
Preliminary version; to appear in 8th IEEE/ACM International Conference on Grid Computing (Grid 2007), Sept 19-21,2007, Austin, TX

1

Fine-Grained Access Control for GridFTP using

SecPAL
Marty Humphrey

#
, Sang-Min Park

#
, Jun Feng

#
, Norm Beekwilder

#
, Glenn Wasson

#
, Jason Hogg

*
, Brian

LaMacchia
*
, and Blair Dillaway

*

#
Department of Computer Science, University of Virginia, Charlottesville, VA USA

{ humphrey | sp2kn | jf4t | nfb5z | wasson }@cs.virginia.edu

*
Microsoft Corporation, 1 Microsoft Way, Redmond, WA USA

{ jason.hogg | bal | blaird }@microsoft.com

Abstract – Grid access control policy languages today are

generally one of two extremes: either extremely simplistic, or

overly complex and challenging for even security experts to

use. In this paper, we explicitly identify requirements for an

access control policy language for Grid data and then

consider six specific data access use-cases that have been

problematic in today’s Grids: attribute-based access, role-

based access, “role-deny” access, impersonation-based access,

delegation-based access, and capability-based access. We

evaluate the Security Policy Assertion Language (SecPAL)

against those requirements, specifically in the context of these

six use-cases involving GridFTP.NET. We find that while

some of these six use-cases are individually possible via

existing Grid authorization systems, we believe that SecPAL

uniquely offers a single approach that meets the requirements

of a Grid access control policy language, thereby creating

support for a wide range of expanded scenarios for Grid data

access.

I. INTRODUCTION

A persistent challenge in Grid environments is access

control. The grid-mapfile [1][2] approach is relatively

simple, using fully-trusted authorities (e.g., the installed list

of trusted Certificate Authorities) and a coarse-grained

mapping from authenticated Grid users to specific accounts

on the local resource. XACML [3] is representative of the

other extreme, offering flexibility and explicitly separating

what attributes an authority is allowed to issue vs.

subsequently authorizing access based on those attributes.

However, while the grid-mapfile is arguably too coarse-

grained, XACML can be challenging to use [4][5][6][7], in

part because of this flexibility. The Grid community would

greatly benefit from the creation of an access control

approach that features the broad capabilities of the

XACML paradigm and the intuitive simplicity of the grid-

mapfile approach.

 In this paper, we report on new capabilities to express

and implement fine-grained authorization policies for Grid

data access. We focus on authorization in the context of

the GridFTP protocol [8] (GridFTP.NET [9] in particular),

but our results are applicable to the wide class of Grid data

access mechanisms. We begin by identifying the

requirements of an access control language and

implementation for a Grid data server. In our requirements,

we differentiate between the policy for data access and the

policy for explicitly expressing trust relationships – the

latter is used to express that a particular entity can issue

authentication tokens (including what claims in such a

token are acceptable) or the ability of one entity to ―speak

for‖ [10] another entity in a limited perspective. We then

consider six specific data access use-cases that have been

problematic in today’s Grids: attribute-based access, role-

based access, ―role-deny‖ access, impersonation-based

access, delegation-based access, and capability-based

access. To express and implement these access control

policies, we use a new security policy language from

Microsoft Research (and the corresponding reference

implementation in .NET) called SecPAL [11][12]. While

some of these six use-cases are individually possible via

existing Grid authorization systems, we believe SecPAL

uniquely offers a single approach for all six use-cases,

meeting the requirements for an access control language for

Grid data access, thereby creating support for a wide range

of expanded scenarios for Grid data access [13].

The rest of this paper is organized as follows. Section II

introduces requirements, covers related work in current

Grid access control systems, and gives an overview of

SecPAL and GridFTP.NET. Section III describes how

SecPAL can be used to meet the general requirements of a

Grid access control policy language. Section IV includes a

discussion and evaluation. Section V concludes.

II. BACKGROUND

A. Requirements

Grid data access generally involves four basic entities. A

data owner creates an original or derived set of data and

wishes to make this data available to authorized parties in

the Grid. The data owner entrusts one or more resource

providers to make this data available, subject to the

authorization policy of the data owner. Each resource

provider can impose further authorization policies that can

augment the policy of the data owner. The virtual

organization (VO) in which the data owner and resource

provider operate can mandate additional policy. For

example, the virtual organization can define the set of

trusted information providers utilized in the access control

policies of the data owner and resource providers. The data

requester attempts to access the data in question.

 The requirements of the access control policy language

for Grid data access can then be described both from a

general perspective and from the perspective of each of the

Preliminary version; to appear in 8th IEEE/ACM International Conference on Grid Computing (Grid 2007), Sept 19-21,2007, Austin, TX

2

four entities. We identify requirements that are recognized

in active practice today, as well as identify requirements

that we argue will facilitate more robust and effective

future Grid environments. Note that we limit our analysis

to the policy language and try to avoid discussions

regarding an implementation of the language.

 [GENERAL-R1] It must be possible to express both

fine-grained access control policy (e.g., method-level,

file-level, data-record-level) as well as coarse-grained

access control policy (e.g., service-level, host-level, or

VO-level).

 [GENERAL-R2] Authorization decisions must be

provably correct and should be guaranteed to

terminate.

 [GENERAL-R3] It must be agnostic to existing and

future authentication policies (e.g., “no cleartext

passwords on the wire”) and mechanisms (e.g., SSH)

as well as information providers.

 [GENERAL-R4] It must be possible to broadly

express policies for information sources used in the

evaluation of access control policies (e.g., to specify

that a particular source is authorized to provide

certain information).

 [GENERAL-R5] Policies must be composable and

extensible without requiring centralized policy

authoring.

 [GENERAL-R6] Users should not be required to be

an expert in computer security to author or understand

an access control policy.

 [GENERAL-R7] It must be possible to specify a

lifetime on a policy and policies should be able to be

modified during their lifetime.

 [GENERAL-R8] It must be possible to delegate a

subset of a principal’s rights.

 [DATA-OWNER-R1] It must be possible to specify

role- and attribute-based authorization policies. Roles

and attributes are well-established approaches for

scalability, an obvious requirement in Grid

environments.

 [DATA-OWNER-R2] It must be possible to specify

policy specific to an access mode and purpose of the

attempted access. For example, part of the access

policy might broadly address why the potential access

is being requested, such as so that a particular Grid job

can read an important input file (that the veracity of

such a claim is a non-trivial concern but is largely

orthogonal to this requirement). Note that a data

owner might also require that access be granted over

an encrypted channel.

 [RESOURCE-OWNER-R1] It must be possible to

specify policy based on time and access mode. A

resource owner might wish to restrict access according

to local (site) policy. For example, access to local

resources via Grid mechanisms might be curtailed

during normal local business hours, instead giving

priority to local users.

 [VO-R1] It must be possible to define an acceptable

set of authorities for the virtual organization as a

whole. The VO can often define a trusted set of

authorities, such as for authentication and attributes.

We note that the data requester contributes no unique

requirements for an access control policy language. We

attribute this to the natural client/service decoupling.

B. Existing Grid Authorization Systems

In the majority of Grid deployments today, access control

is based solely on the authenticated identity of the

requestor. In this grid-mapfile [1][2] approach, the X.509

DN is mapped to a specific account on the target machine.

This approach is coarse-grained and fairly static, and

thereby not able to meet many of the requirements

established in Section II.A (particularly GENERAL-R1,

GENERAL-R4, and DATA-OWNER-R1).

More advanced approaches have been taken in recent

research on VO authorization infrastructures such as CAS

[14], VOMS [15], and PRIMA [16]. For example, the

approach of VOMS is to embed an attribute certificate into

an X.509 certificate. A VOMS-enabled service can base

access decisions on these attributes. The VOMS-enabled

service is similar to the grid-mapfile approach in that a user

account is ultimately selected. Certain authorization

systems have focused on particular applications (e.g., CAS,

Akenti [17], and PERMIS [18]). In general, these systems

more comprehensively meet the requirements in Section

II.A (e.g., DATA-OWNER-R1) but do not sufficiently

address all requirements (e.g., GENERAL-R3, DATA-

OWNER-R2 and RESOURCE-OWNER-R1).

The Open Grid Forum has recently published an

―experiences document‖ that specifies the use of SAML for

Grid authorization [20], based in part on the more generic

X.812 | ISO 10181-3 access control framework [21]. This

document provides a profile on the SAML

AuthorizationDecisionQuery, Extended Authorization

Decision Query, and Simple Authorization Decision

Statement. While this OGF work is an important step

toward creating interoperable interfaces for authorization

services, this document does not address how to

author/compose policies nor any details of what processing

occurs within the authorization service.

 XACML [3], an XML-based access control policy

language, defines a set of complex data types, functions

and combining logic to create detailed, attribute-based

access control policies. XACML has been identified as

being challenging to use effectively [4][5][6][7]. For

example, selecting the most appropriate set of terms in

XACML by which to express a policy can be non-trivial

(GENERAL-R6). In addition, XACML has a ―first-

applicable‖ algorithm in which the policy evaluation

Preliminary version; to appear in 8th IEEE/ACM International Conference on Grid Computing (Grid 2007), Sept 19-21,2007, Austin, TX

3

terminates upon finding the first matching rule, which can

sometimes result in decisions that may be complicated for a

user to understand/verify. There are issues with regard to

composition in XACML [7] (GENERAL-R5). It is not

clear to what extent policy-controlled delegation can be

expressed (GENERAL-R8).

 Shibboleth [23] is a Web-based authentication and

authorization system being created by Internet2.It is a

federated identity infrastructure based on SAML. A recent

effort called GridShib [24] integrates the Globus Toolkit

with Shibboleth. Policies are XML documents that

reference SAML attributes. An open issue in Shibboleth is

how to specify the conditions under which an attribute

authority will release attributes (GENERAL-R4, VO-R1).

More broadly it can be difficult to determine in the general

case the source of authority for particular attributes

(GENERAL-R6).

C. SecPAL

The Security Policy Assertion Language (SecPAL) is a

logic-based security policy language developed by

Microsoft for addressing access control requirements for

distributed systems. SecPAL has been designed to support

advanced requirements such as:

 Establishing fine-grained trusts both within and across

organizational boundaries

 Distributed policy authoring and composition with

enforced separation of duties

 Constrained (and unconstrained) delegation of rights

 Fine grained revocation

 Cryptographically strong, Internet scale, authentication

information

 Proof graphs showing the logical reasoning behind an

authorization decisions

The SecPAL formal model [11] describes the abstract

types, logical expressions, language semantics and rules for

evaluating authorization decisions in a deterministic and

efficient manner. The more practical issues of

implementing this formal model have been addressed

through the definition of encodings for concrete types,

variables and verbs [12][25]. A .NET implementation of

SecPAL is used for the evaluation in this paper.

The fundamental SecPAL concept is the security

assertion. An assertion is a statement made by a principal

that may: define a binding between a principal and an

attribute; specify a principal’s permissions to operate on a

resource; express a trust or delegation policy; express an

authorization policy; revoke a prior assertion; or declare

principal identifier alias relationships. These assertions are

expressed using a uniform grammar which maps directly

both to simple English sentences (for human consumption)

as well as an XML schema (for machine consumption).

Examples in this Section use the English grammar for the

sake of readability and compactness.

LocalAuthority says TokenService can say
 %p possesses %a (from %t1 until %t2)
where
 %t2 - %t1 <= "366.00:00:00",
 %t1 <= CurrentTime() <= %t2,
 %a matches rfc822Name:”.*@fabrikam\.com”
Policy extract 1 – Sample policy showing delegation of rights

to assert attributes

As an example of SecPAL’s expressivity, Policy extract 1

illustrates a simple policy in which a local resource guard

(or Policy Enforcement Point (PEP)), the LocalAuthority,

delegates the rights to assert that principals have email

names in the fabrikam.com domain where such assertions

may be valid for up to 366 days. Note that this can also be

interpreted as a policy expressing what information the

LocalAuthority trusts the TokenService to provide. In this

policy, variable %a represents an attribute which must

match the given rfc822 email name pattern, the %p variable

represents any principal, and the variables %t1 and %t2

represent datetime values which are constrained to

represent a timespan of no more than 366 days. Based on

the first policy, the token service could make the assertion

specified in policy extract 2 which is valid with respect to

the LocalAuthority policy.

TokenService says Joe possesses
 rfc822Name:"Joe@fabrikam.com"
(from "2007-01-01T00:00:00Z" until "2007-12-31T00:00:00Z")
Policy extract 2 – Attribute assertion

As shown in more detail in Section III, these Policy Claims

and Security Tokens are used when SecPAL attempts to

find a logical proof for a particular Authorization Query.

That is, the logic-based nature of SecPAL allows a SecPAL

engine to search for a collection (or collections) of

assertions by which to conclude the validity of the

authorization claim, and such collection(s) of assertions are

returned to invoker of the engine, along with the bindings

of variables in the assertions that make the query true.

Proof graphs can be generated to show the result of a

SecPAL authorization decision. Such proof graphs can be

persisted to support auditing requirements.

D. GridFTP.NET

GridFTP [8] is a data transfer protocol for accessing

distributed data on the Grid. Its first—and still major—

implementation is in the Globus Toolkit. It is based on the

RFC 959 ―File Transfer Protocol‖, RFC 2228 ―FTP

Security Extensions‖, and RFC 2389 ―Feature Negotiation

Mechanism for the File Transfer Protocol‖. The GridFTP

protocol is optimized for high-performance, secure, and

reliable data transfer in high-bandwidth wide-area

networks by providing: parallel data transfer;

authentication, data integrity and confidentiality; third

Preliminary version; to appear in 8th IEEE/ACM International Conference on Grid Computing (Grid 2007), Sept 19-21,2007, Austin, TX

4

party control of data transfer; striped data transfer; and

partial data transfer.

 The GridFTP.NET service [9] we use in these

experiments is architecturally similar to the Globus Toolkit

V4 (GT4) GridFTP implementation, both to facilitate

interoperability and to reduce the learning curve for new

.NET GridFTP users who already are familiar with the

GT4 architecture and services. Our implementation of GSI

[1][2] (including support for proxy certificates, delegation,

and GSSAPI-style mutual authentication via SSL) utilizes

the Microsoft Windows Security Service Provider Interface

(SSPI). SSPI allows an application on Windows to use

various security models (e.g., Kerberos, NTLM) available

on a computer/network without changing the interface to

the security system.

 Performance evaluation shows our implementation is

comparable to the GT4 GridFTP on both single and parallel

stream transfers, and is better on transfer of large collection

of small files. More specifically, on stream mode

performance on LAN and WAN, .NET GridFTP is a little

slower than the GT4 GridFTP for small files – experiments

showed that when the file is bigger than 128M, the

performance difference becomes very small. Parallel

stream performance was comparable, showing little value

in a LAN but significant value in the WAN. More details

can be found in [9].

 Prior to the research described in this paper, we had

designed and implemented a modular authorization

subsystem within the GridFTP.NET service, so that we

could experiment with different authorization approaches.

Strictly speaking, at the time we designed this modular

architecture, the only requirement was to support gridmap-

style authorization (so that, in effect, there was one

consistent policy and mechanism across our UVa Campus

Grid [19], which consists of our .NET-based Grid software

and GT4). Soon after this implementation, we began to

experience first-hand the limitations of the gridmap

approach, so we designed and implemented two other

authorization approaches: an LDAP approach, in which a

dedicated LDAP server is queried on a per-service, per-

DN, and per-method basis; and an XACML-based

approach that was one of the first implementations of the

Open Grid Forum SAML interface for authorization [20].

Although both approaches are appropriate for particular

situations, we found that in general the LDAP approach

was still limited in its expressiveness and we found writing

even simple policies in XACML to be difficult. It is these

experiences that in part motivated our need for a general set

of requirements for Grid authorization and a subsequent

exploration of the use of SecPAL to meet these

requirements, discussed in the rest of this paper.

III. ACHIEVING FINE-GRAINED ACCESS FOR GRID

DATA: USING SECPAL WITH GRIDFTP.NET

Through our experiences with gridmap, LDAP, and

XACML, we were able to establish the requirements of the

access control language for GridFTP (these requirements

are enumerated in Section II.A). Furthermore, our role as

GridFTP.NET source-code maintainer and as

GridFTP.NET deployer generated additional goals or

requirements: Low overhead (relative to the data access

operation being authorized); auditable decisions (for post-

facto analysis of the correctness and integrity of the Grid

data service); ability to provide to the client (in debugging

mode) the justification for the authorization decision;

integration with local attribute authorities; no mandatory

modifications to clients; and policy that is retrievable by

the client, so that the client can determine a priori the

security tokens sufficient for access. The previous

approaches (gridmap, LDAP, and XACML) failed to meet

these challenges in many ways. In this section, we

describe our architecture we created around SecPAL to

meet these requirements. Section IV contains a discussion

and evaluation of this approach.

 Our architecture of GridFTP.NET that utilizes SecPAL

is shown in Figure 1. A ―SecPAL handler‖ was written to

bridge the gap between Microsoft’s SecPAL engine and

our authorization call-out. A general flow of messages is:

1. The data consumer sends a request to access the data

to the data custodian, which is the particular

GridFTP.NET service.

2. The authorization enforcement point for GridFTP.NET

has been configured to use SecPAL, so the

GridFTP.NET-specific SecPAL handler will be

engaged. At this point, the only information available

GridFTP.NET

Service

SecPAL handler

SecPAL

Engine

6. Get

AuthZ

Decision

Data

Consumer

8. Requested Data

(If Authorized)

Security

Token

Web

Service

Figure 1: Using SecPAL for GridFTP.NET Authorization

1. Data Access

Request

2. Engage

SecPAL

7.AuthZ

Response

Policy

Repository

3. Get

attributes

5. Get policies

4. Get

additional

tokens, if any

UVa

LDAP

Preliminary version; to appear in 8th IEEE/ACM International Conference on Grid Computing (Grid 2007), Sept 19-21,2007, Austin, TX

5

is the ID of the requestor (authenticated via the GSI

handshake).

3. An external attribute authority is engaged to return the

attributes associated with the authenticated user. The

particular attribute authority we use is the UVa Central

Computing LDAP server that contains information for

all people on campus (not to be confused with the

standalone LDAP server utilized previously). This

architecture is our first attempt at using the

information contained in this pre-existing UVa Central

Computing LDAP server (because we did not have any

mechanism prior to this project that could easily use

such attributes). We were able to map several of the

LDAP user properties to implemented SecPAL

attributes with little effort.

4. We created a Web service to hold SecPAL tokens on a

per-user basis. In Step 4, our SecPAL handler engages

this Web service to retrieve any tokens relevant to the

user and/or query. We discuss this in more detail in

each of the use-cases, below.

5. Relevant policies are retrieved from the Policy

Repository, in which they are stored as XML. In

practice we stored these policies in the file system

accessible by the SecPAL handler.

6. The information retrieved from Steps 3-5 are handed

to the SecPAL engine, which returns an authorization

decision to the SecPAL handler.

7. The SecPAL handler returns this decision to the

GridFTP service.

8. The GridFTP.NET service returns the requested data

to the consumer based on the authorization decision.

The Security Token Web Service and Policy Repository

warrant further discussion. First, the Security Token Web

Service was created because the additional information

upon which we needed to make access control decisions

could not be obtained from a legacy client. In other words,

we needed a secure storage for such information or tokens.

Our current instantiation of this service is only a proof of

concept – in the future we plan to design a modified

MyProxy service to hold such information. Second, the

Policy Repository is currently fairly limited in its

capabilities and must be expanded in the future. For

example, we do not mean to imply that there is a single

Policy Repository for the entire enterprise, but similarly it

is unlikely that each service have its own Policy

Repository. Such general policy management concerns

(e.g., distribution, updating, locating) are problematic to all

large-scale policy systems (not just SecPAL) and are

largely outside of the scope of this work.

 We now describe six use-cases we encounter that have

been difficult to make operational in today’s Grid

environments. We use the following three principal types:

LocalAuthority (LA) represents the resource guard

responsible for making policy assertions and issuing the

authorization assertion; TokenService is a Security Token

Service that can issue cryptographically verificable tokens

to users or services; K-User represents a user that might

request data. An example of LocalAuthority is the

combination of a particular data owner, resource provider

and VO, collectively creating the policies contained in the

―Policy Repository‖ (Figure 1). We used X.509 certificates

issued by the UVa CA (―UVA-CA‖). For each case, we

present the policy claims (retrieved from the Policy

Repository), the Security Tokens (constructed in the

SecPAL handler and also retrieved from the Security

Token Web service), and the authorization query that are

all passed to the SecPAL engine for evaluation. For clarity

of the presentation, we use a slightly different syntax than

used in the overview of SecPAL (Section II.C). Note that

in many cases we did not require any specific notion of

time (e.g., in policies) because of the time validation check

that took place as part of the standard X.509 certificate

validation processing in the GSI/SSL handshake. Note,

however, that all tokens contained in the Security Token

Web service had explicit time bounds.

Case 1: Attribute-based Access. We required the ability

to restrict certain content to only those people who had a

valid UVa email address:

Policy Claims

LA says UVa-CA can say

 %p possesses %a (from %t1 until %t2)

where

 %t2 - %t1 <= "365.00:00:00",

 %t1 <= CurrentTime() <= %t2,

 %a matches rfc822Name:".*@virginia\.edu"

LA says %p can read, write

digitalContent:"file:///GridFTPRoot/"

if

 %p possesses %a

where

 %a matches rfc822Name:".*@virginia\.edu"

Security Tokens

UVa-CA says K-User possesses

rfc822Name:"humphrey@virginia.edu"

(from "2007-01-01T00:00:00Z" until "2007-12-

31T00:00:00Z")
Authorization Query

LA says K-User can read

digitalContent:"file:///GridFTPRoot/data1.txt"?

The SecPAL engine authorizes the reading of the Grid data

access, because the UVA CA states that ―K-User‖ has a

valid UVa email address, anyone with a valid UVa email

address is allowed to read the particular directory, and the

UVA CA is explicitly allowed to state who has a valid UVa

email address. Case 1 was easy to implement, given that

the UVa certificates contain the email address of the

subject (hence it was easy to create a SecPAL token). As

with the other five cases, the GridFTP operations mapped

Preliminary version; to appear in 8th IEEE/ACM International Conference on Grid Computing (Grid 2007), Sept 19-21,2007, Austin, TX

6

easily onto the SecPAL action verbs, and GridFTP assumes

a hierarchical file system structure, implying the read of the

root and everything under it.

Case 2: Role-based Access. We needed to quantify access

for certain classes of users (e.g., faculty):

Policy Claims

LA says UVa-CA can say %p possesses %a (from %t1

until %t2) where

 %t2 - %t1 <= "365.00:00:00",

 %t1 <= CurrentTime() <= %t2,

 %a matches rfc822Name:".*@virginia\.edu"

LA says UVa-LDAP can say %p possesses %a (from

%t1 until %t2) if

 %p possesses %b

where

 %t2 - %t1 <= "365.00:00:00",

 %t1 <= CurrentTime() <= %t2,

 %a matches roleName:"^(Faculty|Student)$"

 %b matches rfc822Name: ".*@virginia.edu"

LA says %p can read, write

digitalContent:"file:///GridFTPRoot/" if

 %p possesses %a,

where

 %a matches roleName:"Faculty"
Security Tokens

UVa-CA says K-User possesses

rfc822Name:"humphrey@virginia.edu" (from "2007-01-

01T00:00:00Z" until "2007-12-31T00:00:00Z")

UVa-LDAP says K-User possesses roleName:"Faculty"

(from "2007-01-01T00:00:00Z" until "2007-12-

31T00:00:00Z")

Authorization Query

LA says K-User can read

digitalContent:"file:///GridFTPRoot/data1.txt"?

Case 2 was straightforward to implement, because the

existing UVa LDAP server contains faculty/student

information upon which to create a SecPAL token.

Case 3: “Role-Deny” Access. Similarly, we desired to

deny access based on certain roles. For example, students

are forbidden from reading certain content. In general,

although human policy makers can tend to think in terms of

―disallowing‖ certain activities and allowing all others,

writing such ―exclusion‖ policies to achieve the desired

result is often difficult. Negative assertions or policies can

lead to a situation where policies don't compose in the

obvious way -- there might be a fact which is true in one

policy, but false in a superset of that same policy!

Additionally, depending on the situation, it can be possible

that the requester simply not assert that he/she has the

―deny-role‖ and thus gain access.

 In this case, we stress that the better solution is to

express this as a set of ―role-allow‖ access, leading to a

provably correct implementation. But what can be done in

the general case that the number of authorized roles is

large? Enumerating the entire set in some situations can be

tedious and thus prone to error. While SecPAL does not

support a way to make negative authorization statements

within policies (i.e., there is no way to conclude that "no

access" to a resource is a valid fact), it is possible to encode

desired exclusions as part of an AuthorizationQuery. We

investigate this possibility:

Policy Claims

LA says UVa-CA can say %p possesses %a (from %t1

until %t2) where

 %t2 - %t1 <= "365.00:00:00",

 %t1 <= CurrentTime() <= %t2,

 %a matches rfc822Name:".*@virginia\.edu"

LA says UVa-LDAP can say %p possesses %a (from

%t1 until %t2) where

 %t2 - %t1 <= "365.00:00:00",

 %t1 <= CurrentTime() <= %t2,

 %a matches roleName:"^(Admin|Faculty|Student)$"

LA says %p can read, write

digitalContent:"file:///GridFTPRoot/" if

 %p possesses %a

 where

 %a matches rfc822Name:".*@virginia\.edu"

Security Tokens

UVa-CA says K-User possesses

rfc822Name:"sangmin@virginia.edu" (from "2007-01-

01T00:00:00Z" until "2007-12-31T00:00:00Z")

UVa-LDAP says K-User possesses roleName:"Student"

(from "2007-01-01T00:00:00Z" until "2007-12-

31T00:00:00Z")

Authorization Query

(LA says K-User can read

digitalContent:"file:///GridFTPRoot/data1.txt" AND

NOT LA says K-User possesses roleName:"Student")?

By implementing it as shown, K-User was indeed denied

access in accordance with our intended behavior (note that

it is not possible for K-User to not tell the authorization

engine that he is a student, because this assertion originates

in server-side processing). However, there are a number of

problems with this approach. First, the potential lack of

composability in policy is a significant issue. Second, we

had to special-code this Authorization Query in the

GridFTP server, which is clearly undesirable. Third,

ultimately we judged this as written to be not significantly

easier to encode as compared to the enumeration of those

roles that were allowed access (i.e., the number of possible

roles asserted by the UVa LDAP server is small, currently

eight). Ultimately, we reformulated this in terms of

―positive policies‖ (not shown here, but similar to Case 2).

Preliminary version; to appear in 8th IEEE/ACM International Conference on Grid Computing (Grid 2007), Sept 19-21,2007, Austin, TX

7

Case 4: Impersonation-based Access. We define

impersonation as the ability of one principal to

unconditionally act as another principal, assertable by a

Token Service. For example, if a particular person is

temporarily out of contact, perhaps another person can ―fill

in‖ for a short time. Another example is the ability of a user

to delegate to a proxy server (PS), which could then

delegate further (e.g., ―K-User1 says PS can say K-User2

canActAs K-User1 [t1,t2] if (t2-t1)<5days and

t2<12Apr2007‖). Note that the first principal is not

available to make the impersonation assertion himself

(which we will refer to as ―delegation‖ – Case 5).

Policy Claims

LA says UVa-CA can say %p possesses %a (from %t1

until %t2) where

 %t2 - %t1 <= "365.00:00:00",

 %t1 <= CurrentTime() <= %t2,

 %a matches rfc822Name:".*@virginia\.edu"

LA says %p can read, write

digitalContent:"file:///GridFTPRoot/" if

 %p possesses %a

 where

 %a matches rfc822Name:"humphrey@virginia\.edu"

LA says UVa-CA can say %x can act as %y (from %t1

until %t2) where

 %t2 - %t1 <= "365.00:00:00",

 %t1 <= CurrentTime() <= %t2

Security Tokens

UVa-CA says K-User possesses

rfc822Name:"humphrey@virginia.edu" (from "2007-01-

01T00:00:00Z" until "2007-12-31T00:00:00Z")

UVa-CA says K-User2 can act as K-User

Authorization Query

LA says K-User2 can read

digitalContent:"file:///GridFTPRoot/data1.txt"?

We believe that SecPAL is uniquely valuable for this

situation, because SecPAL generates the chain of

deductions that lead to impersonation (viewable via the

proof graph) and that with other solutions, once the

impersonation occurs, the principal that was originally

authenticated is forgotten or ignored. However, our

implementation of this requirement has limitations. A

certificate authority (e.g., UVa-CA) is generally not

able/willing to make assertions that one user is able to act

as another, so we had to artificially make such assertions

and store them in a specially-created Security Token Web

Service. We could not achieve this with existing Token

Services (e.g., UVa-CA) in part because they don’t

currently support a mechanism (e.g., SecPAL) by which to

control use of such security tokens. We hope that the work

contained in this paper creates new investigations into

mechanisms and policies for such assertions.

Case 5: Delegation-based Access. In contrast to Case 4, in

which the Token Service asserts the transfer of rights, a

user might need to be able to delegate rights to another

user. Note that this is, in fact, still unconstrained delegation

(impersonation) as opposed to constrained delegation.

Policy Claims

LA says UVa-CA can say %p possesses %a (from %t1

until %t2) where

 %t2 - %t1 <= "365.00:00:00",

 %t1 <= CurrentTime() <= %t2,

 %a matches rfc822Name:".*@virginia\.edu"

LA says %p can read, write

digitalContent:"file:///GridFTPRoot/" if

 %p possesses %a

 where

 %a matches rfc822Name:".*@virginia\.edu"

LA says %p can say %x can %v

digitalContent:"file:///GridFTPRoot/" if

 %p can %v digitalContent:"file:///GridFTPRoot/"

Security Tokens

UVa-CA says K-User1 possesses

rfc822Name:"humphrey@virginia.edu" (from "2007-01-

01T00:00:00Z" until "2007-12-31T00:00:00Z")

K-User1 says K-User2 can read

digitalContent:"file:///GridFTPRoot/"

Authorization Query

LA says K-User2 can read

digitalContent:"file:///GridFTPRoot/data1.txt"?

An important aspect of this scenario is that LA can

precisely restrict what any particular user can transfer, and

it is up to the user to decide if/when to make this transfer of

rights. This case also uses the Token Web Service,

whereby K-User1 records and stores that K-User2 can read

the particular file.

Case 6: Capability-based Access. A capability is an

unforgeable token that, when presented to a resource guard,

permits authorization based solely on the possession of the

token and irrespective of the identity of the presenter. To

date, capabilities have not been extensively utilized in Grid

computing (e.g., the gridmap-file is essentially an access

control list).

Policy Claims

LA says K-STS can say %p can read, write

digitalContent:"file:///GridFTPRoot/"

Security Tokens

K-STS says K-User can read, write

digitalContent:"file:///GridFTPRoot/"
Authorization Query

LA says K-User can read

digitalContent:"file:///GridFTPRoot/data1.txt"

Preliminary version; to appear in 8th IEEE/ACM International Conference on Grid Computing (Grid 2007), Sept 19-21,2007, Austin, TX

8

Similar to Case 4, there is not an easy way to represent,

store, and convey such capabilities, so we chose to store

capabilities in the Security Token Web Service. Note that

the UVa CA and the UVa LDAP are not directly used in

this scenario.

IV. DISCUSSION AND EVALUATION

Through our implementation experiences, and as shown

through the six use-cases, above, we have been able to

qualitatively assess the ability of SecPAL to meet the

requirements identified in Section II.C. We believe that

most of the requirements are clearly met (uniquely strong

support for GENERAL-R2, GENERAL-R4, and

GENERAL-R8) although some of the requirements

warrant further study. For example, our studies have not

shown conclusively the ability to author and compose

policies (GENERAL-R5, GENERAL-R6), although

separation of trust policy authoring and file system access

policy authoring duties is easily supported. We believe that

we satisfied most of the more practical considerations

enumerated in the first paragraph of Section III. However,

we do not present to the client any indication why it was

unauthorized, both because a legacy client (e.g., globus-

url-copy) is not expecting such a response and it is not easy

to generate such information from any logic-based

language. We will continue to assess SecPAL through

further development and expanded deployment of this

modified GridFTP.NET service.

 To assess the overhead of this new access control

system, we measured the performance of our legacy GUI

client when it first contacts the GridFTP server via a

―Connect‖. The GridFTP.NET service ran on a commodity

single-processor 3700+ AMD x64 server with 2G RAM

running Windows Server 2003 (GigE NIC). Our client

machine was a comparable AMD Opteron, connected over

GigE LAN, except that the client machine had only a

100Mbps NIC. The two authorization policies we used in

this experiment were:

1. *@virginia.edu can access the service

2. role == faculty can write in gridFTPRoot

In Table 1 we show a comparison of different authorization

techniques, averaged over 500 cases.

TABLE I

DURATIONS FOR LEGACY GUI CLIENT ―CONNECT‖

gridmap LDAP SecPAL-based system

652.57 ms 893.06 ms 712.38 ms

The large majority of the time of each of the ―Connect‖s is

to perform the SSL handshake. We observe that the most

expensive of the three systems is the LDAP authorization

system, which requires an additional SSL connection

(between GridFTP.NET and the standalone LDAP server).

In general we see that SecPAL does not incur substantial

additional cost. Furthermore, separate measurements

indicate that the SSL handshake between the GridFTP

client and GridFTP service is the dominant factor,

irrespective of the authorization system, requiring

approximately 650 ms in our tests. In other words, the time

taken by SecPAL and our information system architecture

is small compared to the SSL handshake time. This means

that SecPAL can be used (for the scenarios discussed here)

with only a minimal impact on system performance.

 To better understand and assess performance of our

system built around the SecPAL engine, we measured the

duration of the individual components of Figure 1. Table 2

shows these results, averaged over 500 cases.

TABLE II

 DURATIONS FOR SECPAL-BASED SYSTEM OF FIGURE 1
SecPAL

Token

Gen.

UVa

LDAP

Security

Token

Web

Service

Policy

Repo.

SecPAL

Engine

Total

12.89 ms 3.96

ms X3

2.72 ms

X4

2.50

ms

11.58 ms 49.95

ms

In the UVa PKI, each user certificate chain is of length 4,

so we interacted with the UVa LDAP and Security Token

Web Service for each cert (not the root cert in the latter

case). We conclude that the SecPAL engine is efficient --

over 75% of the overall cost is incurred in information-

gathering prior to the SecPAL engine invocation.

 Our final test was to assess this SecPAL-based system

―in the large‖, i.e., will the average client notice the

performance difference? To test this, we invoked our

GridFTP.NET command-line application to acquire a file

from the service. Averaged over 100 cases, transferring a

10M file via gridmap-based access control took 2.505 sec

vs. 2.61 sec for SecPal-based access control, or 4.2%

longer. For 100M files, the difference is 10.73 sec

(gridmap) vs. 10.84 sec (SecPAL), or 1.0% longer. We

believe this difference is unlikely to impact most clients.

V. CONCLUSION AND FUTURE WORK

Although some very capable Grid access control systems

are used in practice today, many situations cannot be easily

expressed and made operational. In this paper, we

identified a set of requirements for an access control

language for Grid data access and evaluated SecPAL in the

context of GridFTP.NET against those requirements. These

requirements were more complex that can be expressed by

gridmap-like approaches, but were straightforward to

implement using SecPALs grammar. We find that

qualitatively and quantitatively SecPAL meets these

requirements, although we recognize that further study and

evaluation is necessary for a few of the requirements. The

University of Virginia team is currently working to utilize

this system via the GT4 GridFTP through its OGSA

authorization call-out.

Preliminary version; to appear in 8th IEEE/ACM International Conference on Grid Computing (Grid 2007), Sept 19-21,2007, Austin, TX

9

REFERENCES
[1] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke. A Security

Architecture for Computational Grids. Proc. 5th ACM

Conference on Computer and Communications Security

Conference, pp. 83-92, 1998.

[2] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J.

Volmer, V. Welch. A National-Scale Authentication

Infrastructure. IEEE Computer, 33(12):60-66, 2000.

[3] Oasis Access Control TC, ―XACML 2.0 Specification‖.

2005. http://docs.oasis-open.org/xacml/2.0/access_control-

xacml-2.0-core-spec-os.pdf

[4] Markus Lorch, Seth Proctor, Rebekah Lepro, Dennis Kafur

and Sumit Shah, ―First experiences using XACML for access

control in distributed systems‖, In Proceedings of the 2003

ACM workshop on XML security , 2003.

[5] Hommel, W., Using XACML for Privacy Control in SAML–

based Identity Federations. In 9th IFIP TC–6 TC–11

Conference on Communications and Multimedia Security

(CMS 2005), Springer, September, 2005.

[6] Peter Lamb, Robert Power, Gavin Walker, Michael

Compton. Role-based access control for data service

integration. Proceedings of the 3rd ACM workshop on

Secure web services. Alexandria, VA, Nov 2006.

[7] M.C. Tschantz, S. Krishnamurthi. Towards reasonability

properties for access-control policy languages. 2006 Access

Control Models and Technologies Symp. Lake Tahoe, CA.

[8] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L.

Liming, and S. Tuecke, ―GridFTP: Protocol extensions to ftp

for the Grid,‖ 2001. [Online]. Available: http://www-

fp.mcs.anl.gov/dsl/GridFTP-Protocol-RFC-Draft.pdf

[9] J. Feng, L. Cui, G. Wasson, and M. Humphrey. Toward

Seamless Grid Data Access: Design and Implementation of

GridFTP on .NET. 2005 Grid Workshop (Associated with

Supercomputing 2005). Nov 2005. Seattle, WA.

[10] B. Lampson, M. Abadi, M. Burrows, and E.Wobber.

Authentication in distributed systems: theory and practice.

ACM Trans. on Computer Systems, 10(4):265–310, 1992.

[11] Moritz Y. Becker, Cedric Fournet, Andrew D. Gordon,

SecPAL: Design and Semantics of a Decentralized

Authorization Language Technical Report In Proceedings of

the 20th IEEE Computer Security Foundations Symposium

(CSF), 2007.

[12] Blair Dillaway, A Unified Approach to Trust, Delegation,

and Authorization in Large-Scale Grids, Technical Paper,

Microsoft Corporation, September 2006.

[13] V. Welch, I. Foster, T. Scavo, F. Siebenlist, and C. Catlett.

Scaling TeraGrid access: A roadmap for attribute-based

authorization for a large cyberinfrastructure (draft August

24). 2006. http://gridshib.globus.org/docs/tg-paper/TG-

Attribute-Authz-Roadmap-draft-aug24.pdf.

[14] Foster, I., Kesselman, C., Pearlman, L., Tuecke, S., and

Welch, V. The Community Authorization Service: Status

and Future. In Proceedings of Computing in High Energy

Physics 03 (CHEP '03), 2003.

[15] Alfieri, R., et al. VOMS, an Authorization System for

Virtual Organizations. First European Across Grid

Conferences. Santiago de Compostela, Spain, Feb. 2003.

[16] Lorch, M., Kafura, D., Fisk, I., Keahey, K., Carcassi, G.,

Freeman, T. Authorization and Account Management in the

Open Science Grid. Proceedings of the Sixth International

Workshop on Grid Computing (GRID’05)

[17] Thompson, M., Johnston, W., Mudumbai, S., Hoo, G.,

Jackson, K., Essiari, A. Certificate-based Access Control for

Widely Distributed Resources. Proceedings of the Eighth

USENIX Security Symposium (Security `99), Washington,

D.C., August 23-26, 1999, pp 215-227.

[18] Chadwick, D., and Otenko, O. The PERMIS X.509 role

based privilege management infrastructure. Future

Generation Computer Systems, 19(2):277-289, Feb 2003.

[19] M. Humphrey and G. Wasson. The University of Virginia

Campus Grid: Integrating Grid Technologies with the

Campus Information Infrastructure. 2005 European Grid

Conference (ECG 2005), Amsterdam, Feb 14-16, 2005.

[20] V. Welch, R. Ananthakrishnan, F. Siebenlist, D. Chadwick,

S. Meder, L. Pearlman. ―Use of SAML for OGSI

Authorization‖. Open Grid Forum Proposed Standard. GFD-

E.066. March 26 2006.

http://www.ogf.org/documents/GFD.66.pdf

[21] ITU-T Rec X.812 (1995) | ISO/IEC 10181-3:1996, Security

Frameworks for open systems: Access control framework.

[22] B. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C.

Dumitrescu, I. Raicu, and I. Foster, ―The Globus striped

GridFTP framework and server,‖ 2005.

[23] Marlena Erdos and Scott Cantor, ―Shibboleth Architecture

v5‖, Internet2/MACE, May 2002

[24] V. Welch, T. Barton, K. Keahey, and F. Siebenlist,

―Attributes, Anonymity, and Access: Shibboleth and Globus

Integration to Facilitate Grid Collaboration,‖ 4th Public Key

Infrastructure R&D Workshop, 2005
[25] Blair Dillaway, Jason Hogg, Security Policy Assertion

Language (SecPAL) Specification, Version 1.0, 15 February

2007,

http://research.microsoft.com/projects/secpal/downloadSecP

ALSpecification.aspx

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://www.cs.virginia.edu/~humphrey/papers/GridFTP_on_dotNET.pdf
http://www.cs.virginia.edu/~humphrey/papers/GridFTP_on_dotNET.pdf
http://www.cs.virginia.edu/~humphrey/papers/GridFTP_on_dotNET.pdf
http://www.cs.virginia.edu/~humphrey/papers/GridFTP_on_dotNET.pdf
http://research.microsoft.com/projects/SecPAL/docs/UnifiedAccessControlForGridSystems.doc
http://research.microsoft.com/projects/SecPAL/docs/UnifiedAccessControlForGridSystems.doc
http://research.microsoft.com/projects/SecPAL/docs/UnifiedAccessControlForGridSystems.doc

