
Regularized Adaptation: Theory, Algorithms and Applications

Xiao Li

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

University of Washington

2007

Program Authorized to Offer Degree: Electrical Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Xiao Li

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of the Supervisory Committee:

Jeff Bilmes

Reading Committee:

Jeff Bilmes

Katrin Kirchhoff

Marina Meila

Date:

In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at
the University of Washington, I agree that the Library shall make its copies freely available for
inspection. I further agree that extensive copying of this dissertation is allowable only for scholarly
purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying
or reproduction of this dissertation may be referred to Proquest Information and Learning, 300
North Zeeb Road, Ann Arbor, MI 48106-1346, 1-800-521-0600, to whom the author has granted
“the right to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed copies
of the manuscript made from microform.”

Signature

Date

University of Washington

Abstract

Regularized Adaptation: Theory, Algorithms and Applications

Xiao Li

Chair of the Supervisory Committee:
Professor Jeff Bilmes
Electrical Engineering

Many statistical learning techniques assume that training and testing samples are generated from

the same underlying distribution. Often, however, an ”unadapted classifier” is trained on samples

drawn from a training distribution that is different from the target (or test-time) distribution. More-

over, in many applications, while there may be essentially an unlimited amount of labeled ”training

data,” only a small amount of labeled ”adaptation data” drawn from the target distribution is avail-

able. The problem of adaptive learning (or adaptation) then, is to learn a new classifier utilizing the

unadapted classifier and the limited adaptation data, in an attempt to obtain as good classification

performance on the target distribution as possible.

The goal of this dissertation is to investigate theory, algorithms and applications of adaptive

learning. Specifically, we propose a Bayesian “fidelity prior” for classifier adaptation, which leads

to simple yet principled adaptation strategies for both generative and discriminative models. In the

PAC-Bayesian framework, this prior relates the generalization error bound to the KL-divergence

between training and target distributions. Furthermore, based on the fidelity prior, we develop “reg-

ularized adaptation” algorithms in particular for support vector machines and multi-layer percep-

trons. We evaluate these algorithms on a vowel classification corpus for speaker adaptation, and on

an object recognition corpus for lighting condition adaptation. Experiments show that regularized

adaptation yielded superior performance compared with other adaptation strategies.

The theoretical and algorithmic work on adaptive learning was originally motivated by the de-

velopment of the “Vocal Joystick” (VJ), a voice based computer interface for individuals with motor

impairments. The final part of this dissertation describes the VJ engine architecture, with focus on

the signal processing and pattern recognition modules. We discuss the application of regularized

adaptation algorithms to a vowel classifier and a discrete sound recognizer in the VJ, which greatly

helped enhance the engine performance. In addition, we present other machine learning techniques

developed for the VJ, including a novel pitch tracking algorithm and an online adaptive filter algo-

rithm.

TABLE OF CONTENTS

List of Figures . iv

List of Tables . v

Chapter 1: Introduction . 1
1.1 Machine Learning Paradigms . 3

1.1.1 Supervised, unsupervised and semi-supervised learning 3
1.1.2 Inductive and transductive learning . 5
1.1.3 Meta-learning . 5
1.1.4 Adaptive learning . 7

1.2 The Vocal Joystick . 8
1.3 Contributions and Organization . 11
1.4 Collaborations and Publications . 12

Chapter 2: Learning Theory Foundations . 14
2.1 Statistical Models for Classification . 16

2.1.1 Generative models . 16
2.1.2 Discriminative models . 17

2.2 Loss Functions for Parameter Estimation . 18
2.2.1 Probability-based loss . 19
2.2.2 Margin-based loss . 20

2.3 Generalization Error Bounds . 22
2.3.1 VC bounds . 23
2.3.2 PAC-Bayesian bounds . 25

2.4 Regularization . 28
2.4.1 Structured risk minimization . 28
2.4.2 Bayesian model selection . 30

2.5 Information Theoretical Background . 31

Chapter 3: Review of Practical Work on Adaptation 35
3.1 In Automatic Speech Recognition . 36

i

3.2 In Natural Language Processing . 40

3.3 In Pattern Recognition . 42

Chapter 4: A Fidelity Prior for Classifier Adaptation 44

4.1 A Bayesian Fidelity Prior . 46

4.2 Generative Classifiers . 47

4.2.1 Gaussian models . 49

4.2.2 Mixture models . 50

4.2.3 Hidden Markov models . 52

4.3 Discriminative Classifiers . 54

4.4 PAC-Bayesian Error Bound Analysis . 57

4.4.1 Occam’s Razor bound for adaptation . 58

4.4.2 PAC-Bayesian bounds for adaptation . 59

4.4.3 A VC perspective . 62

4.5 Empirical Simulations of Adaptation Error Bounds 63

Chapter 5: Regularized Adaptation Algorithms . 65

5.1 GMM Adaptation . 65

5.2 Links between SVMs and MLPs . 68

5.3 SVM Adaptation . 72

5.3.1 Related work . 72

5.3.2 Error weighting – an empirical attempt 73

5.3.3 Regularized adaptation . 74

5.3.4 Algorithm derivation and implementation 77

5.4 MLP Adaptation . 79

5.4.1 Related work . 79

5.4.2 Regularized adaptation . 80

5.4.3 Algorithm derivation and implementation 81

5.5 Relation to Inverse Optimization Problem . 83

5.6 Adaptation Experiments . 85

5.6.1 Frame-level vowel classification . 86

5.6.2 Objection recognition . 93

Chapter 6: Application to the Vocal Joystick . 98

6.1 Overview of Acoustic Parameters . 98

6.2 The VJ Engine . 99

ii

6.2.1 Signal processing . 100
6.2.2 Pattern recognition . 104
6.2.3 Motion control . 106

6.3 Application of Regularized Adaptation Algorithms 107

Chapter 7: Other Machine Learning Techniques in the Vocal Joystick 109
7.1 Pitch Tracking . 109

7.1.1 Graph structure and local probability models 110
7.1.2 Observation features . 112
7.1.3 Parameter estimation and decoding . 113
7.1.4 Experiments . 116

7.2 Adaptive Filtering . 116
7.2.1 Problem formulation . 118
7.2.2 A natural strategy . 119
7.2.3 An online adaptive filter . 120
7.2.4 Experiments and Discussions . 123

Chapter 8: Conclusions and Future Work . 126
8.1 Summary of Main Contributions . 126
8.2 Future Work . 129

Bibliography . 132

Appendix A: Proofs . 147
A.1 Proof of Theorem 2.3.3 . 147
A.2 Proof of Equation (2.22) . 147
A.3 Proof of Theorem 2.4.1 . 148
A.4 Proof of Corollary 4.4.4 . 148
A.5 Proof of Corollary 4.4.5 . 148
A.6 Proof of Lemma 4.3.2 . 149

Appendix B: Algorithms . 150
B.1 EM updating equations for GMM adaptation . 150
B.2 Sequential minimal optimization for SVM adaptation 152
B.3 Stochastic gradient descent for MLP adaptation 152

iii

LIST OF FIGURES

Figure Number Page

2.1 Convex surrogates of the 0-1 loss . 21

4.1 Empirical error bound study: δ vs. log m for ε = 0.02 (upper figure) and ε = 0.1
(lower figure) . 64

5.1 Multilayer perceptrons . 70
5.2 Regularized SVM adaptation. Circles and stars represent the adaptation data; the

solid lines in (a), (b) and (c) respectively represent the entirely retrained model, the
unadapted model, and the adapted model learned using Equation (5.20). 76

5.3 Five objects (each from a different class) under six different lighting conditions . . 94

6.1 Vowel-direction mapping . 100
6.2 Vowel triangle . 100
6.3 The VJ engine architecture. This dissertation mainly contributes to the signal process-

ing and pattern recognition module. 101
6.4 An interface for VJ adaptation . 108

7.1 Decoding graph . 111
7.2 Training graph . 114
7.3 A modified Kalman filter for user intent tracking 121
7.4 Adaptive filtering simulation . 124
7.5 Steering Snapshots: (i) 4-way system; (ii) 8-way system; (iii) 4-way system with

adaptive filtering . 125

iv

LIST OF TABLES

Table Number Page

1.1 A comparative view of learning paradigms . 7

5.1 Notation of a two-layer MLP . 81
5.2 Amounts of training, test and development data in VJ-Vowel 87
5.3 Dev-set error rates of unadapted 8-class MLPs with different numbers of hidden

units and window sizes. The highlighted entries include the best error rate and those
not significantly different from the best at the p < 0.002 level. 88

5.4 Test-set error rates (means and standard deviations over 10 speakers) of experi-
ment VJ-A, VJ-B and VJ-C using 8-class MLPs, where the amounts of adaptation
data were balanced across classes; The highlighted entries include the best error rate
and those not significantly different from the best at the p < 0.001 level. 89

5.5 Test-set error rates (means and standard deviations over 10 speakers), with different
number of classes of adaptation data available (unbalanced classes), and with∼ 350
samples per class (3K in total). Highlighted entries include the best error rate and
those not significantly different from the best at the p < 0.001 level. 90

5.6 Test-set error rates (means and standard deviations over 10 speakers) of experi-
ment VJ-A, VJ-B and VJ-C using SVMs with a Gaussian kernel (std=10). The
tradeoff coefficient is C = 100 in all cases. The highlighted entries include the best
error rate and those not significantly different from the best at the p < 0.001 level. 92

5.7 Experiment NORB-A using SVMs with a Gaussian kernel (std=500) (90 images per
lighting condition). The tradeoff coefficient is C = 100 in all cases. The highlighted
entries in avg include the best error rate and those not significantly different from
the best at the p < 0.001 level. 96

5.8 Experiment NORB-B using SVMs with a Gaussian kernel (std=500) (180 images
per lighting condition). The tradeoff coefficient is C = 100 in all cases. The high-
lighted entries in avg include the best error rate and those not significantly different
from the best at the p < 0.001 level. 96

5.9 Experiment NORB-A using 5-class MLPs (90 images per lighting condition). The
highlighted entries in avg include the best error rate and those not significantly
different from the best at the p < 0.001 level. 97

5.10 Experiment NORB-B using 5-class MLPs (180 images per lighting condition). The
highlighted entries in avg include the best error rate and those not significantly
different from the best at the p < 0.001 level. 97

v

7.1 Pitch estimation GER; The highlighted entries include the best error rate and those
not significantly different from the best at the p < 0.001 level. 117

7.2 Voicing decision error rate; The highlighted entries include the best error rate and
those not significantly different from the best at the p < 0.001 level. 117

8.1 The best-performing adaptation algorithms in two pattern classification tasks. . . . 128

vi

ACKNOWLEDGMENTS

I am enormously grateful to my advisor Jeff Bilmes for accepting me as a graduate student when

I knew nothing about research, and for teaching me everything I know about research. I especially

thank him for never letting me give up, and never letting me get away with anything unpolished. I am

grateful to three other committee members, Katrin Kirchoff and Marina Meila and Maya Gupta for

providing very important comments on my work. And Mari Ostendorf for offering two inspirational

courses EE517 and EE596 that have greatly influenced my research interests.

My work would not have been possible without the collaborations from my colleagues Jonathan

Malkin and Susumu Harada, who have been working closely with me on the Vocal Joystick project.

Jonathan has made key contributions to the Vocal Joystick system, including catching a few critical

bugs I created. Susumu has rewritten the VJ engine, in an amazingly short time, with a new software

architecture, and has been a terrific source knowledge for user studies. I am also indebted to Kelley

Kilanski and Richard Wright for their great efforts in data collection. especially thank Kelley for

annotating thousands of recordings – a job that would have driven anyone crazy.

Many thanks to my fellow graduate students in the SSLI Lab. It has been a great pleasure

working with them side by side. Thank Gang Ji for his tremendous help in my early years of

graduate school. Thank Arindam Mandal, Chris Bartels, Dustin Hillard, Jonathan Malkin, Kevin

Duh, Sheila Reynolds for helping me practice for my final defense. Thank Xin Lei, Mei Yang, Karim

Filali, Arindam Mandal, Chris Bartels for ordering food together when working late at night and

for interesting discussions. Also thank other fellow students, Andrei Alexandrescu, Jeremy Kahn,

Mukund Narasimhan, Scott Otterson, Sarah Petersen, Raghu Kumaran and Amar Subramanya, for

deciding to stay packed and together in EE1-203 rather than being distributed to separate offices,

and for various other things — they have made SSLI a fun and stimulating place to work in.

I would like to express my gratitude to the sources of my financial support. My research was

funded in part by the National Science Foundation under Grant IIS-0326382, and later by a Mi-

vii

crosoft Research Fellowship. I would especially thank Alex Acero, Asela Guanawardana at Mi-

crosoft Research for their support in my fellowship application, the Speech Technologies group for

offering me internships.

Thank my dearest friends, Cathy and Christie, for their constant support thousands of miles

away; Xiaobei and Claire, for sharing with me their laughters and tears.

I am forever indebted to my parents, who always believed in me, and to Yeping, who made me

believe.

Finally, thank the Ph.D. comic strip by Jorge Cham for making me laugh through the toughest

moments of graduate school.

viii

”Reasonable people adapt themselves to the world. Unreasonable people attempt to

adapt the world to themselves. All progress, therefore, depends on unreasonable people.”

—- George Bernard Shaw

ix

1

Chapter 1

INTRODUCTION

Many concepts and techniques in machine learning are illuminated by human (or animal) learn-

ing behaviors [1]. Indeed, human’s ability to learn is a hallmark of intelligence. Perhaps the most

simple form of human learning is ”trivial” memorization of experience. However, it is amazing how

much and how fast humans can memorize; they remember and recognize complicated objects and

sounds, such as faces and voices, with seemingly no difficulty even when they have experienced

these objects or sounds for only seconds. This makes us wonder what exactly are being memorized

— every single detail of an object or a sound, or only some salient characteristics? Humans not

only learn by memorization (which might involve extracting the most important characteristics of

a matter), but also generalize what they have learned. For example, in a classic experiment by [2],

a group of English-speaking children were able to correctly pluralize a novel word that they had

never encountered. It seems that humans are able to induce certain forms of ”rules” based on par-

ticular examples, though it is mysterious how this induction process works in the brain. Even more

amazingly, humans are constantly transferring their knowledge and skills learned in one context to

another context [3]. For example, previous experience of learning to speak English may help learn

to speak French, and previous experience of learning to play violin may help learn to play piano.

And it has been hypothesized that the degree of knowledge transfer between initial and later learning

depends on the match between the elements across two tasks [4]. Yet another important character-

istic of human learning is the ability to adapt, which can be considered as a special case of transfer

of learning. Here by ”adaptation” we mean the process of adjusting the knowledge or skills of prior

learning to a specific task. Suppose that a tennis player A wants to beat his rival player B (without

worrying about other players for the moment). After having practiced with a great number of play-

ers to improve his general tennis skill, A may want to adapt his skill toward the goal of beating B

by practicing with a few players whose styles are the closest to B.

2

As computers becomes more and more powerful, the idea that computers can imitate human

learning processes is no longer science fiction. In fact, there has been a surge of interest to study

machine learning paradigms that parallel human learning processes, such as efficient knowledge

representation, induction, and transfer. These techniques have greatly influenced the development

of more intelligent computer interfaces that can recognize objects and sounds, understand human

languages, predict weather and traffic, diagnose diseases, detect fraudulent financial transactions, or

even play chess.

This dissertation is particularly interested in the setting of adaptive learning, which is analogous

to the human learning process of adapting knowledge and skills toward a target task. Indeed, many

statistical learning techniques assume that training and testing samples are generated from the same

underlying distribution. Often, however, an “unadapted classifier” is trained on samples drawn from

a training distribution that is not the same as the target (or test-time) distribution. Moreover, in

many applications, while there may be essentially an unlimited amount of labeled “training data,”

only a small amount of labeled “adaptation data” drawn from the target distribution is available.

The problem of adaptation, then, is to learn a new classifier utilizing the unadapted classifier and

the limited adaptation data, in an attempt to obtain as good classification performance on the target

distribution as possible.

Adaptation is most useful in scenarios where a computer interface needs to be customized for a

target user or domain, or to be adjusted constantly in an evolutionary environment. In speech and

handwriting recognition, for example, an unadapted classifier may be trained on a database consist-

ing of samples from an enormous number of individuals. The target distribution would correspond

only to a specific user, from whom it would be unrealistic to obtain a large amount of labeled train-

ing data. A system, however, should be able to quickly adapt to that user by combining information

from the large corpus and as small an amount of adaptation data as possible. Taking text classifica-

tion as another example, it is often the case that a vast amount of labeled training data exists in one

domain, but the target task is to be conducted in another domain where data annotation is expen-

sive. Domain adaptation, which utilizes information from the original domain, may help reduce the

amount of new annotation efforts while achieving good performance in the target domain.

The theoretical and algorithmic work that will be presented in dissertation was originally moti-

vated from the development of the Vocal Joystick (VJ). The VJ is a voice based computer interface

3

designed for individuals with motor impairments. Unlike conventional speech interfaces, the Vocal

Joystick exploits continuous aspects of human’s voice, such as intensity, pitch and vowel quality,

and produces continuous signals which can be used to control mouse pointers, robotic arms, or other

electro-mechanical devices. Moreover, similar to speech interfaces, the VJ almost always finds its

best performance when adapted to the target user, and this is where the work developed in this

dissertation comes into play.

This chapter serves as an introduction to this dissertation. Section 1.1 gives a comparative view

of a number of machine learning paradigms, including adaptive learning which is the essence of

this dissertation. Section 1.2 introduces the Vocal Joystick, a real-world application that motivated

this work, and states the potential learning and adaptation problems in the VJ system. Finally, the

last section summarizes the contributions and presents a roadmap of this dissertation.

1.1 Machine Learning Paradigms

A variety of machine learning paradigms have been studied in the past including supervised, un-

supervised, and semi-supervised learning, as well as transductive vs. inductive learning, and more

recently, multi-task learning or transfer learning, any of which may be seen from either a frequen-

tist or Bayesian perspective. A learning setting that has not received as much theoretical attention is

that of adaptive learning. This section offers a comparative review of these learning paradigms as

well as a brief introduction to adaptive learning. For a better understanding of how these learning

paradigms differ from or relate to each other, we view them from several different perspectives.

1.1.1 Supervised, unsupervised and semi-supervised learning

We first inspect the way that training samples are labeled, which essentially makes the distinction be-

tween supervised, unsupervised and semi-supervised learning. Supervised learning assumes that all

training samples are labeled, whereas unsupervised learning assumes none. Formally, in the former

setting both inputs and their labels {(xi, yi)}m
i=1 are given, while in the latter only inputs {xi}m

i=1

are available. It may be somewhat mysterious what the machine could possibly learn without any

labeled data. Unsupervised learning, in fact, often aims at building representations of the input that

can be used for prediction, decision making or data compression [5]. For example, density esti-

4

mation [6], clustering [7, 8], principle component (or surface) analysis [8], independent component

analysis [9] are all important forms of unsupervised learning.

Notice that in some cases there exists another label variable ki, parallel to yi, that provides

information on xi at a different level. For example, in Gaussian mixture models, we can have

yi representing the Gaussian mixture ID and ki representing the component ID in that Gaussian

mixture. In this regard, we should distinguish between the “fully supervised” case, where both yi

and ki are available, the “partially supervised” case, where yi is available but ki is not, and the “fully

unsupervised” case, where neither yi nor ki are present.

Semi-supervised learning, as what “semi” may have suggested, assumes that there exist both

labeled training samples {(xi, yi)}m
i=1 and unlabeled ones {xi}m+n

i=m+1. In many machine learning

applications, unlabeled data is abundant but labeling is expensive and time-consuming. The basic

idea of semi-supervised learning is to use the input distribution learned from the unlabeled data to

influence the supervised learning problem [10]. In the probabilistic framework, semi-supervised

learning can be treated as a missing data problem, which can be addressed by generative models

using the EM algorithm and extensions thereof [11–13]. Self-training [14] extends the idea of EM

to a wider range of classification models: it iteratively trains a seed classifier using the labeled data

(sometimes with regularization [15]), and uses high-confidence predictions on the unlabeled data

to expand the training set. Co-training [16] assumes that the input features can be split into two

conditionally independent subsets, and that each subset is sufficient for classification. Under these

assumptions, the algorithm trains two separate classifiers on these two subsets of features, and each

classifier’s predictions on new unlabeled samples are used to enlarge the training set of the other.

This approach often improves over self-training, as compared in [17]. Another school of methods

for semi-supervised learning are based on graphs [18], where nodes represent labeled and unlabeled

samples, and edges reflect the similarity between the samples. Given such a graph, we desire to find

a decision function that satisfies the constraints imposed by the labeled data and is smooth over the

entire graph [18–20].

Additionally, active learning is a similar setting as semi-supervised learning, but it allows an

intelligent choice of which samples to label. For example, query learning [21] or selective sampling

[22] generates or selects the most informative inputs for the human expert to label with the hope to

improve classification performance with the minimal amount of queries.

5

1.1.2 Inductive and transductive learning

A second perspective, which distinguishes inductive learning from transductive learning, has to do

with the scope in which a classifier is devised to work. Assume that we observe a set of samples

{(xi, yi)}m
i=1 drawn from a distribution p(x, y) in the sample space X ×Y . Inductive learning aims

to learn a decision function f : X → Y that not only correctly classifies observed samples, but

also generalizes to any unseen samples drawn from the same distribution. In other words, we desire

to learn an f that minimizes the expected risk, i.e., Rp(x,y)(f) = E(x,y)∼p(x,y)[Q(f(x), y)], under

some loss function Q(·), which will be formally discussed in Chapter 2.

In transductive learning [23], we are further given a set of unlabeled inputs {xi}m+n
i=m+1, and we

only care about predicting as accurately as possible the labels {yi}m+n
i=m+1 of these target inputs.

Since a transduction algorithm does not need to generalize, it is usually devised explicitly to find

the right labels instead of to construct a decision function. A transductive SVM [23–25], however,

outputs a decision function which can potentially handle unseen data. In fact, a transductive SVM

is in the strict sense an inductive learner, although it is by convention called “transductive” for its

intention to minimize the generalization error bound on the target inputs [23]. It is worth noting that

semi-supervised learning is often mistaken for transductive learning, as both learning paradigms

receive partially labeled data for training. In fact, semi-supervised learning can be either inductive

or transductive, depending on whether its goal is to generalize.

1.1.3 Meta-learning

Meta-learning, also referred to as multi-task learning or transfer learning, deals with the problem

of ”learning to learn”. This paradigm involves a higher level of generalization. While learning at

the base level desires to produce a learner that generalizes across samples drawn from a specific

distribution or domain, meta-learning emphasizes producing a meta-learner that generalizes across

distributions and domains. Here we discuss meta-learning in the context of inductive learning.

For a better understanding of the problem, we refer to a formulation presented in [26], but we

replace the notation therein with our own notation for consistency with the rest of this dissertation.

Assume that there are K different yet ”related” tasks. Each task defines a distribution pk(x, y)

on the same sample space X × Y , from which a training set Dk is generated. The tasks relate

6

to each other via a meta-parameter θ, the form of which will be discussed shortly. One setting of

meta-learning (mostly referred to as multi-task learning) is concerned with simultaneously learning

K specific tasks. The goal is to jointly find a meta-parameter θ and a set of decision functions

fk ∈ Fk, k = 1..K, that minimize the average expected risk, i.e.,

min
θ,f1∈F1,..,fK∈FK

1
K

∑

k

Rpk(x,y)(f
k),

subject to some ”relatedness” constraint parameterized by θ. It has been theoretically proved that

learning multiple tasks jointly is guaranteed to have better generalization performance than learning

them independently, given that these tasks are related [26–30]. A second setting of meta-learning

assumes that pk, k = 1..K, are sampled from a ”meta-distribution” q(p) [26, 27]. Under such an

assumption, the goal is to find a meta-parameter θ that generalizes to unseen sample distributions

p(x, y) drawn from q(p), i.e.,

min
θ

Ep∼q(p)[inf
f∈F

Rp(x,y)(f)],

again subject to the relatedness constraint parameterized by θ.

In both cases, the relatedness constraint (parameterized by θ) is the key to the success of meta-

learning. There are many ways to define this constraint by exploiting different types of ”related-

ness”. From a frequentist perspective, [26] defines relatedness between tasks as an “internal repre-

sentation”. Specifically, it is assumed that Fk = Fθ for all k, where Fθ is chosen from a family of

function spaces. For example, Fθ can be represented by a space of multi-layer perceptrons where

the first two layers, parameterized by θ, are shared by all tasks, while the remaining layers are

task-dependent [26, 31]. Another form of relatedness is given by [32] and [30], where the deci-

sion function fk is assumed to be a linear combination of a task-independent and a task-dependent

component. Furthermore, [29] defines relatedness between tasks on the basis of similarity between

distributions. Formally, two distributions pk(x, y) and pl(x, y) are related if there exists some trans-

formation T : X → X such that pk(x, y) = pl(T (x), y). On the other hand, there are various

Bayesian approaches to meta-learning, many of which are based on hierarchical Bayesian infer-

ence [33]. The constraint therein is that the decision functions fk from multiple tasks are generated

from the same prior distribution pθ(f). Empirical study of this approach to multi-task learning can

be found in a number of publications such as [34, 35].

7

Table 1.1: A comparative view of learning paradigms

Paradigms given desire to learn

Supervised D = {(xi, yi)}m
i=1

Unsupervised D = {xi}m
i=1

Semi-supervised D = {(xi, yi)}m
i=1

⋃ {xi}m+n
i=m+1

D = {(xi, yi)}m
i=1 or

Inductive D = {(xi, yi)}m
i=1

⋃{xi}m+n
i=m+1 argmin

f
Rp(x,y)(f)

where (xi, yi) ∼ p(x, y)

Transductive D = {(xi, yi)}m
i=1

⋃{xi}m+n
i=m+1 labels of {xi}m+n

i=m+1

Meta-learning {Dk}K
k=1 (fully or partially labeled) argmin

θ,f1,..,fK

1
K

K∑

k=1

Rpk(x,y)(f
k)

(setting I) where (xi, yi) ∼ pk(x, y) s.t. ”relatedness” constraint by θ

Meta-learning {Dk}K
k=1 (fully or partially labeled) argmin

θ
Efk∼q(f)[inf

f
Rpk(x,y)(f

k)]

(setting II) where (xi, yi) ∼ pk(x, y), pk ∼ q(p) s.t. ”relatedness” constraint by θ

f tr ∈ argmin
f

Rptr(x,y)(f ∈ F)

Adaptive and D = {(xi, yi)}m
i=1 argmin

f∈F
Rpad(x,y)(f)

where (xi, yi) ∼ pad(x, y)

1.1.4 Adaptive learning

Finally, we introduce the idea of adaptive learning (or adaptation); a detailed discussion will be given

in Chapter 4. As mentioned at the beginning of this chapter, adaptive learning is concerned with

situations where the target sample distribution denoted by pad(x, y), deviates from that of training,

denoted by ptr(x, y). In such a situation, no matter how much data is available from the training-

data distribution, it will not be possible to obtain an asymptotically consistent estimate. On the other

hand, training a model using only the adaptation data would [8] either lead to: (1) overfitting, due

to a high-variance parameter estimate of a complex model, or (2) high-bias due to estimating the

8

parameters of an excessively simple model. In this work, we assume the availability of an unadapted

decision function f tr learned using a sufficient amount of training-distribution data, as well as some

labeled adaptation data Dad drawn from the target distribution. The goal of adaptation is to learn an

optimal decision fad function with regard to pad(x, y). In this paradigm,Dad are true samples from

the target distribution, while f tr is a good representative only of the training distribution, which may

at best be only similar but not identical to the target distribution. By combining these two sources

of information, one would hope to achieve better performance than using either one alone.

Adaptive learning is most akin to multi-task learning in that learning the unadapted model and

learning the adapted model can be viewed as two similar tasks, each with a different sample dis-

tribution. However, our setting of adaptive learning is not entirely the same as the problem of

simultaneously learning multiple tasks. First of all, we are only interested in the performance of

the target task rather than the average performance over all tasks. Secondly, the training data is

no longer available at adaptation time — the only information preserved from training is the un-

adapted model. Note that the second assumption is fairly common in real-world scenarios when it

is unrealistic to deliver a large amount of training data to end users.

These learning paradigms are summarized in Table 1.1, with a few points that we need to clarify:

(1) The first four learning paradigms differ from each other only by “what is given”, regardless of

“what they desire to learn” (thus we leave the corresponding entries empty); (2) We discussed meta-

learning and adaptive learning in the context of inductive learning, but both can be transductive.

(3) The notation Rp(x,y)(f) denotes expect risk w.r.t. the sample distribution p(x, y), which will be

formally introduced in the next Chapter.

1.2 The Vocal Joystick

While this dissertation studies the problem of adaptation primarily from a machine learning perspec-

tive, the incentive of conducting such research was originated from the development of the Vocal

Joystick (VJ) — a computer interface for individuals with motor impairments. This section presents

the motivation and background of the VJ project. Notice that much of the text in this section was

written on the basis of a number of seminal publications by Bilmes and et. al. [36,37]. Furthermore,

the development of the Vocal Joystick was a joint work with a number of faculties and students at

9

the University of Washington. We will acknowledge their work in detail in Section 1.4

As human-computer interaction becomes ubiquitous, the concept of continuous interaction [38]

increasingly impacts the way we interact with everyday objects and appliances, and ultimately on

the way we live in the modern world. Many existing interfaces such as mouse pointers, joysticks

and touch-pads, however, are ill-suited for individual with motor impairments. There has been a

sustained interest in the computer-human interaction (CHI) society to develop hand-free computer

interfaces for this population. A sip-and-puff switch, for example, is a head-mounted accessory

used to actuate a binary-mode switch by a simple sip or puff [39,40]. This is often used in company

with a head-mouse, or a chin-joystick, which controls a standard computer mouse or joystick by

measuring the user’s head or chin movements [39, 40]. Such interfaces remove the constraints on

the user’s ability to use hands, but often suffer from low communication bandwidths. An eye tracker

provides an attractive alternative that maps eye-gaze positions to mouse pointer positions, but it often

requires expensive hardware and elaborate calibration efforts before use [41].

A speech interface is a more natural solution, as speech is a major facility in human-human com-

munication. Such an interface recognizes and understands speech inputs using an automatic speech

recognizer and launches actions accordingly [42, 43]. Standard spoken language commands, how-

ever, are most useful for discrete but not for continuous operations, and thus are ill-suited for manip-

ulating computers, windows-icons-mouse-pointer (WIMP) interfaces and other electro-mechanical

devices. For example, in order to move a cursor from the bottom-left to the upper-right of a screen,

a user would have to repeatedly utter “up” and “right”, or “stop” and “go” after setting an initial

movement direction and speed. An alternative strategy would be to verbalize the intent in a more

sophisticated manner, e.g., “move mouse two o’clock” [43], but this would increase the cognitive

load of the user by imposing syntax and semantic restrictions. More importantly, both strategies

suffer from the discontinuous nature of discrete command control and the inability to control the

movement speed efficiently.

Therefore, it is useful to develop a continuous voiced-based interface such that the computer

does not need to wait for a complete command to actuate an operation, but rather continuously listens

to the user and responds quietly to his/her interests. A number of systems have been proposed for

this purpose in the CHI community, among which [44] and [45] are the most similar to the VJ. Both

systems have utilized non-verbal acoustic parameters, such as duration and pitch of vocalization,

10

for continuous control of mouse pointers. After the movement direction is initialized by a discrete

command, a movement can be launched by any vowel articulation, and the movement continues

until the vowel articulation stops; in the meantime, the movement speed can be changed on-the-fly

by varying pitch [44]. The systems proposed by [43, 46, 47] work in a similar fashion, except that

they do not require continuous vowel articulation; once the movement direction has been set, the

mouse pointer moves automatically until a discrete command is received to stop the movement.

All these techniques, however, lack the ability to fluidly and continuously change the movement

direction and, in some cases, the movement speed without having to issue discrete commands.

The Vocal Joystick project, funded by NSF and conducted at the University of Washington,

aims to assist individuals with motor impairments using a more fluid control mechanism. This

voice-based interface is not confined to the use of natural languages, but exhaustively explores non-

verbal acoustic parameters of human voice such as intensity, pitch, vowel quality and discrete sounds

(comprised of phoneme combinations). We have utilized this interface to control mouse movement

using the following scheme: mouse movement is triggered when vowel activity is detected, and

continues until the vowel activity stops. At each time frame, the movement direction is determined

by vowel quality, while the step size is determined by loudness. Finally, a small set of discrete

sounds are used to execute mouse clicks. A more detailed description of the Vocal Joystick will be

given in Chapter 6.

The Vocal Joystick has the following advantages compared with speech interfaces: (1) The

VJ offers control mechanisms for both continuous and discrete tasks; (2) it can select the vocal

parameters that maximally reduce confusability ; (3) it provides instantaneous feedback to a user

so that the interaction is mutually adaptive; and (4) it reduces the user’s cognitive load. Compared

with other continuous interfaces such as a head-mouse, a chin joystick or an eye tracker, the VJ

has a relatively high bandwidth, thereby providing more degrees of freedom in control. It is also

relatively cheap and requires less efforts in setup.

The design of the VJ system involves a variety of research areas, including phonetics, cognition

and perception science, signal processing, machine learning, control, user interface design and us-

ability. This dissertation focuses on several research problems at the pattern recognition level. First,

it is crucial for the VJ system to have a robust estimation of the vocal parameters, including loudness,

pitch, vowel quality, and discrete sound identity, and to develop an efficient user adaptation scheme

11

to improve classification and estimation performance. Secondly, it is sometimes necessary to have

an intelligent filtering algorithm applied to some of the vocal parameters, as it is often difficult for

a user to make the precise articulation he/she has intended, For example, in order to move along a

non-cardinal direction, the user may repeatedly alter between two cardinal vowels. A second reason

is that there often exist system errors in classification; an adaptive filter would greatly help infer the

true user intent from noisy estimates.

1.3 Contributions and Organization

This dissertation makes contributions to the problem of adaptive learning from the following three

aspects.

• The theoretical contribution of this work is that we present a Bayesian “fidelity prior” for clas-

sifier adaptation. This prior unifies the adaptation strategies for a variety of generative models

and conditional models, and relates the generalization error bound (or sample complexity

bound) to the KL-divergence between training and target distributions in the PAC-Bayesian

setting.

• The algorithmic contribution comes from the development of novel regularized adaptation al-

gorithms for SVMs and MLPs, both derived from an lower bound of the fidelity prior. These

algorithms perform remarkably well on a vowel classification dataset and an object recogni-

tion dataset compared to other state-of-the-art techniques in the literature. Note that we have

also implemented an regularized adaptation algorithm for GMMs, which is essentially the

same as the conventional MAP adaptation.

• Application-wise, this dissertation gives an overview of the development of the Vocal Joy-

stick system. The main research contribution to the VJ system from this dissertation is the

exploitation of machine learning techniques at the signal processing and pattern recognition

level. This is specifically concerned with building regularized adaptation tools for the vowel

classifier and for the discrete sound recognizer in the VJ engine. In addition, this work de-

scribes a novel pitch tracker based on graphical models, as well as an intelligent adaptive filter

that compensates for human and system errors.

12

The rest of the dissertation is organized as follows 1: Chapter 2 reviews theoretical foundations

based on which this work is constructed. Chapter 3 reviews practical work on adaptation devel-

oped in the area of speech recognition and natural language processing. Chapter 4 presents the

fidelity prior and its instantiations for generative models and discriminative models, and provides

PAC-Bayesian error bound analysis. Chapter 5 describes in detail regularized adaptation algorithms

for SVMs and MLPs with experiments on two pattern classification tasks. Chapter 6 introduces

the Vocal Joystick systems and the adaptation tools. Chapter 7 discusses other machine learning

techniques in the VJ system, including a pitch tracking algorithm and an online adaptive filtering

algorithm. Finally, Chapter 8 concludes and suggests directions for future work. In addition, non-

important proofs (which are trivially derived from others’ work) and algorithm derivations can be

found in the appendices.

1.4 Collaborations and Publications

Some of the work described in this dissertation has been published in conference proceedings. The

fidelity prior and the error bound analysis were published in [48], coauthored with Jeff Bilmes.

The regularized adaptation algorithm for MLPs, with evaluation on vowel classification, was first

proposed in [49], coauthored with Jeff Bilmes. An empirical design of SVM adaptation was pre-

sented in [50], coauthored with Jonathan Malkin and Jeff Bilmes. The pitch tracking algorithm

was published in [51], coauthored with Jonathan Malkin and Jeff Bilmes. The online adaptive filter

algorithm was published in [52], coauthored with Jonathan Malkin, Susumu Harada, Jeff Bilmes,

Richard Wright and James Landay.

As mentioned earlier, the development of the Vocal Joystick involved efforts from many other

researchers (faculties and students), and covers a broad spectrum of research areas. The first paper

[36] that offered a comprehensive description of the VJ was a joint work by Jeff Bilmes, Xiao

Li, Jonathan Malkin, Kelley Kilanski, Richard Wright, Katrin Kirchhoff, Amarnag Subramanya,

Susumu Harada, James Landay, Patricia Dowden and Howard Chizeck. A sister paper [37] by

the same authors presented engineering details of the VJ system. Research on the motion control

module was primarily done by Jonathan Malkin, and was partially published in [53]. Research on the

1 As a side note, this dissertation is in fact organized in inverse chronological order of the progress of my Ph.D. work.

13

VJ user interface was primarily done by Susumu Harada, and was published in [54]. Furthermore,

research on data collection efforts can be found in [55], first authored by Kelley Kilanski. Finally, the

implementation of the VJ engine was a joint work with Jonathan Malkin and Susumu Harada. The

graphical user interface for adaptation presented in Figure 6.4 was primarily designed by Susumu

Harada.

14

Chapter 2

LEARNING THEORY FOUNDATIONS

As introduced in Chapter 1, inductive learning is a machine learning paradigm that, given exam-

ples of inputs and corresponding outputs, learns to predict outputs on future inputs. The prediction

task is called classification when we predict qualitative outputs, and regression when we predict

quantitative outputs. Formally speaking, we assume that there exists a mapping from an input space

X to an output space Y , where Y is a set of class labels in the case of classification, and a space of

real values in the case of regression. Inductive learning asks to discover this mapping (both function

structure and parameter values) based on a set of observed examples. This dissertation is concerned

with classification tasks in the context of inductive learning.

Throughout this work, all densities are taken w.r.t. the Lebesgue measure in their respective

spaces. We use p(x) as a short-cut for pX(X = x), and Ep(x)[·] as a short-cut for EX∼pX(X)[·].
We also introduce the notion of convergence in probability. We say that Xn converges to X in

probability, denoted by Xm
P−→ X , if for any ε > 0 and for any δ > 0 there exists a natural number

M such that for all m > M ,

Pr{|Xm −X| < ε} > 1− δ.

Assume that we observe m samples Dm = {(xi, yi)|(xi, yi) ∼ p(x, y)}m
i=1, where xi ∈ X are

input features and yi ∈ Y are class labels. Further assume that we are given a function space F
(either countable of uncountable) that contains some mappings f : X → Y which we call decision

functions or classifiers. Our goal is to learn a decision function (or a classifier) f ∈ F : X → Y
that not only correctly classifies the observed samples, but also generalizes to unseen samples drawn

from the same distribution. In other words, we desire to learn an decision function that minimizes

the expected risk (or, equivalently, the true risk),

Rp(x,y)(f) ∆= Ep(x,y)[Q(f(x), y)], (2.1)

where Q(·) is a loss function that measures the “cost” of a classification decision. Notice that the

15

difference between the expected risk of f and the Bayes risk, i.e. inf
f

Rp(x,y)(f), consists of two

error terms:

Rp(x,y)(f)−inf
f

Rp(x,y)(f) =
(

Rp(x,y)(f)− inf
f∈F

Rp(x,y)(f)
)

+
(

inf
f∈F

Rp(x,y)(f)−inf
f

Rp(x,y)(f)
)

(2.2)

where the first term on the right hand side is called the estimation error, and the second the approxi-

mation error. Moreover, throughout this work, we use the 0-1 loss, i.e. Q((f(x), y) = I(f(x) 6= y),

in evaluating the classification performance. In this case the expected risk is the true classification

error rate. The 0-1 loss, however, is often computationally intractable as an optimization func-

tion [56]; surrogates of the 0-1 loss are typically used in actually training a classifier, which will be

discussed in Section 2.2 in detail.

Regardless of what loss function to use, the expected risk is hard to optimize directly as p(x, y)

is generally unknown. In practice, we often aim to find a decision function f̂ that minimizes the

empirical risk which is defined as

Remp(f) ∆=
1
m

m∑

i=1

Q(f(xi), yi), (xi, yi) ∈ Dm. (2.3)

In other words, f̂ minimizes the average risk over a specific data set Dm. It has been shown that if

Q(·) satisfies certain property, then Remp(f) P−→ Rp(x,y)(f) [57]. Furthermore, if F has a finite

VC dimension (to be defined in Section 2.3), then R(f̂) P−→ inf
f∈F

(f) [23, 58]. The sample size m,

however, is almost always far from sufficient. Such cases require the use of certain regularization

strategy to guarantee good generalization performance [23, 58–61]. In fact, a fundamental problem

in machine learning is to bound the expected risk from above by the empirical risk plus a capacity

term. This class of bounds are called generalization error bounds or sample complexity bounds,

which provide theoretical justifications for regularization.

This chapter reviews the learning theory foundations on the basis of which our adaptation the-

orems and algorithms are developed. The organization of this chapter is as follows: Section 2.1

introduces different classification models, i.e., different ways of formulating the decision function

f(x). Section 2.2, without considering generalization ability yet, introduces a number of loss func-

tions Q(·) for parameter estimation. Section 2.3, the most crucial to this work, reviews two schools

of theory on generalization error bounds. Section 2.4 discusses the role of regularization in machine

16

learning. The last section gives mathematical basics that are necessary to understanding the rest of

the work.

2.1 Statistical Models for Classification

In this section, we discuss different formulations of the decision function f by using different statis-

tical models; how to estimate the parameters of these models (e.g., maximum likelihood estimation

or discriminative training) is an orthogonal issue which will be discussed in the next section. In

particular, we introduce two important approaches: generative models and discriminative models.

2.1.1 Generative models

In this case, the function space F consists of models that describe sample distributions. A decision

function (or a classifier), therefore, is represented by a generative model, and the output of the

decision function is the class label that produces the highest joint probability:

“decision” = argmax
y

ln p(x, y|f) = argmax
y

ln p(x|y, f)p(y|f). (2.4)

Since the decision function is uniquely determined by the generative model, we slightly abuse nota-

tion to let f denote a generative model or its parameters, instead of a decision function.

Well-known examples of this approach include Bayesian networks and Markov random fields

[62], while the parametric form of p(x, y|f) varies depending on specific models. A Bayesian net-

work is a directed acyclic graph with vertices representing variables and edges representing depen-

dence relations among the variables. The joint distribution of all variables factorizes over variables

given their parents, i.e. p(x1:n) =
n∏

i=1

p(xi| parents(xi)). By having fewer edges in the graph, the

network makes stronger conditional independence assumptions and the resulting model has fewer

degrees of freedom. For example, Naı̈ve Bayes and hidden Markov models (HMMs), with simple

graph structures, are among the most popularly used statistical classifiers. A Markov random field is

similar to a Bayesian network except that it is an undirected graph, thereby capable of representing

certain distributions that a Bayesian network can not represent. In this case, the joint distribution

of the variables is the product of potential functions over cliques (the maximal fully-connected sub-

graphs). Formally, p(x1:n) =
1
Z

∏

k

φk(x{k}), where φk(x{k}) is the potential function for clique

17

k, and Z is a normalization constant. Again, the graph structure has a strong relation to the model

complexity.

Generative models have long been used in speech, text, vision and bioinformatics for their ability

to handle variable-length structured data. For example, a HMM with a fixed set of parameters can

generate an observation sequence of arbitrary length. Moreover, generative models has principled

ways to treat latent variables, typically using Expectation-Maximization (EM) [63, 64]. Despite

these advantages, this approach is in general sub-optimal for classification tasks, as it intends to

solve a more difficult density estimation problem rather than to optimize directly for classification

performance. One popular method to compensate for this problem is discriminative training of

generative model parameters [65–70], as will be discussed in the next section. Alternatively, struc-

tural discriminability is a structure learning approach that learns dependency relationships between

random variables (of a generative model) in a discriminative fashion [71, 72].

2.1.2 Discriminative models

Discriminative models, on the other hand, directly model the conditional relationship of labels given

input features. One class of discriminative models represent this conditional relationship probabilis-

tically by modeling the conditional probability p(y|x, f) (here we let f denote a conditional model

or its parameters). The output of a decision function is the class label that yields the highest condi-

tional probability, i.e.

“decision” = argmax
y

ln p(y|x, f) (2.5)

Log linear models, multi-layer perceptrons (MLPs), conditional maximum entropy (MaxEnt) mod-

els and conditional random fields (CRFs) all belong to probabilistic discriminative models. In fact,

the last layers of MLPs, MaxEnts and CRFs all can be considered as generalized log linear models.

In binary classification, a generalized log linear model assumes that

log
p(y = +1|x, f)
p(y = −1|x, f)

= wT φ(x) + b.

where φ(·) represents a nonlinear transformation from the input space to a feature space Conse-

quently, the conditional distributions are in the form of

p(y|x, f) =
1
Z

exp(y(wT φ(x) + b)).

18

where Z is a normalization constant.

A second class of discriminative models directly model the decision boundary which is the

most relevant to classification. An affine decision function, for example, assumes that the decision

boundary is a hyperplane. Moreover, if applied in a transformed feature space, this approach can as

well model nonlinear decision boundaries. In such cases,

“decision” = sgn (〈w, φ(x)〉+ b) (2.6)

where w and b are affine parameters, and φ(·) is again a nonlinear transformation. Given a fixed

φ(·), f is represented (w, b). Non-probabilistic discriminative models include kernel methods such

as support vector machines (SVMs) and nearest neighbor methods, many of which, however, are

endowed with probabilistic interpretations.

Discriminative classifiers directly relate to classification and therefore often yield superior per-

formance. There has been research on combining the advantages of generative and discrimina-

tive models in an attempt to cope with structured data and latent variables while maintaining good

classification performance. In addition to methods such as discriminative training and structural

discriminability that we have mentioned, there are approaches that exploit generative models in

discriminative classifiers, e.g. the use of the Fisher kernel [73].

2.2 Loss Functions for Parameter Estimation

As mentioned before, a risk function using the 0-1 loss corresponds to classification error rate,

which is what we typically use in evaluating a classifier. Ideally, the objective of training should

be consistent with that of evaluation, thus we should choose to use the 0-1 loss in training so that

we are minimizing exactly the classification error rate. However, this procedure is computationally

intractable for many classes of models; surrogates of 0-1 loss are often used instead in order to

analytically solve the optimization problem. Here we introduce a number of loss functions, as well

as their associated training objectives. The first group of loss functions are based on probabilistic

models, while the second group are based on the notion of margin. For a thorough study of loss

functions and risk bounds, refer to [57]. Since this section is concerned with parameter estimation,

f herein denotes model parameters.

19

2.2.1 Probability-based loss

Historically, there has always been a strong association between a statistical model and its training

objective [74]. Joint likelihood loss1, defined as

Q(f(x), y) = − ln p(x, y|f), (2.7)

is naturally, and most commonly, used by generative models such as Naı̈ve Bayes and HMMs. It

is worth noting that other loss functions can be applied to estimating generative models as well,

as will be discussed shortly. The resulting training objective using the joint likelihood loss is

max
f

1
m

m∑

i=1

ln p(xi, yi|f), which is generally known as maximum likelihood estimation (MLE) [67].

MLE aims to find parameters that best describe the data, and is statistically consistent under the

assumptions that the model structure is correct, that the training data is generated from the true dis-

tribution, and that we have an infinite amount of such training data. Moreover, in generative models,

the joint likelihood function can often be decomposed into independent sub-problems which can be

optimized separately.

The major flaw of using the joint likelihood loss is that the model structure we choose can

be wrong, and the training data is rarely sufficient. Since ultimately we desire good classification

performance, we should ideally design a loss function to achieve this goal. To this end, conditional

likelihood loss, defined as

Q(f(x), y) = − ln p(y|x, f), (2.8)

directly evaluates a model’s predication performance. The resulting training objective becomes

max
f

1
m

m∑

i=1

ln p(yi|xi, f). Typically we use this objective when training discriminative probabilistic

models, such as MLPs, MaxEnt models and CRFs. In such cases, the training is also referred

to as “maximum likelihood estimation”, though the “likelihood” here actually means “conditional

likelihood” rather than “joint likelihood”. Notice that we can also apply this loss function when

training generative models, where we maximize
1
m

m∑

i=1

(
p(xi, yi|f)/

∑
y

p(xi, y|f)
)

, leading to a

discriminative training technique termed maximum mutual information estimation (MMIE) [65, 67,

1We use the term “joint likelihood” in order to distinguish from the “conditional likelihood” which will be introduced
shortly. Moreover, the loss is actually the negative logarithm of the joint likelihood, where we omit the adjectives for
simplicity

20

75]. Usually there is no globally optimal solution to this objective; stochastic gradient descent [76],

or, in some cases, the extended Baulm-Welch algorithm [77] can be utilized to find a local optimum.

Although MMIE demonstrates significant performance advantages over the traditional MLE

approach [66], it aims at fitting class posterior distributions rather than directly minimizing error

rate. The minimum classification error (MCE) method uses a loss function that are more consistent

with error rate minimization [66, 68], e.g.,

Q(f(x), y) = σ

(
− gy(x, f) + ln

[
1
|Y|

∑

y′ 6=y

exp{gy(x, f)η}
]1/η)

(2.9)

where gy(x, f) = ln p(y|x, f), and σ(·) is a sigmoid function that yields a smooth loss function.

The intuition behind is that the prediction will be correct as long as gy(x, f), in which y is the true

class label, ranks the highest among all gy′(x), y′ ∈ Y; and we can achieve this by maximizing the

difference, from one side, between gy(x, f) and its opponents.

2.2.2 Margin-based loss

Margin-based loss functions follow a general expression Q(f(x), y) = Q̃(yf(x)), where yf(x) is

known as the margin. It is easy to see that for binary classification, Q(f(x), y) = I(yf(x) > 0)

is equivalent to the 0-1 loss, the minimization of which is NP-hard for many non-trivial classes of

functions [56]. We can, however, replace the indicator function with a convex function Q̃(·), leading

to convex surrogates of the 0-1 loss. The main advantage of this is to simultaneously deal with

computationally feasible algorithms and to avoid overfitting [57]. Indeed, many machine learning

algorithms adopt such an approach. For example, hinge loss used in SVM [23, 78], logistic loss

used in logistic regression [8] and exponential loss used in boosting [79, 80] are all in the form of

Q̃(yf(x)), where their respective Q̃(·) are convex surrogates of the indicator function as shown in

Figure 2.1. Next we introduce several such examples.

First, the hinge loss is defined as

Q(f(x), y) = |1− yf(x), 0|+ (2.10)

It is easy to see that the hinge loss is convex but not differentiable, and constrained optimization is

hence required to solve the optimization problem. This loss is historically used in training SVMs,

21

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

2

4

6

8

0−1
logistic
hinge
exponential

Figure 2.1: Convex surrogates of the 0-1 loss

and is recently utilized in discriminative training of structured generative models such as Markov

networks [69] and Gaussian mixture models [70].

Secondly, the logistic loss is defined as

Q(f(x), y) = ln
1

1 + exp(−yf(x))
(2.11)

This coincides with the form of the conditional likelihood loss when the conditional probability

p(y|x, f) uses a sigmoid function. Notice that in Figure 2.1, we actually use a scaled version of the

logistic function so that the function value equals one at the point zero.

The exponential loss commonly used in boosting [79, 80] is given by

Q(f(x), y) = exp{−yf(x)} (2.12)

Note that it is important to inspect whether Remp(f) converges to Rp(x,y)(f) with sufficiently

large m under these surrogate loss functions; and to find quantitative relationships between the

estimation error Rp(x,y)(f) − inf
f∈F

Rp(x,y)(f) associated with the surrogate loss functions and that

associated with the 0-1 loss. These issues have been comprehensively investigated in (to name a

few) [57, 81, 82].

22

2.3 Generalization Error Bounds

Recall that in the standard setting of inductive learning, we desire to learn f∗ ∈ argmin
f∈F

Rp(x,y)(f).

As p(x, y) is generally unknown, we can instead minimize the empirical risk f̂ ∈ argmin
f∈F

Remp(f)

on a training set Dm. A fundamental question in machine learning is to ask if empirical risk mini-

mization (ERM) is consistent, i.e., whether

Rp(x,y)(f̂) P−→ inf
f∈F

Rp(x,y)(f) (2.13)

This gives rise to the notion of strict consistency of empirical risk minimization. Here we refrain

from giving its formal definition as presented in [23], as this would deviate our discussion away from

the main theme. Instead, we present a theorem which provides a sufficient and necessary condition

for strict consistency of ERM, and we present this in our own notation.

Theorem 2.3.1 (Key theorem of learning theory [23]) Let there exist the constant a and A such

that for all functions f ∈ F , and for a given distribution p(x, y), the inequality a ≤ Rp(x,y)(f) ≤ A

holds true. Then the strict consistency of the ERM principle is equivalent to the uniform one-sided

convergence of Remp(f) to Rp(x,y)(f), i.e., for any ε > 0 and for any δ > 0 there exists a natural

M such that for all m > M ,

Pr
{

Rp(x,y)(f)−Remp(f) < ε

}
> 1− δ (2.14)

holds true for all f ∈ F .

This theorem equates strict consistency with uniform one-sided convergence, and provides a simpler

(and sufficient) way to gauge the learning performance which is to use the (ε, δ)-bound as shown in

Equation (2.14). The (ε, δ)-bound is also referred to as a generalization error bound.

Here we particularly assume the 0-1 loss function, i.e.,

Rp(x,y)(f) = Ep(x,y)[I(f(x) 6= y)]

Remp(f) =
m∑

i=1

I(f(xi) 6= yi)
(2.15)

Since Rp(x,y) is finite, Theorem 2.3.1 is satisfied. Moreover, we desire a small Remp(f) as well

as small ε and δ values, so that we can guarantee a small upper bound on Rp(x,y)(f). It has been

23

proven that the following inequality holds true for f ∈ F ,

Pr
{

Rp(x,y)(f) ≤ Remp(f) + Φ(F , f,Dm,m, δ)
}

> 1− δ (2.16)

where Φ(F , f,Dm,m, δ) is a capacity term indicating the generalization performance of f (the

lower the capacity the better the generalization performance). In general, larger m and δ each lead

to smaller Φ(·), while larger F (in terms of some capacity measure which will be defined shortly)

leads to larger Φ(·). There is a tradeoff inherited in the generalization error bound (2.16): as the

function space F expands, the empirical error rate Remp(f) decreases but the capacity term Φ(·)
may at the same time increase, meaning that the decision function f fits the training data better

but this is more likely an overfit. An alternative and sometimes equivalent way to measure the

generalization performance of a learning algorithm is to inspect the sample complexity of achieving

an (ε, δ)-bound, which is the minimum number of samples needed such that the bound (2.16) holds

true; and the upper bound on this number is often referred to as a sample complexity bound.

There has been a surge of interest in discovering different forms of the capacity term. In the

following two subsections we introduce VC (Vapnik-Cervonenkis) bounds [23] and PAC-Bayesian

bounds [83] respectively.

2.3.1 VC bounds

We begin by introducing several important measures describing the capacity of a function space F .

Here F can be either countable or uncountable. Here we assume that Y = ±1, i.e. the output of

f(·) is binary.

Definition N (F ,Dm) is defined to be the cardinality of the maximum set of functions f ∈ F which

yield different outputs [f(x1), f(x2), . . . , f(xm)]T (each output is a vector of m binary elements)

when restricted to a sample set Dm.

This quantity measures the capacity of a function space F with respect to a particular sample set.

More accurately, it measures the number of ways that a function class can separate a specific sam-

ple set into two classes. It is easy to see that N (F ,Dm) is a non-decreasing function of m, and

that N (F ,Dm) ≤ 2m since m samples can yield at most 2m different outputs. Furthermore, this

quantity depends on the choice of Dm. For example, consider a set of m = 3 samples in the input

24

space X = R2, and assume F consists of affine functions. If x1, x2 and x3 are not collinear (i.e.

they do not lie on a single line), then N (F ,D3) is 23 = 8. If, however, x1, x2 and x3 are collinear,

N (F ,D3) would be at most 6.

The concepts of the VC entropy and the annealed entropy, defined on the basis of N (F ,Dm),

are measures of the “expected capacity” of a function space, which no longer depend on a specific

sample set Dm.

Definition VC entropy HF (m) ∆= Ep(x,y)[lnN (F ,Dm)]

Definition Annealed entropy Hann
F (m) ∆= lnEp(x,y)[N (F ,Dm)]

These two concepts, however, are distribution-dependent, which are hard to evaluate since the sam-

ple distribution is usually unknown. The growth function is a capacity concept independent of the

sample distribution by taking a supremum over all samples.

Definition Growth function GF (m) ∆= ln sup
Dm∈Xm×Ym

N (F ,Dm).

Notice that sup
Dm∈Xm×Ym

N (F ,Dm) is often called the shattering coefficient, and the growth func-

tion is simply its logarithm. It is easy to prove that

HF (m) ≤ Hann
F (m) ≤ GF (m) (2.17)

where the first inequality immediately follows Jensen’s inequality [84], while the second inequality

is obvious. These concepts provide a quantitative measure (though hard to compute) for the func-

tion space F . In fact, Vapnik derived different capacity terms Φ(·) in Equation (2.16) using these

measures. Generally, given fixed m and δ, Φ(·) is a monotonically increasing function of HF (m),

Hann
F (m), or GF (m).

Next we briefly introduce the “three milestones”of learning theory [23].

1. A sufficient condition for consistency of the ERM principle is lim
m→∞

HF (m)
m

= 0

2. A sufficient condition for a fast rate of convergence is lim
m→∞

Hann
F (m)
m

= 0

3. The necessary and sufficient condition for consistency of the ERM principle for any distribu-

tion is lim
m→∞

GF (m)
m

= 0.

25

Finally, we present another capacity concept h, or VC dimension, upon which an upper bound

of the growth function is further constructed.

Definition VC dimension h
∆= max{m : GF (m) = m ln 2}, or equivalently, the maximum number

of points that can be shattered by F .

It is proved in [23] that for m > h, the inequality GF (m) ≤ h(ln
m

h
+ 1) holds true, leading to the

well-known VC bound theorem:

Theorem 2.3.2 For any function space (countable or uncountable) F , and for any f ∈ F , the

following bound holds true,

Pr
{

Rp(x,y)(f) ≤ Remp(f) +

√
h(ln(2m/h) + 1) + ln(4/δ)

m

}
> 1− δ (2.18)

There are nice properties about this bound: (1) distribution-independent — it holds true regardless

of the distribution p(x, y); (2) algorithm-independent — it holds true regardless of a specific choice

of f . (3) data-independent — it holds true regardless of sample valuesDm. The only relevant factor

is the VC dimension of F , a measure that reflects the capacity of the function space. The lower the

VC dimension, the faster the rate of convergence, and the convergence rate is uniformly bounded

for all decision functions in the function space. In other words, the capacity term in Equation (2.16)

is essentially Φ(·) = Φ(h(F),m, δ), which does not depend on specific f or Dm. These indepen-

dence properties, however, come at the cost that such a bound is generally loose compared with an

algorithm-dependent, or a data-dependent bound which we will discuss next.

2.3.2 PAC-Bayesian bounds

The PAC-Bayesian framework [60,83,85] combines the advantages of Bayesian methods with PAC

learning [86]. This approach inherits the main characteristic of a Bayesian approach by incorporat-

ing domain knowledge in the form of a Bayesian prior π(f), f ∈ F . Here we use what we call a

“standard prior” π(f) to denote the prior in the conventional sense. The standard prior is chosen

before seeing any training or test data, which should be distinguished from the “fidelity prior” which

will be introduced in Chapter 4. Furthermore, the PAC-Bayesian approach provides a generaliza-

tion error bound without assuming the truth of the prior. The simplest PAC-Bayesian bound is the

Occam’s Razor bound, which is only valid for countable function spaces, i.e., |F| < ∞.

26

Theorem 2.3.3 (Occam’s Razor bound [83, 85]) For any probability distribution p(x, y) where

the samples are drawn in an i.i.d. fashion, for any prior distribution π(f) defined on a countable

function space F , and for any f for which π(f) > 0, the following bound holds true

Pr
{

Rp(x,y)(f) ≤ Remp(f) +

√
− lnπ(f)− ln δ

2m

}
> 1− δ. (2.19)

A proof of this theorem is provided in Appendix A.1, which utilizes the union bound theorem,

thereby limiting the use of the Occam’s Razor bound to countable function spaces. The general

capacity term in Equation (2.16) is Φ(·) = Φ(F , f,m, δ), in contrast to the VC bound where Φ(·) =

Φ(F ,m, δ). Here Φ(·) is no longer a capacity measure of the function space but a minimum-

description-length-type measure of individual decision functions. Consequently, the convergence

rate can be different at different points in the function space.

Similar to the VC bound, Theorem 2.3.3 presents a tradeoff between selecting a model that fits

the data well and selecting a model with a high prior probability. This offers some insight into

how to choose a prior distribution π(f) — we should always assign higher prior probabilities to the

functions which are a-priori viewed as likely to fit the data well.

One limitation of the Occam’s Razor bound is that it is only valid for countable function spaces.

McAllester’s PAC-Bayes bound for Gibbs classifiers [60, 83, 85] works for both countable and un-

countable functions. A Gibbs classifier is a stochastic classifier given by f ∼ q(f), meaning that

f is drawn randomly from q(f), where q(f) is a posterior distribution of f given the training data

Dm. In this setting, we define the stochastic expected risk as

Eq(f)[Rp(x,y)(f)] = Eq(f)[Ep(x,y)[Q(f(x), y)]]

and the stochastic empirical risk as

Eq(f)[Remp(f)] = Eq(f)[
1
m

m∑

i=1

Q(f(x, y)],

and McAllester’s PAC-Bayes theorem bounds the difference, from one side, between these two

quantities.

27

Theorem 2.3.4 (PAC-Bayes bound for Gibbs classifiers [83]) For any prior distribution π(f) and

any posterior distribution q(f), the following holds true,

Pr
{

Eq(f)[Rp(x,y)(f)] ≤ Eq(f)[Remp(f)] +

√
D(q(f)||π(f))− ln δ + lnm + 2

2m− 1

}
> 1− δ.

(2.20)

Proofs of this theorem can be obtained in [83, 85, 87]. The general capacity term in Equation (2.16)

becomes Φ(·) = Φ(F , f,Dm,m, δ). In other words, this is a data-dependent bound, since q(f) is

in general estimated from data. However, the theorem holds true for any posterior distribution, i.e.,

it does not constrain how to estimate q(f) from data. In the case of a countable function space, if we

commit our choice of decision function to one point f ′ in the function space, i.e. q(f) = I(f = f ′),

we have

Pr
{

Rp(x,y)(f
′) ≤ Remp(f ′) +

√
− ln π(f ′)− ln δ + ln m + 2

2m− 1

}
> 1− δ (2.21)

which is similar to Theorem 2.3.3. For an uncountable function space, however, the KL-divergence

D(q(f)||π(f)) is not well defined when q(f) = δ(f = f ′).

Additionally, we are often interested in a Bayesian predictive classifier, which is a deterministic

classifier in the form of fBayes(x) ∆= Eq(f)[f(x)]. Note that under this definition the actual decision

function is sgn fBayes(x). Seeger [87] has stated that for f : X → {±1}, the expected error of a

Bayesian predictive classifier is bounded by twice the stochastic expected error of a Gibbs classifier

under the same posterior distribution. Mathematically,

Rp(x,y)(fBayes) ≤ 2Eq(f)[Rp(x,y)(f)], (2.22)

we provide our proof of this inequality in Appendix A.2. Therefore, the expected error of a Bayesian

predictive classifier is less than twice the bound in Theorem 2.3.5. Furthermore, Schapire [80]

provided a margin bound on Bayesian predictive classifiers directly, which was further improved by

Langford [88–90] in the PAC-Bayesian setting. The bound in [88] is given by

Theorem 2.3.5 (PAC-Bayes margin bound for Bayesian predictive classifiers [88]) For any

prior distribution π(f) and any posterior distribution q(f), and for any margin threshold θ > 0,

28

the following holds with probability 1− δ:

Ep(x,y)[I(yfBayes(x) < 0)] ≤ 1
m

m∑

i=1

I(yfBayes(x) < θ)]+

√
θ−2D(q(f)||π(f)) lnm + ln m− ln δ

m

(2.23)

where fBayes(x) = Eq(f)[f(x)]

2.4 Regularization

The previous section shows an important fact in statistical learning: minimizing only the empirical

risk can lead to bad generalization performance when the sample size is small. The error bound

theorems, however, have offered us theoretically-justified guidance to avoid this problem. The two

types of generalization error bounds introduced in the previous section lead to two different, yet

unifiable, approaches to regularization.

2.4.1 Structured risk minimization

According to the VC bound theorem, if two models describe the training data equally well, the

model with the smallest VC dimension has better generalization performance. We thus can use the

VC dimension as a regularizer in minimizing the empirical risk. Let F1 ⊂ F2 ⊂ ... ⊂ F be a

sequence of increasingly large function spaces. On one hand, we have

h(F1) ≤ h(F2) ≤ ... ≤ h(F)

since if Fj can shatter m points, then Fj+1 must shatter at least m points. On the other hand, it is

easy to see that

min
f∈F1

Remp(f) ≥ min
f∈F2

Remp(f) ≥ ... ≥ min
f∈F

Remp(f)

In practice, we would like to minimize a “regularized risk” which take into account both the em-

pirical risk and the capacity of the model. Mathematically, we want to find the index of a function

space such that

j∗ = argmin
j

[(
(min
f∈Fj

Remp(f)
)

+ λh(Fj)
]
,

where λ is a regularization coefficient. We further use h(f) to denote the VC dimension of the

minimum function space that contains f , i.e., h(f) = h(Fj′) where j′ = min{j : f ∈ Fj}. Then

29

we have (
min
f∈Fj

Remp(f)
)

+ λ · h(Fj) ≥ min
f∈Fj

(
Remp(f) + λ · h(f)

)
(2.24)

Taking a min operation w.r.t. j on both sides, the inequality turns into an equality which follows,

min
j

((
min
f∈Fj

Remp(f)
)

+ λ · h(Fj)
)

= min
j

(
min
f∈Fj

(
Remp(f) + λ · h(f)

))

= min
f∈F

(
Remp(f) + λ · h(f)

) (2.25)

One of the most successful examples that implement the idea of structured risk minimization is

the use of large margin hyperplanes [23, 78]. It is relatively easy to derive an upper bound of the

VC dimension of hyperplanes, and this upper bound can be readily used as a regularizer in ERM.

To see this, we first introduce a theorem regarding the VC dimension of hyperplanes in canonical

form with a proof (by Schölkopf [61]) provided in Appendix A.3.

Theorem 2.4.1 [23, 61] Consider hyperplanes wTx = 0 in canonical form w.r.t. {xi}m
i=1, i.e.,

min
i
|wTxi| = 1

For any w, the set of decision functions f(x) = sgn wTx satisfying the constraint ‖w‖ ≤ Λ has a

VC dimension satisfying

h ≤ R2Λ2

where R = max
i
‖xi‖.

Taking into account both the empirical risk and the VC dimension, the optimal hyperplane can

be found by solving the following constrained quadratic optimization problem [78],

min
w,b,ξ

λ

2
‖w‖2 +

1
m

m∑

i=1

ξi

subject to ξi ≥ 1− yi(〈w,xi〉+ b) and ξi ≥ 0.

(2.26)

Here ξi are slack variables introduced to represent the hinge loss, i.e., ξi = |1− yi(〈w,xi〉+ b)|+.

This problem can be solved using the Lagrangian formulation, and is eventually reduced to a dual

optimization problem where w and b are eliminated:

max
α

m∑

i=1

αi − 1
2

m∑

i,j=1

αiαjyiyj〈xi,xj〉

subject to 0 ≤ αi ≤ 1
λm

and
m∑

i=1

αiyi = 0
(2.27)

30

The solution is given by w =
∑m

i=1 αiyixi. The resulting hyperplane is determined by those

training samples with nonzero αi values, known as support vectors (SVs).

2.4.2 Bayesian model selection

An alternative approach to regularization is to take the Bayesian view of the world. We view the

model f as a random variable and we specify a prior distribution π(f) before seeing the training

data. The posterior probability of a decision function is given by

p(f |Dm) =
p(Dm|f)π(f)

p(Dm)
, (2.28)

In the case of a single, deterministic classifier, we perform maximum a posteriori (MAP) esti-

mation which is essentially a regularized optimization criterion:

f∗ = argmin
f∈F

(
Remp(f)− λ ln π(f)

)
(2.29)

Here we substituted ln p(Dm|f) with a general risk Remp(f) which can use any loss function de-

pending on the classifier of interest. Furthermore, we added a regularization coefficient to control

how much we trust our prior knowledge. Note that this criterion resembles structured risk minimiza-

tion except that − ln π(f) replaces h(f) as the regularizer. When the function space is countable,

this model selection algorithm is justified by the Occam’s Razor bound (Theorem 2.3.3) — in order

to guarantee a low expected risk, it is desired to select the model with both a low empirical risk and

a high prior probability. Although there is not yet known that there exists an analogy of the Occam’s

Razor bound for single, deterministic classifiers in uncountable function spaces, we will show in

Chapter 5 that it empirically works well to use Equation (2.29) in learning such classifiers.

Similarly, for Gibbs classifiers, McAllester’s PAC-Bayesian bound in Theorem 2.3.5 suggests

the following training objective:

q∗(f) = argmin
q

(
Eq(f)[Remp(f)] + λD(q(f)||π(f))

)
(2.30)

A similar training objective can be derived for Bayesian predictive classifiers. For example, maxi-

mum entropy discrimination [91] seeks a posterior distribution q(f) that minimizes D(q(f)||π(f))

under the constraints that Eq(f)[Ep(γi)[(yif(xi) − γi)]] ≥ 0, which is theoretically justified by the

corresponding error bounds [88, 90].

31

In both cases, the prior distribution π(f) plays a crucial role in the generalization ability of a

decision function. Choosing an appropriate prior distribution, just as choosing a right sub-function-

space in structured risk minimization, can yield an estimation that attains a low empirical error rate

as well as a low capacity term. In fact, structured risk minimization can be viewed as a special case

of Bayesian model selection, where the functions f ∈ Fj are assigned higher prior probabilities

than functions f ∈ Fj+1 \ Fj , and where all functions f ∈ Fj+1 \ Fj are assigned equal prior

probabilities. Moreover, the choice of a prior distribution has been traditionally a compromise

between a realistic assessment of beliefs and choosing a parametric form that simplifies analytical

calculations. Certain forms of the prior are preferred due to their mathematical tractability. For

example, in the case of generative models, a conjugate prior π(f) w.r.t. the joint sample distribution

p(x, y|f) is often used, so that the posterior p(f |x, y) belongs to the same functional family as

the prior. In Langford’s PAC-Bayesian margin bound [92], a Gaussian prior is chosen to simplify

mathematical derivations.

2.5 Information Theoretical Background

This section gives information theoretical basics that are necessary to understanding the rest of the

work. Information theory was originally presented by Shannon in his paper “A Mathematical Theory

of Communication”, though the discussion of this section is mainly based on Cover’s work [84].

Regarding the notation used in this section, we again use p(x) as a short-cut for pX(X = x), and

we in general use scalar representations (e.g. x), but bear in mind that all concepts and theorems are

valid for vector variables.

The key concept in information theory is entropy, which measures the randomness of an event.

Definition The entropy of a random variable X ∈ X is defined as H(X) = −Ep(x)[log p(x)].

If |X | < ∞, X denotes the alphabet of X; otherwise X denotes the support set of X and p(x)

denotes the probability density function. Note that the term “differential entropy” and the symbol

h(X) are often used to represent the entropy in cases |X | = ∞. Here we ignore this distinction and

use H(X) for both cases.

The conditional entropy measures the randomness of a random variable given another random

variable.

32

Definition The conditional entropy is defined as H(X|Y) = −Ep(x,y)[log p(x|y)].

It is easy to derive the chain rule H(X,Y) = H(X|Y) + H(Y).

Definition The relative entropy, or the Kullback-Leibler (KL) divergence, between two distribu-

tions p(x) and q(x) of a random variable X , is defined as D(p(x)||q(x)) = Ep(x)[log
p(x)
q(x)

]

In the above definition, we use the convention that 0 log 0
q = 0 and p log p

0 = ∞. The relative

entropy satisfies many important mathematical properties. For example, D(p(x)||q(x)) ≥ 0, where

the equality holds true iff p(x) = q(x) for all x ∈ X . Also, D(p(x)||q(x)) is a convex function of

p(x), as well as of q(x). Similarly, we define the conditional relative entropy as follows.

Definition The conditional relative entropy between two conditional distributions p(x|y) and q(x|y)

is defined as D(p(x|y)||q(x|y)) = Ep(x,y)[log
p(x|y)
q(x|y)

]

The chain rule is also applicable to relative entropy: D(p(x, y)||q(x, y)) = D(p(x|y)||q(x|y)) +

D(p(y)||q(y)).

Next, we study the information theoretical quantities for Gaussian distributions. It is well known

that the Gaussian distribution maximizes entropy among all distributions with the first moment

equality constraints, and hence is a natural choice of the underlying distribution for many data gen-

erating processes. The entropy of a multivariate Gaussian distributionN (x; µ,Σ) is 1
2 log(2πe)d|Σ|,

where d denotes the dimensionality. The relative entropy of two Gaussian distributions follows

KL-divergence of normal distributions [93]: If p(x|θ1) = N (x;µ1,Σ1) and p(x|θ2) =

N (x;µ2,Σ2), where x ∈ Rd, then

D(N (x; µ1, Σ1)||N (x; µ2, Σ2)) =
1
2

ln
(|Σ2|
|Σ1|

)
+

1
2

tr
(
Σ1Σ−1

2 + (µ2 − µ1)T Σ−1
2 (µ2 − µ1)

)− d

2
(2.31)

In particular, if Σ1 = Σ2, the relatively entropy is a Mahalanobis distance between two Gaussian

means.

D(N (x; µ1, Σ1)||N (x; µ2, Σ2)) =
1
2
(µ2 − µ1)T Σ−1

2 (µ2 − µ1) (2.32)

If we treat the relative entropy as a function of (µ2, Σ2), then its functional form equals that of

the negative logarithm of a normal-Wishart density on (µ2, Σ2) plus a constant. To see this we write

33

the general form of a normal-Wishart density2 as

W−1(µ,Σ|ν, τ, a,B) ∝ |Σ|−(a−d)/2 exp{−τ

2
(µ− ν)T Σ−1(µ− ν)} exp{−1

2
tr(BΣ−1)} (2.33)

where (τ, ν, a, B) are hyperparameters. It is easy to see that we have

D(N (x;µ1, Σ1)||N (x;µ2,Σ2)) = W−1(µ2, Σ2|ν, τ, a, B) + C

where τ = 1, ν = µ1, a = d + 1, B = Σ1 and C = −1
2 ln |Σ1| − d

2 . Moreover, if Σ2 = Σ1, the

relative entropy is proportional to the negative logarithm of a Gaussian distribution.

In fact, the relative entropy can be conveniently calculated if the probability density p(x|θ),
given parameters θ, belongs to the exponential family of distributions, i.e., p(x|θ) = exp{a(x) +

b(θ) + c(x)d(θ)}. In particular, if c(x) = x, the distribution is said to be in canonical form.

Many distributions, such as Gaussian, Poisson, binomial, and Gamma distributions, belong to the

exponential family in canonical form.

KL-divergence of exponential family distributions: If p(x|θ1) = exp{a(x)+b(θ1)+c(x)d(θ1)},

and p(x|θ2) = exp{a(x) + b(θ2) + c(x)d(θ2)}, i.e. two exponential family distributions with the

same parametric form but with different parameters, then

D(N (p(x|θ1)||p(x|θ2)) =
[
b(θ1)− b(θ2)− b′(θ1)

d′(θ2)
(d(θ1)− d(θ2))

]
(2.34)

Proof

D(N (p(x|θ1)||p(x|θ2)) = Ep(x)[log
exp{a(x) + b(θ1) + c(x)d(θ1)}
exp{a(x) + b(θ2) + c(x)d(θ2)}] (2.35)

= Ep(x)[b(θ1)− b(θ2) + c(x)(d(θ1)− d(θ2)] (2.36)

= b(θ1)− b(θ2)− b′(θ1)
d′(θ2)

(d(θ1)− d(θ2)) (2.37)

The last equality follows since for exponential family distributions E[c(x)] = − b′(θ)
d′(θ)

.

Another useful result is the KL-divergence of normal-Wishart distributions.

KL-divergence of normal-Wishart distributions: If p(µ,Σ|λ1) = W−1(µ,Σ|µ1, 1, a, Σ1)

and p(µ,Σ|λ2) = W−1(µ,Σ|µ2, 1, a,Σ2)

D(N (p(µ,Σ|λ1)||p(µ,Σ|λ2)) =
a

2
tr(Σ1Σ−1

2) +
a

2
(µ2 − µ1)T Σ−1

1 µ2 − µ1) (2.38)

2Since Σ is a covariance matrix rather than a precision matrix, we actually use an inverse-Wishart density

34

In particular, if Σ1 = Σ2, we have

D(N (p(µ,Σ|λ1)||p(µ,Σ|λ2)) =
1
2
(µ2 − µ1)T Σ−1

2 (µ2 − µ1) (2.39)

Finally, we introduce several important inequalities that will be referred to in later chapters.

Theorem 2.5.1 (Jensen’s inequality [84]) If f is a convex function and x is a random variable,

then

Ep(x)[f(x)] ≥ f(Ep(x)[x])

Using the fact that a log a is strictly convex, and applying Jensen’s inequality, we arrive at the

following theorem.

Theorem 2.5.2 (Log sum inequality [84]) For non-negative numbers, ai and bi, i = 1 . . . n, we

have
n∑

i=1

ai log
ai

bi
≥

(
n∑

i=1

ai

)
log

∑n
i=1 ai∑n
i=1 bi

with equality iff
ai

bi
= const.

Theorem 2.5.3 (Hoeffding’s inequality, Hoeffding 1963) Suppose X1 . . . Xn are independent

random variables with finite first and second moments. Furthermore assume that the Xi are bounded;

i.e. assume for 1 ≤ i ≤ n that Pr
(

Xi ∈ [ai, bi]
)

= 1. Then for the sum of these variables

S = X1 + · · ·+ Xn we have the inequality

Pr(S − E[S] ≥ nt) ≤ exp
(
− 2n2 t2∑n

i=1(bi − ai)2

)

holds true for positive values of t .

35

Chapter 3

REVIEW OF PRACTICAL WORK ON ADAPTATION

There has already been a vast amount of practical work on adaptation in areas of automatic

speech recognition (ASR), natural language processing (NLP) and pattern recognition in general.

This chapter provides a brief literature review on techniques developed in these areas.

Practical methods of adaptation generally fall into two categories. The first category of methods

apply adaptation in the feature space to explicitly account for sources of variation. In speech recog-

nition, for example, to discover the sources of speaker variation, it is necessary to understand how

speech is produced. In fact, speech is produced as air is expelled from the lungs, pushed through

the vibrating vocal folds, and then ”filtered” by the vocal tract (VT). The length of the VT has a

substantial effect on the spectrum of the observed acoustic signal, and is a major cause of speaker

variability. Vocal tract length normalization is a standard method in ASR that explicitly compensates

for the difference in VT length [94, 95]. This is often achieved by applying wrapping techniques

to the frequency axis. An analogous example in computer vision is illumination variation, which

has historically been a challenging problem in object recognition [96]. The difference in illumi-

nation between the training set and the test images can be accounted for by extracting somewhat

illumination-invariant representations, such as the quotient image [97] and the spherical harmonic

subspace [98].

Although feature-space adaptation is in general very powerful as it directly addresses the essence

of the problem, the design of which strongly relies on domain knowledge. In contrast, a second

category of methods apply adaptation in the model space without assuming any knowledge of the

cause of mismatch. Such methods are conceptually simple to develop, and are potentially applicable

to different types of adaptation problems. Essentially, model-space adaptation retrains or transform

unadapted model parameters to match the characteristics of the adaptation data, while applying

certain regularization to avoid overfitting. This category includes a large number of adaptation

techniques in areas of ASR, NLP and pattern recognition, as well as the work that will be developed

36

in this dissertation. The following text reviews some major model-space adaptation methods, and

overviews our proposed approach.

3.1 In Automatic Speech Recognition

The idea of adaptation has been largely investigated in ASR, especially for systems using continuous

HMMs where the observation distributions are represented by Gaussian mixture models (GMMs).

A major difficulty in speech recognition is speaker variability due to different vocal tract lengths,

accents and idiosyncrasies (as well as mismatch in channel and noise conditions). Speaker adapta-

tion, which enables the unadapted model to capture the characteristics of the target speaker using a

small amount of adaptation data, has become one of the crucial techniques that any state-of-the-art

ASR system cannot do without.

Maximum likelihood linear regression (MLLR) is one popular framework for adapting Gaussian

mixture HMMs [99,100], where clusters of model parameters are transformed through shared affine

functions. These transformations shift the means and alter the covariance matrices of the Gaussians

so that each HMM state is more likely to generate the adaptation data. During recognition, a speaker-

dependent transformation is applied to the unadapted model to generate a speaker-dependent model.

Formally, we use xi to denote the input feature vector of the ith adaptation sample, and use yi and

ki to denote its hidden Gaussian mixture ID (or equivalently state ID) and hidden component ID

respectively. The Gaussian parameters are represented by f = (µy,k,Σy,k), where µy,k denotes the

mean of the kth component of the yth Gaussian mixture; and similarly for Σy,k. Furthermore, we

use a superscript tr to indicate unadapted model parameters, and we temporarily assume that all

Gaussian components share the same transformation. Mathematically, the adapted mean is given by

µ̂y,k = Aµtr
y,k + b = Wξtr

y,k (3.1)

where ξtr
y,k = [µtr

k,1 µtr
k,2 . . . µtr

k,d 1]T is the extended unadapted mean; and the adapted covariance

matrix is given by

Σ̂y,k = HΣtr
y,kH

T (3.2)

The goal is to find W and H that maximize the incomplete likelihood of the adaptation data, i.e.,

max
W,H

ln p(x1:m|f tr,W,H) (3.3)

37

The optimal parameters are found using an EM approach [63] which iteratively maximizes a lower

bound of the incomplete likelihood in Equation (3.3)

max
W,H

∑
y

∑

k

m∑

i=1

Ly,k(i) lnN (xi; µ̂y,k, Σ̂y,k) (3.4)

where Ly,k(i)
∆= p(yi = y, ki = k|x1:m, fg). It is worth noting that covariance adaptation is

generally less effective than mean adaptation and is less commonly used [101]. Moreover, MLLR

adaptation can be applied in a flexible manner. For example, when the adaptation data is extremely

limited, we can apply a global transformation (W,H) to all Gaussian means and covariance matri-

ces; and when the adaptation is abundant, we use different transformations for different clusters of

GMMs. A standard approach is to use a regression class tree [102], which clusters model parame-

ters hierarchically and controls the number of transformations based on the amount of adaptation

data available.

A second important model-space adaptation technique is Bayesian maximum a posteriori (MAP)

[103–105], which involves the use of prior knowledge about model parameters. According to the

Bayes rule, maximizing the posterior probability p(f |x1:m) is equivalent to

max
f

(
ln p(x1:m|f) + ln p(f)

)
(3.5)

where p(x1:m|f) is the incomplete likelihood and p(f) is a prior distribution of f . There are three

key problems regarding MAP estimation [104]: (1) how to define the functional form of the prior;

(2) how to estimate the hyper-parameters of the prior; and (3) how to estimate model parameters

given (1) and (2). The first problem is typically solved by using the conjugate prior of the complete

likelihood so that the posterior belongs to the same functional family as the prior. In our case the

complete likelihood is a Gaussian, and its conjugate prior is given by Equation (2.33) which is

repeated below for convenience.

W−1(µy,k, Σy,k|νy,k, τy,k, ay,k, By,k)

∝ |Σ|−(ay,k−d)/2 exp{− τy,k

2 (µy,k − νy,k)T Σ−1(µ− ν)} exp{−1
2 tr(By,kΣ−1)}

(3.6)

Given such a prior, it is not difficult to estimate the model parameters using the EM algorithm, as

38

described in [104]. The updated mean and covariance matrix at each EM iteration are given by

µ̂y,k =
τy,kνy,k +

∑m
i=1 Ly,k(i)xi

τy,k +
∑m

i=1 Ly,k(i)
(3.7)

Σ̂y,k =
By,k +

∑m
i=1 Ly,k(i)(xi − µ̂y,k)(xi − µ̂y,k)T + τy,k(νy,k − µ̂y,k)(νy,k − µ̂y,k)T

ay,k − d +
∑m

i=1 Ly,k(i)
(3.8)

It can be seen that the updated parameters are determined by two components, namely the hyper-

parameters and the adaptation data, and that τy,k serves as a weight associated with the kth com-

ponent of the yth Gaussian mixture. Now the remaining question is how to estimate the hyper-

parameters νy,k, τy,k, ay,k and By,k. There are different way of doing this, depending on different

types of applications [103]. Since we are interested in speaker adaptation, these hyper-parameters

can be derived from the unadapted model parameters. Specifically, [103] proposed a set of estimates,

which are re-written in our notation as

ay,k =
τy,k + 1

2
(3.9)

νy,k = µtr
y,k (3.10)

By,k =
τy,k

2
Σtr

y,k (3.11)

The hyper-parameter τy,k are empirically estimated from data [103]. In practice, to increase robust-

ness, the values of τy,k are often constrained to be identical across all y and k (i.e. all Gaussians in

the system) [103]. Notice that a fundamental property of MAP adaptation is its asymptotical conver-

gence to maximum likelihood estimation when the amount of adaptation data increases. However,

without any structural assumption, MAP adaptation only updates parameters of those Gaussians that

have observations and thus converges slowly in a system with many Gaussians.

There are various techniques to combine the structural information captured by linear regression

with the prior knowledge utilized by Bayesics. Maximum a posteriori linear regression (MAPLR)

and its variations [106–108] improve over MLLR by assuming a prior distribution on affine trans-

formation parameters. Mathematically,

max
W,H

(
ln p(x1:m|f tr,W,H) + ln p(W,H)

)
(3.12)

Again, conjugate priors p(W) and p(H) (assumed independent) are typically used, which are in this

case Wishart distributions.

39

Additionally, instead of using point estimates of the transformation parameters in prediction,

researchers have been applying full Bayesian inference in some situations to enhance the robustness

of adaptation [109–111]. Specifically, let T represent some transformation applied to the unadapted

model f tr, e.g., T = (W,H) in the case of MLLR. At test time, there are two ways of com-

puting the posterior probability of a state sequence given an input sequence. One is to compute

p(y1:m|x1:m, f tr, T̂) where T̂ is a point estimate of the transformation parameters learned using

methods like MLLR or MAPLR. The other way is to apply full Bayesian inference which marginal-

izes out the transform parameters as follows,

p(y1:m|x1:m, f tr) =
∫

T
p(y1:m|x1:m, f tr, T)q(T) (3.13)

where q(T) is a posterior distribution estimated from the adaptation data. This latter approach is in

general more robust to estimation and modeling errors when only a limited amount of adaptation

data is available [109, 110].

Another important family of adaptation techniques are conducted in the framework of speaker

adaptive training (SAT) [112]. This framework utilizes speaker adaptation techniques, such as

MLLR or MAPLR, during training to explicitly address speaker-induced variations. Specifically,

SAT jointly estimates a compact unadapted model f tr
c and a set of speaker-dependent transforma-

tions T 1, T 2, . . . , TK (applied to f tr
c) that maximize the likelihood of all speaker-specific training

sets xk
1:n, i.e.

max
f tr

c ,T 1,..,T k

K∑

k=1

ln p(xk
1:n|f tr

c , T k) (3.14)

Since speaker variability has been explicitly accounted for by the transformations in training, the

resulting f tr
c only needs to address intrinsic phonetic variability and is hence more compact than a

conventional speaker-independent model. During recognition, f tr
c is treated as the unadapted model,

and a transformation for the target speaker is estimated using the adaptation data. SAT is in fact a

practical application of multi-task learning we introduced in Chapter 1.

There are a few extensions to this framework based on the notion of ”speaker clusters” [113,

114]. For example, [114] proposed cluster adaptive training where all Gaussian components in

the system are partitioned into R Gaussian classes, and all training speakers are partitioned into

P speaker clusters. It is assumed that a speaker-dependent model (either in adaptive training or in

40

recognition) is a linear combination of cluster-conditional models, and that all Gaussian components

in the same Gaussian class share the same set of weights. Specifically, for ”model-based clusters”

[114], the adapted mean of a Gaussian component (indexed as (y, k) for consistency with earlier

equations) is given by

µ̂y,k =
P∑

p=1

λr(y,k)
p · µp

y,k (3.15)

where µp
y,k is the mean from the pth speaker cluster, λr

p is its associated weight, and r(y, k) ∈ {1..R}
indicates which Gaussian class the Gaussian component (y, k) belongs to. Similarly, for ”transform-

based clusters” [114], the adapted mean of a Gaussian component is given by

µ̂y,k = (
P∑

p=1

λr(y,k)
p ·W p)ξtr

y,k (3.16)

where ξtr
c is the unadapted mean, and W p is the affine transformation from the pth speaker cluster

and λ
r(x,y)
p is its associated weight. In both cases, we want to estimate the class-conditional para-

meters, i.e. µp
y,k or W p, and the weights λr

p that maximize the likelihood function as expressed by

Equation (3.4). The only difference is that the parameters µ̂ therein is replaced by Equation (3.15)

or (3.16). There is no simple solution to jointly estimating the cluster-dependent parameters and the

weights; an iterative approach is typically used where one set of parameters are updated while the

other set of parameters are fixed [114].

In a similar spirit, eigenvoice [115] also constrains a speaker-dependent model to be a linear

combination of a number of basis models. The difference is that it creates a speaker-dependent

supervecctor by concatenating the mean vectors of all HMM Gaussian components, then performs

principle component analysis on the supervectors of all training speakers, producing the so-called

eigenvoices. During recognition, a new speaker’s supervector is a linear combination of eigenvoices

where the weights are estimated to maximize the likelihood of the adaptation data. Eigen-analysis

also has been applied to a transformed feature space using the ”kernel trick” [116], or applied to a

space of affine transformations which leads to eigen-space MLLR [117, 118].

3.2 In Natural Language Processing

In NLP applications, the domain adaptation problem arises very frequently as great human efforts

have been spent annotating text resources for morphological, syntactic and semantic information

41

[119]. This section reviews a few model-space algorithms for domain adaptation.

First, a simple approach to n-gram language model adaptation is Bayesian MAP adaptation

[120], as shown in Equation (3.5). In n-gram language models, the underlying goal is to produce

conditional probability representations of the form p(wt = j|ht), where wt ∈ {1..j} is the word at

position t and ht is the history. In a trigram model, for example, ht = (wt−1, wt−2). For each value

of ht = h, we define ωj|h
∆= p(wt = j|ht = h) for simplicity, and obviously

∑N
j=1 ωj|h = 1. The

conjugate prior for this distribution is the Dirichlet distribution [121]

g(ω1|h, ω2|h, . . . ωN |h|α1, α2, . . . , αN) ∝
N∏

j=1

ω
αj−1

j|h ; (3.17)

and the adapted n-gram probabilities are computed as

ω̂j =
(αj − 1) + c(h, j)∑N

j=1(αj − 1) +
∑N

j=1 c(h, j)
(3.18)

where c(h, j) is the expected count of the ngram (ht = h,wt = j) in the adaptation data. The

unadapted model parameters can be utilized in choosing the hyperparameters of the Dirichlet distri-

bution, as was discussed in [120].

The use of a prior distribution on model parameters has also been applied to the adaptation of

conditional models. Here again we use xi to denote an input feature vector and use yi to denote

its label. In NLP applications, xi is usually word-level features such as word IDs and context word

IDs, and yi can be a part-of-speech tag, a capitalization indicator, or a name entity indicator depend-

ing on specific applications. The goal is to adapt the conditional model parameters to maximize

p(f |x1:m, y1:m) ∝ p(y1:m|x1:m, f)p(f) w.r.t. the adaptation data. For example, [122] presented

an algorithm for adapting conditional maximum entropy models for automatic capitalization. This

algorithm incorporates the information from the unadapted model by using a Gaussian prior on the

feature weights wj , j = 1..N , resulting in the following adaption objective,

max
w1:N

(
ln p(y1:m|x1:m, w1:N)−

∑

j

(wj − wtr
j)2

σ2
j

)
(3.19)

where w1:N are the unadapted feature weights.

Furthermore, analogous to speaker clustering in speech recognition, there are mixture model

based approaches to both n-gram model adaptation [123] and conditional maximum entropy model

42

adaptation [119]. In a recent work [119], three distributions are modeled in parallel, an in-domain

distribution p(i)(x, y), an out-of-domain distribution p(o)(x, y), and a general distribution p(g)(x, y).

The training distribution is assumed to be a mixture of p(i) and p(g); and the target distribution is

assumed to be a mixture of p(o) and p(g). In both cases, the mixture component identity is modeled

using a hidden variable z. Letting superscript tr and ad denote training and adaptation samples

respectively, the learning objective is given by

max
f

(
ln p(ytr

1:n|xtr
1:n, f) + ln p(yad

1:m|xad
1:m, f)

)

= max
f

(n∑

i=1

ln
∑

z∈{i,g}
p(ytr

i , ztr
i = z|xtr

i , f) +
m∑

i=1

ln
∑

z∈{o,g}
p(yad

i , zad
i = z|xad

i , f)
)

;

(3.20)

and the optimal parameters are estimated using the conditional EM algorithm [124].

It is worth mentioning that feature-space adaptation techniques, which capture intrinsic struc-

tures at the syntax and semantic level, have drawn increasing attention in parsing, part-of-speech

tagging and other NLP applications [125, 126], though they are beyond the scope of this work.

3.3 In Pattern Recognition

So far, we have seen work on adaptation of Gaussian mixture HMMs (for acoustic modeling), of n-

gram models (for language modeling) and of conditional MaxEnt models (for POS-tagging or other

NLP applications). There are many other statistical models that are actively used in various pattern

classification tasks, such as support vector machines (SVMs) and multi-layer perceptrons (MLPS).

Here we overview adaptation techniques developed for these classifiers, and more descriptions will

be given in Chapter 5 along with the discussion of our work.

The adaptation of MLPs has been tackled from a meta-learning perspective. Both [31] and [26]

proposed to construct MLPs whose input-to-hidden layer is shared by multiple related tasks. This

layer represents an ”internal representation” which, once learned, is fixed for future learning. In

this regard, MLP adaptation amounts to training the hidden-to-output layer for the target task while

keeping the input-to-hidden layer ”representation”. This approach has been explicitly applied to

adaptation tasks in [127]. Another popular approach to MLP adaptation is adding augmentative

layers whose parameters are estimated from the adaptation data. The linear input network approach

[128,129], for example, applies a linear transformation to the input space, where the transformation

43

parameters are learned using the adaptation data.

SVM adaptation, on the other hand, is typically done by combining the support vectors from

the unadapted model with a subset of the adaptation data, and then retraining an SVM using the

combined data [130–133]. Specifically, [130] combined the old SVs with the adaptation samples

mis-classified by the unadapted classifier, while [131] chose to use the correctly-classified samples

instead. In [132] and [133], the old SVs and the adaptation data were weighted differently in the

optimization objective. Chapter 5 will give a detailed review of these algorithms and discuss how

they relate to our proposed approaches.

In summary, adaptation algorithms have been developed for a variety of statistical models, in-

cluding Gaussian mixture models (GMMs), hidden Markov models (HMMs), support vector ma-

chines (SVMs), multi-layer perceptrons (MLPs) and conditional maximum entropy (MaxEnt) mod-

els, each of which has been approached differently. While these algorithms have demonstrated em-

pirically the effectiveness of adaptation, it is curious to ask whether there is a principled approach

that unifies these different treatments. Moreover, a more fundamental question would be whether

we can relate the adaptation error bound to the divergence between training and target distributions.

We seek answers to these questions in the next chapter.

44

Chapter 4

A FIDELITY PRIOR FOR CLASSIFIER ADAPTATION

Recall that (x, y) ∈ X × {±1} is a pair of (input, label) variables with a joint distribution

p(x, y). Inductive learning aims to learn a decision function f ∈ F that not only correctly classi-

fies observed samples drawn from p(x, y), but also generalizes to unseen samples drawn from the

same distribution. In other words, we desire to learn an f that minimizes the true risk Rp(x,y)(f)

under certain loss function Q(·). In practice, this is often approached by minimizing the empiri-

cal risk Remp(f) on a training set, while utilizing certain regularization strategy to guarantee good

generalization performance, as was discussed in Chapter 2.

The target (or test-time) distribution, however, is often different from the training distribution.

Sometimes, the difference only resides in the input distribution p(x), while the conditional relation

p(y|x) remains the same. In several learning paradigms, this type of difference has been partially

accounted for by explicitly taking into account the test input distribution [19,134]. A learning setting

that has not received as much theoretical attention is that of ”adaptive learning”, which studies a

more general case where both p(x) and p(y|x) at test time vary from their training counterparts.

This is in fact a common assumption in ASR, where the training set consists of enormous speakers

but the application only sees one speaker at a time. Another distinctive assumption of adaptive

learning is that while there may be essentially an unlimited amount of labeled training distribution

data, only a small amount of labeled adaptation data drawn from the target distribution is available.

To formally define the adaptive learning paradigm, we let ptr(x, y) and pad(x, y) denote the

training and target distributions respectively, and we assume that two sources of information are

given in a priori:

1. An “unadapted classifier” f tr ∈ argminf∈F Rptr(f), which is trained using a sufficient

amount of training data (but this data is in general not preserved for adaptation);

2. “Adaptation data” Dad
m = {(xi, yi)|(xi, yi) ∼ pad(x, y)}m

i=1.

45

The goal of adaptation is to produce an “adapted classifier” f̂ (a point estimate) that is as close as

possible to our “desired classifier”,

fad ∈ argminf∈F Rpad(f)

In this setting, adaptation is supervised, as both training and adaptation data are labeled; it is also

inductive, as the adapted classifier is desired to generalize to unseen data drawn from pad(x, y). But

adaptation can be unsupervised or transductive with modified assumptions. There are two extreme

strategies for learning f̂ . First, we can train a classifier that minimizes the empirical risk Remp(f)

on (xi, yi) ∈ Dad
m , but this might cause overfitting with small m; even if we apply certain forms

of regularization to reduce the variance, the estimate f̂ might have a high bias if the regularizer

makes ”wrong” preferences. At the other extreme, we can simply let f̂ = f tr, but this might yield a

high empirical risk on Dad
m (again due to high bias), especially when pad(x, y) significantly differs

from ptr(x, y). This work seeks a strategy between these two extremes in which one would hope to

achieve better performance.

As was reviewed in Chapter 3, there has been a vast amount of practical work on adaptation in

the areas of ASR, NLP and pattern recognition, involving a variety of generative and discriminative

classifiers. It is interesting to ask whether there is a principled and unified approach to adaptation

that is applicable to different types of classifiers. Moreover, a more fundamental question would

be whether we can relate the adaptation sample complexity to the divergence between training and

target distributions. This chapter makes an attempt to answer these questions. We utilize the concept

of “accuracy-regularization”, where we seek a classifier that, on one hand, attains low empirical risk

on adaptation data, and on the other hand, has good generalization ability as measured by a regu-

larizer. Specifically, we use a Bayesian “fidelity prior” as the regularizer, which leads to principled

adaptation strategies for a variety of classifiers. Furthermore, in the PAC-Bayesian setting, this prior

relates the adaptation error bound (or sample complexity bound) to the divergence between training

and target distributions. The rest of the chapter is organized as follows. Section 4.1 introduces our

proposed fidelity prior; Section 4.2 and Section 4.3 discuss its instantiations for generative and dis-

criminative classifiers respectively; and Section 4.4 provides PAC-Bayesian error bound analysis.

Throughout this work, we use the symbol ’tr’ to indicate parameters of the unadapted classifier and

use ’ad’ to denote parameters of our desired classifier for the target distribution.

46

4.1 A Bayesian Fidelity Prior

We approach the adaptation problem from a Bayesian perspective by assuming that f itself is a ran-

dom variable with a “standard” prior distribution π(f) (which is chosen before seeing any training

or test data, usually based on domain knowledge), where π(f) is defined on a function space F (ei-

ther countable of uncountable). In adaptation, we utilize the concept of “accuracy-regularization”,

where we minimize the empirical risk on the adaptation data while maximizing a fidelity prior 1

pfid(f) (which will be defined shortly) as follows,

min
f∈F

[
Remp(f)− λ ln pfid(f)

]
. (4.1)

Note that both π(f) and pfid(f) are Bayesian priors; the difference is that the former is chosen

before training the unadapted classifier, whereas the latter is chosen after the unadapted classifier is

obtained. Specifically, the fidelity prior is defined as

ln pfid(f) ∆= Eptr(x,y)[ln p(f |x, y)] + γ (4.2)

In this definition, ptr(x, y) again is the training distribution, p(f |x, y) is the posterior probability of a

classifier given a sample, and γ is a normalization constant such that pfid(f) sums to unity. This prior

essentially can be viewed as an approximate posterior of a classifier given a training distribution.

This resembles the idea of the hierarchical Bayes approach, e.g. [33]. The key difference is that

the fidelity prior is an expected log posterior of a classifier given a sample, while in [33] the prior

was the posterior of classifier given a specific sample set. The reason we choose such a prior is

that, as will be seen shortly, pfid(f) incorporates information from both the standard prior π(f)

and the unadapted classifier f tr, and that it assigns higher probabilities to classifiers “closer to”

f tr. More importantly, the choice of this prior analytically relates pfid(fad) (the prior probability of

the desired classifier), and hence the generalization error bound at fad, to the divergence between

training and target distributions. Our adaptation objective in Equation (4.1), therefore, becomes a

tradeoff between the goodness of data fitting and the fidelity to the unadapted classifier. This fidelity

prior leads to a unified adaptation strategy applicable to a variety of classifiers. Next, we discuss its

instantiations for generative and discriminative classifiers respectively.

1We called it a ”divergence prior” in [48]

47

4.2 Generative Classifiers

We first explore the instantiation of pfid(f) for classifiers using generative models. In such a case,

the function space F consists of generative models f that describe the sample distribution p(x, y|f)

(here we slightly abuse notation by letting f denote a generative model instead of a decision func-

tion). The classification decision is made via

argmax
y∈Y

ln p(x, y|f)

If we use the joint likelihood loss (Equation (2.7)), then the unadapted model

f tr ∈ argmin
f∈F

Rptr(x,y)(f)

is the true model generating the training distribution, i.e., p(x, y|f tr) = ptr(x, y). Similarly, we

have p(x, y|fad) = pad(x, y). Note that by doing this, we implicitly assume that our function

space F contains the true generative models in both cases, which is standard in PAC learning [86].

Furthermore, applying Bayes rule, the posterior probability in Equation (4.2) can be expressed as

p(f |x, y) =
p(x, y|f)π(f)

p(x, y)
=

p(x, y|f)π(f)∫
p(x, y|f)π(f) df

(4.3)

where π(f) is again the standard prior chosen before seeing the training data. Plugging Equa-

tion (4.3) into (4.2) leads to the following theorem,

Theorem 4.2.1 For generative classifiers, the fidelity prior defined in Equation (4.2) satisfies

− ln pfid(f) = D(f(x, y|f tr)||p(x, y|f))− ln π(f)− β (4.4)

where β > 0 is a constant.

Proof

− ln pfid(f) = −
∫

p(x, y|f tr) ln p(f |x, y) dx dy − γ

= −
∫

p(x, y|f tr) ln[
p(x, y|f)π(f)
p(x, y|f tr)

· p(x, y|f tr)
p(x, y)

] dx dy − γ

= D(p(x, y|f tr)||p(x, y|f))− lnπ(f)−D(p(x, y|f tr)||p(x, y))− γ

(4.5)

48

Letting β = D(p(x, y|f tr)||p(x, y)) + γ, we have

1 =
∫

pfid(f) df =
∫

F
exp{−D(p(x, y|f tr)||p(x, y|f)) + lnπ(f) + β} df

<

∫

F
exp{ln π(f) + β} df = eβ

(4.6)

The inequality follows that D(p(x, y|f tr)||p(x, y)) ≥ 0. Furthermore, since D(p(x, y|f tr)||p(x, y)) =

0 is only achieved at f = f tr in the integral, the inequality β > 0 is strict.

This fidelity prior is essentially determined by the KL-divergence between the sample distribu-

tion generated by the unadapted model and that generated from the model of interest, and it favors

those models similar to the unadapted model. In particular, we inspect the prior probability of our

desired model, i.e., ln pfid(fad) = −D(ptr||pad) + lnπ(fad) + β, from which we can draw some

intuitive insights about why using the fidelity prior would help. As implied in the above equation,

if D(ptr||pad) < β, we have pfid(fad) > π(fad), and thus we are more likely to learn the desired

model using the fidelity prior than using the standard prior. Since β > 0, for any f tr, there must

exist distributions pad for which the above statement is true. In Section 4.4, we will elaborate on

this implication from an error bound perspective.

Consequently, our adaptation objective for generative classifiers becomes

min
f

Remp(f) + λD(p(x, y|f tr)||p(x, y|f))− λπ(f) (4.7)

This is similar to the objective in [93, 135] for iterative training of GMM and HMM parameters.

The key difference is that [93, 93] takes a frequentist approach where the KL-divergence is treated

as an ”entropic distance”, while we take a Bayesian approach where the KL-divergence is derived

from a prior distribution of the classifier. When π(f) is uniform2, this objective asks to minimize

the empirical risk as well as the KL-divergence between the joint distributions.

In the following text, we discuss instantiations of the fidelity prior and the resulting adaptation

objectives for specific sample distributions. We assume that p(x, y|f tr) and p(x, y|fad) belong to

the same distribution family (e.g. Gaussian distributions) but with different parameters. In learning

the adapted model, we keep the parametric form of the model and search for the optimal parameters.

Hence f here is represented by model parameters.

2Although improper on unbounded support, a uniform prior does not cause problems in a Bayesian analysis as long
as the posterior corresponding to this prior is integrable.

49

4.2.1 Gaussian models

The KL-divergence, and hence the fidelity prior, can be expressed analytically if the class-conditional

distributions are Gaussians, i.e., p(x|y, f tr) ∼ N (x; µtr
y , Σtr

y) and p(x|y, f) ∼ N (x;µy, Σy). We

also define the class prior probabilities p(y|f tr) = ωtr
y and p(y|f) = ωy. Thus f is represented by

(ωy, µy, Σy).

Corollary 4.2.2 For class-conditional Gaussian models, the fidelity prior pfid(f) defined in Equa-

tion (4.4) satisfies

− ln pfid(f) =
∑

y

ωtr
y

2

[
ln

(|Σy|
|Σtr

y |
)

+ tr
(
Σtr

y Σ−1
y + (µy − µtr

y)T Σ−1
y (µy − µtr

y)
)− d

]

+
∑

y

ωtr
y ln

ωtr
y

ωy
− ln π(f)− β

(4.8)

where β > 0. In particular, if ωy = ωtr
y , Σy = Σtr

y , we have

− ln pfid(f) =
∑

y

1
2
ωtr

y (µy − µtr
y)T Σtr

y
−1(µy − µtr

y)− lnπ(f)− β (4.9)

Proof Applying Theorem 4.2.1, we have

− ln pfid(f) = D(p(x, y|f tr)||p(x, y|f))− lnπ(f)− β

= D(p(x|y, f tr)||p(x|y, f)) + D(p(y|f tr)||p(y|f))− ln π(f)− β

=
∑

y

ωtr
y D(N (x; µtr

y , Σtr
y)||N (x; µy,Σy)) +

∑
y

ωtr
y ln

ωtr
y

ωy
− lnπ(f)− β

(4.10)

Further application of Equation (2.31) proves the corollary.

When π(f) is uniform, we can discard it and renormalize pfid(f). Therein, the prior distribution

of the mean and covariance matrix of a conditional Gaussians becomes a normal-Wishart distrib-

ution, as shown in Equation (2.31). This prior distribution has long been used in MAP adaptation

of Gaussian models for speech recognition [104] due to its nice mathematical properties as a con-

jugate prior; here we have derived it from the fidelity prior. If ωy = ωtr
y , Σy = Σtr

y , the problem

becomes to adapt Gaussian means only, and the fidelity prior becomes a joint Gaussian with a block

diagonal covariance matrix on the concatenated means [µtr
+ , µtr−]T . This implies that the accuracy-

regularization optimization objective for Gaussian mean adaptation asks to minimize the negative

50

log likelihood as well as a Mahalanobis distance from the unadapted means (a generalized `2-norm).

This objective has a simple, closed-form solution since both terms are quadratic.

The above corollary can be easily extended to any class-conditional distributions that belong to

the exponential family, i.e., p(x|y, f) = p(x|θy) = exp{a(x) + b(θy) + d(θy)c(x)} where θy is the

parameters describing the ytr class-conditional distribution, and p(y|f) = ωy. Thus f is represented

by (ωy, θy). The KL-divergence can be conveniently calculated using Equation (2.34)

D(p(x, y|f tr)||p(x, y|f)) =
∑

y

ωtr
y

[
∇θyb(θ

tr
y)

∇θyd(θtr
y)

(d(θy)− d(θtr
y))− (b(θy)− b(θtr

y))

]
+

∑
y

ωtr
y ln

ωtr
y

ωy

This is a general form applicable to many well-known distributions including the Gaussian models

we discussed above.

4.2.2 Mixture models

In practice, mixture models are more useful for their ability to approximate arbitrary distributions.

Mathematically, p(x|y, f) =
∑

k

cy,kp(x|θy,k), where cy,k, k = 1..K, are component responsibili-

ties for class y, and θy,k are model parameters for the kth component in class y. Furthermore, as in

the previous case, we let p(y|f) = ωy. Thus f is represented by (ωy, cy,k, θy,k). There is no close-

form solution to the KL-divergence of mixture models. However, we have the following corollary

which offers a lower bound on the fidelity prior (i.e., an upper bound on − ln pfid(f)). The same

result can be found in [93, 136, 137].

Corollary 4.2.3 For class-conditional mixture models, the prior pfid(f) defined in Equation (4.4)

satisfies

− ln pfid(f) ≤
∑

y

ωtr
y

∑

k

ctr
y,kD(p(x|θtr

y,k)||p(x|θy,k))

+
∑

y

ωtr
y

∑

k

ctr
y,k ln

ctr
y,k

cy,m(k)
+

∑
y

ωtr
y ln

ωtr
y

ωy
− lnπ(f)− β

(4.11)

where β > 0 and (m(1), . . . , m(K)) is any permutation of (1, . . . , K).

51

Proof Using the log sum inequality (Theorem 2.5.2), we have

D(p(x, y|f tr)||p(x, y|f))

= D(p(x|y, f tr)||p(x|y, f)) + D(p(y|f tr)||p(y|f))

=
∑

y

ωtr
y

∫

x

∑

k

(
ctr
y,kp(x|θtr

y,k)
)

ln

∑
k ctr

y,kp(x|θtr
y,k)∑

k cy,kp(x|θy,k)
dx +

∑
y

ωtr
y ln

ωtr
y

ωy

≤
∑

y

ωtr
y

∫

x

∑

k

ctr
y,kp(x|θtr

y,k) ln
ctr
y,kp(x|θtr

y,k)
cy,m(k)p(x|θy,m(k))

dx +
∑

y

ωtr
y ln

ωtr
y

ωy

=
∑

y

ωtr
y

∑

k

ctr
y,kD(p(x|θtr

y,k)||p(x|θy,m(k))) +
∑

y

ωtr
y

∑

k

ctr
y,k ln

ctr
y,k

cy,m(k)
+

∑
y

ωtr
y ln

ωtr
y

ωy

(4.12)

Applying Theorem 4.2.1 completes the proof.

This corollary holds for an arbitrary alignment m(k) of the mixture components. We can always

choose the alignment, based on the similarity between the mixture components, that yields the

minimum KL-divergence. In other words, at each EM iteration, we need to find

m̂(·) = argmin
m(·)

(∑
y

ωtr
y

∑

k

ctr
y,kD(p(x|θtr

y,k)||p(x|θy,m(k))) +
∑

y

ωtr
y

∑

k

ctr
y,k ln

ctr
y,k

cy,m(k)

)

In fact, if we initialize f = f tr which is a common practice in adaptation, we can empirically

assume that m(k) = k.

Moreover, The corollary implicitly assumes that K, the number of components per mixture, is

fixed, but this can be easily extended to the case where K grows or shrinks during adaptation. Sup-

pose that the adapted model is desired to have L components per mixture (where L 6= K), whose pa-

rameters are initialized either from the unadapted model or from the adaptation data. With other con-

ditions unchanged, evaluating the fidelity prior is again reduced to computing D(p(x, y|f tr)||p(x, y|f))

as in Equation (4.12) except that the number of mixture components of p(x|y, f) changes from K

to L. To this end, we first compute the least common multiple of K and L, denoted as M . Then

we “clone” each component in f tr into M/K copies, each with a scaled component responsibility

(K/M)ctr
y,k. Likewise, we clone each component in f into M/L copies and scale the responsibili-

ties accordingly. In this way, the number of mixture components becomes equal, and the inequality

in (4.12) still applies. Note that in adaptation, we need to tie the clone components of f to keep their

parameters identical, and we merge them back to L components when adaptation finishes.

52

The above result offers an upper bound on the KL and hence a lower bound on the fidelity prior.

We can replace − ln pfid(f) with this lower bound in the accuracy-regularization objective in Equa-

tion (4.1) in learning mixture models. In particular, we can derive such a regularizer for Gaussian

mixture models where only Gaussian means are adapted. For class-conditional Gaussian mixture

models with fixed (across training and adaptation) class prior probabilities ωtr
y , fixed component re-

sponsibilities ctr
y,k, fixed covariance matrices Σtr

y,k and a fixed alignment m(k) = k, the regularizer

is of the form

∑
y

1
2
ωtr

y

∑

k

cy,k(µy,k − µtr
y,k)

T Σtr
y,k

−1(µy,k − µtr
y,k)− ln π(f)− β (4.13)

4.2.3 Hidden Markov models

A hidden Markov models (HMM) is a generative model describing two statistically dependent ran-

dom processes. The first is an observable process {x1,x2, . . . }, and the second is a homogeneous

hidden Markov process {y1, y2, . . . }, where yt takes values in a finite state space Y = {1, 2, . . . , n}.

Note that we use such notation for consistency with the rest of the work. In an HMM, we have the

conditional independence statements xt⊥⊥{x1:t−1, y1:t−1}|yt and yt+1⊥⊥{x1:t−1, y1:t−1}|yt. Here

A⊥⊥B|C means that A is independent of B given C. The joint likelihood of all random variables,

as mentioned in Chapter 2, is given by

p(x1,x2, . . . ,xT , y1, y2, · · · , yT |f) = p(y1|f)p(x1|y1, f)
∏T

t=2 p(yt|yt−1, f)p(xt|yt, f)

(4.14)

The standard parametric representation of an HMM is f = (π, A, B). The parameter π is a row

vector of state prior probabilities, π = [ω1, . . . , ωn], where ωi = p(y1 = i|f); A = (ai,j) is a state

transition probability matrix where ai,j = p(yt+1 = j|yt = i, f); and B = {b1, . . . , bn} is a set

where bj represents the observation distribution of state j, i.e., bj(t)
∆= p(xt|yt = i, f). We further

define a number of KL-divergences defined using π, A and B respectively.

D(πtr||π) ∆=
n∑

i=1

ωtr
i ln

ωtr
i

ωi

D(atr
i ||ai)

∆=
n∑

j=1

atr
i,j ln

atr
i,j

ai,j

D(btr
i ||bi)

∆= D(p(xt|btr
i)||p(xt|bi))

53

The KL-divergence rate between two HMMs is defined as

lim
T→∞

1
T

D(p(x1:T |f tr)||p(x1:T |f)) (4.15)

To study this quantity, we first inspect the KL-divergence w.r.t. a finite sequence of observations.

D(p(x1:T |f tr)||p(x1:T |f))

= D(p(x1:T , y1:T |f tr)||p(x1:T , y1:T |f))−D(p(y1:T |x1:T , f tr)||p(y1:T |x1:T , f))

≤ D(p(x1:T , y1:T |f tr)||p(x1:T , y1:T |f))

= D(p(x1:T |y1:T , f tr)||p(x1:T |y1:T , f)) + D(p(y1:T |f tr)||p(y1:T |f))

(4.16)

It has been proved by induction [136, 138] that the above is further upper bounded by

D(πtr||π) + πtr

(T−2∑

t=0

(Atr)t

)
(dA + dB) + (Atr)T−1dB (4.17)

where dA = [D(atr
1 ||a1)..D(atr

n ||an)]T , and dB = [D(btr
1 ||b1)..D(btr

n ||bn)]T .

With modest assumptions, Equation (4.17) can be plugged into Equation (4.15) to obtain an

upper bound on the KL-divergence rate of HMMs; the key is that the bound has to be well defined

when T → ∞. If the Markov process is stationary, i.e., there exists a stationary distribution vector

ν such that νT A = νT and lim
t→∞ πT At = νT , then [136] proved that

lim
T→∞

1
T

[
D(p(x1:T |f tr)||p(x1:T |f))

]

≤ lim
T→∞

1
T

[
D(πtr||π) + πtr

(T−2∑

t=0

(Atr)t

)
(dA + dB) + (Atr)T−1dB

]

= πtr(dA + dB)

(4.18)

Furthermore, [138] extended this derivation to left-to-right HMMs with final non-emitting states,

which is a common setting in speech recognition. Under such conditions, [138] proved that the KL-

divergence (rather than the KL-divergence rate) between two HMMs is well defined and is upper

bounded by

lim
T→∞

D(p(x1:T |f tr)||p(x1:T |f)) ≤ D(πtr||π) + πtrT (I −Atr)−1(dA + dB) (4.19)

We can utilize this bound in our regularized adaptation objective for HMMs.

54

4.3 Discriminative Classifiers

Generative approaches are often suboptimal from a classification objective perspective, as they ask

to solve a more difficult density estimation problem. Discriminative approaches, which directly

model the conditional relationship of class label given input features, often give better classification

performance. The classification decision is made via Equation (2.5) or Equation (2.6). As mentioned

in Chapter 2, one class of discriminative classifiers, including MLPs, MaxEnt models and CRFs, use

probabilistic models p(y|x, f). Although other classifiers such as kernel methods in general do not

explicitly model posterior probabilities, their outputs can be given probabilistic interpretations. For

example, there have been approaches to fit SVM outputs to a probability function (e.g. sigmoid) to

enable post-processing [139]. Here we assume that p(y|x, f) exists in all cases.

Analogous to our discussion on generative classifiers, if we use the conditional likelihood loss

Q(·) = − ln p(y|x, f), the unadapted model is then the true model that describes the conditional

distribution in training, i.e., p(y|x, f tr) = ptr(y|x) = ptr(x, y)/ptr(x); and similarly p(y|x, fad) =

pad(y|x). Furthermore, the posterior probability can be expressed as

p(f |x, y) =
p(y|x, f)p(f,x)

p(x, y)
=

p(y|x, f)π(f)
p(y|x)

=
p(y|x, f)π(f)∫
p(y|x, f)π(f) df

(4.20)

where we have assumed that f and x are independent random variables. Rasmussen [140] has

derived the same posterior expression (see Equation (2.5) therein) under such an assumption, which

is standard in most, if not all, pattern classification tasks. Note that given y, variables f and x are

no longer independent.

This factorization leads to a result analogous to Theorem 4.2.1: Assuming that ptr(x, y) is

known, the fidelity prior for discriminative classifiers satisfies

− ln pfid(f) = D(p(y|x, f tr)||p(y|x, f))− ln π(f)− β (4.21)

where β > 0. The proof of this can be obtained in a similar fashion:

− ln pfid(f) = −
∫

ptr(x, y) ln p(f |x, y) dx dy − γ

= −
∫

ptr(x, y) ln
[
p(f |x, y)π(f)
p(y|x, f tr)

· p(y|x, f tr)∫
p(y|x, f)π(f) df

]
dx dy − γ

= D(p(y|x, f tr)||p(y|x, f))− ln π(f)−D(ptr(y|x)||p(y|x))− γ

(4.22)

55

Letting β = D(ptr(x, y)||p(y|x)) + γ, we have

1 =
∫

pfid(f) df =
∫

F
exp{−D(p(y|x, f tr)||p(y|x, f)) + lnπ(f) + β} df < eβ (4.23)

Therefore we have β > 0.

The training distribution ptr(x, y), however, is generally unknown to discriminative models (the

only information preserved from the training data is f tr which reflects only the conditional distribu-

tion), thereby making D(p(y|x, f tr)||p(y|x, f)) uncomputable. The major goal of this section is to

derive such an upper bound on D(p(y|x, f tr)||p(y|x, f)), and hence on − ln pfid(f), that does not

require the knowledge of ptr(x, y). Then we can replace − ln pfid(f) with this upper bound in the

accuracy-regularization objective.

Many discriminative classifiers, including log linear models, conditional maximum entropy

models, CRFs, MLPs and SVMs, can be viewed as hyperplane classifiers in a transformed fea-

ture space: f(x) = sgn
(
wT φ(x) + b

)
, where f = (w, b) and φ(x) is a nonlinear transformation

applied to the input space. In MLPs, for example, φ(x) is represented by hidden neurons, and in

SVMs φ(x) is implicitly determined by a reproducing kernel. For consistency, we use x in this

section to represent features, but x can be readily replaced by φ(x) for nonlinear cases. Moreover,

for binary classification problems, a sigmoid function

p(y|x, f) =
1

1 + e−y(wT x+b)
(4.24)

is often used to model conditional distributions for such classifiers (while a softmax function is

often used for the multi-class case). Plugging Equation (4.24) into Equation (4.21), we arrive at the

following theorem.

Theorem 4.3.1 For hyperplane classifiers sgn (wTx + b), the fidelity prior in Equation (4.21) sat-

isfies

− ln pfid(f) ≤ α‖w −wtr‖+ |b− btr| − lnπ(f)− β (4.25)

where α = Ex∼ptr(x)[‖x‖].

Proof First we show that for any a > 0 and b > 0, | ln 1 + a

1 + b
| ≤ | ln a− ln b|. This is because





1 ≤ 1 + a

1 + b
≤ a

b
if a ≥ b

a

b
<

1 + a

1 + b
< 1 otherwise

(4.26)

56

Taking logarithm on both sides will prove the above inequality. Utilizing this inequality and the fact

that ex > 0 for any x, we have

D(p(y|x, f tr)||p(y|x, f)) =
∫

ptr(x, y) ln
1 + e−y(wT x+b)

1 + e−y(wtrT x+btr)
dx dy

≤ ∫
ptr(x, y)| ln e−y(wT x+b) − ln e−y(wtr+btr)| dx dy

=
∫

ptr(x, y)|y(wtr −w)Tx + y(btr − b)| dx dy

≤ ∫
ptr(x, y)|y(wtr −w)Tx| dx dy +

∫
ptr(x, y)|y(btr − b)| dx dy

= ‖w −wtr‖ ∫
ptr(x)‖x‖ dx + |b− btr|

= α‖w −wtr‖+ |b− btr|
(4.27)

Therefore, the accuracy-regularization optimization objective becomes

min
w,b

Remp(w, b) +
λ′1
2
‖w −wtr‖+

λ′2
2
|b− btr| − λ′2 lnπ(w, b) (4.28)

where λ′1 and λ′2 are regularization coefficients. Assuming that π(w, b) is uniform (only for simplic-

ity), this optimization objective asks to minimize the empirical risk as well as the `2-norms. Notice

that for a random variable x, ‖x‖ is convex (not necessarily strictly) in x and is differentiable every-

where except x = 0. In practice, it is often more convenient to use the square of the `2-norm in the

optimization objective as follows,

min
w,b

Remp(w, b) +
λ1

2
‖w −wtr‖2 +

λ2

2
|b− btr|2 − λ2 ln π(w, b). (4.29)

Since ‖x‖2 is strictly convex and is differentiable everywhere, using the `2 norm square gives great

mathematical convenience. Moreover, considering the problem of minimizing Equation (4.28) and

(4.29) with the assumption that Remp(w, b) is twice differentiable in (w, b), we can in fact prove

that for any choice of λ′1 and λ′2 in Equation (4.28), there always exist λ1 and λ2 in Equation (4.29)

such that a locally optimal solution to (4.28) is also a locally optimal solution to (4.29). To see this,

it is sufficient to prove the following lemma.

Lemma 4.3.2 For a twice differentiable function g(x). Consider the problem of minimizing J1 and

J2 defined as

J1(x) = g(x) +
λ′

2
‖x‖

J2(x) = g(x) +
λ

2
‖x‖2

(4.30)

57

For any λ′ > 0 in J1, there always exists λ > 0 in J2 such that a locally optimal solution to J1(x)

is also a locally optimal solution to J2(x).

The proof is provided in Appendix A.6. Replacing x with (w, b), and replacing g(x) with Remp(w, b),

we reach the earlier conclusion.

Before we evaluate regularized adaptation algorithms in Chapter 5, we derive generalization

error bounds for adaptation in the PAC-Bayesian framework.

4.4 PAC-Bayesian Error Bound Analysis

As described in Chapter 2, a fundamental problem in machine learning is to study the generalization

performance of a classifier in terms of an error bound or, equivalently, a sample complexity bound.

A PAC-Bayesian approach [60] incorporates domain knowledge in the form of a Bayesian prior and

provides a guarantee on generalization error regardless of the truth of the prior. In this chapter, we

are particularly interested in how well an adapted classifier generalizes to unseen data drawn from

the target distribution. We derive error bounds for adaptation by using our proposed prior in the

PAC-Bayesian setting. Specifically, for a countable function space, we apply the Occam’s Razor

bound (Theorem 2.3.3) which bounds the true error of a single classifier; while for a continuous

function space, we apply McAllester’s PAC-Bayes bound (Theorem 2.3.5) which bounds the true

stochastic error of a Gibbs classifier.

There is one issue we need to clarify before moving on. All PAC-Bayesian theorems [60] assume

a finite loss function, i.e. Q(·) ∈ [a, b], in order to utilize Hoeffding inequality or its alternatives

[60, 85, 87]. Moreover, Q(·) ∈ [0, 1] is often used instead since any Q(·) ∈ [a, b] can be shifted and

scaled to be in this interval . In Section 2.3, we particularly assumed that Q(f(x), y) = I(f(x) 6= y),

and we keep this assumption throughout this section. In other words, we have

Rpad(x,y)(f) = Epad(x, y)[I(f(x) 6= y)]

Remp(f) =
1
m

m∑

i=1

I(f(xi) 6= yi); (xi, yi) ∈ Dad
m

(4.31)

PAC-Bayesian theorems (see Chapter 2) can be utilized to upper bound Rpad(x,y)(f) by Remp(f)

plus a capacity term Φ(F , f,Dm, m, δ), i.e.,

Rpad(x,y)(f) ≤ Remp(f) + Φ(F , f,Dm,m, δ)

58

Note that f can be estimated using a different loss function, but the above bound on the expected

0-1 loss is valid regardless of the loss function used in training. In practice, surrogates of the 0-1

loss are often used, as there exists a quantitative relationship between the risk as accessed using the

0-1 loss and the risk as accessed using the surrogates [57].

4.4.1 Occam’s Razor bound for adaptation

The Occam’s Razor bound (Theorem 2.3.3) implies that, in order to guarantee a small true error, we

should intuitively assign high prior probabilities to those models which are a-priori viewed as likely

to fit the data well. The use of the fidelity prior in adaptation follows this intuition. To derive a

generalization error bound for adaptation, we replace the standard prior π(f) in Equation (2.19) by

our proposed fidelity prior pfid(f). We in particular study a countable function space of generative

models in this subsection.

Corollary 4.4.1 For a countable function space of generative models, for any prior distribution

π(f) and for any f for which π(f) > 0, the following bound holds with probability of at least 1− δ,

Rpad(f) ≤ Remp(f) +

√
D(p(x, y|f tr)||p(x, y|f))− lnπ(f)− β − ln δ

2m
(4.32)

This result has important implications: for the set of classifiers

G = {f ∈ F : D(p(x, y|f tr)||p(x, y|f)) < β},

their error bounds in Equation (4.32) which use the fidelity prior are tighter than those in Equa-

tion (2.19) which use the standard prior. Since β > 0, G is always nonempty. For classifiers in the

complementary set Ḡ, however, we reach the opposite argument. An important question to ask is:

to which set does our estimated classifier belongs? We are particularly interested in fad, i.e., the

optimal classifier w.r.t. the target distribution. If D(ptr||pad) < β, we have fad ∈ G and we achieve

better generalization performance at fad by using the fidelity prior. Practically speaking, this im-

plies that it is better to utilize adaptation unless the training and target distributions are different to

a certain extent (determined by β). Recall that β normalizes pfid(f) to unity. This constant can be

analytically calculated for some models (e.g. Gaussian models), while approximations are needed

for general cases. Additionally, we can derive a similar bound for discriminative classifiers, where

the divergence in Equation (4.32) is between conditional distributions instead of joint distributions.

59

4.4.2 PAC-Bayesian bounds for adaptation

McAllester’s PAC-Bayesian bound for Gibbs classifiers (Theorem 2.3.5) is applicable to both count-

able and uncountable function spaces. A Gibbs classifier is a stochastic classifier drawn from a

posterior distribution q(f). Consequently the true error and empirical error also become stochas-

tic in the form of Ef∼q(f)[R(f)] and Ef∼q(f)[Remp(f)]. Again, the choice of a prior distribution

π(f) is critical in order to achieve a small error bound. Intuitively we should choose a distribution

π(f) such that Ef∼π(f)[Remp(f)] is small. As a ramification of this theorem, PAC-Bayesian margin

bounds have been developed which provide theoretical foundations for SVMs [92]. The key idea

involves choosing a prior π(f) and a posterior q(f) such that, in addition to our intuition above, it

is easy to compute D(q(f)||π(f)) and Ef∼q(f)[Remp(f)]. Usually q(f) is chosen to be in the same

family as π(f).

In this section, we obtain error bounds for adaptation in a similar fashion as [92] but with simpler

derivations. Since the derivation requires specification of a classifier, we first investigate generative

Gaussian models where only Gaussian means are adapted. We further assume equal class prior prob-

abilities ω+=ω−=1/2, equal covariance matrices Σ+=Σ−=Σtr, and opposite means µ+=−µ−=µ,

thereby leading to a linear decision boundary f(x) = sgn (Σtr−1
µTx). In such a case, f is rep-

resented by µ only. We make such assumptions only to simplify the calculation of the stochastic

error in this work, while similar bounds can be derived for more general cases. Next, we present a

corollary of Theorem 2.3.5 followed by a proof and discussions.

Corollary 4.4.2 (PAC-Bayesian bound for symmetric Gaussian model adaptation) Assume class-

conditional Gaussian models with equal and fixed class prior probabilities ωtr = 1/2, equal and

fixed covariance matrices Σtr, and opposite means µ+ = −µ− = µ. Define an approximate pos-

terior distribution on µ with the form q(µ) = N (µ; µ′, Σtr). Then there exists a prior distribution

such that for any µ′, the following bound holds true with probability of at least 1− δ.

Eq(µ)[Rpad(µ)] ≤ 1
m

m∑

i=1

F (
yixT

i Σtr−1
µ′

(xT
i Σtr−1xi)1/2

)+

√√√√ 1
2
(µ′ − µtr)T Σtr−1(µ′ − µtr)− ln δ + lnm + 2

2m− 1
(4.33)

where F (t) =
∫∞
t

1√
2π

e−
s2

2 ds and (xi, yi) ∈ Dad
m .

60

Proof McAllester’s PAC-Bayesian bound allows us to choose any prior distribution. Here we use

pfid(f) in Equation (4.4), where we assume a uniform π(f) and renormalize pfid(f) accordingly.

This results in a Gaussian distribution on µ, i.e., pfid(µ) = N (µ; µtr, Σtr). Furthermore, by defini-

tion q(µ) = N (µ; µ′, Σtr). It is easy to compute the KL-divergence

D(q(µ)||pfid(µ)) = D(N (µ; µ′,Σtr)||N (µ; µtr,Σtr))

=
1
2
(µ′ − µtr)T Σtr−1(µ′ − µtr)

(4.34)

which gives the second term in Equation (4.33).

On the other hand, to calculate Ef∼q(f)[Remp(f)]), we first inspect the decision function regard-

ing sample (xi, yi), i.e.,

sgn
(

yi(µ+ − µ−)T Σtr−1xi

)
= sgn

(
yixT

i Σtr−1
µ

)
.

Since an affine transformation of a multivariate Gaussian is still a Gaussian, yixT
i Σtr−1

µ is a uni-

variate Gaussian with the following mean and variance:

µ̄i
∆= yixT

i Σtr−1
µ′

σ̄2
i

∆= (yixT
i Σtr−1)Σtr(yixT

i Σtr−1)T = xT
i Σtr−1xi

(4.35)

This is the key difference from the derivation of [92]. The stochastic empirical error hence becomes

Ef∼q(f)[Remp(f)] =
1
m

m∑

i=1

Eµ∼N (µ;µ′,Σtr)[I(yixT
i Σtr−1

µ < 0)]

=
1
m

m∑

i=1

Et∼N (t;µ̄i,σ̄2
i)[I(t < 0)]

=
1
m

m∑

i=1

F

(
µ̄i

σ̄i

)
(4.36)

where F (t) =
∫∞
t

1√
2π

e−
s2

2 ds, and (xi, yi) ∈ Dad
m .

Next we remark on the role of µ′: Given the Gaussian assumption in Equation (4.37), q(µ)

is solely determined by hyperparameter µ′. The learning problem, therefore, is reduced to the

estimation of µ′, which is a tradeoff between fitting the adaptation data, via reducing F

(
µ̄i

σ̄i

)
, and

staying in vicinity of the unadapted parameter µtr.

Lastly, we derive an adaptation error bound for hyperplane classifiers, which is an important

representative for discriminative classifiers (see Section 4.3). In this case, f = (w, b) where we

assume that w and b are independent variables.

61

Corollary 4.4.3 (PAC-Bayesian bound for hyperplane adaptation) Consider hyperplane classi-

fiers wTx + b, and define an approximate posterior distribution on (w, b) with the form

q(w, b) = N (w; w′, Σtr)N (b; b′, Σtr) (4.37)

Then there exists a prior distribution such that for any (w′, b′), the following bound holds true with

probability of at least 1− δ.

Eq(w,b)[Rp(x,y)(f)] ≤ 1
m

m∑

i=1

F (
yi(xT

i w′ + b′)√
‖xi‖2 + 1

)+

√√√√ ‖w′ −wtr‖2 + |b′ − btr|2
2

− ln δ + ln m + 2

2m− 1
(4.38)

where F (t) =
∫∞
t

1√
2π

e−
s2

2 ds, and (xi, yi) ∈ Dad
m .

Proof We use a Gaussian prior p(w, b) centered at (wtr, btr) with an identity covariance matrix.

Note that the choice of this prior relates to previous work on margin bounds; [92] used a Gaussian

prior centered at zero, and [141] estimated Gaussian priors based on previous training subsets. The

key difference is that we choose a Gaussian centered at the unadapted parameters. Mathematically,

p(w, b) = N (w;wtr, I) ·N (b; btr, 1), and q(w, b) = N (w;w′, I) ·N (b; b′, 1). The KL-divergence

of two such Gaussian distributions is easily obtained as

D(q(f)||p(f)) =
‖w′ −wtr‖2 + |b′ − b̂|2

2
(4.39)

Secondly, the stochastic empirical risk can be calculated similar to the Gaussian model case.

Ef∼q(f)[Remp(f)] =
1
m

m∑

i=1

Ew∼N (w;w′,I) Eb∼N (b;b′,1)[I(yi(wTxi + b) < 0)]

=
1
m

m∑

i=1

Et∼N (yi(xT
i w′+b′),‖xi‖2+1)[I(t < 0)]

=
1
m

m∑

i=1

F (
yi(xT

i w′ + b′)√
‖xi‖2 + 1

)

(4.40)

where F (t) =
∫∞
t

1√
2π

e−
s2

2 ds, and (xi, yi) ∈ Dad
m .

Similarly to the last corollary, q(w, b) is solely determined by hyperparameters w′ and b′, the es-

timation of which is a tradeoff between the goodness of data fitting and the fidelity to the unadapted

model.

62

4.4.3 A VC perspective

The adaptation can also be viewed from a structured risk minimization perspective. Recall that

structured risk minimization asks to search through a sequence of function spaces F1 ⊂ F2 ⊂ ... ⊂
F , and find an index j that minimizes Equation (2.25). Finding an optimal Fj is a tradeoff between

reducing the VC dimension and reducing the empirical risk; choosing a small j will decrease, or at

least not increase, the VC dimension at the cost of a potential increase in the empirical risk. The

question is how to design the structure of Fj , j = 1, 2, . . ., such that the increase in the empirical

risk is maximally suppressed. A natural strategy is to choose a set of functions that all include the

unadapted model, i.e., f tr ∈ Fj for all j. This is because f tr minimizes the expected risk w.r.t. the

training distribution, and it may as well yield a low expect risk w.r.t. the target distribution, provided

that these two distributions do not diverge too much.

Consider linear classifiers f(x) = sgn (wTx) in canonical form with respect to a set of inputs

{xi}m
i=1, i.e.,

min
i
|wTxi| = 1

We can construct a sequence of constrained function spaces ‖w − wtr‖2 ≤ ci, where c1 < c2 <

... < ∞. All Fi in this sequence satisfy wtr ∈ Fi. We have the following corollary derived from

Theorem 2.4.1

Corollary 4.4.4 Consider linear classifiers f(x) = sgn (wTx) such that min
i
|(w−wtr)Txi| = 1

for all {xi}m
i=1. For any wtr, the decision function f satisfying the constraint ‖w −wtr‖ ≤ c has

a VC dimension satisfying

h ≤ R2(‖wtr‖+ c)2

where R = max
i
‖xi‖.

A proof of this corollary can be found in Appendix A.4, which makes a slight modification to

Appendix A.3 (Schölkopf’s proof of VC dimension). Moreover, if we use linear classifiers (w −
wtr)Tx = 0 instead of wTx = 0 with the constraint that ‖w−wtr‖2 ≤ c, we can achieve the same

upper bound on VC dimension as in Theorem 2.4.1.

Corollary 4.4.5 Consider linear classifiers f(x) = sgn ((w − wtr)Tx) such that min
i
|(w −

wtr)Txi| = 1 for all {xi}m
i=1. For any wtr, the decision function f satisfying the constraint

63

‖w −wtr‖ ≤ c has a VC dimension satisfying

h ≤ R2c2

where R = max
i
‖xi‖.

Again, a proof is provided in Appendix A.5 as a reference.

4.5 Empirical Simulations of Adaptation Error Bounds

We simulated empirical adaptation error bounds for a Gaussian model classifier. Given an unadapted

model, and an adaptation set with m samples randomly generated from a target distribution, we

learned an adapted classifier using our regularized adaptation objective in Equation (4.7), where

the log joint likelihood loss and a uniform π(f) were used, and where λ’s for different m’s were

discovered using a development set with 5,000 samples. We computed the empirical error Remp(f)

on the adaptation set, and estimated the true error R(f) on a testing set with 10,000 samples (both

corresponding to the 0-1 loss). We then estimated

δ = E[I(R(f) > Remp(f) + ε)]

using 1,000 separate runs (10,000 samples each).

Figure 4.1 plots δ vs. log m for ε = 0.02 and ε = 0.1 with different D(ptr||pad) and m on

simulated 2D-Gaussians. The λ = 0 line corresponds to retraining from scratch (no adaptation),

and also to large KL-divergences, as then optimal λ discovery produces λ = 0. Although we do not

yet have a theoretical result to bound R(f) by Remp(f) in the Gaussian model case, as the function

space is continuous, we have empirically shown that fewer samples were needed for smaller KL

values to achieve the same confidence δ.

64

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

log
10
 m

δ

Retrain (λ=0)

KL=2.3e−2

KL=1.0e−2

KL=2.5e−3

KL=0

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Retrain (λ=0)

KL=2.3e−2

KL=1.0e−2

KL=2.5e−3

KL=0

log
10

m

δ

Figure 4.1: Empirical error bound study: δ vs. log m for ε = 0.02 (upper figure) and ε = 0.1 (lower

figure)

65

Chapter 5

REGULARIZED ADAPTATION ALGORITHMS

In Chapter 4, we proposed a general adaptation objective, i.e., min
f∈F

Remp(f)−λ ln pfid(f), where

f represents model parameters and pfid(f) is the fidelity prior. In practice, while optimizing this

objective is often intractable, we can minimize its upper bounds instead, e.g. using Equation (4.11)

for mixture models and Equation (4.25) for log linear models. This chapter discusses the instantia-

tions of these algorithms for Gaussian mixture models (GMMs), support vector machines (SVMs)

and multi-layer perceptrons (MLPs) (Section 5.1 through Section 5.4), with focus on the last two

classifiers as they have received relatively less attention on adaptation techniques (see our discussion

in Chapter 1). Furthermore, in Section 5.5, we briefly discuss the relationship between adaptation

and inverse problems studied in the field of combinatorial optimization. Finally, we present MLP

and SVM adaptation experiments on a vowel classification dataset (for speaker adaptation) and an

object recognition dataset (for lighting condition adaptation).

5.1 GMM Adaptation

A general strategy for adapting generative models is given by Equation (4.7) in Chapter 4, where

we use the joint likelihood loss Q(f(x), y) = − ln p(x, y|f) to compute the empirical risk on the

adaptation data, and we regularize using the fidelity prior presented in Equation (4.4). In particular,

we apply this “regularized adaptation” algorithm to Gaussian mixture models, where p(x|y, f) =
∑

k

cy,kN (x; µy,k, Σy,k), and p(y|f) = ωy (following our notation in Chapter 4).

Here we investigate the case where the adaptation is partially supervised. In other words, for

each input xi, the class membership yi is present but the component membership ki is missing.

Consequently, the computation of the empirical risk involves marginalizing the complete likelihood

over ki before taking logarithm, i.e.

Remp(f) = − 1
m

m∑

i=1

ln p(xi, yi|f) = − 1
m

m∑

i=1

ln
∑

k

p(xi, yi, ki = k|f) (5.1)

66

which can be not optimized directly. We can, however, iteratively minimize an upper bound of this

using the expectation-maximization (EM) algorithm [142]. Specifically, we let δy(i)
∆= I(yi = y)

denote an indicator function which equals one only when xi belongs to class y, and let Lk|y(i)
∆=

p(ki = k|xi, yi = y, fg) denote the component occupancy probability of sample (xi, yi = y) which

is calculated using model parameter in the previous update. Then an upper bound of the empirical

risk can be derived using Jensen’s inequality:

Remp(f) = − 1
m

m∑

i=1

∑
y

δy(i) ln
∑

k

p(xi, yi = y, ki = k|f)

= − 1
m

m∑

i=1

∑
y

δy(i) ln
∑

k

Lk|y(i)p(xi, yi = y, ki = k|f)
Lk|y(i)

≤ − 1
m

m∑

i=1

∑
y

δy(i)
∑

k

Lk|y(i) ln
p(xi, yi = y, ki = k|f)

Lk|y(i)

= −
∑

y

∑

k

1
m

m∑

i=1

δy(i)Lk|y(i) ln p(xi, yi = y, ki = k|f) + C

(5.2)

where C is a constant independent of the model parameters to be adapted. Furthermore, the com-

plete likelihood can be factorized as

p(xi, yi = y, ki = k|f) = p(yi = y)p(ki = k|yi = y)p(xi|ki = k, yi = y)

= ωycy,kN (xi; µy,k, Σy,k)
(5.3)

which decomposes the adaptation objective into several independent optimization problems.

Remp(f) ≤ −
∑

y

1
m

m∑

i=1

δy(i) lnωy −
∑

y

∑

k

1
m

m∑

i=1

δy(i)Lk|y(i) ln cy,k

−
∑

y

∑

k

1
m

m∑

i=1

δy(i)Lk|y(i) lnN (xi; µy,k, Σy,k) + C

(5.4)

On the other hand, Corollary 4.2.3 provides a bound on the fidelity prior for GMMs. Exacting out

the terms independent of the model parameters, and assuming a uniform standard prior π(f), we

have
− ln pfid(f) ≤ −

∑
y

ωtr
y lnωy −

∑
y

ωtr
y

∑

k

ctr
y,k ln cy,k

+
∑

y

ωtr
y

∑

k

ctr
y,kD(N (x;µtr

y,k, Σ
tr
y,k)||N (xi; µy,k, Σy,k)) + C ′

(5.5)

Combining these two bounds, we obtain an upper bound on our regularized adaptation objective

Remp(f) − λ ln pfid(f), which is convex in all model parameters. The derivation of EM update

67

equations then becomes straightforward. At each E-step, we compute Lk|y(i) using the current

model parameters fg,

Lk|y(i) =
ωg

yc
g
y,kN (xi;µ

g
y,k,Σ

g
y,k)∑

k

ωg
ycg

y,kN (xi; µ
g
y,k, Σ

g
y,k)

(5.6)

and accumulate sufficient statistics required by the M-step updates; and at each M-step, we re-

estimate the model parameters as follows,

ω̂y =

1
m

m∑

i=1

δy(i) + λωtr
y

1 + λ

ĉy,k =

1
m

m∑

i=1

δy(i)Lk|y(i) + λωtr
y ctr

y,k

1
m

m∑

i=1

δy(i) + λωtr
y

µ̂y,k =

1
m

m∑

i=1

δy(i)Lk|y(i)xi + λωtr
y ctr

y,kµ
tr
y,k

1
m

m∑

i=1

δy(i)Lk|y(i) + λωtr
y ctr

y,k

Σ̂y,k =

1
m

m∑

i=1

δy(i)Lk|y(i)(xi − µ̂y,k)(xi − µ̂y,k)T + λωtr
y ctr

y,k

(
Σtr

y,k + (µtr
y,k − µ̂y,k)(µtr

y,k − µ̂y,k)T

)

1
m

m∑

i=1

δy(i)Lk|y(i) + λωtr
y ctr

y,k

(5.7)

A derivation of the M-step updates is presented in Appendix B.1. These solutions are essentially the

same as the MAP estimates presented in [104], as we have shown in Chapter 4 that the fidelity prior

for GMMs is equivalent to the conjugate prior for GMMs with an appropriate setting of hyperpara-

meters.

Furthermore, for the estimation of cy,k, µy,k and Σy,k, we can replace EM with Viterbi updates

by assigning inputs to their most likely Gaussian components (in their respective classes), and re-

estimate parameters of a Gaussian component using only its members. In this way, the updates are

greatly simplified. For example, for Gaussian means we have

µ̂y,k = α
m∑

i=1

I(yi = y, ki = k)xi + (1− α)µtr
y,k (5.8)

where α is a tradeoff parameter similar to λ.

68

It is worth noting that the EM (or Viterbi) algorithm can also be applied to fully unsupervised

adaptation, where both yi and ki are missing for xi. In this case, we can simply replace δy(i)

by a posterior probability p(yi = y|xi) in all update equations above. Unsupervised adaptation,

however, can be problematic for classifying i.i.d. samples. This is because without any contextual

constraints, an unadapted model is likely to make consistent errors, and fully unsupervised adap-

tation may amplify these errors rather than correcting them. For non-i.i.d. samples, however, we

can impose high-level constraints, e.g. in the form of p(y1:m), which are vital to the effectiveness of

unsupervised adaptation. In continuous speech recognition, for example, p(y1:m) is determined by a

set of pronunciation models, which model the likelihood of a phoneme sequence in a word, and by a

language model, which models the likelihood of a word sequence. In this case, the errors committed

by the acoustic model may be corrected by the pronunciation models or the language model. In our

classification experiments (Section 7.1.4), however, we are not coping with structured data, and we

hence assume that y1:m are independent variables and are known in adaptation.

5.2 Links between SVMs and MLPs

The accuracy-regularization view of classification establishes a strong relationship between SVMs,

MLPs, CRFs and MaxEnt models [143, 144]. We are particularly interested in the links between

SVMs and MLPs, for a binary classification problem, the decision functions of SVMs and MLPs

take on the same form:

f(x) = 〈w, φ(x)〉+ b (5.9)

where φ(·) is a nonlinear transformation from the input space to a feature space in which linear

classification takes place. Given this mapping, the objective of SVM training coincides with that of

training the last layer of an MLP with weight decay [145], both of which can be expressed as

min
w,b

λ

2
‖w‖2 +

1
m

m∑

i=1

Q(f(xi), yi) (5.10)

where ‖w‖2 is the squared `2 norm, Q(·) is a loss function, and λ is an accuracy-regularization

tradeoff coefficient. Here f is represented by (w, b) as shown in Equation (5.9). There are several

key differences between SVMs from MLPs: (1) the choice of the nonlinear transformation φ(·);
(2) how the parameters of φ(·) are estimated; (3) the choice of the loss function Q(·); and (4) how

69

the parameters of f (i.e., w and b) are estimated. We discuss these aspects for SVMs and MLPs

respectively in the following text.

For SVMs, φ(·) is an input-to-feature space mapping that is implicitly determined by a repro-

ducing kernel in the form of k(x,x′) = 〈φ(x), φ(x′)〉 [61, 78, 146]. The kernel function k(x,x′)

measures certain “similarity” between two inputs. For example, the linear kernel has the form

k(x,x′) = 〈x,x′〉, and the Gaussian kernel has the form k(x,x′) = −‖x−x′‖2
σ2 . The parameters of

the kernel function, such as σ2 in the Gaussian kernel, are usually empirically chosen using cross-

validation, though there are strategies for automatically optimizing kernel parameters [147] which

are beyond the scope of this work.

In training a binary SVM, we typically assume a hinge loss function,

ξi
∆= Q(f(xi), yi) = |0, 1− yif(xi)|+. (5.11)

where ξi are called slack variables. Since the hinge loss is not differentiable, gradient based opti-

mization methods can not directly be applied. The training objective, however, can be formulated

as a constrained convex optimization problem which has a globally optimal solution. Specifically,

min
w,b,ξi

1
2
‖w‖2 + C

m∑

i=1

ξi

subject to yi(〈w, φ(x)〉+ b) + ξi − 1 ≥ 0;

ξi ≥ 0,

(5.12)

where C =
1

λm
. Introducing the Lagrangian form, we arrive at the optimal solution as follows,

f(x) = 〈w, φ(x)〉+ b = 〈
m∑

i=1

αiyiφ(xi), φ(x)〉+ b =
m∑

i=1

αiyik(xi,x) + b (5.13)

where xi with nonzero αi are called “support vectors” (SVs) and where the “kernel trick” is used so

that φ(·) is never explicitly evaluated [61, 78, 146]. The Lagrange multipliers αi are obtained in the

dual space by solving the following quadratic programming problem:

max
αi

m∑

i=1

αi − 1
2

m∑

i=1

αiαjyiyjk(xi,xj)

subject to
m∑

i=1

αiyi = 0;

0 ≤ αi ≤ C

(5.14)

70

σ(wTφ(x)+b)

V, d

σ(v
1
Tx+d1) σ(v

3
Tx+d1)

w, b

σ(v
2

Tx+d2)

x

σ(wTφ(x)+b)

V, d

σ(v
1
Tx+d1) σ(v

3
Tx+d1)

w, b

σ(v
2

Tx+d2)

x

Figure 5.1: Multilayer perceptrons

Additionally, to handle multi-class classification, we can apply the “one-against-others” training

scheme, i.e., we learn a binary classifier, for each class, using all training samples labeled as either

positive or negative w.r.t. this class. We adopt this scheme in our classification experiments since

it is easy to implement and empirically works well [61]. But there are alternative approaches such

as building pairwise classifiers [148] or using a training objective designed explicitly for multiclass

classification [69, 149].

Secondly, we inspect these aspects in a two-layer MLP. For consistency with a binary SVM,

we study a binary MLP which is depicted in Figure 5.1. In this example, we have D input units

represented by a vector x, N hidden units represented by a vector φ(x), and one output unit z in-

dicating a binary decision. The weight vector and bias of the hidden-to-output layer are denoted by

w and b respectively, and those of the input-to-hidden layer are denoted by V = [v1 . . .vN]T and

d = [d1 . . . dN]T . The forward-propagation of an MLP works as follows: the input vector goes

through an affine transform followed by a non-linearity, producing a hidden node vector. Mathe-

matically, φn(x) = σ(〈vn,x〉+ dn), n = 1..N , where σ(·) is a sigmoid function. In the same way,

the hidden-to-output layer produces a binary output z = σ(f(x)) = σ(〈w, φ(x)〉 + b), where the

sigmoid converts f(x) to a valid posterior probability, i.e., z = p(y = +1|x, f).

Under this setting, we see that the form of φ(·) is fully determined once the number of hidden

71

units is fixed. Note that there can be other choices of φ(·) for general neural networks, such as the

use of radius basis functions [145]. Moreover, the parameters in φ(·), namely the input-to-hidden

layer weights, can be optimized systematically using the back-propagation algorithm [145, 150].

In training an MLP, we minimize the conditional likelihood loss (or equivalently the logistic

loss) Q(f(xi), yi) = p(yi|xi, f) which is equivalent to minimizing the relative entropy between the

true class membership distribution and the MLP output. To see this,

− ln p(yi|xi, f) = I{yi=+1} ln
I{yi=+1}

p(yi = +1|xi, f)
+ I{yi=−1} ln

I{yi=−1}
p(yi = −1|xi, f)

, (5.15)

It has been proved that by minimizing the relative entropy using a sufficient amount of training data,

we can obtain an MLP whose output converges to the true posterior probability [145]. Notice that

a sigmoid function is not convex, but its the logarithm is. Therefore, the training objective in Equa-

tion (5.10) is convex in the hidden-to-output layer parameters but not in the input-to-hidden layer

parameters. Stochastic gradient descent or second order gradient methods [145, 150] are usually

applied to find a local optimum.

The objective in Equation (5.10), in fact, can be readily extended to multi-class classification. In

this case, the hidden-to-output weight vector is replaced by a weight matrix and the output sigmoid

function is replace by a logistic function, i.e., the kth output is expressed as

zk =
exp{wT

k x + bk}
K∑

k=1

exp{wT
k x + bk}

(5.16)

It again has the desired property that zk converges to the true posterior probability if we minimize

the relative entropy using a sufficiently large amount of training data.

As the community learns more about both MLPs and SVMs, their interpretation appears to be

converging towards one idea. In fact, [143] showed that training an MLP with either weight decay

or early stopping can be viewed as max-margin training, and [151] showed that the use of relative

entropy as a loss function also has a max-margin interpretation.

As a side note, CRFs [152] and MaxEnt models [153, 154] has the same decision function form

as Equation (5.9), and the same general training objective as Equation (5.10). In both cases, the

choice of φ(x) is more flexible than that in SVMs or MLPs; it may essentially be any feature

function, thereby facilitating the incorporation domain knowledge in the model.

72

Although the training algorithms for MLPs and SVMs are well studied, their respective adap-

tation algorithms are perhaps relatively under-investigated. In the next two sections, we present

simple and principled adaptation algorithms derived from Chapter 2 for adapting SVMs and MLPs

respectively. These algorithms, as we will see, provide a unified view of many existing SVM and

MLP adaptation strategies.

5.3 SVM Adaptation

This section investigates SVM adaptation algorithms. We first review related work in the literature,

and then present our algorithms derived from Chapter 4.

5.3.1 Related work

Most works on SVM adaptation in the literature follow an incremental learning or sequential learn-

ing paradigm (see [155] for early work on incremental learning). Incremental SVM learning was

originally proposed to scale up inductive learning algorithms for very large datasets [132,156,157].

As discussed in the last section, exact SVM training requires to solve a quadratic programming

problem in a number of coefficients equal to the number of training samples, thereby making large-

scale learning problems difficult. Since only the support vectors (SVs) contribute to the decision

boundary, training using these SVs would give exactly the same decision function as training on the

whole data set. This makes SVM amenable to incremental learning, e.g. chunking [61], where the

SVs of the previous subset are combined with a new subset in the next learning step.

The adaptation problem can be tackled in the same fashion – an adapted model can be learned

using a combination of the SVs of the unadapted model and a subset of the adaptation data [130,

131]. In particular, [130] combined the old SVs with only mis-classified samples from the adaptation

data; those correctly classified by the unadapted model are discarded since, to some extent, they are

redundant given the SVs from the unadapted model. In Section 7.1.4, a classifier trained in this

fashion will be referred to as a ”boosted” classifier since it strongly relates to the idea of boosting

[79, 80]. In contrast, [131] took an exactly opposite strategy, which discarded the mis-classified

adaptation samples while keeping the correctly-classified ones. The justification for this approach,

however, was not clearly stated.

73

In this work, we would like to note that the original setting of incremental learning and the

setting of adaptation are not entirely the same. The former aims to minimize the expected risk of

the training distribution (which is presumably the same as the target distribution), while the latter

aims to minimize the expected risk of the target distribution (which is different from the training

distribution). The two data selection strategies [130] and [131] are more often used for incremental

learning, but are not necessarily optimal for adaptation. In fact, there is no reason we should discard

any adaptation data, because each sample is a true representative of the target distribution.

An improved incremental learning approach applicable to the problem of adaptation was in-

troduced in [132]. In this work, the old SV set and the new data set are weighted differently in

optimization. In the same spirit, [133] proposed an auxiliary data technique explicitly for scenarios

where two data sources can have different distributions. This approach is the most similar to our

work, as will be discussed shortly. A more general approach was proposed in our work [50], where

each old SV was assigned a different weight, according to its likelihood with respect to the target

distribution. We discuss this algorithm in the following subsection.

5.3.2 Error weighting – an empirical attempt

Specifically, we weight the slack variables to make an error on the training data less costly than

one on the adaptation data. Again we only consider a binary classifier. We define SV tr as the SVs

obtained from the training data, and (wtr, btr) the resulting affine function parameters. Similarly,

we define SV ts as the SVs learned using only the adaptation data, and (wts, bts) the resulting affine

function parameters. Recall that the adaptation data is denoted as Dad
m where m is the sample size.

We then modify the objective function in Equation (5.12) to the following,

min
w,b,ξ

1
2
‖w‖2 + C

(|SV tr|∑

i=1

piζi +
m∑

i=1

ξi

)

subject to yi(〈w, φ(xi)〉+ b) + ζi − 1 ≥ 0; (xi, yi) ∈ SV tr

yi(〈w, φ(xi)〉+ b) + ξi − 1 ≥ 0; (xi, yi) ∈ Dad
m

ζi ≥ 0; ξi ≥ 0

(5.17)

where pi are weights for the slack variables of the old support vectors. In this way, we can adjust

how important the role that the unadapted model plays in the adapted classifier. In an extreme case,

74

where pi = 1 for all i, the above objective is equivalent to training a SVM using all old SVs and all

adaptation data. At the other extreme, where pi = 0 for all i, the adaptation leads to a completely

new SVM trained using only the adaptation data. Between these two extremes, we would like to

weight each sample in SV tr by how likely it is to be generated from the adaptation data distribution.

For example, we can use

pi = g(〈wts, φ(xi)〉+ bts), (5.18)

where (wts, bts) is the SVM trained on the adaptation data only, and g(·) is a monotonically increas-

ing function converting a real number to a probability. For efficiency, we use an indicator function

g(x) = I(x > d), where d is a regularization threshold. In such a setting, all SV tr are selected

when d = −∞, while none are selected when d = +∞. For comparison, in our experiments in

Section 7.1.4 we also include the case where d = 0. In other words, we first retrain a rough classifier

(wts, bts) using only the adaptation data; then we use (wts, bts) as a seed to select more samples

(from SV tr) to enhance this classifier. We will call this algorithm as ”enhanced” in Section 7.1.4.

5.3.3 Regularized adaptation

In Chapter 4, inspired by the fidelity prior for log linear models, we proposed a regularized adap-

tation objective in Equation (4.29) repeated below for convenience. This leads to a simple yet

principled approach to SVM adaptation. Here we let λ2 = 0, meaning that b is estimated solely

from the adaptation data. Moreover, we choose the value of λ1 = λ by cross-validation. What

follows is the resulting adaptation objective.

min
w,b,ξi

1
2
‖w −wtr‖2 + C

m∑

i=1

ξi

subject to ξi ≥ 1− yi(〈w, φ(x)〉+ b); (xi, yi) ∈ Dad
m ;

ξi ≥ 0;

(5.19)

where wtr is the unadapted model. In contrast to SVM training, instead of minimizing ‖w‖2, now

we penalize the deviation from the unadapted model wtr. Note that there is a similar formulation

referred to as “biased regularization” in [61] and used for incremental training of SVMs in [141].

Next, we show that the regularized adaptation objective in Equation (5.19) corresponds to max-

margin training with a modified constraint. We first study Equation (5.19). We let f tr(xi)
∆=

75

〈wtr, φ(xi)〉+ btr denote the unadapted model, where wtr and btr are presumed to be fixed during

adaptation. Letting w̄ = w−wtr and b̄ = b− btr, and plugging them into Equation (5.19), we have

min
w,b,ξi

1
2
‖w̄‖2 + C

m∑

i=1

ξi

subject to ξi ≥ 1− yi(〈w̄ + wtr, φ(xi)〉+ b̄ + btr); ξi ≥ 0

=⇒

min
w̄,b̄,ξi

1
2
‖w̄‖2 + C

m∑

i=1

ξi

subject to ξi ≥ 1− yif̄(xi)− yif
tr(xi); ξi ≥ 0.

(5.20)

where f̄(xi) = 〈w̄, φ(xi)〉+ b̄. We see that this is equivalent to the standard SVM training objective

with a modified constraint. Similarly, we can derive the same constraints for Equation (5.27).

Figure 5.2 graphically illustrates how regularized adaptation works using an example of a linear

SVM classifier on 2D input features. In the figure, (a) shows the adaptation data (depicted as solid

circles and stars) and the decision function learned only using these samples, i.e., 〈wts,x〉+ bts; (b)

shows the unadapted decision function 〈wtr,x〉+ btr, and those adaptation samples that have large

margins w.r.t. to this decision boundary (depicted as hollow circles and stars) – little penalty should

be put on these samples according to Equation (5.20); and (c) shows the adapted decision function

obtained by training on the most relevant samples (depicted as solid circles and stars).

Before we present how to implement this adaptation algorithm, we would like to note that a

number of existing SVM adaptation strategies including [130,131] can be unified by a generalization

of the constraints in SVM training.

min
w,b

1
2
‖w‖2 + C

m∑

i=1

ξi

subject to ξi ≥ ψ(xi, yi); (xi, yi) ∈ Dad
m

ξi ≥ 0;

(5.21)

where as usual Dad
m denotes the adaptation set with m samples. Next we will illustrate that different

forms of ψ(·, ·) yield different adaptation strategies.

• If we let ψ(xi, yi) = 1− yif(xi), then Equation (5.21) is equivalent to Equation (5.10) with

the hinge loss. The resulting adaptation algorithm only uses the adaptation data and entirely

ignores information from the training data.

76

(a)

(b)

(c)

using adaptation

data only

unadapted model

adatped model

Figure 5.2: Regularized SVM adaptation. Circles and stars represent the adaptation data; the solid

lines in (a), (b) and (c) respectively represent the entirely retrained model, the unadapted model, and

the adapted model learned using Equation (5.20).

• If we let ψ(xi, yi) = I(yif
tr(xi) < 0)(1 − yif(xi)), where I(·) is the indicator function,

an adaptation sample is used only when it is misclassified by the unadapted model. If the

objective minimizes the empirical risk on both old support vectors and the adaptation data,

this method is equivalent to the method used in [130].

• Finally, our new approach combines the margin of the unadapted model and that of the model

we are optimizing, creating a form of “soft boosting”. Specifically, we let ψ(xi, yi) = 1 −
yif(xi)−yif

tr(xi). Intuitively, if an adaptation sample has a large margin with respect to the

77

decision boundary of the unadapted model, we decrease the importance of any margin error

made by the adapted model in its total contribution to the loss. In other words, if yif
tr(xi) is

large and positive, then we penalize little on this sample even if yif(xi) < 1.

5.3.4 Algorithm derivation and implementation

This subsection discusses the derivation and implementation of the regularized adaptation algorithm

proposed in Equation (5.19). Applying Lagrange multipliers αi ≥ 0 (to enforce the margin con-

straints) and µi ≥ 0 (to enforce positivity of ξi), we have

J =
1
2
‖w −wtr‖2 + C

m∑

i=1

ξi −
m∑

i=1

αi

(
yi(〈w, φ(xi)〉+ b)− 1 + ξi

)
−

m∑

i=1

µiξi (5.22)

Taking derivatives with respect to w, b and ξi and setting them to zeros,

∂J

∂w
= 0 =⇒ w = wtr +

m∑

i=1

αiyiφ(xi)

∂J

∂b
= 0 =⇒

m∑

i=1

αiyi = 0

∂J

∂ξi
= 0 =⇒ C − αi − µi = 0

(5.23)

Using the “kernel trick” [61], we obtain the optimal decision function as

f(x) = sgn
(
〈w, φ(x)〉+ b

)

= sgn
(|SV tr|∑

i=1

αtr
i ytr

i k(xtr
i ,x) +

m∑

i=1

αiyik(xi,x) + b

)
,

(5.24)

where (xtr
i , ytr

i) are support vectors from the unadapted model and αtr
i are their corresponding

weights which are fixed during adaptation. The Lagrangian multipliers αi are to be optimized in the

dual space using the adaptation data Dad
m . Plugging Equations (5.23) back into Equation (5.22), we

arrive at an optimization problem in the dual space.

max
αi

m∑

i=1

αi − 1
2

m∑

i=1

m∑

j=1

αiαjyiyjk(xi,xj)−
m∑

i=1

αiyi

|SV tr|∑

j=1

αtr
j ytr

j k(xi,xtr
j)

subject to
m∑

i=1

αiyi = 0;

0 ≤ αi ≤ C

(5.25)

78

Fixing parameters from the unadapted model, and using the fact that
m∑

i=1

αiyi = 0, the above is

equivalent to

max
αi

m∑

i=1

(1− yif
tr(xi))αi − 1

2

m∑

i=1

m∑

j=1

αiαjyiyjk(xi,xj) (5.26)

under the same constraints. We see that this differs from Equation (5.14) only in that αi in the first

term are weighted differently.

Alternatively, since the support vectors from the unadapted model are available at adaptation

time, we can as well update their weights, i.e. αtr
j in Equation (5.24). Note that we do this by

minimizing the empirical risk on both the old support vectors and the adaptation data, leading to the

following objective

max
αi,αtr

i

|SV tr|∑

i=1

αtr
i +

m∑

i=1

αi − 1
2

|SV tr|∑

i=1

|SV tr|∑

j=1

αtr
i αtr

j ytr
i ytr

j k(xtr
i ,xtr

j)

−1
2

m∑

i=1

m∑

j=1

αiαjyiyjk(xi,xj)−
m∑

i=1

αiyi

|SV tr|∑

j=1

αtr
j ytr

j k(xi,xtr
j)

subject to
|SV tr|∑

i=1

αtr
i ytr

i = 0;
m∑

i=1

αiyi = 0;

0 ≤ αtr
j ≤ C; 0 ≤ αi ≤ C

(5.27)

In our experiments, we call this the “extended regularized” algorithm. However, for SVMs using

linear kernel, the old support vectors do not have to be saved — only the w and b are necessary to

classification — and the “extended regularized” algorithm is not applicable in this case.

Regarding implementation, our optimization algorithm is developed based on SVMTorch [158],

which uses a slightly modified version of the sequential minimal optimization (SMO) algorithm

[159]. SMO is a conceptually simple algorithm with better scaling properties than a standard chunk-

ing algorithm. In the inner loop of the quadratic programming, SMO empirically chooses two αi’s

at a time and optimizes them analytically. For reference Appendix B.2 gives the updating formula

for our regularized adaptation algorithm which is derived based the SMO algorithm [159].

Although SMO greatly expedites the optimization process, the algorithm can still converge

slowly especially when using nonlinear kernels on very large datasets (e.g, over 20K samples).

Moreover, it is sometimes expensive to store and transfer a SVM classifier as the number of SVs in

general scales up with the number of training samples [61]. Since the regularized adaptation algo-

79

rithm and many other algorithms require the evaluation of f tr(xi) at every adaptation sample i, the

time and space efficiency can be adversely affected by the scale of the unadapted model.

5.4 MLP Adaptation

This section discusses adaptation algorithms for MLP classifiers. Analogous to the last section, we

first review related work and then present our proposed regularized adaptation algorithm.

5.4.1 Related work

The problem of MLP adaptation has been investigated in the machine learning community in the

context of multi-task learning [26,28,31], and in the speech community for adapting hybrid HMM-

MLP systems [127–129,160]. A common adaptation strategy is either retraining part of the original

network or adding augmentative layers. The network parameters to be retrained or added can be

estimated via back-propagation [145, 150]. First, there is RSI (retrained speaker-independent), dis-

cussed in [128]. This approach starts from the unadapted (speaker-independent) model and retrains

the entire network, while early stopping [143] can be applied to avoid overfitting. Next, there is

RLL (retrained last layer) [26, 31, 127] which starts from the unadapted model and retrains only

the hidden-to-output layer of the MLP. The intuition is that the input-to-hidden layer provides an

”internal representation” which is common to all tasks, while the hidden-to-output layer provides a

task-dependent decision function constructed on the basis of this internal representation [26]. The

method in [127] also enables the selection of the most active hidden neurons, and it only adapts

the last-layer weights associated with these neurons. Finally, another popular approach LIN (linear

input network) [128, 129] augments the unadapted network with an additional linear transforma-

tion input layer. It is this layer that is trained using the adaptation data; the original network stays

unchanged. In this case, the number of free parameters is often further reduced using parameter

tying. For example, in vowel classification or speech recognition, the input feature vector is often a

concatenation of feature vectors from a number of consecutive frames. The transformation matrix,

therefore, is often constrained to be a block diagonal matrix with identical block-wise sub-matrices.

In many real-world tasks, these methods have shown significant performance improvements over

merely using the unadapted model. None of them, however, has worked universally the best in all

80

adaptation scenarios. One reason is that the number of free parameters to estimate depends on the

MLP architecture. For example, in object recognition tasks, the input layer often has a very high

dimension D that equals the number of pixels in a raw image. In such a case, the LIN algorithm

that directly estimates a gigantic D ×D transformation matrix is likely to fail. Although parameter

tying might mitigate the overfitting problem, it is not clear how to perform typing on an input image.

The second reason is that the amount of labeled adaptation data may vary from task to task, but the

degrees of freedom in the above algorithms are more or less fixed, which can easily cause overfitting

or underfitting.

5.4.2 Regularized adaptation

In this work, we apply a regularized adaptation algorithm which is amenable to changes in MLP

architecture and in the amount of adaptation data available. The adaptation objective is derived

from Equation (4.29), where we use the relative entropy as the Q(·) function and where we let

λ2 = λ similar to the case of SVMs.

In fact, we can extend this algorithm to a multi-class, two-layer MLP where we regularize the

weight matrix in each layer of the network. We regularize the input-to-hidden layers only because

we have found it to be practically advantageous as will be shown in Section 7.1.4 — this regularizer

is not derived from our fidelity prior. Here we use the same notation as was defined in Section 5.2.

Since we are considering K classes, the hidden-to-output layer now consists of K weight vectors

and biases, forming a weight matrix W and a bias vector b.1 Similarly, the input-to-hidden layer

weight matrix and bias vector are denoted by V and d respectively. We also introduce a set of

variables regarding sample i in Table 5.1

Given the above notation, the adaptation objective is expressed as

min
W,b,V,d

λh2o

2
‖W −Wtr‖2 +

λi2h

2

∑
‖V −Vtr‖2 +

1
m

m∑

i=1

(K∑

k=1

ti,k log
ti,k
zi,k

)
(5.28)

where we use separate tradeoff coefficients λh2o and λi2h for regularizing the input-to-hidden and

hidden-to-output layers respectively, and where ‖A‖2 = tr(AAT). Due to mathematical tractability

1In fact, we can incorporate the bias into the weight vector if adding ”1” as another dimension in the vector φ(x). In
this work, we use explicit bias terms for consistency with the SVM notation.

81

Table 5.1: Notation of a two-layer MLP

xi: input vector representing D input units;

ci: ci = Vxi + d; i.e., ci,n = 〈vn,xi〉+ dn, n = 1..N ;

φi: hidden vector representing N units, where φi,n = σ(ci,n), n = 1..N ;

ai: ai = Wφi + b; i.e., ai,k = 〈wk, φi〉+ bk, k = 1..K

zi: output vector representing K output units, zi,k =
exp{−ai,k}∑K
j=1 exp{−ai,j}

, k = 1..K;

ti: target label vector, where ti,k = I(k = yi)

of the `2-norm, the above adaptation objective can be easily optimized using the back-propagation

algorithm [145, 150] (stochastic gradient descent or second-order gradient methods), which is typi-

cally much faster than the quadratic-programming-like procedures needed for SVM optimization in

terms of total computation time.

Many adaptation algorithms introduced in the past can fit in the regularized adaptation frame-

work. First, the RSI algorithm, in which both layers are re-estimated, is akin to λh2o = λi2h = 0.

Next, the RLL algorithm in which only the last layer is re-estimated is akin to λh2o = 0 and

λi2h →∞. Finally, since a cascade of linear transforms is a linear transform, the method of LIN is

akin to λh2o →∞ and λi2h = 0. We also define in this work a new method, entitled RFL (retrained

first layer) which also corresponds to λh2o →∞ and λi2h = 0. Of course, all of these methods are

generalized by varying the λh2o and λi2h tradeoff coefficients.

5.4.3 Algorithm derivation and implementation

This subsection discusses the derivation and implementation of the regularized adaptation algorithm

in Equation (5.28). For convenience we define the last term in the objective as

Ji
∆=

K∑

k=1

ti,k log
ti,k
zi,k

(5.29)

Now we apply the back-propagation algorithm. The first step is to compute the first-order derivatives

w.r.t. the model parameters to be adapted. Taking derivatives of Ji with respect to the hidden-to-

82

output layer parameters wk and bk, we have

∂Ji

∂wk
=

∂Ji

∂ai,k
· φi

=
K∑

j=1

∂Ji

∂zi,j
· ∂zi,j

∂ai,k
· φi

=
K∑

j=1

(− ti,j
zi,j

) · (zi,jδj,k − zi,jzi,k)

= (zi,k − ti,k) · φi

∂Ji

∂bk
= zi,k − ti,k

(5.30)

Next, taking derivatives of Ji w.r.t. the input-to-hidden layer parameters vn and dn gives

∂Ji

∂vn
=

∂Ji

∂ci,n
· xi

=
K∑

k=1

∂Ji

∂ai,k
· ∂ai,k

∂ci,n
· xi

= φi,n(1− φi,n)
K∑

k=1

(zi,k − ti,k)wk,n · xi

∂Ji

∂dn
= φi,n(1− φi,n)

K∑

k=1

(zi,k − ti,k)wk,n

(5.31)

On the other hand, it is straightforward to derive the derivative of ‖w −wtr‖2. Given these deriva-

tives, the second step is to update the model parameters using stochastic gradient descent. In other

words, we apply gradient descent using online processing where the parameters are updated every

sample, in contrast to batch processing where each update is averaged over all samples. Online

processing often yields better performance since the parameters are updated much more frequently

than in the batch mode. Additionally, bunch processing is a compromise between the two, in which

each update is averaged over a ”bunch” of samples. The inner loop of the gradient descent algorithm

for online processing is written as follows. For i = 1..m,

wk = wk − η

(
(zi,k − ti,k) · φi + λh2o(wk −wtr

k)
)

(5.32)

bk = bk − η(zi,k − ti,k) (5.33)

vn = vn − η

(
φi,n(1− φi,n)

∑

k

(zi,k − ti,k)wk,n · xi + λi2h(vn − vtr
n)

)
(5.34)

dn = dn − η

(
φi,n(1− φi,n)

∑

k

(zi,k − ti,k)wk,n

)
(5.35)

83

where η is the learning rate. We will give the update formula for a general L-layer MLP in Appen-

dix B.3.

Given a two-layer MLP with D input units, N hidden units and K output units, the space

complexity of the MLP is O((D + K)N). The time complexity of the adaptation inner loop is

O((D + K)Nm), where m (the number of adaptation samples), while the number of outer loops

(or learning epoches) may vary. In general, MLPs are more efficient than SVMs on large datasets,

while SVMs perform better on sparse data.

5.5 Relation to Inverse Optimization Problem

Before we move on to the experiment section, we discuss the relationship between adaptation and

inverse combinatorial optimization [161–163]. We use the shortest path problem as an example of

combinatorial optimization problems. Assume that we have a graph in which nodes represent loca-

tions and edges represent roads connecting locations. Further assume that there is a cost associated

with each road, which depends on length, road condition, traffic condition and etc. The shortest

path problem is to find a path between two locations with the minimum sum of costs. Formally,

considering a directed graph, we let (i, j) ∈ E denote a directed edge from i to j, and let cij denote

the cost associated with this edge. We further define a set of binary variables xij indicating whether

the edge from i to j is selected. The problem of finding the shortest path from s to t is equivalent

to finding xij such that
∑

cijxij is minimized under the constraint that xij constitute a valid path

from s to t. This can be formulated as a linear programming problem [164]:

min
xij

∑

(i,j)∈E

cijxij

s.t.
∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji =





1 i = s

0 i 6= s and i 6= t

−1 i = t

0 ≤ xij ≤ 1 ∀(i, j) ∈ E

(5.36)

If the graph does not have any negative cost cycle, the above linear programming problem has an 0-1

optimal solution [164]. More generally, a family of optimization problems (including the shortest

path problem) can be formulated as

min
x∈A

g(cTx) (5.37)

84

where A is a set of feasible solutions.

The inverse optimization problem is such that for a feasible solution to the original optimization

problem, we want to discover under what cost vectors will this feasible solution become an optimal

solution. The inverse problem has a number of variations [162–164], one of which is to find a new

cost vector c, with minimal deviation from some known cost vector c0, such that a given solution

x0 is an optimal solution to (5.37), i.e.,

min
c

‖c− c0‖p

s.t. g(c,x0) = min
x∈A

g(c,x)
(5.38)

It has been shown by [163, 164] if (5.37) is a linear programming problem, e.g. the shortest path

problem, then its inverse problem under norm p = 1 and p = ∞ is also a linear programming

problem.

Slightly twisting the roles of these variables, we see that the inverse optimization problem

closely relates to regularized adaptation. We replace v with class labels y1:m in a classification

problem, replace c with affine parameters (w, b), and let g(·) =
m∑

i=1

Q(f(xi), yi), where f(xi) =

wTxi + b. In adaptation, we are given c0 = (wtr, btr) which is known a-priori, and we aim to

estimate new parameters (w, b), with minimal deviation from (wtr, btr), such that the true class

labels v0 = y1:m becomes an optimal solution w.r.t. g(·). Formally,

min
w

‖w −wtr‖2

s.t.
m∑

i=1

Q(f(xi), yi) = min
y′1:m∈Ym

m∑

i=1

Q(f(xi), y′i);
(5.39)

where (xi, yi), i = 1..m, are samples from the adaptation set Dad
m .

We can prove that for binary classification and for certain loss functions, a decision function f

satisfying the constraint in (5.39) has zero classification error on the adaptation data. To see this,

since (xi, yi) are i.i.d., the constraint is equivalent to

Q(f(xi), yi) = min
y′i=±1

Q(f(xi), y′i), i = 1..m (5.40)

We are especially interested in the hinge loss and the log loss, using which the above constraint is

equivalent to

yif(xi) = max
y′i=±1

y′if(xi), i = 1..m (5.41)

85

Since yi ∈ {±1}, it must be that any decision function f satisfying Equation (5.41) satisfies

yif(xi) > 0 for all i, which implies zero classification error. On the other hand, it is easy to

see that a decision function with zero classification error on the adaptation data must satisfy the

constraint in (5.39). This suggests that if wtr already achieves zero classification error onDad
m , then

wtr itself is the optimal solution to the inverse optimization problem in Equation (5.39), which is

intuitively correct.

In practice, (5.40) is often too strict a constraint to allow any feasible solution. For example,

when Dad
m is non-separable, there is no decision function that satisfies (5.41). We therefore would

like to relax the constraint a bit so that the problem generalizes to non-separable cases. We introduce

a slack variable ξi > 0 to each of the constraints in (5.40). This slack variable represents how much

the loss of the correct label exceeds the minimal loss of all possible labels, and we certainly want

these slack variables to be as small as possible. The inverse optimization problem hence becomes

min
w

λ
2‖w −wtr‖2 +

m∑

i=1

ξi

s.t. Q(f(xi), yi) = min
y′i∈Y

Q(f(xi), y′i) + ξi;

ξi ≥ 0

(5.42)

This leads to an adaptation objective for potential applications such as parsing and structure learning

of graphical models. A large-margin training objective with constraints in a similar fashion has been

proposed in [69].

5.6 Adaptation Experiments

This section presents two sets of adaptation experiments, one on a vowel classification task and the

other on an object recognition task. The general experimental paradigm is as follows: for each task,

we learn the best unadapted model on the training set, and then perform adaptation and evaluation

via cross-validation (CV) on the test set. In other words, we divide the test set into n folds, we

repeatedly choose one fold as the adaptation set and the remaining folds as the test set.

The first task involves a reasonably large training set of about 300K samples. As we found that

training a SVM on such a dataset was prohibitive, we used sub-sampled data to learn the unadapted

model, and we will focus more attention on the use of MLPs in this task. The second task involves a

86

rather sparse training set of 2700 image samples with high-dimensional features. As we will see, an

unadapted SVM is advantageous over an unadapted MLP in this case. Since the performances of the

unadapted SVM and MLP are different, it is to some extent unfair to compare the performances of

their respective adapted models. Our goal here is to compare various adaptation algorithms applied

to the same unadapted classifier.

5.6.1 Frame-level vowel classification

We have briefly introduced the Vocal Joystick in Chapter 1, and we will elaborate on this topic in

Chapter 6. Along with the development of the VJ system, we have collected a large corpus of vowel

utterances which can be potentially used in pattern recognition and machine learning research [55].

This section discusses the application of our proposed regularized adaptation algorithms to a vowel

classification task based on this corpus.

The VJ-vowel corpus

The Vocal Joystick (VJ) [36] is a human-computer interface system that enables individuals with

motor impairments to control computing devices (mice pointers, etc.) with continuous aspects of

their voice (pitch, vowel quality). Within this project, we needed a frame-level vowel classifier. To

this end, we initially used speech data from the TIMIT speech corpus [165] to train such a classifier.

However, we empirical found that using TIMIT is not best-suited for training the VJ vowel classifier.

This is because the vowels used by the VJ often need to be pronounced in a drawn-out manner,

while the vowels in TIMIT are usually short and are often spoken with much co-articulation present.

Therefore, we made a large data collection effort in a controlled environment that yields a new vowel

corpus that was representative of the utterances a user of the VJ-system would use. The result of

the data collection effort is a vowel corpus of approximately 11 hours of recorded data comprised of

approximately 23,500 sound files of monophthongs and vowel combinations (e.g. diphthongs) with

variations in duration, pitch and intensity. A full description of this corpus and the data collection

methodologies can be found in [55].

To test our machine learning algorithms, we extracted from the VJ corpus a dataset of 8 monoph-

thong vowels: /æ/, /a/, /A/, /o/, /u/, /1/, /i/, and /e/. All speakers articulated each vowel with all

87

Table 5.2: Amounts of training, test and development data in VJ-Vowel

speakers # samples in total non-silent audio

Training set 21 420K 1.16 hrs

Test set 10 200K 0.56 hrs

Development set 4 80K 0.22 hrs

combinations of the following: (a) long/short (in duration); (b) falling/level/rising (in pitch); (c)

loud/normal/quiet (in intensity). In other words, there are 2× 3× 3 = 18 utterances for each vowel

class and each speaker. We allocated 21 speakers to the training set (for training the unadapted

model), 10 speakers to the test set (for CV-style adaptation and evaluation) and 4 speakers to the

development set (for parameter tuning). In this thesis, we use exactly the same test set for MLP,

SVM and GMM adaptation experiments so that the results are comparable. Unlike earlier experi-

ments [48,49], the audio files in this test set were recorded without phonetician’s supervision, which

we think is a more realistic scenario in real-world applications. The training and development sets,

however, were collected with phonetician’s supervision. The number of samples in each set is listed

in Table 5.2. For a particular speaker in the development set and the test set, we performed 6-fold

adaptation-evaluation experiments (same as cross-validation) with different amounts of adaptation

data. Specifically, experiment VJ-A, VJ-B and VJ-C used approximately 1K, 2K and 3K sam-

ples per speaker for adaptation respectively, while all experiments used the same 17K samples per

speaker for evaluation. We repeated this for all 6 folds and computed the average error rate for each

speaker. We then computed the mean and standard deviations of these averaged error rates over

10 speakers. In this regard, the standard deviation reflects the variation in adaptation performance

across different speakers (which is typically rather high). To test the significance of the mean error

rates, we also conducted difference of proportion significance test.

Regarding input features, we created a frame every 10ms, each with a length of 25ms. We

then extracted standard mel frequency cepstral coefficients (MFCCs) plus their deltas each frame,

producing a 26-dimensional vector. Moreover, an input vector xi is formed by concatenating

88

Table 5.3: Dev-set error rates of unadapted 8-class MLPs with different numbers of hidden units

and window sizes. The highlighted entries include the best error rate and those not significantly

different from the best at the p < 0.002 level.

hidden/win 1 3 5 7 9

25 29.92 27.20 26.03 25.85 25.92

50 28.07 27.30 25.75 25.27 26.07

100 27.83 26.80 26.87 26.30 26.37

200 27.80 26.53 26.4 26.03 25.97

400 27.37 26.23 25.97 25.90 25.83

MFCCs+deltas from a consecutive W frames centered at i, where W is the window size.

MLP experiments

First, we trained an unadapted two-layer MLP with different configurations. We varied the number

of window size W on one hand, and the number of hidden nodes N on the other. For each setting, we

also tuned the regularization coefficients λh2o and λi2h, and found that the impact of regularization

was negligible in this case (probably because the training set is large). Note that all above parameters

were tuned using the development set. The results are reported in Table 5.3, which shows that the

best result comes from using a window size of 7 and using 50 hidden units. When applied to the

test set, this configuration obtained an error rate of 33.14%. This error rate is quite high considering

there are only 8 vowel classes. By listening to the waveforms, we found that although most of

the vowel utterances from the same speaker were distinguishable from one another, it was fairly

common that a vowel articulated by one speaker sounded similar to a different vowel articulated by

another speaker, especially in the case of /a/ and /A/. In other words, the Bayes error of a speaker-

independent classifier tends to be high on this dataset.

Next, we conducted adaptation experiments based on the best vowel classifier we obtained. and

compared the following algorithms: (1) unadapted; (2) retrained with weight decay using only

the adaptation data; (3) LIN (linear input network) [128]; (4) RSI (retrained speaker independent)

89

Table 5.4: Test-set error rates (means and standard deviations over 10 speakers) of experiment VJ-

A, VJ-B and VJ-C using 8-class MLPs, where the amounts of adaptation data were balanced across

classes; The highlighted entries include the best error rate and those not significantly different from

the best at the p < 0.001 level.

samples per speaker 1K 2K 3K

Unadapted 33.14 ± 9.38 33.14 ± 9.38 33.14± 9.38

Retrained 23.80 ± 5.17 17.94 ± 4.80 14.31 ± 3.97

(λh2o=10−3 λi2h=0) (λh2o=10−4 λi2h=0) (λh2o=0 λi2h=0)

LIN 21.87 ± 5.02 18.28 ± 4.89 16.56 ± 4.05

RSI (λh2o=0, λi2h=0) 18.97 ± 5.09 15.70 ± 4.25 12.90 ± 3.64

RLL (λh2o=0, λi2h=∞) 21.84 ± 5.74 18.40 ± 4.65 15.83 ± 3.77

RFL (λh2o=∞, λi2h=0) 18.64 ± 5.37 15.20 ± 4.23 12.18 ± 3.51

Regularized 18.64 ± 5.37 15.20 ± 4.27 12.30 ± 3.68

(λh2o=∞ λi2h=0) (λh2o=∞λi2h=10−2) (λh2o=∞ λi2h=10−4)

[128]; (5) RLL (retrained last layer) [127]; (6) RFL (retrained first layer), which we introduce in this

work since it is a natural instantiation of regularized adaptation; and (7) regularized as presented

in Equation (5.28). For (2) and (7), we first chose the best λh2o and λi2h values on the development

set, and then applied them to the test set. In all cases, we computed the average error rates over these

6 adaptation/evaluation folds. We then repeated this for all 10 test speakers, and the final results are

means and standard deviations of these error rates over 10 speakers.

Table 5.4 shows results for experiment VJ-A, VJ-B and VJ-C which used different amounts of

adaptation data, i.e. 1K, 2K and 3K samples per speaker respectively (corresponding to 10s, 20s

and 30s for all 8 vowels spoken by each speaker). The amounts of adaptation data were balanced

across all 8 classes. As shown in the table, all adaptation algorithms outperformed the unadapted

model, while their performance kept improving as more adaptation data became available. Overall,

”regularized” performed the best in terms of mean error rate, and RFL worked almost as well. Note

that the high standard deviations are largely due to the variation in unadapted model performance

90

Table 5.5: Test-set error rates (means and standard deviations over 10 speakers), with different

number of classes of adaptation data available (unbalanced classes), and with ∼ 350 samples per

class (3K in total). Highlighted entries include the best error rate and those not significantly different

from the best at the p < 0.001 level.

vowel classes in Dad
m 1 2 3 4

Unadapted 33.14 ± 9.38 33.14 ± 9.38 33.14 ± 9.38 33.14 ± 9.38

LIN 41.01 ± 4.25 41.30 ± 6.36 39.46 ± 5.94 35.35 ± 6.80

RSI 37.42 ± 5.20 40.78 ± 4.43 40.43 ± 4.78 36.76 ± 5.57

RLL 38.24 ± 5.63 43.63 ± 5.40 44.62 ± 5.31 41.91 ± 6.32

RFL 34.89 ± 5.52 34.68 ± 4.30 34.67 ± 5.34 27.23 ± 6.15

Regularized 33.14 ± 9.38 33.14 ± 9.38 33.14 ± 9.38 25.44 ± 5.95

λh2o = ∞ λh2o = ∞ λh2o = ∞ λh2o = ∞
λi2h = ∞ λi2h = ∞ λi2h = ∞ λi2h = 10−2

vowel classes in Dad
m 5 6 7 8

Unadapted 33.14 ± 9.38 33.14 ± 9.38 33.14 ± 9.38 33.14 ± 9.38

LIN 27.82 ± 6.76 27.19 ± 4.40 21.29 ± 4.50 16.56 ± 4.05

RSI 29.80 ± 8.08 26.86 ± 5.41 17.44 ± 5.28 12.90 ± 3.64

RLL 35.27 ± 8.72 31.41 ± 5.10 22.55 ± 5.10 15.83 ± 3.77

RFL 21.85 ± 7.46 21.14 ± 5.46 13.73 ± 4.22 12.18 ± 3.51

Regularized 20.32 ± 6.28 20.23 ± 5.29 13.07 ± 4.20 12.30 ± 3.68

λh2o = ∞ λh2o = ∞ λh2o = ∞ λh2o = ∞
λi2h = 10−2 λi2h = 10−2 λi2h = 10−4 λi2h = 10−4

when tested on different speakers (as indicated by the standard deviation of the unadapted model).

Furthermore, for the Vocal Joystick application, we also trained a 4-class MLP. The unadapted

model had an error rate of 8.11 ± 2.37%. Regularized adaptation obtained 3.06 ± 3.73%, 2.21 ±
2.25% and 1.98± 2.02% using 1K, 2K and 3K adaptation samples per speaker respectively.

91

An alternative approach to measure adaptation performance is to vary the fraction of the number

of vowel classes available to adapt on (e.g., it may be desirable to adapt using data from only

samples from 3 of those 8 vowel classes). This approach is more akin to the situation in ASR,

where limited adaptation data almost assuredly means that certain categories (phones or words) are

not available. Table 5.5 shows results when the amounts of adaptation data were unbalanced across

the 8 classes. Column i means a system was adapted only with i out of the 8 possible number of

classes. We experimented with different random orders that the vowel classes became available

for adaptation and observed similar patterns in results, and here we only report the results for one

such order. As the table shows, when the number of vowel classes available was no larger than 3,

the best strategy was to use the unadapted model; when this number was above 3, ”regularized”

performed significantly better than any of the other algorithms up to all 8 vowel classes at which

point ”regularized” and RFL performed equally well. It is also interesting to notice that the best

configuration for the regularized algorithm was almost always λh2o = ∞ and λi2h ≈ 0, meaning

that the last layer of the MLP is fixed and the first layer had moderate or no regularization.

SVM experiments

We first attempted to train an unadapted SVM using the entire training set, but found it unlikely to

finish within weeks. We then used 80K samples randomly selected from the training set, and trained

an unadapted SVM with Gaussian kernel. We empirically chose std = 10 using the development

set and fixed this parameter in adaptation. In a similar way, we chose the regularization coefficient

C = 100. The unadapted model had an error rate of 38.21%.

We then applied different SVM adaptation algorithms to the unadapted model. Specifically, we

tried (1) unadapted; (2) retrained which trains a new SVM using the adaptation data only; (3)

boosted [130] which combines the misclassified adaptation samples with the old SVs in training an

adapted classifier; (4) enhanced which corresponds to the algorithm we proposed in Section 5.3.2;

(5) regularized which follows Equation (5.19); and finally (6) extended regularized which follows

Equation (5.27). As shown in Table 5.6, “retrained”, ”enhanced” and ”regularized” worked very

well in general, while “regularized” had a non-trivial gain over others when the adaptation data was

very limited. Furthermore, we see that ”regularized” performed better than ”extended regularized.”

92

Table 5.6: Test-set error rates (means and standard deviations over 10 speakers) of experiment VJ-A,

VJ-B and VJ-C using SVMs with a Gaussian kernel (std=10). The tradeoff coefficient is C = 100

in all cases. The highlighted entries include the best error rate and those not significantly different

from the best at the p < 0.001 level.

adaptation samples per speaker 1K 2K 3K

Unadapted 38.21 ± 11.41 38.21 ± 11.41 38.21± 11.41

Retrained 24.70 ± 4.33 18.94 ± 3.56 14.00± 3.32

Boosted 29.66 ± 8.16 26.54 ± 6.71 28.85 ± 5.24

Enhanced 26.16 ± 4.44 19.24 ± 4.54 14.41 ± 3.24

Regularized 23.28± 6.67 19.01 ± 4.87 15.00 ± 3.82

Ext. Regularized 28.55 ± 8.36 25.38 ± 6.71 20.36 ± 5.33

This is probably because the training set had 80K samples, resulting in approximately 8K support

vectors after SVM training, while the adaptation set only had 1K-3K adaptation samples; thus the

”extended regularized” algorithm would penalize more on the training set than on the adaptation set.

Additionally, it is interesting to compare the above with the maximum likelihood linear regres-

sion (MLLR) algorithm described in Chapter 3 for GMM adaptation, since MLLR has been the most

successful in adapting Gaussian mixtures in speech recognition systems. To this end, we constructed

a simple GMM classifier, where we empirically selected the maximum number of mixture compo-

nents to be 32 in all 8 class-conditional Gaussian mixtures. The parameters of these Gaussians are

estimated using the maximum likelihood criterion. The baseline (speaker-independent) classifica-

tion error rate was 39.62%. We then implemented a native MLLR for Gaussian mean adaptation,

where we let all Gaussian components in the same mixture share the same affine transform. The

error rates after applying MLLR were 28.59±3.87%, 24.28±4.09% and 20.05±3.76% for 1K, 2K

and 3K samples per speaker respectively. As we can see, although the GMM baseline performance

was nearly as good as that of the SVM we just described, the adaptation performance of MLLR was

not as effective as the regularized adaptation algorithm for SVMs.

93

5.6.2 Objection recognition

The recognition of generic object classes with invariance to poses and lighting conditions is one of

the major challenges in computer vision [96]. In this dissertation, we apply our proposed algorithms

to lighting condition adaptation, where a small number of images under a specific lighting condition

are used as the adaptation data, and where the adapted classifier is used to recognize object classes

under the same lighting condition. First, we describe the corpus used in our experiments.

The NORB Corpus

Here we will frequently use the terms class, object and image. For example, consider ”animals” as

a class, then ”elephant”, ”tiger” and ”bear” are three different objects belonging to this class. For

each object, there can be a good number of images taken under different lighting conditions and

from different angles. Our corpus is a subset of the normalized NORB dataset [166], where the

images were segmented, normalized and then composed in the center of 96x96 pixel background

images. Our dataset consists of images from 5 classes, i.e., airplanes, cars, trucks, human figures

and animal figures, each with 10 objects (5 for training and 5 for testing). The images of each

object were captured under 6 lighting conditions and with 18 poses 2 (3 different elevations and 6

azimuths). Figure 5.3 shows images of 5 objects (one per class) under different lighting conditions,

but keep in mind that each example has images shot with other poses.

The training and test set each have 2,700 images, i.e., 450 images per lighting condition. We

performed two sets of experiments with different amounts of adaptation data. In experiment NORB-

A, we adapted using images from only one object per class, and evaluated on the remaining images.

In other words, 90 images were used as the adaptation data for each lighting condition, and the

remaining 360 images were used for evaluation. We performed five-fold cross-validation, each

time choosing a different object for adaptation. In experiment NORB-B, we adapted using images

from two objects per class. In other words, 180 images were used for adaptation and 270 images

for evaluation, and we performed ten-fold cross-validation. In either case, the final error rate was

averaged over the number of folds. We did not further increase the size of the adaptation sets due to

limited data.

2The images in the original NORB dataset each have 162 different poses.

94

5 classes

6
 li

g
h

ti
n

g
 c

o
n

d
it

io
n

s

Figure 5.3: Five objects (each from a different class) under six different lighting conditions

Regarding input features, since finding pose and lighting-invariant features for object recognition

is beyond the scope of our work, we simply down-sampled the images to 32x32 pixels and used raw

pixel values as input features. This resolution was reported by [166] as the best setting for SVM

classification. Each feature element takes integer values in the range of [0, 255], and we treated

them as real numbers.

95

SVM Experiments

We first trained an unadapted SVM, on 2,700 training images, using Gaussian kernel with std=500.

This kernel parameter was empirically chosen using cross-validation on the training set, and was

fixed during adaptation. Note that using scaled inputs would change this value. The regularization

coefficient C was tuned through cross-validation as well. However, we found that this dataset was

well separable and that any C > 0 yielded the same performance; thus we simply used C = 100 in

both training and adaptation.

We compared different SVM adaptation algorithms as were described in the vowel classification

experiments, namely (1) unadapted, (2) retrained, (3) boosted, (4) enhanced, (5) regularized, and (6)

extended regularized. On this dataset where the adaptation sample size was extremely small, the last

strategy worked fairly well since the old support vectors therein served as extra ”adaptation data”.

As shown in Table 5.7 and Table 5.8, “extended regularized” worked consistently the best for both

experiment NORB-A and NORB-B, and “boosted”, which also utilizes the old support vectors, gave

the second best results. In experiment NORB-B, where the amount of the adaptation data doubled,

”extended regularized” still outperformed others while “regularized” became the second best in a

few cases. In addition, increasing the amount of adaptation data increased accuracy consistently.

MLP experiments

For completeness, we also tried MLP classifiers on this image dataset, although the performance was

much worse than that using SVMs. We first trained an unadapted, two-layer MLP with 1024 input

nodes and 5 output nodes. We varied the number of hidden units from 10 to 100 with a step size of

10, and from 100 to 500 with a step size of 50. Each experiment was accompanied by a search for

the best regularization coefficients λh2o and λi2h. We found that N = 30 was the minimum number

of hidden units that yielded the best performance, and the corresponding regularization coefficients

were λh2o = 5× 10−3 and λi2h = 10−2. This unadapt MLP had an average error rate of 21.4% on

the test set.

We then conducted experiments NORB-A and NORB-B using different MLP adaptation algo-

rithms, including (1) unadapted, (2) retrained (from scratch) with weight decay, (3) RSI (from the

unadapted model), and (4) regularized. Here we ignored LIN since intuitively it was likely to cause

96

Table 5.7: Experiment NORB-A using SVMs with a Gaussian kernel (std=500) (90 images per

lighting condition). The tradeoff coefficient is C = 100 in all cases. The highlighted entries in avg

include the best error rate and those not significantly different from the best at the p < 0.001 level.

Lighting 0 1 2 3 4 5 avg

Unadapted 11.1 11.3 16.5 10.9 15.8 9.3 12.5

Retrained 30.9 24.5 36.4 29.3 29.1 30.6 30.1

Boosted 10.3 10.6 14.9 10.4 13.3 9.3 11.5

Enhanced 21.8 16.9 31.5 20.6 23.1 17.6 21.9

Regularized 13.2 13.3 17.1 13.7 16.6 11.9 14.8

Ext. Regularized 9.8 9.8 14.1 10.1 12.5 9.4 11.0

Table 5.8: Experiment NORB-B using SVMs with a Gaussian kernel (std=500) (180 images per

lighting condition). The tradeoff coefficient is C = 100 in all cases. The highlighted entries in avg

include the best error rate and those not significantly different from the best at the p < 0.001 level.

Lighting 0 1 2 3 4 5 avg

Unadapted 11.1 11.3 16.5 10.9 15.8 9.3 12.5

Retrained 18.2 14.5 22.7 19.3 20.6 18.4 18.9

Boosted 9.9 10.2 13.6 10.1 11.5 9.1 10.7

Enhanced 15.4 11.8 19.2 15.6 15.6 12.0 14.9

Regularized 11.4 11.2 14.7 12.3 14.6 16.4 13.4

Ext. Regularized 8.8 9.2 11.8 9.9 14.0 8.7 10.4

overfitting by estimating a 1024 × 1024 transformation matrix. In choosing the tradeoff coeffi-

cients λh2o and λi2h for the ”regularized” experiments, we found that many values gave statistically

identical performance, and we chose the highest such values in order to maximize the degree of reg-

ularization. As shown in Table 5.9 and 5.10, RSI and regularized worked identically (statistically)

the best in both experiment sets.

97

Table 5.9: Experiment NORB-A using 5-class MLPs (90 images per lighting condition). The high-

lighted entries in avg include the best error rate and those not significantly different from the best

at the p < 0.001 level.

Lighting 0 1 2 3 4 5 avg

Unadapted 20.1 23.4 34.2 21.2 15.8 13.7 21.4

Retrained (λh2o=0, λi2h=0) 35.0 34.2 77.1 37.4 33.4 34.5 41.9

RSI (λh2o=0, λi2h=0) 17.4 20.8 28.5 18.3 16.8 15.8 19.6

Regularized (λh2o=∞, λi2h=10−2) 17.6 20.7 26.1 18.3 16.5 15.9 19.2

Table 5.10: Experiment NORB-B using 5-class MLPs (180 images per lighting condition). The

highlighted entries in avg include the best error rate and those not significantly different from the

best at the p < 0.001 level.

Lighting 0 1 2 3 4 5 avg

Unadapted 20.1 23.4 34.2 21.2 15.8 13.7 21.4

Retrained (λh2o = 0, λi2h = 0) 28.3 27.2 61.0 27.2 25.2 26.0 32.5

RSI (λh2o=0, λi2h=0) 16.3 20.0 27.5 17.4 15.7 14.7 18.6

Regularized (λh2o=∞, λi2h=10−2) 16.4 19.3 25.6 17.0 15.1 14.9 18.0

98

Chapter 6

APPLICATION TO THE VOCAL JOYSTICK

In Chapter 4 and Chapter 5, we presented a principled approach to adaptation and discussed in

detail the derived algorithms for GMMs, SVMs and MLPs. The motivation of conducting such re-

search was originated from the development of the Vocal Joystick — a voice based human-computer

interface for individuals with motor impairments.

In Chapter 1, we discussed the importance of developing voice-based computer interfaces that

are capable of controlling continuous tasks. The Vocal Joystick is such an interface developed at the

University of Washington [36, 37]. Unlike standard ASR, our system goes beyond the capabilities

of sequences of discrete speech sounds, and exploits continuous vocal characteristics such as inten-

sity, pitch and vowel quality which are then mapped to continuous control parameters This chapter

describes the Vocal Joystick engine as well as the role of adaptation in the VJ system. Specifically,

Section 6.1 overviews four major acoustic parameters in the VJ system; Section 6.2 describes engine

organization, with focus on the signal processing and pattern recognition modules. The last section

discusses why adaptation is important and how our proposed algorithms are applied.

6.1 Overview of Acoustic Parameters

The key characteristic of the Vocal Joystick is that unlike conventional ASR systems, which recog-

nize sequences of words, it processes continuous acoustic parameters every audio frame and trans-

forms them into various control parameters. There are four major acoustic parameters currently

used in the VJ system, intensity, pitch, vowel quality and discrete sound identity.

Intensity, computed as the average energy of an acoustic signal, is a measure of ”loudness”.

The average energy, along with zero-crossings, plays an important role in voice activity detection

(VAD) and determines the start-and-end of a mouse movement. Intensity is also used to control the

movement speed. For example, a loud voice corresponds to a large movement while a quiet voice

corresponds to a nudge.

99

The second parameter is pitch. Pitch is the auditory percept of tone, and is often calculated as

the inverse of the smallest period of an acoustic signal. Currently pitch is not used in the VJ-mouse

system, but is potentially useful in systems that require more degrees of freedom in control, e.g. an

robotic arm with three joints.

The third parameter is vowel quality. Vowels are voicing phonemes generated by vibration of

the vocal folds [167]. They are the most intense and the most audible sounds in speech. They

usually function as syllable nuclei, carrying information of energy and pitch. Consonants, on the

other hand, are speech phonemes produced by constriction of the passage through the throat and the

mouth, which are in general less audible than vowels. The use of vowels, therefore, may lead to a

classification system with high discriminability and noise-robustness. In this work, vowel quality

is used to control the direction of a mouse movement. we choose to use four vowels /æ/, /A/, /u/

and /i/ (in the IPA alphabet [168]) to control four cardinal directions in a 2-D space (up, left, down

and right), as illustrated in Figure 6.1. Furthermore, four additional vowels, /a/, /o/, /1/ and /e/,

are designated for diagonal directions. The ”vowel triangle”, depicted in Figure 6.2, shows the

articulatory properties of these vowels in terms of tongue positions in the mouth. The vowel triangle

roughly reflects the relative locations of these vowels in acoustic space. We chose to use /æ/, /A/,

/u/ and /i/ for cardinal directions because they are at the four corners of the vowel triangle and are

presumably the most far apart in acoustic space.

Finally, certain combined vowels and consonants, which we call discrete sounds, can be used

to control discrete actions, e.g., mouse clicks and toggles. In this regard, discrete sounds are akin

to voice commands except that they are not confined to be verbal. In fact, they can be chosen

in a way that maximally reduces confusability. This can be achieved by incorporating phonetic

knowledge, e.g., the articulation similarity of different phonemes, or model knowledge since the

confusion patterns may depend on the classifier.

6.2 The VJ Engine

Utilizing the acoustic parameters introduced above, we have developed a VJ-mouse control scheme

which works as follows: mouse movement is triggered when vowel activity is detected, and con-

tinues until the vowel activity stops. At each time frame, the movement direction is determined by

100

a

i

e

æ

o

A

u

A

i-

Figure 6.1: Vowel-direction mapping

Front Central Back

High

Mid

Low

Vowel Advancement

i u-i

e
o

a
æ

A

V
o

w
e

l
H

e
ig

h
t

Figure 6.2: Vowel triangle

vowel quality, while the step size is determined by intensity. Finally, a small set of discrete sounds

are used to execute mouse clicks. Now we present the VJ engine in more detail. A general picture of

the VJ engine is shown in Figure 6.3, which consists of three main components: signal processing,

pattern recognition and motion control.

6.2.1 Signal processing

The goal of the signal processing module is to perform voice activity detection (VAD), and to extract

low-level features such as average energy, number of zero-crossings, normalized autocovariance

coefficients (NACCs) and mel frequency cepstral coefficients (MFCCs) [169, 170], all of which are

101

Acoustic

Signal

Feature Extraction

Signal Processing
Energy smoothing

Vowel classification

Pattern Recognition

Pitch estimation

Discrete sound reco.

Motion Parameters:

Direction

Speed

Discrete commands

Motion Control

Transformation

Mouse

Movement
Computer

Interface Driver

Vocal Parameters:

Intensity

Pitch

Vowel probabilities

Discrete sound ID

Low-level Features:

Energy

Zero-crossings

NCCCs

MFCCs

VAD

Figure 6.3: The VJ engine architecture. This dissertation mainly contributes to the signal processing

and pattern recognition module.

inputs to the pattern recognition module. To this end, we sample an incoming acoustic signal at a

rate of 16kHz, and generate a frame every 10ms using a 40ms rectangular window. We choose such

a window length only to guarantee that it is at least twice of the longest possible pitch period, as

suggested by [169] — since the pitch of a normal human voice ranges between 50Hz and 500Hz, we

use a window length of 20ms× 2 = 40ms. Such a choice makes it relatively easy to obtain reliable

pitch estimates, but it is entirely possible to use a shorter window. Note that this window is used for

computing all low-level features except MFCCs which use a 25ms Hamming window instead.

Let st(l) denote sample l of frame t, where l = 1..L and L = 16kHz × 40ms = 640 is the

102

rectangular window length. For each frame, we first compute the average energy as

et =
1
L

L∑

l=1

|st(l)|2 (6.1)

and the number of zero-crossings as

zt =
L−1∑

l=1

I(st(l)st(l + 1) < 0) (6.2)

Both et and zt are strong indicators of voice activity — the larger the values of et and zt, the more

likely voice activity occurs. We then use a set of empirical thresholds to categorize a frame into

”active”, ”pre-active”, ”temporarily inactive” and ”truly inactive” as follows.

• Frame t is active if et ≥ ahenoise + eo and zt > zo, where enoise is an estimate of the

background noise level, ah is a constant multiplier, and eo and zo are constant floor values.

An active frame is believed to contain voice activity, for which we extract low-level features

such as NACCs and MFCCs, and for which we conduct pattern recognition functions based

on the extracted features of the current frame and sometimes of previous frames as well.

• Frame t is pre-active if alenoise + eo < et < ahenoise + eo and zt > zo, where al is a

constant multiplier and al < ah. All low-level features are extracted in such a state, but no

pattern recognition functions are actuated. The main purpose of creating the pre-active state

is to indicate that the frame following a pre-active frame might be active and hence low-level

features of the pre-active frame need to be computed and cached for potential use in the near

future. Note that ”pre-active” is only necessary in a real-time system.

• Frame t is temporarily inactive if et ≤ a1enoise + eo or zt ≤ zo. However, we still generate

low-level features (again without executing pattern recognition functions) until the number

of consecutive inactive frames exceeds a threshold. Only at this point do we believe that

the voice activity has fully stopped, and do we call it a truly inactive state; otherwise the

observed ”temporarily inactive” frames might merely correspond to a pause in an utterance,

which we should not consider as the end of a voice activity. Once the number of consecutive

temporarily inactive frames exceeds the threshold, we stop generating NACCs and MFCCs,

103

and we send the the cached low-level features of the proceeding voice activity segment to a

discrete sound recognizer.

As stated above, we extract NACCs and MFCCs when a frame is active, pre-active, or temporar-

ily inactive. NACCs are input features to the pitch tracker in the pattern recognition module. For

a better understanding of these features, we first introduce autocorrelation coefficients [169, 170],

which show how well a signal correlates with itself at a range of different delays, and we expect

a periodic signal has the highest correlation with itself at the pitch period. Mathematically, the

autocorrelation coefficient for lag i > 0 is defined as

rt,i =
1

L− i

L−i∑

l=1

st(l)st(l + i)

The autocorrelation method is an unbiased estimator, but the variance gets larger as i gets closer to

L [169–171]. Therefore, we often need to use an excessively large window for short lags to maintain

significance for large lags. To compensate for this problem, autocovariance coefficients 1 [42, 169]

use an extended window Lext > L such that the summation interval does not shrink for large lags.

Here we use Lext = L + imax = 640 + 320 = 960, where imax = 320 is the maximum lag

(corresponding to 50Hz). NACCs, which are utilized in [172] and the current VJ engine, are simply

energy-normalized autocovariance coefficients. Mathematically,

φt,j =

L∑

l=1

st(l)st(l + j)

√
e′t,0e

′
t,j

(6.3)

where e′t,j =
∑L

l=1 |st(l + j)|2, and it is easy to see that in Equation (6.1) et = e′t,0.

Finally, MFCCs and their dynamic features are extracted using a standard method described

in [42]. Note again that we replace the 40ms rectangular window by a 25ms Hamming window.

These features are inputs to the vowel classifier and the discrete sound recognizer in the pattern

recognition module.

1Auto-covariance is also called modified autocorrelation or sometimes cross-correlation, but the latter is a misnomer
as cross-correlation usually refers to the correlation between two signals

104

6.2.2 Pattern recognition

The pattern recognition module serves as an interface which takes the above low-level features as

input and estimates acoustic parameters we introduced in Section 6.1, including intensity, pitch,

vowel quality posterior probabilities and discrete sound identity, as shown in Figure 6.3. In the

following text we will discuss in detail how these acoustic parameters are estimated, but we will

leave to Chapter 7 the discussion of a novel pitch estimation algorithm, and an online adaptive filter

algorithm applied to the vowel classifier outputs.

First of all, intensity is simply a smoothed version of the average energy et, which is obtained

by applying a low-pass FIR filter on et.

Next, the pitch trajectory is estimated using NACCs. Specifically, the current VJ engine selects

local pitch candidates for frame t based on φt,i in Equation (6.3). — if φt,· achieves its highest

value at i0, it is likely that i0 corresponds to the true pitch period. Local estimates, however, are not

always reliable. This is because multiples of the pitch period can also yield high φt,· values, some-

times leading to pitch halving errors; on the other hand, pitch harmonics can cause pitch doubling

errors. A more reliable method is to apply dynamic programming, which takes into account con-

text information to obtain globally optimal estimates [172]. Many pitch trackers based on dynamic

programming require meticulous design of local cost and transition cost functions. The forms of

these functions are often empirically determined and their parameters are tuned accordingly. Para-

meter tuning usually requires great effort without a guarantee of optimal performance. Chapter 7

will present a graphical model framework to automatically learn pitch tracking parameters in the

maximum likelihood sense.

Given the pitch estimate, we can immediately decide whether a frame is voiced or unvoiced. For

each voiced frame, we perform vowel classification using a two-layer MLP with 50 hidden nodes

as described in the previous chapter. The MLP takes 7 consecutive frames of MFCCs and their

dynamic features as input, denoted as xt, and outputs a vowel posterior probability vector zt where

zt,k = p(k|xt) is the posterior probability of vowel class k. In one configuration, we use a 4-class

MLP, corresponding to /æ/, /A/, /u/ and /i/, whereas a second configuration uses a 8-class MLP which

include the other four vowel classes /a/, /o/, /1/ and /e/. These MLP classifiers were trained on the

VJ-vowel corpus described in Chapter 5. In Chapter 7, we will discuss an online adaptive filter

105

algorithm applied to zt. This algorithm utilizes context information and enables the VJ system to

produce movements in arbitrary directions.

Lastly, we launch a discrete sound recognizer when we have detected the end of voice activity

(by inspecting the number of consecutive temporarily inactive frames, as mentioned in the signal

processing module). Discrete sound recognition is essentially a problem of isolated-word recog-

nition except that in our case we can compose any ”word” using a set of phonemes. The current

VJ engine adopts a vocabulary that only contains unvoiced consonants, each defined as a different

discrete sound. The purpose that we do not include any voiced phonemes in the discrete sounds

is to maximally reduce confusion with the vowels used in continuous control. For example, using

”open” as a discrete sound would cause a continuous movement since it starts with the vowel /o/;

even using discrete sounds such as /k@/ can be problematic occasionally, as in user studies we have

observed situations where the starting /k/ was indiscernible or was simply omitted and the following

/@/ was recognized as a vowel resulting in a mouse movement.

Given a vocabulary of discrete sounds, our goal is to find the one that best matches an input

signal. Letting x1:T denote the input features and k the discrete sound identity, we want to find

k̂ = argmax
k

p(k|x1:T) = argmax
k

p(x1:T |k)p(k). (6.4)

Here we use Gaussian-mixture HMMs to represent p(x1:T |k), and we train these HMMs on TIMIT

[165] — a phonetically-rich, continuous speech corpus with time-alignment information. The ut-

terances in TIMIT were sampled at 16kHz which is compatible with the setting of the VJ system.

We defined 42 phonemes, with 3 states per phoneme and 12 Gaussian components per state, leading

to 126 Gaussian mixtures. MFCCs and their deltas were extracted using the VJ frontend and were

input to HTK [173] for HMM estimation.

The above formulation is based on the assumption that x1:T is the acoustic signal of an in-

vocabulary discrete sound. However, it is rather common that some inputs do not fall within the

vocabulary that the recognizer is designed to handle. An out-of-vocabulary utterance may consist of

a vowel articulation (intended for a continuous movement), extraneous speech or background noise.

A rejection mechanism, therefore, is indispensable to the reliable functioning of the discrete sound

recognizer. Numerous strategies for rejecting garbage utterances in isolated word recognition have

been proposed in the literature, including the use of filler models [174,175] and the use of confidence

106

measures [176, 177]. However, we found the filler-model approach less effective for the VJ engine.

The main reason is that many false positives in our system are caused by breathing, coughing,

spike noise or other random unvoiced-consonant-like sounds (since our vocabulary consists of pure

unvoiced consonants). In most cases, these random sounds match one of the vocabulary items better

than the filler model (which in our case was trained on TIMIT — a speech corpus containing a wide

variety of vowels and consonants). On the other hand, the use of confidence measures alone is not

stable. Here we describe several complementary rejection mechanisms designed specifically for the

VJ engine.

• We make a first pass of rejection by discarding an utterance whose duration is out of a pre-

defined range, where the range is vocabulary-dependent and is determined empirically.

• The second rejection mechanism is strongly related to the choice of the vocabulary. We

currently use one unvoiced consonant per discrete sound, e.g., /ch/ and /t/. Based on this

assumption, we impose thresholds on the average number of zero-crossings and on the

portion of unvoiced frames in an utterance. The utterance is rejected if these numbers are

below their respective pre-defined thresholds.

• The above two rejection mechanisms have significantly reduced false positives caused by

vowel articulation, but are still vulnerable to unvoiced-consonant-like sounds such as breath-

ing. Thus we create a confidence measure using the posterior probability of the best model

candidate. Specifically, we accept an utterance only if p(k̂|x1:m) is above a threshold, where

k̂ is defined by Equation (6.4).

6.2.3 Motion control

Finally, the motion control module determines how to transform these acoustic parameters into mo-

tion parameters such as direction and speed. For the VJ-mouse application, we produce a 2-D motion

vector vt = (∆x,∆y)T (relative movement) for each vowel frame, where ‖vt‖ =
√

∆x2 + ∆y2 is

determined by intensity and 6 vt is determined by vowel quality. How to map intensity to the norm

of the motion vector has been investigated in [53]; here we focus on mapping vowel quality to the

107

angle of the motion vector, which is necessary to understanding our proposed online adaptive filter

algorithm in Chapter 7. In other words, we assume ∆x2 + ∆y2 = 1.

A soft classification strategy is adopted to map vowel quality to movement direction. We cate-

gorize the vowel space and assign directions to vowel classes as shown in Figure 6.1. Given a vowel

posterior probability vector zt output by the MLP classifier, we map zt to a unit motion vector using

a linear transformation defined as follows

∆x = 〈zt,wx〉
∆y = 〈zt,wy〉

(6.5)

where wx and wy are two weight vectors whose elements satisfy wx,i = cos
2πi

n
and wy,i =

sin
2πi

n
; here n is the number of vowel classes, and the vowel categories i = 0, 1, . . . , n − 1 are

indexed counterclockwise with respect to Figure 6.1, starting from /A/.

6.3 Application of Regularized Adaptation Algorithms

In the VJ system, vowel quality and discrete sound identity are used for continuous and discrete

control respectively. Therein, inaccuracies can arise due to speaker variability owing to different

vocal tract lengths and speaking styles. A vowel class articulated by one user might partially overlap

in acoustic space with a different vowel class from another user. This imposes limitations on a purely

user-independent vowel classifier. The problem is even more pronounced for the discrete sound

recognizer. This is because our current user-independent discrete sound recognizer was trained

on a continuous speech corpus in which consonants are often articulated in the context of vowels,

while our target application only anticipates unvoiced consonants spoken in an isolated manner.

This mismatch can severely degrade the recognition performance. To mitigate these problems, we

have designed an adaptation procedure where each user is asked to pronounce a small number of

adaptation samples. The current system asks for 200 samples per vowel class (corresponding to

a 2-second utterance for each vowel) and one utterance per discrete sound, but these numbers are

reconfigurable. Figure 6.4 shows the user interface for adaptation.

Once the adaptation data is collected, we launch the regularized adaptation algorithms for the

MLP-based vowel classifier and for the HMM-based discrete sound recognizer. MLP adaptation

uses the update formula in Equation (5.32). For HMM adaptation, due to limited adaptation data,

108

Figure 6.4: An interface for VJ adaptation

we only adapt Gaussian means according to the update formula in (5.7). Along with the collection

of vowel data, we also compute the average intensity for each vowel, and use these intensity values

as the intensity-to-speed normalization factors in the motion control module [53]. Similarly, along

with the collection of discrete sound data, we compute the utterance length and the number of zero-

crossings for each vocabulary item, and utilize these values for adapting the discrete sound rejection

system.

With the aid of adaptation, the VJ system has become more accurate, as supported by the evi-

dence in the vowel classification experiments in Chapter 5, and more reliable to use, as shown in a

number of user studies [36, 37, 54]. Our website http://ssli.ee.washington.edu/vj/video demos.htm

has a dozen of video clips that demonstrate using the VJ-mouse to accomplish various real-world

tasks, such as browsing a website or playing a computer game.

109

Chapter 7

OTHER MACHINE LEARNING TECHNIQUES IN THE VOCAL JOYSTICK

The previous chapter presented the VJ engine architecture. There are two components in the

pattern recognition module yet to be explained in this chapter. The first component is a pitch tracker

that estimates the pitch trajectory of an acoustic signal. Section 7.1 will present a Bayesian net-

work that automatically optimizes pitch tracker parameters in the maximum likelihood sense. This

framework not only expedites the training of the pitch tracker, but also yields remarkably good

performance for both pitch estimation and voicing decision. The second component, as will be

presented in Section 7.2, involves an online adaptive filter applied to the vowel classifier outputs.

This algorithm utilizes context information and applies real-time inference in a continuous space.

The VJ system using this algorithm is endowed with the ability to produce movements in arbitrary

directions and the ability to draw smooth curves. This is in contrast to previous VJ settings whereby

vowel quality was used to determine mouse movement in only a finite discrete set of directions.

7.1 Pitch Tracking

Pitch tracking has drawn increased attention in speech coding, synthesis and recognition. In the

VJ system, pitch can be utilized to provide an additional degree of freedom. Developing a robust

pitch tracker, therefore, is important to the development of potential VJ-based applications such as

VJ-robotic-arms.

Many state-of-the-art pitch trackers resemble the methodology proposed by [172], which con-

sists of three steps: pre-processing, pitch candidate generation and post-processing by dynamic

programming (DP). The first step involves signal conditioning techniques. The second step selects

pitch candidates and computes their “scores” by applying certain pitch detection algorithms (PDA)

to the local frame acoustics. In the post-processing step, the cost Ct,j of proposing pitch candidate

j at frame t is computed as follows,

Ct,j = F local
t (j) + min

i
{Ct−1,i + F tran

t−1,t(i, j)} (7.1)

110

where the local cost function F local takes into account the scores obtained from the second step,

and the transition cost function F tran models the penalty of transitioning from candidate i of the

previous frame to candidate j of the current frame.

The forms of these cost functions are usually empirically determined and their parameters are

often tuned by algorithms such as gradient descent [172]. This process, however, remains a difficult

and time-consuming task. First, F local has to be optimized each time a different PDA is applied. For

example, PDAs can be designed in several domains including time, spectral, cepstral and their com-

binations [178]. While classic PDAs like the normalized autocovariance coefficients (NACCs) [179]

are popularly used, new algorithms such as ACOLS [180], JTFA [181] and YIN [182], are increas-

ingly coming into play. In order to evaluate, compare and eventually implement these techniques, a

large amount of time has to be spent deciding the form of F local and tuning its parameters. Second,

ideally F tran should be adapted when the pitch tracker is exposed to another language, or applied

to another application. This is because different languages and applications may follow very differ-

ent pitch transition patterns. Therefore, the local and transition cost functions optimized for certain

PDAs and applications may not be the most appropriate for others.

This section presents a strategy for optimizing the parameters of these cost functions using a

more principled approach. Extending the idea of [183], we present a graphical model framework

to learn a pitch tracker from data. Therein, a PDA or a pitch transition pattern can be easily incor-

porated into the system with parameters automatically estimated using statistical methods. Further-

more, since the parameters are optimized in the maximum likelihood sense, both pitch estimation

and voicing decision give better performance. The Graphical Model Toolkit (GMTK) [184] was

utilized to implement our framework.

7.1.1 Graph structure and local probability models

Graphical models are a flexible, concise, and expressive probabilistic modeling framework with

which one may rapidly specify a vast collection of statistical models. Our graphical model frame-

work for pitch tracking is depicted in Figure 7.1, where the shaded nodes represent variables ob-

served at decode time and the unshaded nodes are hidden. These variables are defined as follows.

111

D
T

Q
T

O
T

q

O
T

d

Q
1

O
1

q

Prologue

Frame 1
 Frame T

R
T
=1

Q
2

D
2

O
2

q

O
2

d

R
2
=1

Frame 2

Figure 7.1: Decoding graph

• Variable Qt is discrete with cardinality N , which corresponds to N−1 voiced states (indexed

as 1..N − 1) plus one unvoiced state (indexed as N) at frame t. The N − 1 voiced states are

determined by N − 1 possible pitch periods as explained in Chapter 6. In the graph, Qt has

no parents, but has a prior distribution πq
i

∆= P (Qt = i).

• Variable Dt is discrete with cardinality M , corresponding to M transition patterns coarsely

quantized from N2 possible (Qt−1, Qt) pairs. The dependency between Qt−1, Qt and Dt is

represented by a deterministic table. Specifically, the set {1..N} × {1..N} is partitioned into

M non-overlapping subsets Sm, m = 1..M , and we define P (Dt = m|Qt−1 = i, Qt = j) =

1, Iff (i, j) ∈ Sm. In this work, we use a simple partition scheme:

S1 = {(i, j) : i = N, j 6= N};
S2 = {(i, j) : i 6= N, j = N};
Sm = {(i, j) : Lm ≤ j − i < Um}; m = 3..M,

(7.2)

where Lm and Um are (respectively) lower and upper bounds evenly spaced at integers be-

tween −N + 2 and N − 2. In other words, S1 corresponds to unvoiced-to-voiced transitions;

S2 corresponds to voiced-to-unvoiced transitions; Sm, m = 3..M correspond to pitch tran-

sitions (or voiced-to-voiced transitions) clustered into M − 2 patterns based on pitch period

112

difference; and the unvoiced-to-unvoiced transition belong to the same subset as pitch transi-

tions where i = j.

• There is a dummy binary variable Rt with a parent Dt. The conditional probability πd
m for

this dependency is defined as

πd
m

∆= P (Rt = 1|Dt = m) =

∑

(i,j)∈Sm

#(i, j)

M∑

m=1

∑

(i,j)∈Sm

#(i, j)

, (7.3)

where #(i, j) is the number of occurrences of event {Qt−1 = i, Qt = j} in the training

data. The purpose of this dummy node is to provide soft evidence [185, 186] for Dt, and this

evidence is encoded using the histogram of the M pitch transition patterns. Note that for the

purposes of inference and decoding, the results should be identical with a πd
m multiplied by

any positive scalar. We keep this expression of soft evidence, as it is amenable to standard

smoothing methods (see the Subseciton 7.1.3).

• Finally, variables Oq
t and Od

t are continuous, and are children of Qt and Dt respectively. They

are both computed directly from an acoustic signal, which will be discussed in the next.

In graphical model semantics, Figure 7.1 captures dependencies between pitch values and local

acoustics, and between pitch transition patterns and acoustical changes. Also, by modelling Qt−1

and Qt as parents of Dt and adding soft evidence Rt, the prior probabilities of pitch and pitch

transition are simultaneously modeled in the graph, which would otherwise be hard to accomplish.

7.1.2 Observation features

The observation features Oq
t are crucial to the success of a pitch tracking algorithm. As discussed in

the previous chapter, autocorrelation coefficients or their extended forms [179,180,182] are effective

features which result in time-domain PDAs. For example, in the case of NACCs, we let φt =

(φt,1, φt,2, . . . , φt,N)T where φt,i, i = 1..N − 1, is the NACC of the ith candidate pitch period, and

φt,N
∆= max

i=1..N−1
φt,i. If frame t is voiced and the ith candidate corresponds to the true pitch period,

then φt,i is likely to have a high value (close to one) according to Equation (6.3). On the other hand,

113

if frame t is unvoiced, then φt,N is likely to be small since all φt,i, i = 1..N − 1, tend to be small.

We represent such relationships using Gaussian distributions as follows.

P (Oq
t = φt|Qt = i) =




N (φt,i; 1, β2) i = 1..N − 1

N (φt,i;µ, γ2) i = N
(7.4)

where µ is the minimum value of φt,N in all training data. Note that these two means, 1 and µ, are

set in advance and are fixed during the training of other parameters. Since φt,i < 1, i = 1..N − 1, a

high φt,i will lead to a high observation probability for state i. Similarly since φt,N > µ, a low φt,N

implies a high observation probability for state N , meaning that frame t is likely to be unvoiced.

The observation feature Od
t is the delta energy ∆et = et − et−1. The choice of this feature

is based on the empirical observation (justified by our experiments) that there is a correlation be-

tween pitch transition and delta energy. For example, an utterance with decreasing pitch tends to

have a decreasing energy, and an unvoiced-to-voiced transition tends to have an increasing energy.

Therefore, the delta energy to some extent reflects pitch transition patterns and can improve pitch

estimation. The corresponding observation distribution is modeled as

P (Od
t = ∆et|Dt = m) = N (∆et; ρm, σ2), (7.5)

where ρm is the mean of the Gaussian of the mth transition pattern, and σ2 is a variance variable

shared by all Gaussians.

7.1.3 Parameter estimation and decoding

The graph structure for training differs slightly from that for decoding. As shown in Figure 7.2, all

variables in training are observed except Dt. In fact, Dt can be considered ”observed” as well be-

cause its value is deterministic given Qt−1 and Qt. This graph structure implies several conditional

independence relationships that enable the decomposition of the complete likelihood in training.

114

D
T

Q
T

O
T

q

O
T

d

Q
1

O
1

q

Prologue

Frame 1
 Frame T

Q
2

D
2

O
2

q

O
2

d

Frame 2

Figure 7.2: Training graph

Mathematically, we desire to learn parameters that maximize

ln P (Q1:T , Oq
1:T , Od

2:T)

= ln p(Q1, O
q
1) +

T∑

t=2

[
ln p(Qt, O

q
t) + ln p(Od

t |Qt−1, Qt)
]

=
T∑

t=1

lnP (Qt, O
q
t) +

T∑

t=2

ln
[M∑

m=1

P (Od
t , Dt = m|Qt−1, Qt)

]

=
T∑

t=1

lnP (Qt = qt) +
T∑

t=1

ln P (Oq
t = φt|Qt = qt)

+
T∑

t=2

ln[
M∑

m=1

P (Od
t = ∆et|Dt = m)P (Dt = m|Qt−1 = qt−1, Qt = qt)]

(7.6)

Recall that P (Dt = m|Qt−1 = qt−1, Qt = qt) is an indicator function which equals one

iff (qt−1, qt) ∈ Sm. Therefore, only the corresponding pitch transition pattern can survive the

summation over m. Plugging Equation (7.4) and Equation (7.5) into Equation (7.6) and taking

derivatives with respect to the parameters, we get the maximum likelihood estimation of πq
i , β2, γ2,

ρi and σ2. Furthermore, πd
m in Equation (7.3) can be easily estimated during training by counting a

histogram of pitch transition patterns.

One issue associated with parameter estimation is that certain pitch values or pitch transitions

115

may not exist in the training set. To compensate for this problem, we apply Dirichlet smoothing

[187] to obtain robust estimates of prior probabilities of both pitch and pitch transition. For the

latter case, we have

π̃d
m =

πd
m + λ

1 + Mλ
. (7.7)

The choice of λ depends on the amount of training data available. By choosing a very large λ, the

prior will be close to a uniform distribution. In the case of pitch priors, we treat the voiced and

unvoiced states separately.

π̃q
i (new) =





N − 1
N

πq
i /(1− πq

N) + λ

1 + (N − 1)λ
i = 1..N − 1

1
N

i = N

(7.8)

In practice, we choose a relative small λ for πd
m such that π̃d

m ≈ πd
m, and choose a relatively large

λ for πq
i such that π̃q

i is close to a uniform distribution (this is because πq
i are usually biased due to

the number of training set speakers is very limited).

With regard to decoding, we use the graph in Figure 7.1. We define the forward probability as

αt(j) = P (Qt = j,Oq
1:t, O

d
2:t, R2:t), and the forward pass is derived as follows,

α1(j) = πq
jP (Oq

1 = φt|Q1 = j);

αt(j) = πq
jP (Oq

t = φt|Qt = j) ·
∑

i

[∑
m

πd
mP (Od

t = ∆et|Dt = m)·

P (Dt = m|Qt−1 = i, Qt = j)αt−1(i)
]

(7.9)

Again, P (Dt = m|Qt−1 = i, Qt = j) is an indicator function. The optimal pitch period sequence is

obtained via backtracking after the DP terminates. Notice that if we let Ct,i = − lnαt(i), Equation

(7.9) is equivalent to the DP in Equation (7.1), and the Gaussian assumption of local probabilities

leads to a quadratic form of the cost functions. With parameters optimized in the maximum like-

lihood sense, these functions give remarkably good performance as we will see in Section 7.1.4.

It is worth noting that these cost functions can take on other forms under a different distribution

assumption, and the parameters can be efficiently estimated as long as good sufficient statistics exist

for that distribution.

116

7.1.4 Experiments

This subsection presents pitch estimation experiments on a database with laryngograph waveforms.

A Laryngograph monitors and records the opening and closure of vocal folds, and is a relatively

reliable measure of the fundamental frequency. Two databases were combined to create training

and test sets for our graphical-model based pitch tracker. One is “Mocha-TIMIT,” [188] developed

at Queen Margaret University College, and the other was developed at the Hong Kong University of

Science and Technology for tone-estimation research, both with laryngograph recordings.

A total of 1192 continuous English speech utterances (440K frames) from two male and two

female speakers were allocated to the training set. The test set was comprised of 4 subsets, corre-

sponding to the same four speakers, amounting to 647 utterances (240K frames) different from the

training set. To obtain the ground truth of pitch values, we filtered out the humming noise generated

by the electronic devices in a laryngograph, then applied ESPS pitch tracking tool “get f0” [172] to

these waveforms.

Our training and decoding were implemented using GMTK. We ran both get f0 and our graphical-

model based pitch tracker on the speech waveforms of the test set, and compared the results with

the ground truth generated using get f0 on the laryngograph waveforms. The pitch trackers were

evaluated in two aspects: pitch estimation and voicing decision [189]. Pitch estimation error rate is

measured in terms of gross error rate (GER), which is the percentage of pitch estimates that devi-

ate from the ground truth by a certain amount (20% in our experiments). The voicing decision is

measured in terms of the percentage of both unvoiced-to-voiced and voiced-to-unvoiced errors. As

is shown in Table 7.1 and Table 7.2, both pitch estimation GERs and voicing detection error rates

of our pitch tracker were lower than those of get f0 for all four speakers. Moreover, the graphical

structures with and without Od
t = ∆et features are almost not significantly different. The former

structure worked slightly better in pitch estimation and the latter slightly better in voicing decision.

7.2 Adaptive Filtering

One challenge faced by our earlier VJ systems [36] is that a mouse movement was constrained to be

in a number of (four or eight) principle directions. As shown in Figure 6.1, we categorized vowel

qualities and mapped them to a discrete set of directions. Although we were using soft classification,

117

Table 7.1: Pitch estimation GER; The highlighted entries include the best error rate and those not

significantly different from the best at the p < 0.001 level.

speaker female 1 female 2 male 1 male 2

get f0 5.83 2.11 3.73 1.51

GM without ∆e 3.61 1.53 1.06 0.86

GM with ∆e 3.38 1.55 1.17 0.86

Table 7.2: Voicing decision error rate; The highlighted entries include the best error rate and those

not significantly different from the best at the p < 0.001 level.

speaker female 1 female 2 male 1 male 2

get f0 13.07 12.92 25.66 12.84

GM without ∆e 8.58 11.81 24.57 6.00

GM with ∆e 9.12 12.59 24.37 5.94

which theoretically could produce movements in arbitrary directions if given ”neutral” vowels as

input, in practice the chance of having such outputs is very small due to the nature of the classifier

(as will be explained soon). Additionally, we have found that it can be difficult for a user to articulate

such interpolated vowels in a continuous and precise manner. Therefore, tasks like drawing a smooth

curve was beyond the ability of the early VJ system.

This section introduces an adaptive filtering algorithm in the Vocal Joystick setting that utilizes

context information and applies real-time inference in a continuous space. Here by “adaptive”

we mean that the filter parameters are updated on the fly during actual inference. This should be

distinguished from the term “adaptation” in earlier chapters, which is part of a training process.

The VJ system using this algorithm is endowed with the ability to produce movements in arbitrary

directions and the ability to draw smooth curves. We first formally introduce the problem; then we

describe and compare two VJ system configurations and present in detail our proposed algorithm;

finally we discuss qualitative tests and provide comments.

118

7.2.1 Problem formulation

As mentioned in Chapter 6, we want to produce a sequence of relative movements given a vowel

articulation. To this end, we utilize a vowel classifier g(xt) that produces a vowel posterior prob-

ability vector zt given input xt at frame t. Then, a transformation vt = f(zt) maps zt to a unit

motion vector vt. In the VJ system, we use a linear transformation as shown in Equation (6.5) for

simplicity. The goal of the VJ mouse control can be formulated as follows: assuming that a user’s

intended unit motion vector at time t is vint
t , we desire that

f(g(xt)) = vint
t (7.10)

Several stages in this process, however, can encounter errors or constraints, posing potential

challenges in VJ control. The first possible error is due to human imprecision in articulation. As

mentioned in the introduction, it is sometimes difficult for a user to precisely make the vowel that

will produce his/her intended motion vector. An analogy is when a beginning violinist plays a note

on a violin, it is quite likely to be out of tune. Second, the vowel classifier may not be accurate, lead-

ing to system errors in classification. The analogous scenario is that the violin itself may be out of

tune. More importantly, there are inherent system constraints in the classification process. Since g(·)
is usually a nonlinear transformation and f(·) is a linear transformation, some values of f(g(xt))

will be more likely to occur than others given that xt is uniformly distributed. Consequently, the

mouse will be more likely to move along certain directions. Taking the violin analogy again, imag-

ine we replace the violin with a piano, we will then lose the ability to produce certain pitches and

pitch variations because of the constraints imposed by the pitch-quantized equal-tempered keyboard.

Our design goals for the VJ system are that it should maximally reduce these errors and con-

straints by considering the following factors: (1) producibility, the system should use easily-producible

vowels, reducing the effect of human imprecision; (2) discriminability, the system should use dis-

tinct vowels, reducing the chance of system errors; (3) flexibility, the system should provide enough

degrees of freedom in direction control; (4) predictability, the system should work in a relatively

intuitive way; and (5) cognitive load, the system should try to minimize the user’s cognitive load.

There certainly exist tradeoffs between these factors — for example, to increase flexibility, we may

want to increase the number of vowel classes, but this may sacrifice producibility, discriminability,

119

and cognitive load. The adaptive filtering algorithm we propose in Subsection 7.2.3 provides a way

to balance these tradeoffs.

7.2.2 A natural strategy

A natural strategy associated with the soft classification scheme is to choose a number of vowel

classes, e.g. four or eight, and map them to directions as in Figure 6.1. Specifically, we let g(·) be

a two-layer MLP classifier, which ideally will output posterior probabilities of the classes if trained

using the minimum relative entropy objective [145]. We also apply a supervised speaker adaptation

algorithm for MLPs to improve classification accuracies (Chapter 5). Furthermore, we apply a linear

transformation f(·) as defined in Equation (6.5).

We first chose to use four vowel classes at the corners of the vowel triangle, namely /æ/, /A/, /u/

and /i/, to maximize discriminability. As suggested in the previous section, a significant drawback

of this system is the lack of flexibility. Due to the nature of MLP classifiers, the posterior probability

of one vowel class is usually much higher than the others. This results in a system that witnesses

mouse movements only along four cardinal directions. We therefore call it a “4-way” system.

To increase flexibility, we developed an “8-way” system using all eight vowel classes, namely

/æ/, /A/, /a/, /o/, /u/, /1/, /i/ and /e/. The 8-way system relaxes the constraints imposed by the 4-way

system to a great extent. For example, if we want to move the cursor along the up-right direction,

in the 4-way system we might have to do it in a zig-zag pattern by saying “/æ/-/A/” repeatedly,

while in the 8-way system we can simply say “/a/”. The 8-way system, however, is obviously less

advantageous compared with the 4-way system in terms of producibility and discriminability. In

fact, we found that many users have trouble producing certain vowels, such as /a/ and /1/. Even

when a user can produce all eight vowels, it is sometimes hard to distinguish them since they are

less separated in vowel space. Frame-level vowel classification experiments in Chapter 5 showed

that the 8-way system has a classification error rate of 8.16% (for 2-second data per vowel) while

that of the first system is only 0.19%.

The next question is, can we combine the advantages of both systems? In other words, we

desire a system that allows mouse movements in more directions but using only four explicit vowel

classes. To this end, it is helpful to infer the user’s intended motion vector by incorporating context

120

information. For example, when the user says “/æ/-/A/-/æ/-/A/-...” in a target acquisition task, it is

likely that he wants to move the mouse diagonally.

7.2.3 An online adaptive filter

There has been research on plan recognition which aims to infer the plans of an intelligent agent

from observations of the agent’s actions [190]. A recent trend in approaching the plan recognition

problem is to first construct a dynamic Bayesian network (DBN) for plan execution and then to

apply inference on this model [191, 192]. To model the plan hierarchy, [192] adopts a model of

abstract Markov policies that enables an abstract policy to invoke more refined policies. In such

techniques, however, user intent is usually modeled in a finite state space, and inference is often

achieved via sampling. This poses problems to the situation where user intent is best expressed as a

continuous variable.

We introduce an adaptive filter algorithm of inferring intended values yt from noisy estimates

zt. Then we replace zt with yt in Equation (6.5) in an attempt to obtain the intended motion vector

vint
t . The model we use is essentially a hierarchical DBN. The idea is to predict the current yt by

a “plan” variable, a continuous version of the “abstract policy” used in [192], and then update yt

based on the current measurement. The system dynamics can be modeled in such a way that the

standard Kalman filter algorithm [193] is directly applicable, and hence yt can be exactly inferred

in the maximum likelihood sense. This dynamic model is “adaptive” in the sense that the model

parameters are updated on the fly as will be seen.

Specifically, as shown in Figure 7.3, we model the dynamics of the system using two variables

in parallel. Variable yt represents a user’s intent, and variable gt represents the long-term trend of

yt (or the ”plan”). In other words, yt can be considered a local goal and gt a global goal, both

of which are not directly observable. We assume that yt can be predicted by gt−1 with certain

deviation, i.e. yt = gt−1 + ut, where ut is a defined as a multivariate Gaussian with covariance

matrix Q(t) = E[utuT
t] for computational simplicity. This deviation is caused by plan changes,

human imprecision, system constraints (e.g. only allowing mouse movements in certain directions)

or the user’s intentional adjustments to compensate for previous errors. On the other hand, gt can

be determined by applying a low-pass filter on yt. The dynamics of yt and gt are thereby modeled

121

zt-1 zt zt+1

ut-1 ut ut+1

gt-1 gt gt+1

et-1 et et+1

yt-1 yt yt+1

Figure 7.3: A modified Kalman filter for user intent tracking

by linear equations.

gt+1

yt+1


 =


a(t)I (1− a(t))I

I 0


 ·


gt

yt


 +


 0

ut


 (7.11)

Furthermore, zt is a measurement variable, representing the noisy estimate of yt. Specifically zt =

yt + et, where deviation et is due to system errors or environmental noise. For simplicity, we

assume that et is generated from a multivariate Gaussian distribution with covariance matrix R(t) =

E[eteT
t],

If we define xt = [gt,yt]T , wt = [0,ut]T , and Q′(t) = E[wtwT
t], we get the standard state-

space model. The dynamic and observation models hence become

xt+1 = A(t)xt + wt (7.12)

zt = Cxt + vt (7.13)

122

where

A(t) =


a(t)I (1− a(t))I

I 0


 (7.14)

C =
[
0 I

]
(7.15)

with a(t) ∈ [0, 1] being a scalar. In this way, yt can be obtained in the maximum likelihood sense

using the standard Kalman filter algorithm [193].

x̂t+1|t+1 = x̂t+1|t + Kt+1(zt+1 − CT x̂t+1|t) (7.16)

where
x̂t+1|t = A(t)x̂t|t

Kt+1
∆= Pt+1|tC(CT Pt+1|tC + R(t))−1

Pt+1|t = APt|tAT + Q′(t)T

Pt+1|t+1 = [I −Kt+1C
T]Pt+1|t

(7.17)

It is worth mentioning that we infer yt instead of gt because yt does not have phase delay with

respect to zt whereas gt does, as will be illustrated by a simulation in the next section.

The choice of the model parameters is rather application-specific. First, matrix A(t) decides

how stable the plan variable gt is. In the extreme case where a(t) = 1, gt becomes a constant. In

target acquisition tasks (e.g. browsing websites by clicking on hyperlinks), the goal is to get to a

target position as quickly as possible starting from the current position. This can be achieved by

moving the cursor along the direction that points to the target. In this case, the plan is to move

cursor along a fixed direction, and we can use a function a(t) monotonically increasing over time,

e.g. a(t) = 1− c/(t + c), so that gt converges to a constant as time goes. Note that A(t) is always

reset to its initial value once a pause or a stop in articulation is detected. In steering tasks, however,

the goal is to move the cursor along certain track which can be an arbitrary curve. In such tasks, the

plan may change constantly, and we thus let a(t) = α, where α ∈ [0, 1] is empirically chosen to

determine the smoothness of the plan or to be determined by a separate acoustic parameter such as

pitch.

The covariance matrix Q(t) adjusts the tradeoff between the smoothness of the estimate trajec-

tory and the loyalty to the measurement trajectory. If the variance of ut is small, yt will converge

123

to its long-term trend gt and the trajectory of the estimates becomes smooth; otherwise yt will be

more loyal to the measurements zt. This parameter also adjusts the tradeoff between the system’s

automation degree and the system’s predictability to humans. Increased automation management is

not always desirable since it yields increased unpredictability to humans, which explains why “even

perfect intent inference might not be good enough” [194]. Finally, the covariance matrix R(t) de-

pends on the classifier confusion matrix and the environmental noise condition, both of which can

be estimated using principled approaches.

7.2.4 Experiments and Discussions

To illustrate the behavior of the adaptive filter, we ran a simulation for a univariate random process.

The measurement zt = sin π
10 t + et, where et ∼ N (0, 0.01). The black trajectory in Figure 7.4

represents this noisy sinusoid function for t = 1 : 100. Assume that the values +1 and -1 represent

two principle directions, and that the oscillating pattern implies the user’s effort to find a direction

in between, represented by the value 0. We hope that our model can aid the user to approach and

stabilize in this desired direction. Here we let a(t) = 1−1/t, E[utuT
t] = 0.1/t, and E[eteT

t] = 0.01.

The estimated plan variable gt is depicted as the blue trajectory, and yt is depicted as the red

trajectory in Figure 7.4. The yt variable (the red), which is inferred by our algorithm, is loyal

to the zt (the black) at the beginning and approaches gt (the blue) as time goes. This plot also

illustrates that yt is synchronized with zt, while gt is not.

As a test using real-world applications, the authors used the 4-way system, the 8-way system,

and the 4-way system enhanced by adaptive filtering to browse a website. The VJ engine uses a

two-layer MLP classifier with 50 hidden units and 7 frames of MFCC features as input. As can

be seen in the video demonstration in [195], the adaptive filter manifested more control flexibility

while using only four vowels. Using this system, the user achieved fairly stable movements along

directions other than the four cardinal ones by oscillating between two vowels. The video also shows

the case where the cursor path became a smooth curve when the user transitioned from one vowel

to another.

The curve-drawing capability of the adaptive filter is more pronounced in a steering task. This

involves using the VJ mouse to steer along two different shapes, a circle and a square tilted by an

124

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5
measurement variable

intent variable

plan variable

Figure 7.4: Adaptive filtering simulation

angle, shown as the blue paths in Figure 7.2.4. The circle had a radius of 300 pixels on a 800 ×
600 screen, and the square was rotated 30 degrees counterclockwise with each side approximately

532 pixels. The cursor always started at the leftmost part of each shape, and its movement was

constrained to be within a “tube”, with a radius of 30 pixels, centered at the reference shape. The

session would fail once the cursor hit the wall of that tube. The users (again the authors), though

having experience with the early VJ system, were relatively novice users of the adaptive filter. As

shown in the Figure 7.2.4, the 8-way system and the system with adaptive filtering produced much

smoother paths compared with the 4-way system, but the adaptive filter approach achieved this by

using only four vowels. Furthermore, the task completion times were very similar across all three

systems. The average completion time of tracing the circle is 21-23 seconds for all three systems,

while that of tracing the tilted square is 22-28 seconds.

We found in the steering tasks, however, that the adaptive filter enhanced flexibility at the cost

of predictability. In other words, the way the system works is not as intuitive as those using the

125

(a) User I (b) User II (c) User III

Figure 7.5: Steering Snapshots: (i) 4-way system; (ii) 8-way system; (iii) 4-way system with adap-

tive filtering

natural control strategy; the smoothness of the curve is sometimes hard to control. However, we

believe the predictability can be significantly increased if given more time to learn this system —

analogous once again to learning to play a violin, individuals with motor impairments, moreover,

are often quite motivated to learn novel user interface technologies. Given the experience we had

using all three systems, we are encouraged by the prospect of beginning a large-scale user study to

thoroughly evaluate user preferences and learnability of these control strategies. In addition, we will

consider using a different vocal parameter, such as pitch, to determine the smoothness parameters.

126

Chapter 8

CONCLUSIONS AND FUTURE WORK

This chapter summarizes the main conclusions of the dissertation, discusses its impact and lim-

itations, and suggests directions for future research.

8.1 Summary of Main Contributions

Adaptation of statistical classifiers is critical when a target (or testing) distribution is different from

the distribution that governs training data. In such cases, a classifier optimized for the training

distribution needs to be adapted for optimal use in the target distribution. While a vast amount of

practical work on adaptation has been done in the areas of speech recognition, natural language

processing and pattern recognition, there lacks a unified and principled approach that is applicable

to a variety of classifiers, and there lacks a quantitative relationship between the adaptation sample

size and the divergence between training and target distributions.

The first contribution of this dissertation is the use of the Bayesian “fidelity prior” that unifies

adaptation strategies for a number of different classifiers, as was discussed in Chapter 4. Loosely

speaking, this prior measures how likely a classifier is given a training distribution, and directly

relates to the KL-divergence between the training and target distributions. In situations where direct

optimization is intractable, we replace the fidelity prior with its lower bound in the optimization

objective. Specifically, we developed adaptation criteria for a school of generative models including

Gaussian models, Gaussian mixture models and hidden Markov models. These criteria resemble the

objectives of MAP adaptation [104] but were derived from a different perspective — to minimize

the KL-divergence. With regard to discriminative models, we focused our attention on generalized

log linear models, and derived a simple adaptation criterion that can be used for adapting SVMs,

MLPs and CRFs, while a similar strategy for adapting MaxEnt models has been proposed in [122].

Furthermore, in the PAC-Bayesian setting, we derived several generalization error bounds for

adaptation. For a countable function space, we utilized the Occam’s Razor bound that bounds the

127

true error by the empirical error plus a capacity term which depends on the prior of the model.

Applying the fidelity prior in this setting, the capacity term becomes a monotonically increasing

function of the KL-divergence between the training distribution and the distribution determined by

the model of interest. An implication of this bound is that unless the KL-divergence between training

and target distributions is larger than a threshold (denoted as β in Corollary 4.4.1), it is theoretically

better to use the fidelity prior than using the standard prior in learning an adapted model. Next,

we derived PAC-Bayesian bounds for Gibbs classifiers which are applicable to both countable and

uncountable function spaces, as shown in Corollary 4.4.2 and Corollary 4.4.3. Although we do

not yet have a theoretical result to bound the true error for an uncountable function space of point-

estimate classifiers, we have empirically shown that fewer samples were needed for smaller KL

values to achieve the same confidence.

The second contribution comes from the derivation of regularized adaptation algorithms and

applying them to two pattern classification tasks. In Chapter 5 we derived updating formula for

adapting GMMs, SVMs and MLPs respectively, and we concentrated on the last two classifiers as

they had received relatively less attention from the adaptation perspective. We compared a number

of SVM and MLP adaptation algorithms in a vowel classification task and an object recognition

task. Our first finding is that without adaptation, MLPs outperformed SVMs in vowel classification,

whereas SVMs worked significantly better than MLPs in object recognition. Secondly, an adapted

classifier was in general advantageous over its unadapted and retrained counterparts. Finally, when

comparing different adaptation techniques, we found that regularized adaptation in general worked

very well, as shown in Table 8.1 which summarizes the best SVM and MLP adaptation algorithms

in the pattern classification tasks. Additionally, in situations where the amounts of adaptation data

were unbalanced across classes, regularized adaptation for MLPs had a pronounced advantage over

any other MLP adaptation techniques we were aware of.

Yet another important contribution of this dissertation is the co-development of the Vocal Joy-

stick and the application of regularized adaptation to the VJ system. The VJ is a human-computer

interface for individuals with motor impairments. The key feature of the VJ is that it continuously

generates acoustic parameters and transforms them into various control parameters. This results

in a highly responsive, continuous interaction where a change in vocal characteristics initiated by

a user is reflected immediately upon the interface. The contributions of this dissertation to the VJ

128

Table 8.1: The best-performing adaptation algorithms in two pattern classification tasks.

classifier/task Vowel classification Object recognition

SVM Regularized (5.19); Extended regularized (old SV coeffs are updated);

Retrained Boosted [130]

MLP Regularized (5.28); Regularized (5.28);

Retrained first layer Retrained speaker-independent

engine are primarily in the signal processing and pattern recognition modules. Chapter 6 described

engineering details of voice activity detection, low-level feature extraction, and acoustic parameter

estimation which includes pitch tracking, vowel classification, and discrete sound recognition and

rejection. While many of these techniques have been well-studied in the literature, applying them

to a new problem (the VJ) requires careful considerations and great engineering efforts. The design

and implementation of these modules was a trial-and-error process that involved the developer’s

own experience with the VJ as well as feedback from a number of user studies [36, 37, 49, 53, 54].

The greatest impact of this work to the VJ is the development of efficient adaptation techniques,

which is in fact the original motivation of this dissertation. The regularized adaptation algorithms

for GMMs and MLPs described in Chapter 5 have been successfully integrated into the VJ engine,

and have yielded substantial benefits to system performance.

Furthermore, we extended our discussions on the pattern recognition module in Chapter 7, where

we presented novel algorithms on pitch tracking and on post-processing of vowel classification out-

puts. More specifically, we described a graphical model framework to automatically learn pitch

tracking parameters. In this framework, probabilistic dependencies between pitch, pitch transition

and acoustical observations are expressed using the language of graphical models. Moreover, the

introduction of soft evidence has greatly enhanced the modeling power of the graph and hence the

pitch estimation performance. Experiments have shown that our algorithm significantly outper-

formed ”get f0” (a standard pitch tracking tool) in both pitch estimation and voicing decision. The

second algorithm introduced in Chapter 7 is a novel adaptive filter applied to vowel classification

outputs. The algorithm enables the VJ to produce movements in arbitrary directions and to draw

129

smooth curves without phase delay. This adaptive filter is essentially a Kalman filter in which a

global-intent variable is modeled in parallel to a local-intent variable, and in which model parame-

ters are adapted on-the-fly. Although there has not been a large-scale user study to conclude on user

preferences (compared to the 4-way and the 8-way systems), this technique has by no doubt offered

an alternative control strategy which is potentially useful in applications such as drawing.

8.2 Future Work

This section discusses a number of limitations of this dissertation work, and suggests directions for

future research.

From the theoretical perspective, a major goal of this dissertation is to study the relationship

between adaptation error bounds and the divergence between training and target distributions. To

this end, we have utilized PAC-Bayesian theorems [60] to relate the error bounds to KL-divergence.

The limitation therein is that the Occam’s Razor bound is only valid for a countable function space,

while McAllester’s PAC-Bayesian bounds are concerned with Gibbs classifiers or Bayesian predic-

tion classifiers. In practice, we are often more interested in point-estimate classifiers in an uncount-

able function space, such as GMMs, SVMs and MLPs, but PAC-Bayesian theorems are not directly

applicable to such situations. An alternative approach is to develop such error bounds in the line of

VC theorems [23], where the capacity measures, such as VC entropy or VC dimension, are applica-

ble to both countable and uncountable function spaces. This dissertation has made an initial attempt

by deriving the VC dimension of linear classifiers in a constrained function space (for adaptation),

but it is somewhat difficult to relate the error bound to the divergence between training and target

distributions. One way to circumvent this problem is to use other distortion measures between train-

ing and target domains rather than the KL-divergence, as proposed in [196]. Another direction is to

study the problem from the multi-task learning point of view [26, 28, 30, 31, 35], as discussed in the

introduction. Future work should investigate these avenues.

Algorithm-wise, while regularized adaptation is a principled and simple framework that is amenable

to variations in the amount of adaptation data, it still depends on cross-validation to discover the

best tradeoff coefficients. It would be interesting to quantify the relationship between the accuracy-

regularization frontier [197] (or the regularization path) and the adaptation sample size. Moreover,

130

we have found that adapting the input-to-hidden layer of an MLP gives surprisingly good perfor-

mance compared to adapting only the hidden-to-output layer, but we have not yet related this reg-

ularization strategy to the fidelity prior — only the regularization of the hidden-to-output layer is

directly derived from the fidelity prior. Also, this method gives rise to a potential strategy for adapt-

ing SVMs, i.e., to adapt kernel parameters or the kernel itself, since the kernel function of an SVM

is analogous to the input-to-hidden layer of an MLP. Kernel adaptation can be potentially achieved

by exploiting kernel learning techniques such as [147].

With regard to the Vocal Joystick, there are a couple of components in the pattern recognition

module that deserve further research. First, the pitch tracker should ideally be trained on a corpus

that matches the target application. For example, the VJ may require more drastic pitch changes in

certain applications, but such pitch transition patterns are rarely seen in speech databases. On the

other hand, it would be expensive and time-consuming to collect a ”VJ-pitch” corpus with laryngo-

graph waveforms. A more realistic solution would be to fine-tune the graphical model parameters

empirically in the context of a VJ application. Second, our user-independent discrete sound recog-

nizer was trained on TIMIT, a continuous speech corpus, which is again inconsistent with our target

application. Although adaptation can mitigate the mismatch problem, the recognition and rejection

performance is more or less affected by the poor unadapted model. An effective way to improve

the discrete sound recognizer, therefore, is to collect a ”VJ-discrete-sound” corpus and to retrain the

HMMs accordingly. Moreover, the discrete sound vocabulary plays an important role in the rejec-

tion mechanism, the design of which has been a tradeoff between avoiding confusion with vowels

(for continuous control) and avoiding confusion with garbage sounds such as breathing and spike

noise. The current vocabulary, by using unvoiced consonants only, has maximally reduced false

positives caused by vowels, but is somewhat vulnerable to environmental noise. It is worth revis-

iting the problem and designing a vocabulary that balances this tradeoff. Additionally, exploiting

information external to the VJ engine is likely to help enhance the performance of the pattern recog-

nition module. For example, given the layout of a computer screen and the current mouse pointer

position, it would be easier to predict what the next action would be; but this has to be done in a

more controlled environment.

Finally, we would like to note that the problem addressed by this dissertation is one single

aspect of adaptive learning. There are many other aspects that have drawn increasing attention in

131

machine learning, e.g., semi-supervised and unsupervised adaptation [10,14,15,198], feature-based

adaptation [125,126] and multi-task learning [26–30]. While the time scale of a Ph.D. is too short to

explore all these problems, I am excited at the prospect of continuing research on adaptive learning

in the future.

132

BIBLIOGRAPHY

[1] J. Paredis, “Learning at the crossroads of biology and computation,” in Proc. 1st Intl. Symp.
on Intelligence in Neural and Biological Systems, May 1995, pp. 56–63.

[2] J. Berko, “The child’s learning of english morphology,” Word, vol. 14, 1958.

[3] S. M. Cormier and J. D. Hagman (Eds.), Transfer of learning: Contemporary research and
applications, Academic Press, 1987.

[4] R. Clark, “Learning vs. performance: Retention and transfer of knowledge and skills from
long-term memory,” in Building Expertise, Cognitive Methods for Training and Performance
Improvement, 1998.

[5] Z. Ghahramani, “Unsupervised learning,” in Advanced Lectures on Machine Learning,
O. Bousquet, G. Rätsch, and U. von Luxburg, Eds. 2004, vol. 3176 of Lecture Notes in
Computer Science, Springer.

[6] B. Silverman, Density Estimation for Statistics and Data Analysis, Chapman and Hall,
London, 1986.

[7] L. Kaufman and P. Rousseeuw, Finding groups in Data: an introduction to cluster analysis,
Wiley, New York, 1990.

[8] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, Springer, 2001.

[9] A. Hyv arinen and E. Oja, “Independent component analysis: algorithms and applications,”
Neural Networks, vol. 13, 2000.

[10] X. Zhu, “Semi-supervised learning literature survey,” Tech. Rep., Computer Sciences, Uni-
versity of Wisconsin-Madison, 2006.

[11] D. Miller and H. Uyar, “A mixture of experts classifier with learning based on both labeled
and unlabeled data,” in Advances in Neural Information Processing Systems, 1996.

[12] V. Roth and V. Steinhage, “Nonlinear discriminant analysis using kernel functions,” in
Advances in Neural Information Processing Systems, 1999.

[13] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell, “Text classification from labeled and
unlabeled documents using em,” Machine Learning, vol. 39, pp. 103134, 2000.

133

[14] M. R. Amini and P. Gallinari, “Semi-supervised logistic regression,” in 15th European
Conference on Artificial Intelligence, 2002.

[15] Y. Grandvalet and Y. Bengio, “Semi-supervised learning by entropy minimization,” in Ad-
vances in Neural Information Processing Systems, 2004.

[16] A. Blum and T. Mitchell, “Combining labeled and unlabeled data with co-training,” in COLT:
Proceedings of the Workshop on Computational Learning Theory, 1998.

[17] K. Nigam and R. Ghani, “Analyzing the effectiveness and applicability of co-training,” in
Ninth International Conference on Information and Knowledge Management, 2000.

[18] A. Blum and S. Chawla, “Learning from labeled and unlabeled data using graph mincut,” in
Proc. Intl. Conf. on Machine Learning, 2001.

[19] D. Zhou, O. Bousquet, J. Weston T. N. Lal, and B. Schlkopf, “Learning with local and global
consistency,” in NIPS, 2003.

[20] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using gaussian fields and
harmonic functions,” in Proc. Intl. Conf. on Machine Learning, 2003.

[21] D. Angluin, “Queries revisited,” Theoretical Computer Science, vol. 313, no. 2, 2004.

[22] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, “Selective sampling using the query by
committee algorithm,” Machine Learning, vol. 28, pp. 133–168, 1997.

[23] V. N. Vapnik, Statistical Learning Theory, Wiley-Interscience, 1998.

[24] K. Bennett, “Combining support vector and mathematical programming methods for classi-
fication,” in Advances in kernel methods - support vector learning, B. Schökopf et. al., Ed.
1999, MIT-Press.

[25] T. Joachims, “Transductive inference for text classification using support vector machines,”
in Proc. Intl. Conf. on Machine Learning, 1999.

[26] J. Baxter, “Learning internal representations,” in COLT: Proceedings of the Workshop on
Computational Learning Theory. 1995, Morgan Kaufman.

[27] J. Baxter, “A model of inductive bias learning,” Journal of Artificial Intelligence Research,
vol. 12, pp. 149–198, 2000.

[28] S. Thrun and L.Y. Pratt, Learning To Learn, Kluwer Academic Publishers, Boston, MA,
1998.

134

[29] S. Ben-David and R. Schuller, “Exploiting task relatedness for multiple task learning,” in
Proceedings of Computational Learning Theory (COLT), 2003.

[30] R. K. Ando and T. Zhang, “A framework for learning predictive structures from multiple
tasks and unlabeled data,” Journal of Machine Learning Research, vol. 6, 2005.

[31] R. Caruana, “Multitask learning,” Machine Learning Journal, vol. 28, 1997.

[32] T. Evgeniou and M. Pontil, “Regularized multi-task learning,” in SIGKDD, August 2004.

[33] J. Baxter, “A Bayesian/information theoretic model of learning to learn via multiple task
sampling,” Machine Learning, 1997.

[34] T. Heskes, “Empirical Bayes for learning to learn,” in Proc. Intl. Conf. on Machine Learning,
2000.

[35] R. Raina, A. Y. Ng, and D. Koller, “Constructing informative priors using transfer learning,”
in Proc. Intl. Conf. on Machine Learning, 2006.

[36] J. Bilmes et. al., “The vocal joystick: A voice-based human-computer interface for individu-
als with motor impairments,” in Human Language Technology Conf. and Conf. on Empirical
Methods in Natural Language Processing, 2005.

[37] J. Bilmes and et.al., “The Vocal Joystick,” in Proc. IEEE Intl. Conf. on Acoustic, Speech and
Signal Processing, May 2006.

[38] G. Faconti and M. Massink, “Continuity in human computer interaction,” Tech. Rep., CHI
Workshop, 2000.

[39] “Origin instruments,” 2007, http://www.orin.com.

[40] “Pride mobility products corp,” 2007, http://www.pridemobility.com.

[41] R. J. K. Jacob, “What you look at is what you get: eye movement-based interaction tech-
niques,” in Proc. of the SIGCHI conf. on Human Factors in Computing Systems, 1990.

[42] X.Huang and et. al., “Mipad: a multimodal interaction prototype,” in Proc. IEEE Intl. Conf.
on Acoustic, Speech and Signal Processing, May 2001.

[43] B. Manaris and A. Harkreader, “Suitekeys: A speech understanding interface for the motor-
control challenged,” in In Proc. ACM SIGCAPH Conf on Assistive Technologies, 1998.

[44] T.Igarashi, “Voice as sound: using non-verbal voice input for interactive control,” in In Proc.
ACM Symp. on User Interface Software and Technology, 2001.

135

[45] Y. Mihara, E. Shibayama, and S. Takahashi, “The migratory cursor: accurate speech-based
cursor movement by moving multiple ghost cursors using non-verbal vocalizations,” in Proc.
of the 7th intl. ACM conference on Computers and accessibility, 2005.

[46] C. de Mauro, M. Gori, M. Maggini, and E. Martinelli, “A voice device with an application-
adapted protocol for microsoft Windows,” in Proc. Intl. Conf. on Multimedia Computing and
Systems, 1999.

[47] A. S. Karimullah and A. Sears, “Speech-based cursor control,” in Proceedings of Assets
2002. 2002, pp. 178–185, ACM Press.

[48] X. Li and J. Bilmes, “A Bayesian divergence prior for classifier adaptation,” in Eleventh Intl.
Conf. on Artificial Intelligence and Statistics, 2007.

[49] X. Li and J. Bilmes, “Regularized adaptation of discriminative classifiers,” in Proc. IEEE
Intl. Conf. on Acoustic, Speech and Signal Processing, September 2006.

[50] X.Li, J.Bilmes, and J.Malkin, “Maximum margin learning and adaptation of MLP classifiers,”
in Eurospeech, September 2005.

[51] X. Li, J. Malkin, and J. Bilmes, “Graphical model approach to pitch tracking,” in Proc. Intl.
Conf. on Spoken Language Processing, Oct 2004.

[52] X. Li, J. Malkin, S. Harada, J. Bilmes, R. Wright, and J. Landay, “An online adaptive filtering
algorithm for the Vocal Joystick,” in Interspeech, September 2006.

[53] J. Malkin, X. Li, and J. Bilmes, “Energy and loudness for speed control in the Vocal Joystick,”
in ASRU Workshop, Nov 2005.

[54] S. Harada, J. Landay, J. Malkin, X. Li, and Jeff Bilmes, “The Vocal Joystick: Evaluation of
voice-based cursor control techniques,” in Proc. of the 8th Intl. ACM SIGACCESS Conf. on
Computers and Accessibility, October 2006.

[55] K. Kilanski, J. Malkin, X. Li, R. Wright, and J. Bilmes, “The vocal joystick data collection
effort and vowel corpus,” in Interspeech, 2006.

[56] S. Arora, L. Babai, J. Stern, and Z. Sweedyk, “The hardness of approximate optima in
lattices, codes, and systems of linear equations,” Journal of Computer and System Sciences,
1997.

[57] P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe, “Convexity, classification, and risk bounds,”
Journal of the American Statistical Association, 101, 2006.

136

[58] M. Anthony and P. L. Bartlett, Neural Network Learning: Theoretical Foundation, Cam-
bridge University Press, 1999.

[59] G. Lugosi and K. Zeger, “Concept learning using complexity regularization,” IEEE Transac-
tions on Information Theory, vol. 42, no. 1, 1996.

[60] D. A. McAllester, “PAC-Bayesian stochastic model selection,” Machine Learning Journal,
2001.

[61] B. Schölkopf and A. J. Smola, Learning with kernels, The MIT Press, 2001.

[62] M.Jordan and C.Bishop, An Introduction to Graphical Models, pre-print, 2001.

[63] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum-likelihood from incomplete data
via the EM algorithm,” J. Royal Statist. Soc. Ser. B., vol. 39, 1977.

[64] R. J. A. Little and D. B. Rubin, Statistical Analysis with Missing Data, Wiley, New York,
1987.

[65] L.R. Bahl, P.F. Brown, P.V. de Souza, and R.L. Mercer, “Maximum mutual information esti-
mation of HMM parameters for speech recognition,” in Proc. IEEE Intl. Conf. on Acoustic,
Speech and Signal Processing, December 1986, pp. 49–52.

[66] B.-H. Juang, W. Hou, and C.-H. Lee, “Minimum classification error rate methods for speech
recognition,” IEEE Trans. on Speech and Audio Processing, vol. 5, pp. 257–265, 1997.

[67] Y. Ephraim and L. Rabiner, “On the relation between modeling approaches for speech recog-
nition,” IEEE Trans. on Information Theory, vol. 36, no. 2, 1990.

[68] E. McDermott, T.J. Hazen, J. Le Roux, A. Nakamura, and S. Katagiri, “Discriminative
training for large vocabulary speech recognition using minimum classification error,” IEEE
Trans. on Audio, Speech and Language Processing, Jan 2007.

[69] B. Taskar, Learning structured prediction models: a large margin approach, Ph.D. thesis,
Stanford University, December 2004.

[70] F. Sha and L. Saul, “Large margin hidden Markov models for automatic speech recognition,”
in Advances in Neural Information Processing Systems, 2006.

[71] J. Bilmes, “Dynamic Bayesian Multinets,” in Proceedings of the 16th conf. on Uncertainty
in Artificial Intelligence. 2000, Morgan Kaufmann.

137

[72] J. Bilmes, G. Zweig, T. Richardson, K. Filali, K. Livescu, P. Xu, K. Jackson, Y. Brandman,
E. Sandness, E. Holtz, J. Torres, and B. Byrne, “Discriminatively structured graphical models
for speech recognition: JHU-WS-2001 final workshop report,” Tech. Rep., CLSP, Johns
Hopkins University, 2001.

[73] T. Jaakkola and D. Haussler, “Exploiting generative models in discriminative classifiers,” in
Advances in Neural Information Processing Systems, 1998.

[74] H. Ney, “On the probabilistic interpretation of neural network classifiers and discriminative
training criteria,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17,
no. 2, 1995.

[75] P. C. Woodland and D. Povey, “Large scale discriminative training of hidden markov models
for speech recognition,” Computer Speech and Language, 2002.

[76] J. C. Spall, Introduction to Stochastic Search and Optimization, Wiley, 2003.

[77] P. S. Gopalakrishnan, D. Kanevsky, A. Nadas, and D. Nahamoo, “An inequality for rational
functions with applications to some statistical estimation problems,” IEEE Trans. on Infor-
mation Theory, vol. 37, pp. 107–113, 1991.

[78] C.Cortes and V.Vapnik, “Support vector networks,” Machine Learning, 1995.

[79] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of online learning and an
application to boosting,” Jounral of Computer and System Sciences, pp. 119–139, 1997.

[80] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, “Boosting the margin: a new explanation
for the effectiveness of voting methods,” in Proc. 14th Intl. Conf. on Machine Learning, 1997.

[81] G. Lugosi and N. Vayatis, “On the Bayes risk consistency of regularized boosting methods,”
Annals of Statistics, 2003.

[82] T. Zhang, “Statistical behavior and consistency of classification methods based on convex
risk minimization,” Annals of Statistics, 2003.

[83] D. A. McAllester, “Some PAC-bayesian theorems,” in COLT: Proceedings of the Workshop
on Computational Learning Theory, Morgan Kaufmann Publishers, 1998.

[84] T.M. Cover and J.A. Thomas, Elements of Information Theory, Wiley, 1991.

[85] J. Langford, “Tutorial on practical prediction theory for classification,” Journal of Machine
Learning Research, pp. 273–306, March 2005.

[86] L. G. Valiant, “A theory of the learnable,” Communications of ACM, vol. 27, no. 11, 1984.

138

[87] M. Seeger, “The proof of McAllester’s PAC-Bayesian theorem,” in Advances in Neural
Information Processing Systems, 2002.

[88] J. Langford, M. Seeger, and N. Megiddo, “An improved predictive accuracy bound for aver-
aging classifiers,” in Proc. 18th Intl. Conf. on Machine Learning, 2001, pp. 290–297.

[89] R. Herbrich and T. Graepel, “A PAC-Bayesian margin bound for linear classiers; why SVMs
work,” in Advances in Neural Information Processing Systems, 2001.

[90] R. Meir and T. Zhang, “Generalization error bounds for Bayesian mixture algorithms,” Jour-
nal of Machine Learning Research, vol. 4, no. 5, pp. 839–860, 2003.

[91] T. Jaakkola, M. Meila, and T. Jebara, “Maximum entropy discrimination,” Tech. Rep. AITR-
1668, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 1999.

[92] J. Langford and J. Shawe-Taylor, “PAC-Bayes and margins,” in Advances in Neural Infor-
mation Processing Systems, 2002.

[93] Y. Singer and M. K. Warmuth, “Training algorithms for hidden markov models using entropy
based distance functions,” in Advances in Neural Information Processing Systems, 1997,
vol. 9, p. 641.

[94] J. Cohen, T. Kamm, and A. Andreou, “Vocal tract normalization in speech recognition:
compensating for systematic speaker variability,” Journal of Acoustic Society of America,
vol. 97, no. 5, 1995.

[95] L.Welling and H.Ney, “Speaker adaptive modeling by vocal tract normalization,” IEEE
Trans. on Speech and Audio Processing, vol. 10, no. 6, 2002.

[96] M. S. Bartlett, Face Image Analysis by Unsupervised Learning, Kluwer Academic Publish-
ers, Massachusetts, 2001.

[97] T. Riklin-Raviv and A. Shashua, “The quotient image: Class based recognition and synthesis
under varying illumination,” in CVPR, 1999.

[98] R. Ramamoorthi, “Analytic pca construction for theoretical analysis of lighting variability
in images of a lambertian object,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2002.

[99] C. Leggetter and P. Woodland, “Maximum likelihood linear regression for speaker adaptation
of continuous density hidden Markov models,” Computer, Speech and Language, vol. 9,
1995.

139

[100] M.Gales and P.Woodland, “Mean and variance adaptation within the mllr framework,” Com-
puter, Speech and Language, vol. 10, 1996.

[101] M. Gales and P. Woodland, “Variance compensation within the MLLR framework,” Tech.
Rep. CUED/FINFENG/TR.242, Cambridge Univ., 1996.

[102] M. Gales, “The generation and use of regression class trees for mllr adaptation,” Tech. Rep.
CUED/FINFENG/TR.263, Cambridge Univ., 1996.

[103] J.-L. Gauvain and C.-H. Lee, “Bayesian learning of Gaussian mixture densities for hidden
Markov models,” in Proceedings of the DARPA Speech and Natural Language Workshop.
1991, pp. 272–277, Morgan Kaufmann.

[104] J.-L.Gauvain and C.-H.Lee, “Maximum a posteriori estimation for multivariate gaussian
mixture observations of Markov chains,” IEEE Trans. on Speech and Audio Processing, vol.
2, 1994.

[105] G.Zavaliagkos, R.Schwarz, J.McDonogh, and J.Makhoul, “Adaptation algorithms for large
scale HMM recognizers,” in Proc. Eurospeech, 1995.

[106] O. Siohan, C. Chesta, and C. Lee, “Hidden markov model adaptation using maximum a
posteriori linear regression,” in Workshop on Robust Methods for Speech Recognition in
Adverse Conditions, 1999.

[107] C. Chesta, O. Siohan, and C. Lee, “Maximum a posteriori linear regression for hidden
Markov model adaptation,” in Eurospeech, 1999.

[108] T.-A. Myrvoll, O. Siohan, C.-H. Lee, and W. Chou, “Structural maximum a posteriori linear
regression for unsupervised speaker adaptation,” in Proc. Intl. Conf. on Spoken Language
Processing, 2000.

[109] A. Surendran and C.-H. Lee, “Transformation based bayesian prediction to adaptaion of
hmms,” Speech Communications, vol. 34, pp. 159–174, 2001.

[110] J.-T. Chien, “Linear regression based Bayesian predictive classification for speech recogni-
tion,” IEEE Trans. on Speech and Audio Processing, vol. 11, no. 1, 2003.

[111] K. Yu and M. Gales, “Incremental adaptation using Bayesian inference,” in Proc. IEEE Intl.
Conf. on Acoustic, Speech and Signal Processing, 2006.

[112] T. Anastasakos, J. McDonough, R. Schwartz, and J. Makhoul, “A compact model for speaker-
adaptive training,” in Proc. Intl. Conf. on Spoken Language Processing, Philadelphia, PA,
1996, pp. 1137–1140.

140

[113] M. Padmanabhan, L. R. Bahl, D. Nahamoo, and M. A. Picheny, “Speaker clustering and
transformation for speaker adaptation in speech recognition systems,” IEEE Trans. on Speech
and Audio Processing, pp. 71–77, 1998.

[114] M. Gales, “Cluster adaptive training of hidden markov models,” IEEE Trans. on Speech and
Audio Processing, pp. 417–428, 2000.

[115] R.Kuhn, J.-C.Junqua, P.Nguyen, and N.Niedzielski, “Rapid speaker adaptation in eigenvoice
space,” IEEE Trans. on Speech and Audio Processing, vol. 8, 2000.

[116] J. Kwok, B. Mak, and S. Ho, “Eigenvoice speaker adaptation via composite kernel pca,” in
Advances in Neural Information Processing Systems, 2004.

[117] V. Dounipiotis and Y.-G. Deng, “Eigenspace-based MLLR with speaker adaptive training in
large vocabulary conversational speech recognition,” in Proc. IEEE Intl. Conf. on Acoustic,
Speech and Signal Processing, 2004.

[118] B. Mak and R. Hsiao, “Kernel eigenspace-based mllr adaptation using multiple regression
classes,” in Proc. IEEE Intl. Conf. on Acoustic, Speech and Signal Processing, 2005.

[119] Hal Daumé III and Daniel Marcu, “Domain adaptation for statistical classifiers,” Journal of
Articial Intelligence Research 26, pp. 1–15, 2006.

[120] M. Bacchiani and B. Roark, “Unsupervised langauge model adaptation,” in Proc. IEEE Intl.
Conf. on Acoustic, Speech and Signal Processing, 2003.

[121] S. Ross, Introduction to Probability Models, the Eighth Edition, Elsevier, 2003.

[122] C. Chelba and A. Acero, “Adaptation of maximum entropy capitalizer: Little data can help a
lot,” in Empirical Methods in Natural Language Processing, July 2004.

[123] P. R. Clarkson and A. J. Robinson, “Language model adaptation using mixtures and an
exponentially decaying cache,” in Proc. IEEE Intl. Conf. on Acoustic, Speech and Signal
Processing, 1997.

[124] T. Jebara and A. Pentland, “Maximum conditional likelihood via bound maximization and
the cem algorithm,” in Advances in Neural Information Processing Systems, 1998.

[125] R. Florian and et. al., “A statistical model for multilingual entity detection and tracking,” in
NAACL/HLT, 2004.

[126] J. Blitzer, R. McDonald, and F. Pereira, “Domain adaptation with structural correspondence
learning,” in Empirical Methods in Natural Language Processing, 2006.

141

[127] J. Stadermann and G. Rigoll, “Two-stage speaker adaptation of hybrid tied-posterior acoustic
models,” in Proc. IEEE Intl. Conf. on Acoustic, Speech and Signal Processing, 2005.

[128] J.Neto, L. Almeida, M. Hochberg, C. Martins, L. Nunes, S. Renals, and T. Robinson,
“Speaker-adaptation for hybrid HMM-ANN continuous speech recognition system,” in Proc.
Eurospeech, 1995.

[129] V. Abrash, H. Franco, A. Sankar, and M. Cohen, “Connectionist speaker normalization and
adaptation,” in eurospeech, 1995.

[130] N. Matic, I. Guyon, J. Denker, and V. Vapnik, “Writer adaptation for on-line handwritten
character recognition,” in Proc. Intl. Conf. on Pattern Recognition and Document Analysis,
1993.

[131] B.-B.Peng, Z.-X.Sun, and X.-G. Xu, “SVM-based incremental active learning for user adap-
tation for online graphics recognition system,” in Proc.Intl.Conf.on Machine Learning and
Cybernetics, 2002.

[132] S.Rüping, “Incremental learning with support vector machines,” in Proc. IEEE. Intl. Confer-
ence on Data Mining, 2001.

[133] P. Wu and T. G. Dietterich, “Improving svm accuracy by training on auxiliary data sources,”
in Proc. Intl. Conf. on Machine Learning, 2004.

[134] M. Sugiyama and K.-R. Mller, “Input-dependent estimation of generalization error under
covariate shift,” Statistics & Decisions, vol. 23, no. 4, 2005.

[135] Y. Singer and M.K. Warmuth, “Training algorithm for hidden markov models using entropy
based distance functions,” in Advances in Neural Information Processing System, 1996.

[136] M. N. Do, “Fast approximation of Kullback-Leibler distance for dependence trees and hidden
Markov models,” IEEE Signal Processing Letters, vol. 10, 2003.

[137] N. Vasconcelos, “On the efficient evaluation of probabilistic similarity functions for image
retrieval,” IEEE Transactions on Information Theory, vol. 50, no. 7, 2004.

[138] J. Silva and S. Narayanan, “Upper bound kullback-leibler divergence for hidden markov
models with application as discrimination measure for speech recognition,” in Intl. Sympo-
sium on Information Theory, July 2006.

[139] J. Platt, “Probabilistic outputs for support vector machines and comparison to regularized
likelihood methods,” in Advances in Large Margin Classifiers, A.J. Smola, P. Bartlett,
B. Schoelkopf, and D. Schuurmans, Eds., 2000, pp. 61–74.

142

[140] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, The MIT
Press, 2006.

[141] E. Parrado-Hernandez A. Ambroladze and J. Shawe-Taylor, “Learning the prior for the PAC-
Bayes bound,” Tech. Rep., Southampton, UK, 2004.

[142] J. Bilmes, “A gentle tutorial on the EM algorithm and its application to parameter estimation
for gaussian mixture and hidden markov models,” Tech. Rep. ICSI-TR-97-021, University of
California, Berkeley, 1997.

[143] R.Collobert and S.Bengio, “Links between perceptrons, MLPs and SVMs,” in Intl. Conf. on
Machine Learning, 2004.

[144] J. Goodman, “Exponential priors for maximum entropy models,” in HLT/NAACL, 2003.

[145] C. Bishop, Neural Networks for Pattern Recognition, Clarendon Press, Oxford, 1995.

[146] C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Mining and
Knowledge Discovery, vol. 2, no. 2, pp. 121–167, 1998.

[147] C.P. Diehl and G. Cauwenberghs, “Svm incremental learning, adaptation and optimization,”
in Proc. IEEE Int. Joint Conf. Neural Networks (IJCNN’2003), 2003.

[148] T. J. Hastie and R. J. Tibshirani, “Classification by pairwise coupling,” in Advances in Neural
Information Processing Systems, 1998.

[149] J. Weston and C. Watkins, “Multi-class support vector machines,” Tech. Rep. CSD-TR-98-
04, Department of Computer Science, Royal Holloway, University of London, 1998.

[150] Y. Le Cun, B. Boser, J. S Denker, D. Henderson, R. E.. Howard, W. Howard, and L. D.
Jackel, “Handwritten digit recognition with a back-propagation network,” in Advances in
Neural Information Processing Systems II (Denver 1989), D. S. Touretzky, Ed., pp. 396–404.
Morgan Kaufmann, San Mateo, CA, 1990.

[151] S. Rosset, J. Zhu, and T. Hastie, “Margin maximizing loss functions,” in Advances in Neural
Information Processing Systems, 2004.

[152] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields: Probabilistic models
for segmenting and labeling sequence data,” in Proc. 18th International Conf. on Machine
Learning. 2001, pp. 282–289, Morgan Kaufmann, San Francisco, CA.

[153] A. L. Berger, S. Della Pietra, and V. J. Della Pietra, “A maximum entropy approach to natural
language processing,” Computational Linguistics, vol. 22, no. 1, pp. 39–71, 1996.

143

[154] S. Della Pietra, V. J. Della Pietra, and J. D. Lafferty, “Inducing features of random fields,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 4, pp. 380–393,
1997.

[155] P. Jantke, “Types of incremental learning,” in AAAI Symposium on Training Issues in Incre-
mental Learning, 1993.

[156] N. Syed, H. Liu, and K. Sung, “Incremental learning with support vector machines,” in Proc.
Workshop on Support Vector Machines at the Intl. Joint Conf. on Aritifical Intelligence, 1999.

[157] Gert Cauwenberghs and Tomaso Poggio, “Incremental and decremental support vector ma-
chine learning,” in Advances in Neural Information Processing Systems, 2000, pp. 409–415.

[158] R.Collobert and S.Bengio, “SVMTorch: support vector machines for large-scale regression
problems,” The journal of Machine Learning Research, 2001.

[159] J. Platt, “Sequential minimal optimization: A fast algorithm for training support vector ma-
chines,” Tech. Rep. 98-14, Microsoft Research, Redmond, 1998.

[160] H.Bourlard and N.Morgan, Connectionist Speech Recognition: A Hybrid Approach, Kluwer
Academic Publishers, 1994.

[161] D. Burton, On the inverse shortest path problem, Ph.D. thesis, Department of Mathematics,
FUNDP, Namur, Belgium, 1993.

[162] J. Zhang and Z. Ma, “Solution structure of some inverse combinatorial optimization prob-
lems,” Journal of Combinatorial Optimization, vol. 3, no. 1, 1999.

[163] C. Heuberger, “Inverse optimization: A survey on problems, methods, and results,” Journal
of Combinatorial Optimization, vol. 8, no. 3, pp. 329–361, 2004.

[164] R. K. Ahuja and J. B. Orlin, “Inverse optimization,” Operations Research, vol. 49, no. 5,
2001.

[165] V.W.Zue, S.Seneff, and J.Glass, “Speech database development at MIT: TIMIT and beyond,”
Speech Communication, vol. 9, no. 4, pp. 351–356, 1990.

[166] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic object recognition with
invariance to pose and lighting,” in Computer Vision and Pattern Recognition, 2004.

[167] T.W.Stewart and N. Vaillette, Language Files, The Ohio State University Press, 2001.

[168] “International phonetic alphabet,” http://www.arts.gla.ac.uk/ipa/ipa.html.

144

[169] J.R.Deller, J.H.L.Hansen, and J.G.Proakis, Discrete-time processing of speech signals,
Macmillan, 1993.

[170] X. Huang, A. Acero, and H.-W. Hon, Spoken Language Processing, Prentice Hall, 2001.

[171] L.R.Rabiner, “On the use of autocorrelation analysis for pitch detection,” IEEE Trans. on
Acoustics, Speech, and Signal Processing, vol. 25, 1977.

[172] D. Talkin, Speech coding and synthesis, Elsevier Science B.V, 1995.

[173] S. Young, G. Evermann, T. Hain, D. Kershaw, G. Moore, J. Odell, D. Ollason, D. Povey,
V. Valtchev, and P. Woodland, The HTK book 3.2, Cambrideg University and Microsoft
Corporation, 2000’s.

[174] S. R. Young, “Detecting misrecognitions and out-ofvocabulary words,” in Proc. IEEE Intl.
Conf. on Acoustic, Speech and Signal Processing, 1994.

[175] M. G. Rahim, C. H. Lee, and B.-H. Juang, “Robust utterance verification for connected digits
recognition,” in Proc. IEEE Intl. Conf. on Acoustic, Speech and Signal Processing, 1995.

[176] Z. Rivlin, M. Cohen, V. Abrash, and T. Chung, “A phone-dependent confidence measure for
utterance rejection,” in Proc. IEEE Intl. Conf. on Acoustic, Speech and Signal Processing,
1996.

[177] J. G. A. Dolfing and A. Wendemuth, “Combination of confidence measures in isolated word
recognition,” in Proc. Intl. Conf. on Spoken Language Processing, 1998.

[178] W. Hess, Pitch Determination of Speech Signals, Springer-Verlag, 1983.

[179] B.S.Atal, “Automatic speaker recognition based on pitch contours,” Journal of the Acoustical
Society of America, vol. 52, no. 6, 1972.

[180] N.Kunieda, T.Shimamura, and J.Suzuki, “Robust method of measurement of fundamental
frequency by ACOLS-autocorrelation of log spectrum,” in Proc. IEEE Intl. Conf. on Acoustic,
Speech and Signal Processing, 1996.

[181] D-J.Liu and C-T.Lin, “Fundamental frequency estimation based on the joint time-frequency
analysis of harmonic spectral structure,” IEEE Trans. on Speech and Audio Processing, vol.
9, no. 6, 2001.

[182] A.Cheveigne and H.Kawahara, “YIN, a fundamental frequency estimator for speech and
music,” Journal of the Acoustical Society of America, vol. 111, no. 4, 2002.

145

[183] J.Droppo and A.Acero, “Maximum a posteriori pitch tracking,” in Proc. IEEE Intl. Conf. on
Acoustic, Speech and Signal Processing, 1998.

[184] J. Bilmes and G. Zweig, “The Graphical Models Toolkit: An open source software system
for speech and time-series processing,” in Proc. IEEE Intl. Conf. on Acoustic, Speech and
Signal Processing, 2002.

[185] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of P lausible Inference,
Morgan Kaufmann, 2nd printing edition, 1988.

[186] J. Bilmes, “On soft evidence in Bayesian networks,” Tech. Rep. UWEETR-2004-0016, Dept.
of Electrical Engineering, University of Washington, 2004.

[187] I.J.Good, The estimation of probabilities: an essay on modern Bayesian methods, MIT Press,
Cambridge, MA, 1965.

[188] A. Wrench, “A multichannel/multispeaker articulatory database for continuous speech recog-
nition research,” in Workshop on Phonetics and Phonology in ASR, 2000.

[189] L.R.Rabiner, M.J.Cheng, and A.E.Rosenberg, “A comparative performance study of several
pitch detection algorithms,” IEEE Trans. on Acoustics, Speech, and Signal Processing, vol.
24, 1976.

[190] H. Kautz and J. F. Allen, “Generalized plan recognition,” in AAAI, 1986, pp. 32–38.

[191] D. Pynadath and M. Wellman, “Accounting for context in plan recognition, with application
to traffic monitoring,” in Uncertainty in Artificial Intelligence, 1995.

[192] H. H. Bui, S. Venkatesh S, and G. West, “The recognition of abstract Markov policies,” in
AAAI, 2000, pp. 524–530.

[193] M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory and Practice, Prentice Hall,
1993.

[194] H. B. Funk and C. A. Miller, “User acceptance and plan recognition: Why even perfect intent
inferencing might not be good enough,” in AAAI Fall Symposium, 2001.

[195] “The Vocal Joystick,” 2007, http://ssli.ee.washington.edu/vj.

[196] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira, “Analysis of representations for domain
adaptation,” in Advances in Neural Information Processing Systems 20, Cambridge, MA,
2007, MIT Press.

146

[197] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, “The entire regularization path for the support
vector machine,” Journal of Machine Learning Research, vol. 5, pp. 1391–1415, Oct 2004.

[198] K. Shinoda and C.-H. Lee, “Unsupervised adaptation using structural Bayes approach,” in
Proc. IEEE Intl. Conf. on Acoustic, Speech and Signal Processing, 1998.

[199] R. Fletcher, Practical Methods of Optimization, 2nd Edition, Wiley, 2000.

147

Appendix A

PROOFS

A.1 Proof of Theorem 2.3.3

Proof Since Q(·) = [0, 1], according to Hoeffding inequality,

Pr
(
R(f)−Remp(f) ≥ ε

) ≤ exp(−2mε2) ∆= δ

⇒ Pr

(
R(f) ≥ Remp(f) +

√
− log δ

2m

)
≤ δ

Then using the above and union bound theorem, we have

Pr

(
∀i, R(fi) ≤ Remp(fi) +

√
− log(π(fi)δ)

2m

)

= 1− Pr

(
∃i, R(fi) ≥ Remp(fi) +

√
− log(π(fi)δ)

2m

)

≥ 1−∑
i Pr

(
R(fi) ≥ Remp(fi) +

√
− log(π(fi)δ)

2m

)

≥ 1−∑
i π(fi)δ = 1− δ

A.2 Proof of Equation (2.22)

Proof To prove this, we first show that for any (x, y), if sgn fBayes(x) = sgn
(
Eq(f)[f(x)]

) 6= y,

then Eq(f)[I(f(x) 6= y)] ≥ 1/2. In particular, for y = 1 and a fixed x,

sgn
(
Eq(f)[f(x)]

) 6= y ⇐⇒ Eq(f)[f(x)] < 0

⇐⇒ ∫
f :f(x)=−1 q(f) · (−1) df +

∫
f :f(x)=1 q(f) · 1 df < 0

⇐⇒ ∫
q(f) I(f(x) = 1) df <

∫
(f) I(f(x) = −1) df

Since
∫
f :f(x)=1 q(f) df +

∫
f :f(x)=−1 q(f) df = 1, we have

Eq(f)[I(f(x) 6= 1)] =
∫

f
q(f) I(f(x) = −1) df ≥ 1/2

Similary, the same result can be obtained for y = −1. Taking expectation w.r.t. (x, y), we have

Rp(x,y)(fBayes) ≤ 2Eq(f)[Rp(x,y)(f)]

148

A.3 Proof of Theorem 2.4.1

Here we provide the proof by Schölkopf [61] as this is relevant to the proof of Corollary 4.4.4

Proof Assume that canonical hyperplanes with the constraint ‖w‖ ≤ Λ has a VC-dimension h.

In other words, there exists h points {xi}h
i=1, such that for any possible label assignments {yi}h

i=1

there always exists a w with ‖w‖ ≤ Λ such that

yi〈w,x〉 ≥ 1 i = 1..h (A.1)

We say {xi}h
i=1 are shattered by w. The proof is then two-folds: (1) we show that for any possible

label assignments {yi}h
i=1, we have ‖

h∑

i=1

yixi‖ ≤ h/Λ; and (2) we show that there exists a label

assignments {yi}h
i=1 such that ‖

h∑

i=1

yixi‖2 ≤ hR2, where R = max
i
‖xi‖.

Summing the inequality (A.1) over i = 1..h, we have

h ≤ 〈w,
h∑

i=1

yixi〉 ≤ ‖w‖‖
h∑

i=1

yixi‖ ≤ Λ‖
h∑

i=1

yixi‖,

which proves (1). On the other hand, considering an i.i.d. label assignment of yi where p(yi = 1) =

p(yi = −1) = 1/2, we have

Ep(y1:h)

[
‖

h∑

i=1

yixi‖2

]
=

h∑

i=1

Ep(y1:h)

〈
yixi,

∑

j

yjxj

〉
=

h∑

i=1

Ep(y1:h) ‖yixi‖2 ≤ hR2

Thus there must exsit a label assignments {yi}h
i=1 such that ‖

h∑

i=1

yixi‖2 ≤ hR2, which proves (2).

Combining (1) and (2), the theorem is proved.

A.4 Proof of Corollary 4.4.4

The theorem can be proved simply by using ‖w‖ = ‖w −wtr + wtr‖ ≤ c + ‖wtr‖ in Proof A.3.

A.5 Proof of Corollary 4.4.5

Proof Since yi〈w,x〉 ≥ 1, i = 1..h, we replace step (1) in Proof A.3 by the following. Summing

the above inequality over i = 1, ..., h, we have

h ≤ 〈w −wtr,
h∑

i=1

yixi〉 ≤ ‖w −wtr‖‖
h∑

i=1

yixi‖ ≤ c‖
h∑

i=1

yixi‖

149

On the other hand, according to step (2) in Proof A.3 , there exists {yi}h
i=1, such that

‖
h∑

i=1

yixi‖2 ≤ hR2

Therefore, h ≤ Λ2R2.

A.6 Proof of Lemma 4.3.2

Proof Let x̂ denote an locally minimum solution to J1(x). First, we show that the lemma holds

true when x̂ = 0. For any x 6= x̂, we have

g(0) +
λ′

2
‖0‖ < g(x) +

λ′

2
‖x‖ (A.2)

=⇒ g(0) < g(x) (A.3)

=⇒ g(0) +
λ

2
‖0‖ < g(x) +

λ

2
‖x‖ (A.4)

Therefore, 0 is also a locally minimum solution to J2(x).

Secondly, if x̂ 6= 0, we study the solution space {x : x 6= 0} in which ‖x‖ becomes twice

differentiable. Then we can take the first and second derivatives of J1. The necessary conditions

for x̂ to be a locally optimal solution to J1 is that [199],

d

dx

(
g(x) +

λ′

2
‖x‖

)∣∣∣∣
x=x̂

=
d

dx
g(x)

∣∣∣∣
x=x̂

+
λ′

2
x̂
‖x̂‖ = 0 (A.5)

d2

dx2

(
g(x) +

λ′

2
‖x‖

)∣∣∣∣
x=x̂

=
d2

dx2
g(x)

∣∣∣∣
x=x̂

is positive semidefinite (A.6)

which follow that for x 6= 0,
d

dx
‖x‖ =

d

dx

√
xTx =

x
‖x‖ , and

d2

dx2
‖x‖ = 0. On the other hand,

the sufficient condition [199] for x̂ to be the optimal solution to J2 is

d

dx

(
g(x) +

λ

2
‖x‖2

)∣∣∣∣
x=x̂

=
d

dx
g(x)

∣∣∣∣
x=x̂

+ λx̂ = 0 (A.7)

d2

dx2

(
g(x) +

λ

2
‖x‖2

)∣∣∣∣
x=x̂

=
d2

dx2
g(x)

∣∣∣∣
x=x̂

+ I is positive definite (A.8)

It is easy to see that (A.5) and (A.6) implies (A.7) and (A.8) if λ =
λ′

2‖x̂‖ . Such a choice of λ exists

for any λ′.

150

Appendix B

ALGORITHMS

B.1 EM updating equations for GMM adaptation

Our goal is minimize Remp(f) − λ ln pfid(f) whose upper bound is given by Equation (5.4) and

(5.5). Now we derive the update equations for ωy, cy,k, µy,k and Σy,k respectively. First, we extract

out only the terms which depend on ωy:

J(ωy) = − 1
m

m∑

i=1

δi,y lnωy − λωtr
y lnωy (B.1)

where
∑

y

ωy = 1. By introducing the Lagrangian form
∑

y

J(ωy) − α(
∑

y

ωy − 1), it is easy to

obtain the optimal solution as

ω̂y =

1
m

m∑

i=1

δi,y + λωtr
y

1 + λ

Similarly, we minimize the terms which depend on cy,k,

J(cy,k) = − 1
m

m∑

i=1

δi,yLk|y(i) ln cy,k − λωtr
y ctr

y,k ln cy,k (B.2)

and obtain the optimal solution as

ĉy,k =

1
m

m∑

i=1

δi,yLk|y(i) + λωtr
y ctr

y,k

1
m

m∑

i=1

δi,y + λωtr
y

Next, we inspect the terms which depend on µy,k,

J(µy,k) = − 1
m

m∑

i=1

δi,yLk|y(i) lnN (xi; µy,k, Σy,k)+

λωtr
y ctr

y,kD(N (x; µtr
y,k, Σ

tr
y,k)||N (xi; µy,k, Σy,k))

=
m∑

i=1

δi,yLk|y(i)
1
2
(xi − µy,k)T Σ−1

y,k(xi − µy,k)+

λωtr
y ctr

y,k

1
2
(µtr

y,k − µy,k)T Σ−1
y,k(µ

tr
y,k − µy,k)

(B.3)

151

where the second term follows Equation (2.31). Taking the derivative of J(µy,k) and setting it to

zero, we obtain the optimal solution as

µ̂y,k =

1
m

m∑

i=1

δi,yLk|y(i)xi + λωtr
y ctr

y,kµ
tr
y,k

1
m

m∑

i=1

δi,yLk|y(i) + λωtr
y ctr

y,k

Finally, we inspect the terms which depend on Σ−1
y,k

J(Σ−1
y,k) =

1
m

m∑

i=1

δi,yLk|y(i)
(
− 1

2
ln |Σ−1

y,k|+
1
2
(xi − µy,k)T Σ−1

y,k(xi − µy,k)
)

+

λωtr
y ctr

y,k

(
− 1

2
ln |Σ−1

y,k|+
1
2

tr
(
Σtr

y,kΣ
−1
y,k

)
+

1
2
(µtr

y,k − µy,k)T Σ−1
y,k(µ

tr
y,k − µy,k)

)

=
1
m

m∑

i=1

δi,yLk|y(i)
(
− 1

2
ln |Σ−1

y,k|+
1
2

tr
(
Σ−1

y,kMi,y,k

))
+

λωtr
y ctr

y,k

(
− 1

2
ln |Σ−1

y,k|+
1
2

tr
(
Σtr

y,kΣ
−1
y,k

)
+

1
2

tr
(
Σ−1

y,kNy,k

))

(B.4)

where Mi,y,k
∆= (xi − µy,k)(xi − µy,k)T and Ny,k

∆= (µtr
y,k − µy,k)(µtr

y,k − µy,k)T . Using the fact

that for symmetrical matrices A and B,

∂ ln |A|
∂A

= 2A−1 − diag(A−1) (B.5)

tr(AB)
∂A

= 2B − diag(B) (B.6)

we can derive the derivative of J(Σ−1
y,k) w.r.t. Σ−1

y,k as follows

∂J(Σ−1
y,k)

∂Σ−1
y,k

=
1
m

m∑

i=1

δi,yLk|y(i)
(
− Σy,k +

1
2

diag (Σy,k) + Mi,y,k − 1
2

diag(Mi,y,k)
)

(B.7)

+λωtr
y ctr

y,k

(
− Σy,k +

1
2

diag(Σy,k) + Σtr
y,k −

1
2

diag(Σtr
y,k) + Ny,k − 1

2
diag(Ny,k)

)
= 0 (B.8)

Furthermore, since A− 1
2diag(A) = 0 implies A = 0, we obtain the optimal solution as

Σ̂y,k =

1
m

m∑

i=1

δi,yLk|y(i)Mi,y,k + λωtr
y ctr

y,k

(
Σtr

y,k + Ny,k

)

1
m

m∑

i=1

δi,yLk|y(i) + λωtr
y ctr

y,k

152

B.2 Sequential minimal optimization for SVM adaptation

We optimize two parameters α1 and α2 at a time.

J(α1, α2) = α1 + α2 − 1
2K11α

2
1 − 1

2K22α
2
2 − sK12α1α2

−y1α1(v1 + u1)− y2α2(v2 + u2) + const
(B.9)

where s = y1y2 and

vj = f(xj)− b− y1α1K1j − y2α2K2,i

uj = f̂(xj)− b̂

In SMO, each step finds the maximum in the subspace α1+sα2 = γ. We replace α1 by γ−sα2,

J(α2) = γ − sα2 + α2 − 1
2K11(γ − sα2)2 − 1

2K22α
2
2 − sK12(γ − sα2)α2

−y1(γ − sα2)(v1 + u1)− y2α2(v2 + u2) + const
(B.10)

Taking derivative with respect to α2 and setting it to zero, we have

αnew
2 (K11 + K22 − 2K12) = s(K11 −K22)(α1 + sα2) + y2(v1 + u1 − v2 − u2) + 1− s (B.11)

This is the maximum when η
∆= K11 + K22 − 2K12 > 0.

Finally, we get the core update equation: if η > 0,

αnew
2 = α2 +

g(x1)− g(x2)
η

αnew
1 = γ − sαnew

2

(B.12)

where g(xj) = y1(f̂(x1) + f(x1))− 1. When η > 0, we apply the standard SMO procedure.

B.3 Stochastic gradient descent for MLP adaptation

Specifically, we consider an MLP with J layers, each with N j−1 input nodes and N j output nodes,

where n0 = D is the dimension of input features. Each layer j, j = 1..J − 1, performs an affine

transformation followed by a sigmoid operation, except that the very last layer J performs an affine

followed by a softmax operation. We further define a set of symbols regarding sample i.

First, it is easy to see that

∂Ji

∂wj
n

=
∂Ji

∂aj
i,n

· φj
i n = 1..N j . (B.13)

153

φj
i : the input vector of layer j;

aj
i : ai = Wjφj

i + bj ; i.e., aj
i,n = 〈wj

n, φj
i 〉+ bj

n, n = 1..N j ;

zi: output vector of layer J , zi,n =
exp{−aJ

i,n}∑NJ

k=1 exp{−aJ
i,k}

, n = 1..NJ ;

ti: target label vector, where ti,n = I(n = yi)

Based on these derivatives , the inner loop of the back-propagation is written as: for i = 1..m,

wj
n = wj

n − η

(
∂Ji

∂aj
i,n

· φj
i + λj(wj

n −wj
n

tr)
)

(B.14)

bj
n = bj

n − η
∂Ji

∂aj
i,n

(B.15)

where η is the learning rate.

Now the problem is reduced to deriving
∂Ji

∂aj
i,n

for j = J and j = 1..J − 1 respectively. When

j = J , we have obtained in Chapter 5 that

∂Ji

∂aJ
i,n

= zi,n − ti,n n = 1..NJ . (B.16)

When j = 1..J − 1, we have

∂Ji

∂aj
i,n

=
Nj∑

k=1

∂Ji

∂aj+1
i,k

·
∂aj+1

i,k

∂aj
i,n

(B.17)

=
K∑

k=1

∂Ji

∂aj+1
i,k

wj+1
k,n φj

i,n(1− φj
i,n) (B.18)

