Foundations of Statistical Natural Language Processing:
A Case Study of Text Input System

Jianfeng Gao, Hisami Suzuki
Microsoft Research

Weihai, 8/23/2007
Who should be here?

- Interested in statistical Natural Language Processing
 - What is NLP? NLP = AI? What is the role of Pr in NLP?
- Want to develop a simple and useful NLP system by yourself
 - For fun, course project, mind exercise?
- Look for topics for your master/PhD thesis
 - A difficult topic: very hard to beat simple baseline
 - An easy topic: others cannot beat it either
- Start NLP/IME business and compete with MS
Outline

- Probability: a brief refresher
- Input Method Editor (IME): problems and solutions
- Modeling: capture language structure
- Training: learn model parameters from data
- Search: predict using model (won’t discuss in detail)
- Do It Yourself (DIY) tips
Probability: a brief refresher (1/2)

- Probability space: \(x \in X \)
 - \(P(x) \in [0, 1] \)
 - \(\sum_{x \in X} P(x) = 1 \)
 - Cannot say \(P(x) > P(y) \) if \(y \notin X \)

- Joint probability: \(P(x, y) \)
 - Probability that \(x \) and \(y \) are both true

- Conditional probability: \(P(y|x) \)
 - Probability that \(y \) is true when we already know \(x \) is true

- Independence: \(P(x, y) = P(x)P(y) \)
 - \(x \) and \(y \) are independent
Probability: a brief refresher (2/2)

- \(H \): assumptions on which the probabilities are based

- **Product rule** – from the definition of conditional probability
 \[
P(x, y | H) = P(x | y, H)P(y | H) = P(y | x, H)P(x | H)
\]

- **Sum rule** – a rewrite of the marginal probability definition
 \[
P(x | H) = \sum_y P(x, y | H) = \sum_y P(x | y, H)P(y | H)
\]

- **Bayes rule** – from the product rule
 \[
P(y | x, H) = P(x | y, H)P(y | H) / P(x | H)
\]
Input method editor (IME)

- Software to convert keystrokes (Pinyin) to text output

Gao and Suzuki, Weihan-2007
A Bayesian approach to IME

- Find the best output W of a given input A via

$$W = \arg\max_w P(W|A)$$

$$W = \arg\max_w \frac{P(A|W)P(W)}{P(A)}$$

$$W = \arg\max_w P(A|W)P(W)$$

- $P(A|W)$: typing (translation) model
 - Dealing with typing error, e.g., $zh \rightarrow z$

- $P(W)$: language model (LM), e.g., trigram model
Three fundamental research tasks

- **Modeling**: capture language structure/dependencies via the probabilistic model
 - \(Pr(W|A) = P_\theta(W|A) = P(W|A, \theta) \)
- **Training**: estimation of free parameters using training data
 - \(\theta = \arg\max_\theta P(W|A, \theta) \)
- **Search**: finding “best” conversion given the model
 - \(W = \arg\max_W P(W|A, \theta) \)
- **Additional important tasks**
 - Data/dict acquisition and processing (word segmentation)
 - Evaluation methodology
Development of IME: data

- Dictionary – mapping from Pinyin to Chinese words
- Training data, \((W)\) and \((W, A)\)
 - Chinese text – LM training
 - Obtained from Chinese web pages
 - Pinyin and Chinese text pairs – discriminative training
 - Check our website
- Data processing
 - Word segmentation
 - Training/dev/test split (cross-validation)
 - Gold standard
Development of IME: evaluation

- Perplexity – quality of LM
 - Geometric average inverse probability
 - Branching factor of a doc: predicting power of LM
 - Lower perplexities are better
 - Character perplexity for Chinese
 \[pplx = 2^H \text{ where } H = \frac{1}{|W|} \log P(W) \]

- Character error rate (CER) – quality of IME
 - Test set \((A, W^*)\)
 - CER = edit distance between converted \(W\) and \(W^*\)
 - Correlation with perplexity
Development of IME: build it bit by bit

• Baseline
 • Straw-man versus state-of-the-art
 • IME: Trigram LM, MLE, Viterbi search
• Improve the baseline via
 • Better training data: dictionary (OOV), segmentation, balanced corpus etc.
 • Better modeling: capture richer linguistic information?
 • Better training: lead to better CER/perplexity?
 • Better search (decoding): less search error and faster

Gao and Suzuki, Weihan-2007
Modeling

- Goal: how to incorporate language structure into a probabilistic model
- Task: next word prediction
 - Fill in the blank: “The dog of our neighbor ___”
- Starting point: word n-gram model
 - Very simple, yet surprisingly effective
 - Words are generated from left-to-right
 - Assumes no other structure than words themselves
Word N-gram model

- Word based model
 - Using chain rule on its *history* (=preceding words)

\[
P(\text{the dog of our neighbor barks}) = P(\text{the} \mid <s>) \\
\times P(\text{dog} \mid <s>, \text{the}) \\
\times P(\text{of} \mid <s>, \text{the, dog}) \\
\vdots \\
\times P(\text{barks} \mid <s>, \text{the, dog, of, our, neighbor}) \\
\times P(</s> \mid <s>, \text{the, dog, or, our, neighbor, barks})
\]

\[
P(w_1, w_2 \ldots w_n) = P(w_1 \mid <s>) \\
\times P(w_2 \mid <s> w_1) \\
\times P(w_3 \mid <s> w_1 w_2) \\
\vdots \\
\times P(w_n \mid <s> w_1 w_2 \ldots w_{n-1}) \\
\times P(</s> \mid <s> w_1 w_2 \ldots w_n)
\]
Word n-gram model

- How do we get probability estimates?
 - Get text and count! \(P(\text{the}|<s>) \approx C(<s> \text{ the})/C(<s>) \)
- Problem of using the whole history
 - Rare events: unreliable probability estimates
 - Assuming a vocabulary of 20,000 words,

<table>
<thead>
<tr>
<th>Model</th>
<th># Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>unigram</td>
<td>(P(w_1))</td>
</tr>
<tr>
<td>bigram</td>
<td>(P(w_2</td>
</tr>
<tr>
<td>trigram</td>
<td>(P(w_3</td>
</tr>
<tr>
<td>fourgram</td>
<td>(P(w_4</td>
</tr>
</tbody>
</table>

From Manning and Schütze 1999: 194
Word N-gram model

- Markov independence assumption
 - A word depends only on $N-1$ preceding words
 - $N=3 \rightarrow$ word trigram model
- Reduce the number of *parameters* in the model
 - By forming *equivalence classes*
- Word trigram model

 $P(w_i \mid <s> w_i, w_2 \ldots w_{i-2} w_{i-1}) = P(w_i \mid w_{i-2} w_{i-1})$

 $P(w_1, w_2 \ldots w_n) = P(w_1 \mid <s>)$

 $\times P(w_2 \mid <s> w_1)$

 $\times P(w_3 \mid w_1 w_2)$

 \ldots

 $\times P(w_n \mid w_{n-2} w_{n-1})$

 $\times P(<s> \mid w_{n-1} w_n)$
But language has structure!

- Other ways to form equivalence classes
 - Morphological
 - Stemming: bark~barked~barks~barking
 - Syntactic

Gao and Suzuki, Weihan-2007
But language has structure!

- Other ways to form equivalence classes
 - Semantic
 - Cluster semantically related words: dog~husky~poodle

- Challenge
 - How to incorporate linguistic structure in a probabilistic model effectively
Modeling: basic idea

- Introduce language structure s as hidden variable
 - Assignment of s must be predicted given h
 \[
P(w \mid h) = \sum_s P(w, s \mid h) = \sum_s P(s \mid h)P(w \mid s, h)
 = \sum_s P(s \mid h)P(w \mid \Phi(s, h))
 \]

- Define mapping function Φ
 - Φ maps word history into equivalence classes
 \[
P(w_i \mid w_1...w_{i-1}) = P(w \mid h) = P(w \mid \Phi(h))
 \]
 Word trigram if $\Phi(h) = (w_{i-2}w_{i-1})$
Finding all possible assignment of s

- Detect s via parsing: an independent NLP problem
 - POS tagging, dependency graph, word clusters...
 - Traditional NLP tasks: tools available
 - Finding all possible assignment of s is often not realistic

- N-best and Viterbi approximation

$$P(w \mid h) = \sum_s P(s \mid h)P(w \mid \Phi(s, h))$$

$$\approx \sum_s \frac{P(s \mid h)}{\sum_s P(s \mid h)} P(w \mid \Phi(s, h)) \quad \leftarrow \text{N-best approximation}$$

$$\approx \max_s P(w \mid \Phi(s, h)), \text{ where } s = \arg \max_s P(s \mid h) \quad \leftarrow \text{Viterbi approximation}$$
Defining Φ

- s is a chunk sequence
 - $\Phi(s) \rightarrow$ two previous headword
 - Headword trigram model (Gao et al., 2002b)
- s is a dependency graph
 - $\Phi(s) \rightarrow$ linked word to its left
 - Dependency LM (Gao and Suzuki, 2003)
- s is a word cluster sequence
 - $\Phi(s) \rightarrow$ two previous word clusters
 - Cluster LM (Gao et al., 2002c)
Headword trigram model (HTM)

- s is a chunk sequence
- Chunk (Abney, 1991)
 - Base phrase, typically contains one content word (headword) plus any number of function words.
 - Flat, non-hierarchical and span the word sequence
 - Closely related to the notion of bunsetsu in Japanese
 - Define $\Phi(s)$ as two previous headwords
- Example
 - [$The \text{ dog}$] [of our neighbor] [$barks$] [$every \text{ night}$]
Headword trigram model (HTM)

- s is a chunk sequence
- Chunk (Abney, 1991)
 - Base phrase, typically contains one content word (headword) plus any number of function words.
 - Flat, non-hierarchical and span the word sequence
 - Closely related to the notion of bunsetsu in Japanese
 - Define $\Phi(s)$ as two previous headwords
- Example
 - $[\text{The } \underline{dog} \text{ of our } \underline{neighbor}] [\underline{barks}] [\text{every } \underline{night}]$
Headword trigram model (HTM)

- Using headword H and function word F
 - 2-step model: generate class first, then generate words given the class (chain rule)
 $$P(w_i \mid \Phi(w_1...w_{i-1})) = P(H_i \mid \Phi(w_1...w_{i-1})) \times \left[P(w_i \mid \Phi(w_1...w_{i-1})H_i) + P(F_i \mid \Phi(w_1...w_{i-1})) \times P(w_i \mid \Phi(w_1...w_{i-1})F_i)\right]$$

- Incorporating assumptions using headword
 - Dependency between headwords ($dog \sim barks$)
 - Headword dependency is permutable ($barks \sim dogs$)

$$P(w_i \mid \Phi(w_1...w_{i-1})H_i) = \lambda_1 \left[\lambda_2 P(w_i \mid h_{i-2}h_{i-1}H_i) + (1 - \lambda_2)P(w_i \mid h_{i-1}h_{i-2}H_i))\right] + (1 - \lambda_1)P(w_i \mid w_{i-2}w_{i-1}H_i)$$
Detecting Headwords

• Assumed a one-to-one mapping between POS and word category (H/F)
• Generated a mapping table from POS-tagged text
 • Chose the more frequent category in case of ambiguity
• Accuracy of H/F detection: 98.5%
 • This is good enough
Dependency language model (DLM)

- s is a dependency graph among headwords
- Constraint on dependency structure D
 - Planar: no line crossing
 - Acyclic: contains no cycle
 - Define $\Phi(s)$ as the linked word on the left
- Example

 - [The dog] [of our neighbor] [barks] [every night]
Dependency language model (DLM)

- s is a dependency graph among headwords
- Constraint on dependency structure D
 - Planar: no line crossing
 - Acyclic: contains no cycle
 - Define $\Phi(s)$ as the linked word on the left
- Example
 - $[\text{The dog}]$ $[\text{of our neighbor}]$ $[\text{barks}]$ $[\text{every night}]$
 - w_i w_j
Dependency language model (DLM)

- s is a dependency graph among headwords.
- Constraint on dependency structure D:
 - Planar: no line crossing
 - Acyclic: contains no cycle
 - Define $\Phi(s)$ as the linked word on the left
- Example

- Advantage
 - Capture long-distance dependency
The most probably dependency D is generated by

$$D^* = \arg \max_{D} P(D|W) = \arg \max_{D} \prod_{d \in D} P(d|W)$$

Parsing algorithm (approximation algorithm)

- Operates L to R
- Link w_j to each of its previous words w_i, and push the generated dependency d_{ij} into a stack
- Violation of syntactic constraints (planar and acyclic): resolved by removing the dependency with the lowest probability in conflict
- Efficient: $O(n^2)$
 - Traditional parser is $O(n^5)$
 - Modified version of Yuret (1998)
Dependency language model (DLM)

\[P(w_j | \Phi(W_{j-1}, D_{j-1})) = \]

\[\lambda_1(P(w_j | w_i, R)) \]

\[+ (1 - \lambda_1)P(w_j | w_{j-2}, w_{j-1}) \]

\[P(w_j | w_{j-2}, w_{j-1}) \]

\(w_j \): headword

\(w_j \): function word

[The **dog**] [of our **neighbor**] [**barks**] [every **night**]

Gao and Suzuki, Weihan-2007
Cluster language model (CLM)

- s is a set of word clusters
- Goal: group similar words
 - Syntactic similarity: POS
 - Semantic similarity
 - WEEKDAY \{Monday, Tuesday, Wednesday...\}
 - DOG \{poodle, husky, lab, dog ... \}
- Define $\Phi(s)$ as two previous word clusters
- Example
 - *The poodle barks every night*
 - Estimate of $P(barks \mid poodle)$ may be inaccurate
 - Estimate of $P(barks \mid DOG)$ may be more reliable
CLM: forms

- Predicted and conditional words in $P(w_3 | w_1 w_2)$
 - w_3: predicted word
 - w_1 and w_2: conditional words

- Three basic cluster trigram models
 - Predictive cluster model
 $$P(w_i | w_{i-2} w_{i-1}) \approx P(W_i | w_{i-2} w_{i-1}) \times P(w_i | w_{i-2} w_{i-1} W_i)$$
 - Conditional cluster model
 $$P(w_i | w_{i-2} w_{i-1}) \approx P(w_i | W_{i-2} W_{i-1})$$
 - Combined cluster model
 $$P(w_i | w_{i-2} w_{i-1}) \approx P(W_i | W_{i-2} W_{i-1}) \times P(w_i | W_{i-2} W_{i-1} W_i)$$
Finding word clusters (Goodman, 2001)

- Objective function: maximize probability
 - In the case of predictive clustering, maximize
 \[
 \prod_{i=1}^{N} P(W_i \mid w_{i-1}) \times P(w_i \mid W_i)
 \]

 \[
 = \prod_{i=1}^{N} \frac{P(w_{i-1}W_i)}{P(w_{i-1})} \times \frac{P(W_iw_i)}{P(W_i)}
 \]

 \[
 = \prod_{i=1}^{N} \frac{P(W_iw_i)}{P(w_{i-1})} \times \frac{P(w_{i-1}W_i)}{P(W_i)}
 \]

 \[
 = \prod_{i=1}^{N} \frac{P(w_i)}{P(w_{i-1})} \times P(w_{i-1} \mid W_i)
 \]

 - Sufficient to maximize \(\prod_{i=1}^{N} P(w_{i-1} \mid W_i) \)
Data for Evaluation

- **Task**: Japanese IME
 - Baseline: word trigram model
 - N-best re-scoring task (N=100)
- **Corpus**: Newspaper (word-segmented)
 - Training: Nikkei (36 million words)
 - Test: Yomiuri (100,000 words)
- **Metric**: Character Error Rate (CER)
 \[
 \text{CER} = \frac{\#\text{chars wrongly converted}}{\#\text{chars in the target sentence}}
 \]
Results on Japanese IME (Gao and Suzuki, 2004)

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>CER %</th>
<th>CER Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>Word trigram model</td>
<td>3.73</td>
<td>——</td>
</tr>
<tr>
<td>Oracle</td>
<td>In the 100-best list with the minimum number of errors</td>
<td>1.51</td>
<td>59.5%</td>
</tr>
</tbody>
</table>
Modeling: summary

- Motivation
 - Incorporate linguistic structure in a probabilistic model
 - Word trigram model cannot capture long-distance dependency
- Three types of structures
 - Chunks, dependency, clusters
 - Substantial improvement over trigram model
- Challenge
 - Model simplicity vs. capturing structure
 - Modeling vs. training data size
Training: parameter estimation

- Bayesian estimation paradigm
- Maximum likelihood estimation (MLE)
- Smoothing in N-gram language models
- Discriminative training (overview)
The Bayesian paradigm

- \(P(\text{model}|\text{data}) = P(\text{data}|\text{model}) \times P(\text{model}) / P(\text{data}) \)
 - \(P(\text{model}|\text{data}) \) – Posterior
 - \(P(\text{data}|\text{model}) \) – Likelihood
 - \(P(\text{model}) \) – Prior
 - \(P(\text{data}) \) – Marginal

- Likelihood versus probability
 - \(P(n \mid u, N) \), for fixed \(u \), \(P \) defines a probability over \(n \); for fixed \(n \), \(P \) defines the likelihood of \(u \).

- Never say “the likelihood of the data”
- Always say “the likelihood of the parameters given the data”
Maximum likelihood estimation

- θ: model; X: data
- $\theta = \arg\max P(\theta|X) = \arg\max P(X|\theta)P(\theta)/P(X)$
 - Assume a uniform prior $P(\theta) = \text{Const}$
 - $P(X)$ is independent of θ, and is dropped
- $\theta = \arg\max P(\theta|X) \approx \arg\max P(X|\theta)$
 - Where $P(X|\theta)$ is the likelihood of parameter

Key difference between MLE and Bayesian Estimation
- MLE assume that θ is fixed but unknown,
- Bayesian estimation assumes that θ itself is a random variable with a prior distribution $P(\theta)$.
MLE for trigram LM

- \(P_{ML}(w_3|w_1w_2) = \frac{\text{Count}(w_1w_2w_3)}{\text{Count}(w_1w_2)} \)
- \(P_{ML}(w_2|w_1) = \frac{\text{Count}(w_1w_2)}{\text{Count}(w_1)} \)
- \(P_{ML}(w) = \frac{\text{Count}(w)}{N} \)
- It is easy – let us get real Chinese text and start counting

\[
P_{ML}(\text{barked}|\text{the}, \text{dog}) = \frac{\text{Count}(\text{the}, \text{dog}, \text{barked})}{\text{Count}(\text{the}, \text{dog})}
\]

- But why this is the MLE solution?
The derivation of MLE for N-gram

• Homework – an interview question of MSR 😊
• Hints
 • This is a constrained optimization problem
 • Use log likelihood as objective function
 • Assume a multinomial distribution of LM
 • Introduce Lagrange multiplier for the constraints
 • $\sum_{x \in X} P(x) = 1$, and $P(x) \geq 0$
Sparse data problems

- Say our vocabulary size is $|V|$
- There are $|V|^3$ parameters in the trigram LM
 - $|V| = 20,000 \Rightarrow 20,000^3 = 8 \times 10^{12}$ parameters
- Most trigrams have a zero count even in a large text corpus
 - $\text{Count}(w_1 w_2 w_3) = 0$
 - $P_{ML}(w_3|w_1 w_2) = \text{Count}(w_1 w_2 w_3)/\text{Count}(w_1 w_2) = 0$
 - $P(W) = P_{ML}(w_1) P_{ML}(w_2|w_1) \prod_i P_{ML}(w_i|w_{i-2} w_{i-1}) = 0$
 - $W = \arg\max_W P(A|W)P(W) = \ldots$ oops
Smoothing: adding one

- Add one smoothing (from Bayesian paradigm)
- But works very badly – do not use this

\[P(w_3|w_2, w_1) = \frac{\text{Count}(w_1, w_2, w_3) + 1}{\text{Count}(w_1, w_2) + |V|} \]

- Add delta smoothing
- Still very bad – do not use this

\[P(w_3|w_2, w_1) = \frac{\text{Count}(w_1, w_2, w_3) + \delta}{\text{Count}(w_1, w_2) + |V|\delta} \]
Smoothing: linear interpolation

- Linearly interpolate trigram, bigram and unigram prob

\[P(w_3|w_1, w_2) = \lambda_1 P_{ML}(w_3|w_1, w_2) + \lambda_2 P_{ML}(w_3|w_2) + \lambda_3 P_{ML}(w_3) \]

where \(\lambda_1 + \lambda_2 + \lambda_3 = 1 \)

- Allow \(\lambda \)'s to vary – value of \(\lambda \) is a function of Count(.)

\[P(w_3|w_1, w_2) = \lambda_1 (C(w_1, w_2, w_3)) P_{ML}(w_3|w_1, w_2) \]
\[+ \lambda_2 (C(w_2, w_3)) P_{ML}(w_3|w_2) \]
\[+ \lambda_3 (C(w_3)) P_{ML}(w_3) \]

where \(\lambda_1 (C(w_1, w_2, w_3)) + \lambda_2 (C(w_2, w_3)) + \lambda_3 (C(w_3)) = 1 \)
How to estimate λ’s

- Split data into training, dev, test
- Optimize λ’s on dev data (i.e., pick the best value of λ)

$$
\lambda = \arg\max_{\lambda} \sum_{(w_1, w_2, w_3) \text{in dev data}} \log P(w_3 | w_1 w_2)
$$

- Can use EM (expectation maximization) algorithm to find the λ’s
- Or use a generalized numerical optimization algorithm (e.g., Powell search)
 - The objective function is concave
Smoothing: backoff

- Backoff trigram to bigram, bigram to unigram

\[
P(w_3|w_1, w_2) = \begin{cases}
\frac{C(w_1, w_2, w_3) - D}{C(w_1, w_2)}, & \text{if } C(w_1, w_2, w_3) > 0 \\
\alpha(w_1, w_2)P(w_3|w_2), & \text{if } C(w_1, w_2, w_3) = 0
\end{cases}
\]

- \(D \in (0,1)\) is a discount constant – absolute discount
- \(\alpha\) is calculated so probabilities sum to 1 (homework 🙂)

\[
1 = \sum_{(w_1, w_2)} P(w_3|w_1, w_2)
\]
Smoothing: improved backoff

- Allow D to vary
 - Different D’s for different N-gram
 - Value of D’s as a function of Count(.)
 - Modified absolute discount
- Optimizing D’s on dev data using e.g., Powell search

$$D = \arg\max_D \sum_{(w_1,w_2,w_3) \text{ in dev data}} \log P(w_3|w_1w_2)$$

- Using word type probabilities rather than token probability for backoff models
 - Kneser-Ney smoothing
What is the best smoothing?

- It varies from task to task
 - Chen and Goodman (1999) gives a very thorough evaluation and descriptions of a number of methods

- My favorite smoothing methods
 - Modified absolute discount (Gao et al., 2001)
 - Simple to implement and use
 - Good performance across many tasks, e.g., IME, SMT, ASR
 - Interpolated Kneser-Ney
 - Recommended by Chen and Goodman (1999)
 - Best performance on our SMT system (trickier to use, though)
Google’s stupid smoothing 😊

- Simply set $D=0$, and $\lambda = 0.4$
- Refer to (Brant et al., 2007)

$$P(w_3|w_1, w_2) = \begin{cases} \frac{C(w_1, w_2, w_3)}{C(w_1, w_2)}, & \text{if } C(w_1, w_2, w_3) > 0 \\ 0.4P(w_3|w_2), & \text{if } C(w_1, w_2, w_3) = 0 \end{cases}$$

![Figure 5: BLEU scores for varying amounts of data using Kneser-Ney (KN) and Stupid Backoff (SB).](image)

- Do not do research until you run out of data (Eric Brill)
Discriminative training

- MLE – maximizing $P(X|\theta)$
- Discriminative training – maximizing $P(\theta|X)$

\[
P(\theta|X) = \frac{P(X|\theta)P(\theta)}{P(X)} = \frac{P(X|\theta)P(\theta)}{\sum_{\theta'} P(X|\theta')P(\theta')} \quad \text{assume a uniform prior } P(\theta) = C
\]

\[
\text{argmax } P(\theta|X) = \text{argmax} \frac{P(X|\theta)}{P(X|\theta) + \sum_{\theta' \neq \theta} P(X|\theta')}
\]

\[
= \text{argmax} \frac{1}{1 + \frac{\sum_{\theta' \neq \theta} P(X|\theta')}}{P(X|\theta)}
\]

\[
= \text{argmax} \frac{P(X|\theta)}{\sum_{\theta' \neq \theta} P(X|\theta')}
\]

- E.g., Maximum Entropy (Rosenfeld, 1994), Perceptron (Roark et al., 2004)
Search: basic algorithms

- Search space: lattice
- Find 1-best conversion
 - Time-synchronous Viterbi decoder (left to right)
 - Efficiency – the use of beam
- Find N-best conversions
 - Time-asynchronous A* decoder (best-first search + heuristic function)
 - How to estimate future cost (heuristic function)
- 2-pass search
 - First pass: left-to-right search find the 1-best
 - Second pass: A* search using 1-best scores as future cost
- A good text book – (Huang et al., 2001)
Search: an example (homework 😞)

<table>
<thead>
<tr>
<th>Rank</th>
<th>W</th>
<th>-logP(W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><s>, A, D, </s></td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td><s>, A, E, </s></td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td><s>, B, D, </s></td>
<td>2.6</td>
</tr>
<tr>
<td>4</td>
<td><s>, C, D, </s></td>
<td>2.7</td>
</tr>
<tr>
<td>5</td>
<td><s>, B, E, </s></td>
<td>2.8</td>
</tr>
<tr>
<td>6</td>
<td><s>, C, F, </s></td>
<td>2.8</td>
</tr>
<tr>
<td>7</td>
<td><s>, C, E, </s></td>
<td>3.0</td>
</tr>
<tr>
<td>8</td>
<td><s>, B, F, </s></td>
<td>3.1</td>
</tr>
<tr>
<td>9</td>
<td><s>, A, F, </s></td>
<td>3.7</td>
</tr>
</tbody>
</table>

P(A) = 0.2, P(B) = 0.15, P(C) = 0.1, P(D|A) = 0.2, P(E|A) = 0.15, P(F|A) = 0.01, P(D|C) = 0.1, P(E|C) = 0.1, P(F|C) = 0.15, P(D|B) = 0.08, P(E|B) = 0.1, P(F|B) = 0.05
DIY: tools and data

- LM Toolkit
 - CMU SLM (probably out-of-date, still usable)
 - SRILM (most popular, implementation of KN smoothing)
 - MSR SLM (forthcoming, check our website)
- Training data
 - Crawl Chinese web pages
 - Discriminative training data, check our website
- Word segmentation
 - LDC word breaker
 - MSRSeg, check our website
- Visual Studio 2005
DIY: get your hands dirty

- Data preparation
 - Dictionary, pinyin-to-word mapping?
 - Training data acquisition and processing
- Baseline IME system
 - Train a trigram model using existing SLM toolkit
 - Code a Viterbi decoder
 - Access dictionary to generate lattice (define search space)
 - Access trigram probability to find the best word string given input:
 \[W = \text{argmax } P(W|A) \approx \text{argmax } P(W) \]
- Evaluation
 - Quality of LM: perplexity
 - Quality of IME: CER
DIY: your research topics

- Better modeling
 - Latent semantic LM (Bellegarda, 2004)
 - Structured language model (Chelba and Jelinek, 2000)
- Better training
 - A Bayesian approach (Teh, 2006)
 - Discriminative training (Gao et al., 2007)
- Best IME system
 - Keep it as simple as possible
 - Excellent Engineering
 - Data, data, data!
What we did at MSR

- Better training data: 1999-2001
 - unified approach to Chinese SLM
 - Gao et al., (2002a)
- Better model form: 2002-2004
 - introduce language structure into SLM
- Better training method: 2005-present
 - directly minimize error rate

YOU CAN DO BETTER THAN US!
Better training data: Chinese IME results
(Gao et al., 2002a)

<table>
<thead>
<tr>
<th>Training Set</th>
<th>IME</th>
<th>Total</th>
<th>Total</th>
<th>Total</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexicon & Segmentation Optimization</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Training Set Filtering</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Training Set Domain Adaptation</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Pruning Method</td>
<td>Count Cutoff</td>
<td>Predict Cluster + Stolcke</td>
<td>Predict Cluster + Stolcke</td>
<td>Stolcke</td>
<td>Stolcke</td>
</tr>
</tbody>
</table>

Table 10: Summary of techniques used in system evaluation
Better training data: Chinese IME results
(Gao et al., 2002a)

![Graph showing character error rate vs. memory (MB) for different models.]

- **Baseline**
- MSR-Bigram1
- MSR-Bigram2
- MSR-Trigram1
- MSR-Trigram2
Better modeling: Japanese IME results (Gao and Suzuki, 2004)

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>CER %</th>
<th>CER Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>Word trigram model</td>
<td>3.73</td>
<td>——</td>
</tr>
<tr>
<td>Oracle</td>
<td>In the 100-best list with the minimum number of errors</td>
<td>1.51</td>
<td>59.5%</td>
</tr>
<tr>
<td>HTM</td>
<td>Equation (3) with (\lambda_1=0.2) and (\lambda_2=1)</td>
<td>3.41</td>
<td>8.6%</td>
</tr>
<tr>
<td>PHTM</td>
<td>Equation (3) with (\lambda_1=0.2) and (\lambda_2=0.7)</td>
<td>3.34</td>
<td>10.5%</td>
</tr>
<tr>
<td>C-PHTM</td>
<td>Equation (3) with (\lambda_1=0.3) and (\lambda_2=0.7)</td>
<td>3.17</td>
<td>15.0%</td>
</tr>
<tr>
<td>4-gram</td>
<td>Higher-order (n)-gram model with a modified version of</td>
<td>3.71</td>
<td>0.5%</td>
</tr>
<tr>
<td>5-gram</td>
<td>Kneser-Ney interpolation smoothing</td>
<td>3.71</td>
<td>0.5%</td>
</tr>
<tr>
<td>6-gram</td>
<td></td>
<td>3.73</td>
<td>0.1%</td>
</tr>
<tr>
<td>ATR-I</td>
<td>Equation (6)</td>
<td>4.75</td>
<td>-27.3%</td>
</tr>
<tr>
<td>ATR-I+</td>
<td>ATR-I interpolated with Baseline</td>
<td>3.67</td>
<td>1.6%</td>
</tr>
<tr>
<td>ATR-II</td>
<td>Equation (7)</td>
<td>3.65</td>
<td>2.1%</td>
</tr>
<tr>
<td>DLM-1</td>
<td>Equation (8) with (\lambda_1=0.1) and (\lambda_2=0)</td>
<td>3.49</td>
<td>6.4%</td>
</tr>
<tr>
<td>DLM-2</td>
<td>Equation (8) with (\lambda_1=0.3) and (\lambda_2=0.7)</td>
<td>3.33</td>
<td>10.7%</td>
</tr>
</tbody>
</table>
Better training: Japanese IME results (Gao et al., 2007)

<table>
<thead>
<tr>
<th>Method</th>
<th>CER</th>
<th># features</th>
<th>time (min)</th>
<th># train iter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (MAP)</td>
<td>7.98%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaxEnt/L2</td>
<td>6.99%</td>
<td>295,337</td>
<td>27</td>
<td>665</td>
</tr>
<tr>
<td>MaxEnt/L1</td>
<td>7.01%</td>
<td>53,342</td>
<td>25</td>
<td>864</td>
</tr>
<tr>
<td>AvePerceptron</td>
<td>7.23%</td>
<td>167,591</td>
<td>6</td>
<td>56</td>
</tr>
<tr>
<td>Boosting</td>
<td>7.54%</td>
<td>32,994</td>
<td>175</td>
<td>71,000</td>
</tr>
<tr>
<td>BLasso</td>
<td>7.20%</td>
<td>33,126</td>
<td>238</td>
<td>250,000</td>
</tr>
</tbody>
</table>
References

- Brants, Thorsten, Ashok C. Popat, Peng Xu, Franz J. Och, Jeffrey Dean. 2007. Large language models in machine translation. In EMNLP.
- Gao, J. J. Goodman, G. Cao, H. Li. 2002c. Exploring asymmetric clustering for statistical language modeling. ACL.
- Roark, Brian, Murat Saraclar and Michael Collins. 2004. Corrective language modeling for large vocabulary ASR with the perceptron algorithm. In ICASSP.
- Teh, Yee Whye. 2006. A Hierarchical Bayesian Language Model Based On Pitman-Yor Processes. In ACL.
Contact information

- Jianfeng Gao,
 http://research.microsoft.com/~jfgao/

- Hisami Suzuki,
 http://research.microsoft.com/~hisamis/

- The latest version of the slides and papers/tools can be found on our website.