.

[24] K. Bennett, “Combining support vector and mathematical programming methods for classi-
fication,” in Advances in kernel methods - support vector learning, B. Schokopf et. al., Ed.
1999, MIT-Press.

[25] T. Joachims, “Transductive inference for text classification using support vector machines,”
in Proc. Intl. Conf. on Machine Learning, 1999.

[26] J. Baxter, “Learning internal representations,” in COLT: Proceedings of the Workshop on
Computational Learning Theory. 1995, Morgan Kaufman.

[27] J. Baxter, “A model of inductive bias learning,” Journal of Artificial Intelligence Research,
vol. 12, pp. 149-198, 2000.

[28] S. Thrun and L.Y. Pratt, Learning To Learn, Kluwer Academic Publishers, Boston, MA,
1998.

134

[29]

[30]

S. Ben-David and R. Schuller, “Exploiting task relatedness for multiple task learning,” in
Proceedings of Computational Learning Theory (COLT), 2003.

R. K. Ando and T. Zhang, “A framework for learning predictive structures from multiple
tasks and unlabeled data,” Journal of Machine Learning Research, vol. 6, 2005.

R. Caruana, “Multitask learning,” Machine Learning Journal, vol. 28, 1997.
T. Evgeniou and M. Pontil, “Regularized multi-task learning,” in SIGKDD, August 2004.

J. Baxter, “A Bayesian/information theoretic model of learning to learn via multiple task
sampling,” Machine Learning, 1997.

T. Heskes, “Empirical Bayes for learning to learn,” in Proc. Intl. Conf. on Machine Learning,
2000.

R. Raina, A. Y. Ng, and D. Koller, “Constructing informative priors using transfer learning,”
in Proc. Intl. Conf. on Machine Learning, 2006.

J. Bilmes et. al., “The vocal joystick: A voice-based human-computer interface for individu-
als with motor impairments,” in Human Language Technology Conf. and Conf. on Empirical

Methods in Natural Language Processing, 2005.

J. Bilmes and et.al., “The Vocal Joystick,” in Proc. IEEE Intl. Conf. on Acoustic, Speech and
Signal Processing, May 2006.

G. Faconti and M. Massink, “Continuity in human computer interaction,” Tech. Rep., CHI
Workshop, 2000.

“Origin instruments,” 2007, http://www.orin.com.
“Pride mobility products corp,” 2007, http://www.pridemobility.com.

R. J. K. Jacob, “What you look at is what you get: eye movement-based interaction tech-
niques,” in Proc. of the SIGCHI conf. on Human Factors in Computing Systems, 1990.

X.Huang and et. al., “Mipad: a multimodal interaction prototype,” in Proc. IEEE Intl. Conf.
on Acoustic, Speech and Signal Processing, May 2001.

B. Manaris and A. Harkreader, “Suitekeys: A speech understanding interface for the motor-
control challenged,” in In Proc. ACM SIGCAPH Conf on Assistive Technologies, 1998.

T.Igarashi, “Voice as sound: using non-verbal voice input for interactive control,” in In Proc.
ACM Symp. on User Interface Software and Technology, 2001.

135

[45] Y. Mihara, E. Shibayama, and S. Takahashi, “The migratory cursor: accurate speech-based
cursor movement by moving multiple ghost cursors using non-verbal vocalizations,” in Proc.
of the 7th intl. ACM conference on Computers and accessibility, 2005.

[46] C. de Mauro, M. Gori, M. Maggini, and E. Martinelli, “A voice device with an application-
adapted protocol for microsoft Windows,” in Proc. Intl. Conf. on Multimedia Computing and
Systems, 1999.

[47] A. S. Karimullah and A. Sears, ‘“Speech-based cursor control,” in Proceedings of Assets
2002. 2002, pp. 178-185, ACM Press.

[48] X.LiandJ. Bilmes, “A Bayesian divergence prior for classifier adaptation,” in Eleventh Intl.
Conf. on Artificial Intelligence and Statistics, 2007.

[49] X. Li and J. Bilmes, “Regularized adaptation of discriminative classifiers,” in Proc. IEEE
Intl. Conf. on Acoustic, Speech and Signal Processing, September 2006.

[50] X.Li, J.Bilmes, and J.Malkin, “Maximum margin learning and adaptation of MLP classifiers,”
in Eurospeech, September 2005.

[51] X. Li, J. Malkin, and J. Bilmes, “Graphical model approach to pitch tracking,” in Proc. Intl.
Conf. on Spoken Language Processing, Oct 2004.

[52] X.Li,J. Malkin, S. Harada, J. Bilmes, R. Wright, and J. Landay, “An online adaptive filtering
algorithm for the Vocal Joystick,” in Interspeech, September 2006.

[53] J. Malkin, X. Li, and J. Bilmes, “Energy and loudness for speed control in the Vocal Joystick,”
in ASRU Workshop, Nov 2005.

[54] S. Harada, J. Landay, J. Malkin, X. Li, and Jeff Bilmes, “The Vocal Joystick: Evaluation of
voice-based cursor control techniques,” in Proc. of the 8th Intl. ACM SIGACCESS Conf. on
Computers and Accessibility, October 2006.

[55] K. Kilanski, J. Malkin, X. Li, R. Wright, and J. Bilmes, “The vocal joystick data collection
effort and vowel corpus,” in Interspeech, 2006.

[56] S. Arora, L. Babai, J. Stern, and Z. Sweedyk, “The hardness of approximate optima in
lattices, codes, and systems of linear equations,” Journal of Computer and System Sciences,
1997.

[57] P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe, “Convexity, classification, and risk bounds,”
Journal of the American Statistical Association, 101, 2006.

136

[58]

[59]

[66]

[67]

M. Anthony and P. L. Bartlett, Neural Network Learning: Theoretical Foundation, Cam-
bridge University Press, 1999.

G. Lugosi and K. Zeger, “Concept learning using complexity regularization,” /EEE Transac-
tions on Information Theory, vol. 42, no. 1, 1996.

D. A. McAllester, “PAC-Bayesian stochastic model selection,” Machine Learning Journal,
2001.

B. Scholkopf and A. J. Smola, Learning with kernels, The MIT Press, 2001.

M.Jordan and C.Bishop, An Introduction to Graphical Models, pre-print, 2001.

A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum-likelihood from incomplete data
via the EM algorithm,” J. Royal Statist. Soc. Ser. B., vol. 39, 1977.

R.J. A. Little and D. B. Rubin, Statistical Analysis with Missing Data, Wiley, New York,
1987.

L.R. Bahl, PF. Brown, P.V. de Souza, and R.L. Mercer, “Maximum mutual information esti-
mation of HMM parameters for speech recognition,” in Proc. IEEE Intl. Conf. on Acoustic,
Speech and Signal Processing, December 1986, pp. 49-52.

B.-H. Juang, W. Hou, and C.-H. Lee, “Minimum classification error rate methods for speech
recognition,” IEEE Trans. on Speech and Audio Processing, vol. 5, pp. 257-265, 1997.

Y. Ephraim and L. Rabiner, “On the relation between modeling approaches for speech recog-
nition,” IEEE Trans. on Information Theory, vol. 36, no. 2, 1990.

E. McDermott, T.J. Hazen, J. Le Roux, A. Nakamura, and S. Katagiri, “Discriminative
training for large vocabulary speech recognition using minimum classification error,” IEEE
Trans. on Audio, Speech and Language Processing, Jan 2007.

B. Taskar, Learning structured prediction models: a large margin approach, Ph.D. thesis,
Stanford University, December 2004.

F. Sha and L. Saul, “Large margin hidden Markov models for automatic speech recognition,”
in Advances in Neural Information Processing Systems, 2006.

J. Bilmes, “Dynamic Bayesian Multinets,” in Proceedings of the 16th conf. on Uncertainty
in Artificial Intelligence. 2000, Morgan Kaufmann.

137

[72] J. Bilmes, G. Zweig, T. Richardson, K. Filali, K. Livescu, P. Xu, K. Jackson, Y. Brandman,
E. Sandness, E. Holtz, J. Torres, and B. Byrne, “Discriminatively structured graphical models
for speech recognition: JHU-WS-2001 final workshop report,” Tech. Rep., CLSP, Johns
Hopkins University, 2001.

[73] T. Jaakkola and D. Haussler, “Exploiting generative models in discriminative classifiers,” in
Advances in Neural Information Processing Systems, 1998.

[74] H. Ney, “On the probabilistic interpretation of neural network classifiers and discriminative
training criteria,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17,

no. 2, 1995.

[75] P. C. Woodland and D. Povey, “Large scale discriminative training of hidden markov models
for speech recognition,” Computer Speech and Language, 2002.

[76] J. C. Spall, Introduction to Stochastic Search and Optimization, Wiley, 2003.

[77] P.S. Gopalakrishnan, D. Kanevsky, A. Nadas, and D. Nahamoo, “An inequality for rational
functions with applications to some statistical estimation problems,” IEEE Trans. on Infor-
mation Theory, vol. 37, pp. 107-113, 1991.

[78] C.Cortes and V.Vapnik, “Support vector networks,” Machine Learning, 1995.

[79] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of online learning and an
application to boosting,” Jounral of Computer and System Sciences, pp. 119-139, 1997.

[80] R.E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, “Boosting the margin: a new explanation
for the effectiveness of voting methods,” in Proc. 14th Intl. Conf. on Machine Learning, 1997.

[81] G. Lugosi and N. Vayatis, “On the Bayes risk consistency of regularized boosting methods,”
Annals of Statistics, 2003.

[82] T. Zhang, “Statistical behavior and consistency of classification methods based on convex
risk minimization,” Annals of Statistics, 2003.

[83] D. A. McAllester, “Some PAC-bayesian theorems,” in COLT: Proceedings of the Workshop
on Computational Learning Theory, Morgan Kaufmann Publishers, 1998.

[84] T.M. Cover and J.A. Thomas, Elements of Information Theory, Wiley, 1991.

[85] J. Langford, “Tutorial on practical prediction theory for classification,” Journal of Machine
Learning Research, pp. 273-306, March 2005.

[86] L. G. Valiant, “A theory of the learnable,” Communications of ACM, vol. 27, no. 11, 1984.

138

[87]

[88]

[94]

M. Seeger, “The proof of McAllester’s PAC-Bayesian theorem,” in Advances in Neural
Information Processing Systems, 2002.

J. Langford, M. Seeger, and N. Megiddo, “An improved predictive accuracy bound for aver-
aging classifiers,” in Proc. 18th Intl. Conf. on Machine Learning, 2001, pp. 290-297.

R. Herbrich and T. Graepel, “A PAC-Bayesian margin bound for linear classiers; why SVMs
work,” in Advances in Neural Information Processing Systems, 2001.

R. Meir and T. Zhang, “Generalization error bounds for Bayesian mixture algorithms,” Jour-
nal of Machine Learning Research, vol. 4, no. 5, pp. 839-860, 2003.

T. Jaakkola, M. Meila, and T. Jebara, “Maximum entropy discrimination,” Tech. Rep. AITR-
1668, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 1999.

J. Langford and J. Shawe-Taylor, “PAC-Bayes and margins,” in Advances in Neural Infor-
mation Processing Systems, 2002.

Y. Singer and M. K. Warmuth, “Training algorithms for hidden markov models using entropy
based distance functions,” in Advances in Neural Information Processing Systems, 1997,
vol. 9, p. 641.

J. Cohen, T. Kamm, and A. Andreou, “Vocal tract normalization in speech recognition:
compensating for systematic speaker variability,” Journal of Acoustic Society of America,
vol. 97, no. 5, 1995.

L.Welling and H.Ney, “Speaker adaptive modeling by vocal tract normalization,” [EEE
Trans. on Speech and Audio Processing, vol. 10, no. 6, 2002.

M. S. Bartlett, Face Image Analysis by Unsupervised Learning, Kluwer Academic Publish-
ers, Massachusetts, 2001.

T. Riklin-Raviv and A. Shashua, “The quotient image: Class based recognition and synthesis
under varying illumination,” in CVPR, 1999.

R. Ramamoorthi, “Analytic pca construction for theoretical analysis of lighting variability
in images of a lambertian object,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2002.

C. Leggetter and P. Woodland, “Maximum likelihood linear regression for speaker adaptation
of continuous density hidden Markov models,” Computer, Speech and Language, vol. 9,
1995.

139

[100] M.Gales and P.Woodland, “Mean and variance adaptation within the mllr framework,” Com-
puter, Speech and Language, vol. 10, 1996.

[101] M. Gales and P. Woodland, ‘“Variance compensation within the MLLR framework,” Tech.
Rep. CUED/FINFENG/TR.242, Cambridge Univ., 1996.

[102] M. Gales, “The generation and use of regression class trees for mllr adaptation,” Tech. Rep.
CUED/FINFENG/TR.263, Cambridge Univ., 1996.

[103] J.-L. Gauvain and C.-H. Lee, “Bayesian learning of Gaussian mixture densities for hidden
Markov models,” in Proceedings of the DARPA Speech and Natural Language Workshop.
1991, pp. 272-277, Morgan Kaufmann.

[104] J.-L.Gauvain and C.-H.Lee, “Maximum a posteriori estimation for multivariate gaussian
mixture observations of Markov chains,” IEEE Trans. on Speech and Audio Processing, vol.
2, 1994.

[105] G.Zavaliagkos, R.Schwarz, J.McDonogh, and J.Makhoul, “Adaptation algorithms for large
scale HMM recognizers,” in Proc. Eurospeech, 1995.

[106] O. Siohan, C. Chesta, and C. Lee, “Hidden markov model adaptation using maximum a
posteriori linear regression,” in Workshop on Robust Methods for Speech Recognition in
Adverse Conditions, 1999.

[107] C. Chesta, O. Siohan, and C. Lee, “Maximum a posteriori linear regression for hidden
Markov model adaptation,” in Eurospeech, 1999.

[108] T.-A. Myrvoll, O. Siohan, C.-H. Lee, and W. Chou, “Structural maximum a posteriori linear
regression for unsupervised speaker adaptation,” in Proc. Intl. Conf. on Spoken Language
Processing, 2000.

[109] A. Surendran and C.-H. Lee, “Transformation based bayesian prediction to adaptaion of
hmms,” Speech Communications, vol. 34, pp. 159-174, 2001.

[110] J.-T. Chien, “Linear regression based Bayesian predictive classification for speech recogni-
tion,” IEEE Trans. on Speech and Audio Processing, vol. 11, no. 1, 2003.

[111] K. Yu and M. Gales, “Incremental adaptation using Bayesian inference,” in Proc. IEEE Intl.
Conf. on Acoustic, Speech and Signal Processing, 2006.

[112] T. Anastasakos,J. McDonough, R. Schwartz, and J. Makhoul, “A compact model for speaker-
adaptive training,” in Proc. Intl. Conf. on Spoken Language Processing, Philadelphia, PA,
1996, pp. 1137-1140.

140

[113] M. Padmanabhan, L. R. Bahl, D. Nahamoo, and M. A. Picheny, “Speaker clustering and
transformation for speaker adaptation in speech recognition systems,” IEEE Trans. on Speech
and Audio Processing, pp. 71-77, 1998.

[114] M. Gales, “Cluster adaptive training of hidden markov models,” IEEE Trans. on Speech and
Audio Processing, pp. 417-428, 2000.

[115] R.Kuhn, J.-C.Junqua, P.Nguyen, and N.Niedzielski, “Rapid speaker adaptation in eigenvoice
space,” IEEE Trans. on Speech and Audio Processing, vol. 8, 2000.

[116] J. Kwok, B. Mak, and S. Ho, “Eigenvoice speaker adaptation via composite kernel pca,” in
Advances in Neural Information Processing Systems, 2004.

[117] V. Dounipiotis and Y.-G. Deng, “Eigenspace-based MLLR with speaker adaptive training in
large vocabulary conversational speech recognition,” in Proc. IEEE Intl. Conf. on Acoustic,
Speech and Signal Processing, 2004.

[118] B. Mak and R. Hsiao, “Kernel eigenspace-based mllr adaptation using multiple regression
classes,” in Proc. IEEE Intl. Conf. on Acoustic, Speech and Signal Processing, 2005.

[119] Hal Daumé III and Daniel Marcu, “Domain adaptation for statistical classifiers,” Journal of
Articial Intelligence Research 26, pp. 1-15, 2006.

[120] M. Bacchiani and B. Roark, “Unsupervised langauge model adaptation,” in Proc. IEEE Intl.
Conf. on Acoustic, Speech and Signal Processing, 2003.

[121] S. Ross, Introduction to Probability Models, the Eighth Edition, Elsevier, 2003.

[122] C. Chelba and A. Acero, “Adaptation of maximum entropy capitalizer: Little data can help a
lot,” in Empirical Methods in Natural Language Processing, July 2004.

[123] P. R. Clarkson and A. J. Robinson, “Language model adaptation using mixtures and an
exponentially decaying cache,” in Proc. IEEE Intl. Conf. on Acoustic, Speech and Signal
Processing, 1997.

[124] T. Jebara and A. Pentland, “Maximum conditional likelihood via bound maximization and
the cem algorithm,” in Advances in Neural Information Processing Systems, 1998.

[125] R. Florian and et. al., “A statistical model for multilingual entity detection and tracking,” in
NAACL/HLT, 2004.

[126] J. Blitzer, R. McDonald, and F. Pereira, “Domain adaptation with structural correspondence
learning,” in Empirical Methods in Natural Language Processing, 2006.

141

[127] J. Stadermann and G. Rigoll, “Two-stage speaker adaptation of hybrid tied-posterior acoustic
models,” in Proc. IEEE Intl. Conf. on Acoustic, Speech and Signal Processing, 2005.

[128] J.Neto, L. Almeida, M. Hochberg, C. Martins, L. Nunes, S. Renals, and T. Robinson,
“Speaker-adaptation for hybrid HMM-ANN continuous speech recognition system,” in Proc.
Eurospeech, 1995.

[129] V. Abrash, H. Franco, A. Sankar, and M. Cohen, “Connectionist speaker normalization and
adaptation,” in eurospeech, 1995.

[130] N. Matic, 1. Guyon, J. Denker, and V. Vapnik, “Writer adaptation for on-line handwritten
character recognition,” in Proc. Intl. Conf. on Pattern Recognition and Document Analysis,
1993.

[131] B.-B.Peng, Z.-X.Sun, and X.-G. Xu, “SVM-based incremental active learning for user adap-
tation for online graphics recognition system,” in Proc.Intl. Conf.on Machine Learning and
Cybernetics, 2002.

[132] S.Riiping, “Incremental learning with support vector machines,” in Proc. IEEE. Intl. Confer-
ence on Data Mining, 2001.

[133] P. Wu and T. G. Dietterich, “Improving svim accuracy by training on auxiliary data sources,”
in Proc. Intl. Conf. on Machine Learning, 2004.

[134] M. Sugiyama and K.-R. Mller, “Input-dependent estimation of generalization error under
covariate shift,” Statistics & Decisions, vol. 23, no. 4, 2005.

[135] Y. Singer and M.K. Warmuth, “Training algorithm for hidden markov models using entropy
based distance functions,” in Advances in Neural Information Processing System, 1996.

[136] M. N. Do, “Fast approximation of Kullback-Leibler distance for dependence trees and hidden
Markov models,” IEEE Signal Processing Letters, vol. 10, 2003.

[137] N. Vasconcelos, “On the efficient evaluation of probabilistic similarity functions for image
retrieval,” IEEE Transactions on Information Theory, vol. 50, no. 7, 2004.

[138] J. Silva and S. Narayanan, “Upper bound kullback-leibler divergence for hidden markov
models with application as discrimination measure for speech recognition,” in Intl. Sympo-
sium on Information Theory, July 2006.

[139] J. Platt, “Probabilistic outputs for support vector machines and comparison to regularized
likelihood methods,” in Advances in Large Margin Classifiers, A.J. Smola, P. Bartlett,
B. Schoelkopf, and D. Schuurmans, Eds., 2000, pp. 61-74.

142

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, The MIT
Press, 2006.

E. Parrado-Hernandez A. Ambroladze and J. Shawe-Taylor, “Learning the prior for the PAC-
Bayes bound,” Tech. Rep., Southampton, UK, 2004.

J. Bilmes, “A gentle tutorial on the EM algorithm and its application to parameter estimation
for gaussian mixture and hidden markov models,” Tech. Rep. ICSI-TR-97-021, University of
California, Berkeley, 1997.

R.Collobert and S.Bengio, “Links between perceptrons, MLPs and SVMs,” in Intl. Conf. on
Machine Learning, 2004.

J. Goodman, “Exponential priors for maximum entropy models,” in HLT/NAACL, 2003.
C. Bishop, Neural Networks for Pattern Recognition, Clarendon Press, Oxford, 1995.

C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Mining and
Knowledge Discovery, vol. 2, no. 2, pp. 121-167, 1998.

C.P. Diehl and G. Cauwenberghs, “Svm incremental learning, adaptation and optimization,”
in Proc. IEEE Int. Joint Conf. Neural Networks (IJCNN’2003), 2003.

T. J. Hastie and R. J. Tibshirani, “Classification by pairwise coupling,” in Advances in Neural
Information Processing Systems, 1998.

J. Weston and C. Watkins, “Multi-class support vector machines,” Tech. Rep. CSD-TR-98-
04, Department of Computer Science, Royal Holloway, University of London, 1998.

Y. Le Cun, B. Boser, J. S Denker, D. Henderson, R. E.. Howard, W. Howard, and L. D.
Jackel, “Handwritten digit recognition with a back-propagation network,” in Advances in
Neural Information Processing Systems Il (Denver 1989), D. S. Touretzky, Ed., pp. 396-404.
Morgan Kaufmann, San Mateo, CA, 1990.

S. Rosset, J. Zhu, and T. Hastie, “Margin maximizing loss functions,” in Advances in Neural
Information Processing Systems, 2004.

J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields: Probabilistic models
for segmenting and labeling sequence data,” in Proc. 18th International Conf. on Machine
Learning. 2001, pp. 282-289, Morgan Kaufmann, San Francisco, CA.

A. L. Berger, S. Della Pietra, and V. J. Della Pietra, “A maximum entropy approach to natural
language processing,” Computational Linguistics, vol. 22, no. 1, pp. 39-71, 1996.

143

[154] S. Della Pietra, V. J. Della Pietra, and J. D. Lafferty, “Inducing features of random fields,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 4, pp. 380-393,
1997.

[155] P. Jantke, “Types of incremental learning,” in AAAI Symposium on Training Issues in Incre-
mental Learning, 1993.

[156] N. Syed, H. Liu, and K. Sung, “Incremental learning with support vector machines,” in Proc.
Workshop on Support Vector Machines at the Intl. Joint Conf. on Aritifical Intelligence, 1999.

[157] Gert Cauwenberghs and Tomaso Poggio, “Incremental and decremental support vector ma-
chine learning,” in Advances in Neural Information Processing Systems, 2000, pp. 409—415.

[158] R.Collobert and S.Bengio, “SVMTorch: support vector machines for large-scale regression
problems,” The journal of Machine Learning Research, 2001.

[159] J. Platt, “Sequential minimal optimization: A fast algorithm for training support vector ma-
chines,” Tech. Rep. 98-14, Microsoft Research, Redmond, 1998.

[160] H.Bourlard and N.Morgan, Connectionist Speech Recognition: A Hybrid Approach, Kluwer
Academic Publishers, 1994.

[161] D. Burton, On the inverse shortest path problem, Ph.D. thesis, Department of Mathematics,
FUNDP, Namur, Belgium, 1993.

[162] J. Zhang and Z. Ma, “Solution structure of some inverse combinatorial optimization prob-
lems,” Journal of Combinatorial Optimization, vol. 3, no. 1, 1999.

[163] C. Heuberger, “Inverse optimization: A survey on problems, methods, and results,” Journal
of Combinatorial Optimization, vol. 8, no. 3, pp. 329-361, 2004.

[164] R. K. Ahuja and J. B. Orlin, “Inverse optimization,” Operations Research, vol. 49, no. 5,
2001.

[165] V.W.Zue, S.Seneff, and J.Glass, “Speech database development at MIT: TIMIT and beyond,”
Speech Communication, vol. 9, no. 4, pp. 351-356, 1990.

[166] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic object recognition with
invariance to pose and lighting,” in Computer Vision and Pattern Recognition, 2004.

[167] T.W.Stewart and N. Vaillette, Language Files, The Ohio State University Press, 2001.

[168] “International phonetic alphabet,” http://www.arts.gla.ac.uk/ipa/ipa.html.

144

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

J.R.Deller, J.H.L.Hansen, and J.G.Proakis, Discrete-time processing of speech signals,
Macmillan, 1993.

X. Huang, A. Acero, and H.-W. Hon, Spoken Language Processing, Prentice Hall, 2001.

L.R.Rabiner, “On the use of autocorrelation analysis for pitch detection,” IEEE Trans. on
Acoustics, Speech, and Signal Processing, vol. 25, 1977.

D. Talkin, Speech coding and synthesis, Elsevier Science B.V, 1995.

S. Young, G. Evermann, T. Hain, D. Kershaw, G. Moore, J. Odell, D. Ollason, D. Povey,
V. Valtchev, and P. Woodland, The HTK book 3.2, Cambrideg University and Microsoft
Corporation, 2000’s.

S. R. Young, “Detecting misrecognitions and out-ofvocabulary words,” in Proc. IEEE Intl.
Conf. on Acoustic, Speech and Signal Processing, 1994.

M. G. Rahim, C. H. Lee, and B.-H. Juang, “Robust utterance verification for connected digits
recognition,” in Proc. IEEE Intl. Conf. on Acoustic, Speech and Signal Processing, 1995.

Z. Rivlin, M. Cohen, V. Abrash, and T. Chung, “A phone-dependent confidence measure for
utterance rejection,” in Proc. IEEE Intl. Conf. on Acoustic, Speech and Signal Processing,
1996.

J. G. A. Dolfing and A. Wendemuth, “Combination of confidence measures in isolated word
recognition,” in Proc. Intl. Conf. on Spoken Language Processing, 1998.

W. Hess, Pitch Determination of Speech Signals, Springer-Verlag, 1983.

B.S.Atal, “Automatic speaker recognition based on pitch contours,” Journal of the Acoustical
Society of America, vol. 52, no. 6, 1972.

N.Kunieda, T.Shimamura, and J.Suzuki, “Robust method of measurement of fundamental
frequency by ACOLS-autocorrelation of log spectrum,” in Proc. IEEE Intl. Conf. on Acoustic,
Speech and Signal Processing, 1996.

D-J.Liu and C-T.Lin, “Fundamental frequency estimation based on the joint time-frequency
analysis of harmonic spectral structure,” IEEE Trans. on Speech and Audio Processing, vol.
9, no. 6, 2001.

A.Cheveigne and H.Kawahara, “YIN, a fundamental frequency estimator for speech and
music,” Journal of the Acoustical Society of America, vol. 111, no. 4, 2002.

145

[183] J.Droppo and A.Acero, “Maximum a posteriori pitch tracking,” in Proc. IEEE Intl. Conf. on
Acoustic, Speech and Signal Processing, 1998.

[184] J. Bilmes and G. Zweig, “The Graphical Models Toolkit: An open source software system
for speech and time-series processing,” in Proc. IEEE Intl. Conf. on Acoustic, Speech and
Signal Processing, 2002.

[185] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of P lausible Inference,
Morgan Kaufmann, 2nd printing edition, 1988.

[186] J. Bilmes, “On soft evidence in Bayesian networks,” Tech. Rep. UWEETR-2004-0016, Dept.
of Electrical Engineering, University of Washington, 2004.

[187] 1.J.Good, The estimation of probabilities: an essay on modern Bayesian methods, MIT Press,
Cambridge, MA, 1965.

[188] A. Wrench, “A multichannel/multispeaker articulatory database for continuous speech recog-
nition research,” in Workshop on Phonetics and Phonology in ASR, 2000.

[189] L.R.Rabiner, M.J.Cheng, and A.E.Rosenberg, “A comparative performance study of several
pitch detection algorithms,” IEEE Trans. on Acoustics, Speech, and Signal Processing, vol.
24, 1976.

[190] H. Kautz and J. F. Allen, “Generalized plan recognition,” in AAAI, 1986, pp. 32-38.

[191] D. Pynadath and M. Wellman, “Accounting for context in plan recognition, with application
to traffic monitoring,” in Uncertainty in Artificial Intelligence, 1995.

[192] H. H. Bui, S. Venkatesh S, and G. West, “The recognition of abstract Markov policies,” in
AAAI 2000, pp. 524-530.

[193] M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory and Practice, Prentice Hall,
1993.

[194] H. B. Funk and C. A. Miller, “User acceptance and plan recognition: Why even perfect intent
inferencing might not be good enough,” in AAAI Fall Symposium, 2001.

[195] “The Vocal Joystick,” 2007, http://ssli.ee.washington.edu/vj.

[196] S.Ben-David, J. Blitzer, K. Crammer, and F. Pereira, “Analysis of representations for domain
adaptation,” in Advances in Neural Information Processing Systems 20, Cambridge, MA,
2007, MIT Press.

146

[197] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, “The entire regularization path for the support
vector machine,” Journal of Machine Learning Research, vol. 5, pp. 1391-1415, Oct 2004.

[198] K. Shinoda and C.-H. Lee, “Unsupervised adaptation using structural Bayes approach,” in
Proc. IEEE Intl. Conf. on Acoustic, Speech and Signal Processing, 1998.

[199] R. Fletcher, Practical Methods of Optimization, 2nd Edition, Wiley, 2000.

147

Appendix A
PROOFS

A.1 Proof of Theorem 2.3.3
Proof Since Q(-) = [0, 1], according to Hoeffding inequality,

Pr (R(f) — Remp(f) > €) < exp(—2me2) 2§

= Pr (R(f)zRemp<f>+ —1°g5) <4

2m

Then using the above and union bound theorem, we have

Pr <Vi’ R(f;) < Remp(fi) + —IOg(Tr(fiW>

2m

= 1—Pr (317R(f1) > Remp(fz’) + _W(fl)é))

2m

v

1—3Pr <R(fi) > Remp(fi) + _k)g(w(fiﬁ))

2m

> 1=, n(fi)o=1-4¢ |

A.2 Proof of Equation (2.22)

Proof To prove this, we first show that for any (x,y), if sgn fBayes(x) = sgn (Eq(f) [f(x)]) £,
then Eq) [I(f(x) # y)] > 1/2. In particular, for y = 1 and a fixed x,

sgn (B p[f(x)]) #y < Eyplf(x)] <0
— ff;f(x):,1 Q(f) ' (_1) daf + ff;f(x)zl Q(f) 1df <0
= [a(HI(f(x)=1)df < [(/)I(f(x)=—1)df
Since ff:f(x):l a(f)df + [} =1 4(f) df =1, we have
Expl1(700 2 1] = [a(£) 176 =~1)df = 1/2

f
Similary, the same result can be obtained for y = —1. Taking expectation w.r.t. (X, y), we have

Ry(xy) (fBayes) < 2Eq(p)[Rpxa ()] I

148

A.3 Proof of Theorem 2.4.1

Here we provide the proof by Scholkopf [61] as this is relevant to the proof of Corollary 4.4.4

Proof Assume that canonical hyperplanes with the constraint |[w|| < A has a VC-dimension h.
In other words, there exists h points {x; }?_;, such that for any possible label assignments {y; }!_

there always exists a w with ||w|| < A such that
yi(w,x) > 1i=1..h (A.1)

We say {xi}?zl are shattered by w. The proof is then two-folds: (1) we show that for any possible
h

label assignments {y; }"_,, we have | Z yixi|| < h/A; and (2) we show that there exists a label
i=1

h
assignments {y; }'_; such that || Z yixi||> < hR?, where R = max ||x;].
(2

i=1
Summing the inequality (A.1) over ¢ = 1..h, we have

h h h
h< (w3) < Wil S vl < A Syl
=1 =1 =1

which proves (1). On the other hand, considering an i.i.d. label assignment of y; where p(y; = 1) =

p(y; = —1) = 1/2, we have

h h h
Epyin) [H ZiniHQI - ZEP(ylzh)<yixi’ Zijj> = ZEp(ym) lyixi||” < hR?
i=1 i=1 J

=1

h
Thus there must exsit a label assignments {y; }'_; such that || Z yix;||> < hR?, which proves (2).

i=1
Combining (1) and (2), the theorem is proved. |

A.4 Proof of Corollary 4.4.4

The theorem can be proved simply by using ||[w| = ||w — w'" + w'"|| < ¢ + ||[w'"|| in Proof A.3.

A.5 Proof of Corollary 4.4.5

Proof Since y;(w,x) > 1,7 = 1..h, we replace step (1) in Proof|A.3/by the following. Summing

the above inequality over ¢ = 1, ..., h, we have

h h h
h< (w—w" Y yixi) < |w—w"[| D yaxill < el Y yaxill
i=1 i=1 i=1

149

On the other hand, according to step (2) in Proof|A.3/, there exists {yi}?zl, such that

h
1D vixi|® < hR?

=1
Therefore, h < A’R%2. ||

A.6 Proof of Lemma 4.3.2

Proof Let x denote an locally minimum solution to J;(x). First, we show that the lemma holds

true when X = 0. For any x # X, we have

)\/)\I

9(0) + S 110l < g(x) + o 1]l (A2)

= 9(0) < g(x) (A3)
A A

= 9(0) + S lI0]l < g(x) + Il (A4)

Therefore, 0 is also a locally minimum solution to J2(x).
Secondly, if X # 0, we study the solution space {x : x # 0} in which ||x| becomes twice
differentiable. Then we can take the first and second derivatives of .J;. The necessary conditions

for X to be a locally optimal solution to .J; is that [199],

d N d Nox

(o0 + Sha)| =)+ T (A3
d2 / d2
e} (g(x) + 5} Hx[) = @g(x) ~ is positive semidefinite (A.6)

d d i
which follow that for x # 0, —||x| = —VvxTx = ——, and —— ||x|| = 0. On the other hand,
dx dx dx?2

[BS
the sufficient condition [199] for % to be the optimal solution to Js is

d A d N

(a4 3P)| = 0] 4ax=0 (A7)
d? Ao . d? .
2 (g(x) + §HX|| > = @g(x) ~+ 1 is positive definite (A.8)

/

—. Such a choice of \ exists
2%l

It is easy to see that (A.5) and (A.6) implies (A.7) and (A.8) if A =
forany \. |}

150

Appendix B
ALGORITHMS

B.1 EM updating equations for GMM adaptation

Our goal is minimize Remp(f) — A1npgq(f) whose upper bound is given by Equation (5.4) and
(5.5). Now we derive the update equations for wy, ¢, r, fty 1 and X, x respectively. First, we extract
out only the terms which depend on w,:
T
J(wy) = - Zl diyInw, —)\w?tf In w, (B.1)
i=
where Z wy = 1. By introducing the Lagrangian form Z J(wy) — O‘(Z wy — 1), it is easy to

y Yy Yy
obtain the optimal solution as

m
1 Z Siyy + Awl

N M
wy =

1+ A

Similarly, we minimize the terms which depend on ¢, 1,

1 & ,
J(cyr) = - Z iy Ly (i) Incy g —)\wérctyfk Incy (B.2)
i=1

and obtain the optimal solution as

1 & ,
E Z 5i7yLk‘y(’l) +)\wzrctyfk
i=1

cy)k = 1 m

—E iy + AT

m 4 ,Y y
=1

Next, we inspect the terms which depend on iy 1,

1 & .
Ty k) = —=— > Gy Ly () N (%5 g, Sy)+
=1
Aw ey DN (s pgg s Sge) IV (5 g b, Ty 1) 3
< N Ty—1 '
= Z5z‘,yLk|y(l)§(Xz‘ — fye)" B (X — py)+
=1

1 —
MZCZ’@(MZ% - Ny,k)TEy,llc(MZ:k — Hy.k)

151

where the second term follows Equation (2.31). Taking the derivative of J(u, 1) and setting it to

zero, we obtain the optimal solution as

LS b Lup i + Xl
=1

23 bty 0+ 1

ﬂy,kz

. . . —~1
Finally, we inspect the terms which depend on X ik
1 —) 1 —1 1 T
~m Zdi,yLkly(l)) In yzy,k’ + 5 — Hy.k) Ey k(= Hy))+
i=1
1 _ 1 _
Awffcifk(S [s ks (S,) S 0 = py) TS At — uy7k>>
1 — . 1 —1 1 —1
~m Z OiyLgpy (i) | — 3 In ’Ey,k| + B tr (Ey,kMLy,k) +
i=1
tr tr 1 -1 1 tr 1 -1
Mojyel (= ST i+ 5t (Zoezyh) + Str (ZyhNur)

(B.4)
A A .
where M;y 5 = (xi = piy k) (Xi = piy) " and Ny g = (g, =ty) (y g — i) 7. Using the fact

that for symmetrical matrices A and B,

dln|A|

_ -1 _ g -1

A 2A diag(A™") (B.5)
tr(AB) .

94 = 2B — diag(B) (B.6)

we can derive the derivative of J(X, S1) wrt. S k as follows

0J(%,, 1, 1.
e ik Z Qi Lty (1) = Sy + pdiag (B k) + Miy k. — Sdiag(Miyx) | (B.7)
y,k

1. 1. 1.
+/\w§7"c§]'k< Eyk+ §d1ag(2y7k) + E;fk — §dlag(25:k) + Nyi — 2d1ag(Ny’k)> =0 (B.8)
Furthermore, since A — %diag(A) = 0 implies A = 0, we obtain the optimal solution as

- Z 8y Ly (1) My ke + Al L, (Z;jjk + Ny,k>
)

y,k =
tr tr
iy Z Oy Ly (1) + Awy" ey

152

B.2 Sequential minimal optimization for SVM adaptation

We optimize two parameters a;; and i at a time.

J(Oél, ag) =1 + a9 — %KHOJ% — %nga% — 8K120510¢2 (B 9)

—y1a1 (v 4+ u1) — Yoz (ve + uz) + const

where s = yjy2 and

vj = [f(xj)=b—yra1Kij — yoaKo;

uj = f(x;)—=b

In SMO, each step finds the maximum in the subspace a;; +sae = . We replace oy by v — sae,

J(ag) = v — sag + ag — %Kn(’y — 3042)2 — %KQQO(% — sKi2(y — sag) e (B.10)

—y1(y — sae)(v1 + up) — yaaa(ve + ug) + const

Taking derivative with respect to co and setting it to zero, we have
an (K11 + Koo — 2K12) = s(K11 — Ka2)(aq + sag) + ya(v1 + up —ve —ug) +1—s (B.11)

This is the maximum when 7 2 Ki1 + K99 — 2K75 > 0.

Finally, we get the core update equation: if n > 0,

A = ag+ g9(x1) — g(x2)
n (B.12)
a?ew = 7- Sagew

where g(x;) = y1(f(x1) + f(x1)) — 1. When 7 > 0, we apply the standard SMO procedure.
B.3 Stochastic gradient descent for MLP adaptation

Specifically, we consider an MLP with .J layers, each with N/~! input nodes and N7 output nodes,
where ng = D is the dimension of input features. Each layer 7, j = 1..J — 1, performs an affine
transformation followed by a sigmoid operation, except that the very last layer J performs an affine
followed by a softmax operation. We further define a set of symbols regarding sample :.

First, it is easy to see that

Ofi _ 0% iy 1N, (B.13)

J J
owy, 8%”

153

J. : .
¢;: the input vector of layer j;
al: a; = Wj(bg +blie., a{vn = <w,j1,qbg> + b, n=1..N7;

exp{—a;{n
NJ
Dk=1 eXP{_“i{k}

t;: target label vector, where ¢; ,, = I(n = y;)

z;: output vector of layer J, z; , = ,n=1.N’;

Based on these derivatives , the inner loop of the back-propagation is written as: for: = 1..m,

wfz = WZZ — 77(08? : ¢§ +)\j(WZL - sztr)> (B.14)
, A 0J;

b o= bl — ! (B.15)
"0,

where 7 is the learning rate.
i

a’

Now the problem is reduced to deriving

for j = J and j = 1..J — 1 respectively. When

j = J, we have obtained in Chapter 5! that o
iij{in =Zin —tin N = 1..N7. (B.16)
When j = 1..J — 1, we have
0J; N9, oaltt
Oafﬁ N ; Gafgl . 8ag7n (B.17)
K
= ; ai};]%wﬁ#n(l —) (B.18)
=1 Y%

