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Abstract. We briefly survey several privacy compromises in published
datasets, some historical and some on paper. An inspection of these
suggests that the problem lies with the nature of the privacy-motivated
promises in question. These are typically syntactic, rather than semantic.
They are also ad hoc, with insufficient argument that fulfilling these
syntactic and ad hoc conditions yields anything like what most people
would regard as privacy. We examine two comprehensive, or ad omnia,
guarantees for privacy in statistical databases discussed in the literature,
note that one is unachievable, and describe implementations of the other.

In this note we survey a body of work, developed over the past five years, ad-
dressing the problem known variously as statistical disclosure control, inference
control, privacy-preserving datamining, and private data analysis. Our principal
motivating scenario is a statistical database. A statistic is a quantity computed
from a sample. Suppose a trusted and trustworthy curator gathers sensitive in-
formation from a large number of respondents (the sample), with the goal of
learning (and releasing to the public) statistical facts about the underlying pop-
ulation. The problem is to release statistical information without compromising
the privacy of the individual respondents. There are two settings: in the non-
interactive setting the curator computes and publishes some statistics, and the
data are not used further. Privacy concerns may affect the precise answers re-
leased by the curator, or even the set of statistics released. Note that since the
data will never be used again the curator can destroy the data (and himself)
once the statistics have been published.

In the interactive setting the curator sits between the users and the database.
Queries posed by the users, and/or the responses to these queries, may be mod-
ified by the curator in order to protect the privacy of the respondents. The
data cannot be destroyed, and the curator must remain present throughout the
lifetime of the database.

There is a rich literature on this problem, principally from the satistics com-
munity [11, 15, 24, 25, 26, 34, 36, 23, 35] (see also the literature on controlled
release of tabular data, contingency tables, and cell suppression), and from such
diverse branches of computer science as algorithms, database theory, and cryp-
tography [1, 10, 22, 28], [3, 4, 21, 29, 30, 37, 43], [7, 9, 12, 13, 14, 19, 8, 20]; see
also the survey [2] for a summary of the field prior to 1989.
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Clearly, if we are not interested in utility, then privacy can be trivially
achieved: the curator can be silent, or can release only random noise. Through-
out the discussion we will implicitly assume the statistical database has some
non-trivial utility, and we will focus on the definition of privacy.

When defining privacy, or any other security goal, it is important to specify
both what it means to compromise the goal and what power and other resources
are available to the adversary. In the current context we refer to any information
available to the adversary from sources other than the statistical database as
auxiliary information. An attack that uses one database as auxiliary information
to compromise privacy in a different database is frequently called a linkage attack.
This type of attack is at the heart of the vast literature on hiding small cell counts
in tabular data (“cell suppression”).

1 Some Linkage Attacks

1.1 The Netflix Prize

Netflix recommends movies to its subscribers, and has offered a $1,000,000 prize
for a 10% improvement in its recommendation system (we are not concerned here
with how this is measured). To this end, Netflix has also published a training
data set. According to the Netflix Prize rules webpage, “The training data set
consists of more than 100 million ratings from over 480 thousand randomly-
chosen, anonymous customers on nearly 18 thousand movie titles” and “The
ratings are on a scale from 1 to 5 (integral) stars. To protect customer privacy,
all personal information identifying individual customers has been removed and
all customer ids have been replaced by randomly-assigned ids. The date of each
rating and the title and year of release for each movie are provided” (emphasis
added).

Netflix data are not the only movie ratings available on the web. There is also
the International Movie Database (IMDb) site, where individuals may register
for an account and rate movies. The users need not choose to be anonymous.
Publicly visible material includes the user’s movie ratings and comments, to-
gether with the dates of the ratings.

Narayanan and Shmatikov [32] cleverly used the IMDb in a linkage attack on
the anonymization of the Netflix training data set. They found, “with 8 movie
ratings (of which we allow 2 to be completely wrong) and dates that may have
a 3-day error, 96% of Netflix subscribers whose records have been released can
be uniquely identified in the dataset” and “for 89%, 2 ratings and dates are
enough to reduce the set of plausible records to 8 out of almost 500,000, which
can then be inspected by a human for further deanonymization.” In other words,
the removal of all “personal information” did not provide privacy to the users
in the Netflix training data set. Indeed, Narayanan and Shmatikov were able to
identify a particular user, about whom they drew several unsavory conclusions.
Note that Narayanan and Shmatikov may have been correct in their conclusions
or they may have been incorrect, but either way this user is harmed.
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1.2 k-Anonymization and Sequelae

The most famous linkage attack was obtained by Sweeney [40], who identified the
medical records of the governor of Massachusetts by linking voter registration
records to “anonymized” Massachusetts Group Insurance Commission (GIC)
medical encounter data, which retained the birthdate, sex, and zip code of the
patient. Sweeney proposed an antidote: k-anonymity [38, 39, 41, 42]. Roughly
speaking, this is a syntactic condition requiring that every “quasi-identifier” (es-
sentially, combination of non-sensitive attributes) must appear at least k times
in the published database, if it occurs at all. This can be achieved by coarsen-
ing attribute categories, for example, replacing 5-digit zipcodes by their 3-digit
prefixes. There are many problems with k-anonymity (computational complex-
ity and the fact that the choice of category coarsenings may reveal information
about the database, to name two), but the biggest problem is that it simply
does not provide strong privacy; a lot of information my still be leaked about re-
spondents/individuals in the database. Machanavajjhala, Gehrke, and Kifer [30]
discuss this problem, and respond by proposing a new criterion for the published
database: �-diversity. However, Xiao and Tao [43] note that multiple �-diverse
data releases completely compromise privacy. They propose a different syntactic
condition: m-invariance.

The literature does not contain any direct attack on m-invariance (although,
see Section 2.1 for general difficulties). However it is clear that something is going
wrong: the “privacy” promises are syntactic conditions on the released datasets,
but there is insufficient argument that the syntactic conditions have the correct
semantic implications.

1.3 Anonymization of Social Networks

In a social network graph, nodes correspond to users (or e-mail accounts, or tele-
phone numbers, etc), and edges have various social semantics (friendship, fre-
quent communications, phone conversations, and so on). Companies that hold
such graphs are frequently asked to release an anonymized version, in which
node names are replaced by random strings, for study by social scientists. The
intuition is that the anonymized graph reveals only the structure, not the po-
tentially sensitive information of who is socially connected to whom. In [5] it is
shown that anonymization does not protect this information at all; indeed it is
vulnerable both to active and passive attacks. Again, anonymization is just an
ad hoc syntactic condition, and has no privacy semantics.

2 On Defining Privacy for Statistical Databases

One source of difficulty in defining privacy for statistical databases is that the
line between “inside”and “outside” is slightly blurred. In contrast, when Alice
and her geographically remote colleague Bob converse, Alice and Bob are the
“insiders,” everyone else is an “outsider,” and privacy can be obtained by any
cryptosystem that is semantically secure against a passive eavesdropper.
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Let us review this notion. Informally, semantic security says that the cipher-
text (encryption of the message to be transmitted) reveals no information about
the plaintext (the message). This was formalized by Goldwasser and Micali [27]
along the following lines. The ability of the adversary, having access to both the
ciphertext and any auxiliary information, to learn (anything about) the plaintext
is compared to the ability of a party having access only to the auxiliary informa-
tion (and not the ciphertext), to learn anything about the plaintext1. Clearly,
if this difference is very, very tiny, then in a rigorous sense the ciphertext leaks
(almost) no information about the plaintext.

The formalization of semantic security along these lines is one of the pillars of
modern cryptography. It is therefore natural to ask whether a similar property
can be achieved for statistical databases. However, unlike the eavesdropper on a
conversation, the statistical database attacker is also a user, that is, a legitimate
consumer of the information provided by the statistical database, so this attacker
is both a little bit of an insider (not to mention that she may also be a respondent
in the database), as well as an outsider, to whom certain fine-grained information
should not be leaked.

2.1 Semantic Security for Statistical Databases?

In 1977 Tor Dalenius articulated an ad omnia privacy goal for statistical data-
bases: anything that can be learned about a respondent from the statistical
database should be learnable without access to the database. Happily, this for-
malizes to semantic security (although Dalenius’ goal predated the Goldwasser
and Micali definition by five years). Unhappily, however, it cannot be achieved,
both for small and big reasons. It is instructive to examine these in depth.

Many papers in the literature attempt to formalize Dalenius’ goal (in some
cases unknowingly) by requiring that the adversary’s prior and posterior views
about an individual (i.e., before and after having access to the statistical
database) shouldn’t be “too different,” or that access to the statistical database
shouldn’t change the adversary’s views about any individual “too much.” Of
course, this is clearly silly, if the statistical database teaches us anything at all.
For example, suppose the adversary’s (incorrect) prior view is that everyone has
2 left feet. Access to the statistical database teaches that almost everyone has
one left foot and one right foot. The adversary now has a very different view of
whether or not any given respondent has two left feet. Even when used correctly,
in a way that is decidedly not silly, this prior/posterior approach suffers from
definitional awkwardness [21, 19, 8].

At a more fundamental level, a simple hybrid argument shows that it is im-
possible to achieve cryptographically small levels of “tiny” difference between
an adversary’s ability to learn something about a respondent given access to the
database, and the ability of someone without access to the database to learn
something about a respondent. Intuitively, this is because the user/adversary is

1 The definition in [27] deals with probabilistic polynomial time bounded parties. This
is not central to the current work so we do not emphasize it in the discussion.
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supposed to learn unpredictable and non-trivial facts about the data set (this
is where we assume some degree of utility of the database), which translates to
learning more than cryptographically tiny amounts about an individual. How-
ever, it may make sense to relax the definition of “tiny.” Unfortunately, even this
relaxed notion of semantic security for statistical databases cannot be achieved.

The final nail in the coffin of hope for Dalenius’ goal is a formalization of the
following difficulty. Suppose we have a statistical database that teaches average
heights of population subgroups, and suppose further that it is infeasible to
learn this information (perhaps for financial reasons) any other way (say, by
conducting a new study). Consider the auxiliary information “Terry Gross is
two inches shorter than the average Lithuanian woman.” Access to the statistical
database teaches Terry Gross’ height. In contrast, someone without access to the
database, knowing only the auxiliary information, learns much less about Terry
Gross’ height.

A rigorous impossibility result generalizes and formalizes this argument, ex-
tending to essentially any notion of privacy compromise. The heart of the attack
uses extracted randomness from the statistical database as a one-time pad for
conveying the privacy compromise to the adversary/user [16].

This brings us to an important observation: Terry Gross did not have to
be a member of the database for the attack described above to be prosecuted
against her. This suggests a new notion of privacy: minimize the increased risk
to an individual incurred by joining (or leaving) the database. That is, we move
from comparing an adversary’s prior and posterior views of an individual to
comparing the risk to an individual when included in, versus when not included
in, the database. This new notion is called differential privacy.

Remark 1. It might be remarked that the counterexample of Terry Gross’ height
is contrived, and so it is not clear what it, or the general impossibility result
in [16], mean. Of course, it is conceivable that counterexamples exist that would
not appear contrived. More significantly, the result tells us that it is impossible to
construct a privacy mechanism that both preserves utility and provably satisfies
at least one natural formalization of Dalenius’ goal. But proofs are important:
they let us know exactly what guarantees are made, and they can be verified by
non-experts. For these reasons it is extremely important to find ad omnia privacy
goals and implementations that provably ensure satisfaction of these goals.

2.2 Differential Privacy

In the sequel, the randomized function K is the algorithm applied by the curator
when releasing information. So the input is the data set, and the output is the
released information, or transcript. We do not need to distinguish between the
interactive and non-interactive settings.

Think of a database as a set of rows. We say databases D1 and D2 differ in at
most one element if one is a subset of the other and the larger database contains
just one additional row.
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Definition 1. A randomized function K gives ε-differential privacy if for all
data sets D1 and D2 differing on at most one element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε) × Pr[K(D2) ∈ S], (1)

where the probability space in each case is over the coin flips of the mechanism K.

A mechanism K satisfying this definition addresses all concerns that any par-
ticipant might have about the leakage of her personal information: even if the
participant removed her data from the data set, no outputs (and thus conse-
quences of outputs) would become significantly more or less likely. For example,
if the database were to be consulted by an insurance provider before deciding
whether or not to insure a given individual, then the presence or absence of
that individual’s data in the database will not significantly affect her chance of
receiving coverage.

Differential privacy is therefore an ad omnia guarantee. It is also a very strong
guarantee, since it is a statistical property about the behavior of the mechanism
and therefore is independent of the computational power and auxiliary informa-
tion available to the adversary/user.

Differential privacy is not an absolute guarantee of privacy. As we have seen,
any statistical database with any non-trivial utility can compromise privacy.
However, in a society that has decided that the benefits of certain databases
outweigh the costs, differential privacy ensures that only a limited amount of
additional risk is incurred by participating in the (socially beneficial) databases.

Remark 2. 1. The parameter ε is public. The choice of ε is essentially a social
question and is beyond the scope of this paper. That said, we tend to think
of ε as, say, 0.01, 0.1, or in some cases, ln 2 or ln 3. If the probability that
some bad event will occur is very small, it might be tolerable to increase it
by such factors as 2 or 3, while if the probability is already felt to be close
to unacceptable, then an increase of e0.01 ≈ 1.01 might be tolerable, while
an increase of e, or even only e0.1, would be intolerable.

2. Definition 1 extends to group privacy as well (and to the case in which an
individual contributes more than a single row to the database). A collection
of c participants might be concerned that their collective data might leak
information, even when a single participant’s does not. Using this definition,
we can bound the dilation of any probability by at most exp(εc), which may
be tolerable for small c. Of course, the point of the statistical database is
to disclose aggregate information about large groups (while simultaneously
protecting individuals), so we should expect privacy bounds to disintegrate
with increasing group size.

3 Achieving Differential Privacy in Statistical Databases

We now describe an interactive mechanism, K, due to Dwork, McSherry, Nissim,
and Smith [20]. A query is a function mapping databases to (vectors of) real
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numbers. For example, the query “Count P” counts the number of rows in the
database having property P .

When the query is a function f , and the database is X , the true answer is
the value f(X). The K mechanism adds appropriately chosen random noise to
the true answer to produce what we call the response. The idea of preserving
privacy by responding with a noisy version of the true answer is not new, but
this approach is delicate. For example, if the noise is symmetric about the origin
and the same question is asked many times, the responses may be averaged,
cancelling out the noise2. We must take such factors into account.

Definition 2. For f : D → IRd, the sensitivity of f is

Δf = max
D1,D2

‖f(D1) − f(D2)‖1 (2)

for all D1, D2 differing in at most one element.

In particular, when d = 1 the sensitivity of f is the maximum difference in the
values that the function f may take on a pair of databases that differ in only
one element. For now, let us focus on the case d = 1.

For many types of queries Δf will be quite small. In particular, the simple
counting queries discussed above (“How many rows have property P?”) have
Δf = 1. Our techniques work best – ie, introduce the least noise – when Δf is
small. Note that sensitivity is a property of the function alone, and is indepen-
dent of the database. The sensitivity essentially captures how great a difference
(between the value of f on two databases differing in a single element) must be
hidden by the additive noise generated by the curator.

On query function f the privacy mechanism K computes f(X) and adds
noise with a scaled symmetric exponential distribution with standard deviation√

2Δf/ε. In this distribution, denoted Lap(Δf/ε), the mass at x is proportional
to exp(−|x|(ε/Δf)).3 Decreasing ε, a publicly known parameter, flattens out
this curve, yielding larger expected noise magnitude. When ε is fixed, functions
f with high sensitivity yield flatter curves, again yielding higher expected noise
magnitudes.

The proof that K yields ε-differential privacy on the single query function f is
straightforward. Consider any subset S ⊆ Range(K), and let D1, D2 be any pair
of databases differing in at most one element. When the database is D1, the prob-
ability mass at any r ∈ Range(K) is proportional to exp(−|f(D1) − r|(ε/Δf)),
and similarly when the database is D2. Applying the triangle inequality in the

2 We do not recommend having the curator record queries and their responses so
that if a query is issued more than once the response can be replayed. One reason
is that if the query language is sufficiently rich, then semantic equivalence of two
syntactically different queries is undecidable. Even if the query language is not so
rich, the devastating attacks demonstrated by Dinur and Nissim [14] pose completely
random and unrelated queries.

3 The probability density function of Lap(b) is p(x|b) = 1
2b

exp(− |x|
b

), and the variance
is 2b2.
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exponent we get a ratio of at most exp(−|f(D1) − f(D2)|(ε/Δf)). By definition
of sensitivity, |f(D1) − f(D2)| ≤ Δf , and so the ratio is bounded by exp(−ε),
yielding ε-differential privacy.

It is easy to see that for any (adaptively chosen) query sequence f1, . . . , fd, ε-
differential privacy can be achieved by running K with noise distribution
Lap(

∑
i Δfi/ε) on each query. In other words, the quality of each answer deterio-

rates with the sum of the sensitivities of the queries. Interestingly, it is sometimes
possible to do better than this. Roughly speaking, what matters is the maxi-
mum possible value of Δ = ||(f1(D1), f2(D1), . . . , fd(D1))−(f1(D2), f2(D2), . . . ,
fd(D2))||1. The precise formulation of the statement requires some care, due to
the potentially adaptive choice of queries. For a full treatment see [20]. We state
the theorem here for the non-adaptive case, viewing the (fixed) sequence of
queries f1, f2, . . . , fd as a single d-ary query f and recalling Definition 2 for the
case of arbitrary d.

Theorem 1. For f : D → IRd, the mechanism Kf that adds independently
generated noise with distribution Lap(Δf/ε) to each of the d output terms enjoys
ε-differential privacy.

Among the many applications of Theorem 1, of particular interest is the class of
histogram queries. A histogram query is an arbitrary partitioning of the domain
of database rows into disjoint “cells,” and the true answer is the set of counts
describing, for each cell, the number of database rows in this cell. Although a
histogram query with d cells may be viewed as d individual counting queries,
the addition or removal of a single database row can affect the entire d-tuple of
counts in at most one location (the count corresponding to the cell to (from)
which the row is added (deleted); moreover, the count of this cell is affected by
at most 1, so by Definition 2, every histogram query has sensitivity 1.

4 Utility of K and Some Limitations

The mechanism K described above has excellent accuracy for insensitive queries.
In particular, the noise needed to ensure differential privacy depends only on the
sensitivity of the function and on the parameter ε. Both are independent of the
database and the number of rows it contains. Thus, if the database is very large,
the errors for many questions introduced by the differential privacy mechanism
is relatively quite small.

We can think of K as a differential privacy-preserving interface between the
analyst and the data. This suggests a line of research: finding algorithms that
require few, insensentitive, queries for standard datamining tasks. As an exam-
ple, see [8], which shows how to compute singular value decompositions, find
the ID3 decision tree, carry out k-means clusterings, learn association rules, and
learn anything learnable in the statistical queries learning model using only a
relatively small number of counting queries. See also the more recent work on
contingency tables (and OLAP cubes) [6].
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It is also possible to combine techniques of secure function evaluation with
the techniques described above, permitting a collection of data holders to coop-
eratively simulate K; see [17] for details.

Recent Extensions. Sensitivity of a function f is a global notion: the worst
case, over all pairs of databases differing in a single element, of the change in
the value of f . Even for a function with high sensitivity, it may be the case
that “frequently” – that is, for “many” databases or “much” of the time – the
function is locally insensitive. That is, much of the time, adding or deleting a
single database row may have little effect on the value of the function, even if
the worst case difference is large.

Given any database D, we would like to generate noise according to the local
sensitivity of f at D. Local sensitivity is itself a legitimate query (“What is
the local sensitivity of the database with respect to the function f?”). If, for
a fixed f , the local sensitivity varies wildly with the database, then to ensure
differential privacy the local sensitivity must not be revealed too precisely. On
the other hand, if the curator simply adds noise to f(D) according to the local
sensitivity of f at D, then a user may ask the query f several times in an attempt
to guage the local sensitivity, which we have just argued cannot necessarily be
safely learned with great accuracy. To prevent this, we need a way of smoothing
the change in magnitude of noise used so that on locally insensitive instances
that are sufficiently far from highly sensitive ones the noise is small. This is the
subject of recent work of Nissim, Raskhodnikova, and Smith [33].

In some tasks, the addition of noise makes no sense. For example, the function
f might map databases to strings, strategies, or trees. McSherry and Talwar ad-
dress the problem of optimizing the output of such a function while preserving
ε-differential privacy [31]. Assume the curator holds a database X and the goal is
to produce an object y. In a nutshell, their exponential mechanism works as fol-
lows. There is assumed to be a utility function u(X,y) that measures the quality of
an output y, given that the database is X . For example, if the database holds the
valuations that individuals assign a digital good during an auction, u(X, y) might
be the revenue, with these valuations, when the price is set to y. The McSherry-
Talwar mechanism outputs y with probability proportional to exp(u(X, y)ε) and
ensures ε-differential privacy. Capturing the intuition, first suggested by Jason
Hartline, that privacy seems to correspond to truthfulness, the McSherry and
Talwar mechanism yields approximately-truthful auctions with nearly optimal
selling price. Roughly speaking, this says that a participant cannot dramatically
reduce the price he pays by lying about his valuation. Interestingly, McSherry
and Talwar note that one can use the simple composition of differential pri-
vacy, much as was indicated in Remark 2 above for obtaining privacy for groups
of c individuals, to obtain auctions in which no cooperating group of c agents
can significantly increase their utility by submitting bids other than their true
valuations.

Limitations. As we have seen, the magnitude of the noise generated by K
increases with the number of questions. A line of research initiated by Dinur
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and Nissim indicates that this increase is inherent [14]. They showed that if the
database is a vector x of n bits and the curator provides relatively accurate
(within o(

√
n)) answers to n log2 n random subset sum queries, then by using

linear programming the adversary can reconstruct a database x′ agreeing with x
in all but o(n) entries, ie, satisfying support(x − x′) ∈ o(n). We call this blatant
non-privacy. This result was later strengthened by Yekhanin, who showed that
if the attacker asks the n Fourier queries (with entries ±1; the true answer to
query vector y is the inner product 〈x, y〉) and the noise is always o(

√
n), then

the system is blatantly non-private [44].
Additional strengthenings of these results were obtained by Dwork, Mscherry,

and Talwar [18]. They considered the case in which the curator can sometimes
answer completely arbitrarily. When the queries are vectors of standard normals
and again the true answer is the inner product of the database and the query
vector, they found a sharp threshold ρ∗ ≈ 0.239 so that if the curator replies
completely arbitrarily on a ρ < ρ∗ fraction of the queries, but is confined to
o(

√
n) error on the remaining queries, then again the system is blatantly non-

private even against only O(n) queries. Similar, but slightly less strong results
are obtained for ±1 query vectors.

These are not just interesting mathematical exercises. While at first blush
simplistic, the Dinur-Nissim setting is in fact sufficiently rich to capture many
natural questions. For example, the rows of the database may be quite complex,
but the adversary/user may know enough information about an individual in the
database to uniquely identify his row. In this case the goal is to prevent any single
additional bit of information to be learned from the database. (In fact, careful
use of hash functions can handle the “row-naming problem” even if the adversary
does not know enough to uniquely identify individuals at the time of the attack,
possibly at the cost of a modest increase in the number of queries.) Thus we can
imagine a scenario in which an adversary reconstructs a close approximation
to the database, where each row is identified with a set of hash values, and a
“secret bit” is learned for many rows. At a later time the adversary may learn
enough about an individual in the database to deduce sufficiently many of the
hash values of her record to identify the row corresponding to the individual,
and so obtain her “secret bit.” Thus, naming a set of rows to specify a query is
not just a theoretical possibility, and the assumption of only a single sensitive
attribute per user still yields meaningful results.

Research statisticians like to “look at the data.” Indeed, conversations with
experts in this field frequently involve pleas for a “noisy table” that will permit
highly accurate answers to be derived for computations that are not specified
at the outset. For these people the implications of the Dinur-Nissim results are
particularly significant: no “noisy table” can provide very accurate answers to
too many questions; otherwise the table could be used to simulate the interactive
mechanism, and a Dinur-Nissim style attack could be mounted against the table.
Even worse, while in the interactive setting the noise can be adapted to the
queries, in the non-interactive setting the curator does not have this freedom to
aid in protecting privacy.
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5 Conclusions and Open Questions

We have surveyed a body of work addressing the problem known variously as
statistical disclosure control, privacy-preserving datamining, and private data
analysis. The concept of ε-differential privacy was motivated and defined, and a
specific technique for achieving ε-differential privacy was described. This last in-
volves calibrating the noise added to the true answers according to the sensitivity
of the query sequence and to a publicly chosen parameter ε.

Of course, statistical databases are a very small part of the overall problem of
defining and ensuring privacy. How can we sensibly address privacy in settings
in which the boundary between “inside” and “outside” is completely porous, for
example, in outsourcing of confidential data for processing, bug reporting, and
managing cookies? What is the right notion of privacy in a social network (and
what are the questions of interest in the study of such networks)?

We believe the notion of differential privacy may be helpful in approaching
these problems.
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