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Abstract

Model-based face analysis is a general paradigm with applications that include face recognition,
expression recognition, lip-reading, head pose estimation, and gaze estimation. A face model is
first constructed from a collection of training data, either 2D images or 3D range scans. The face
model is then fit to the input image(s) and the model parameters used in whatever the application
is. Most existing face models can be classified as either 2D (e.g. Active Appearance Models) or
3D (e.g. Morphable Models.) In this paper we compare 2D and 3D face models along three axes:
(1) representational power, (2) construction, and (3) real-time fitting. For each axis in turn, we
outline the differences that result from using a 2D or a 3D face model.
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1 Introduction

Model-based face analysis is a general paradigm with numerous applications. Perhaps the most

well known face models are 2D Active Appearance Models (AAMs) [10] and 3D Morphable Mod-

els (3DMMs) [7]. A face model is first constructed from either a set of 2D training images [10]

or a set of 3D range scans [7]. The face model is then fit to the input image(s) and the model

parameters are used in whatever the application is. In [16], the same face model was used for face

recognition, pose estimation, and expression recognition. Other applications include lip-reading

[19] and gaze estimation [13].

AAMs and 3DMMs are similar in many ways. Both consist of a linear shape model and a

linear appearance (texture) model. The main difference between them is that the shape component

of an AAM is 2D, whereas the shape component of a 3DMM is 3D. A natural question, then, is

“what are the relative advantages and disadvantages of 2D and 3D face models?” In this paper, we

attempt to answer this question by comparing 2D and 3D face models along three different axes:

(1) representational power, (2) construction, and (3) real-time fitting. With the exception of the

background material in Section 2, our discussion is on the level of general 2D and 3D linear face

models, rather than comparing specific models such as AAMs and 3DMMS.

Note that there are other differences between 2D and 3D models, beyond those covered in

this paper. One benefit of a 3D model is the ability to model surface normals, and hence use

physically-based models of illumination and reflectance. The combination of a 3D shape model

and a physically-based reflectance model is one of the main reasons 3D Morphable Models are so

effective [7]. The comparison in this paper does not include such illumination effects, but it largely

limited to geometric differences. Another difference not considered in this paper is the ease of

handling occlusions. The reader is referred to a related technical report by the authors [20] for an

empirical comparison of occlusion handing in 2D and 3D.

In Section 3 we compare the representational power of 2D and 3D linear face models. We

prove 3 main results. (1) Under the scaled orthographic image formation model, 2D and 3D face

models have the same power to represent 3D objects; i.e. any shape model that can be generated
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by a 3D model can also be generated by a 2D model. (2) Up to 6 times as many parameters may

be required by the 2D model to represent the same phenomenon as the 3D model. (3) In general,

a 2D model can generate model instances that are not possible to generate with the corresponding

3D model; i.e. some (actually most) 2D model instances are “physically unrealizable.”

In Section 4 we compare the construction of 2D and 3D models. We first investigate how

a 2D face model can be converted into a 3D model. We explain how the fact that a 2D model

can generate model instances that are not possible to generate from the corresponding 3D model

means that a 2D model cannot be upgraded to 3D in isolation. Instead we show how a non-rigid

structure-from-motion algorithm can be used to construct a 3D face model indirectly from a 2D

model through 2D tracking results. We also present an algorithm for the construction of a 2D

model from a 3D model and show how it can be used to build 2D face models that better model

rotated faces.

In Section 5 we study the real-time fitting of face models. We begin by reviewing the efficient

“inverse compositional” 2D fitting algorithm [18]. We then show that the naive 3D generalization

of this algorithm violates one of the key assumptions made by the 2D algorithm. The 3D gener-

alization is therefore not a correct algorithm. We describe a “work around” to this problem, the

simultaneous fitting of both a 2D and a 3D shape model. We show how this formulation of the 3D

fitting problem does lead to a real-time implementation. We empirically compare the 2D fitting

algorithm with its 3D extension. The results show that fitting a 3D model is: (1) inherently more

robust than fitting a 2D model, and (2) takes fewer iterations to converge.

In Section 6 we summarize the main conclusions of the paper and in Section 7 we briefly

describe how the research described in this paper was influenced by the work of Takeo Kanade.

2 Background

We begin with a brief review of 2D Active Appearance Models (AAMs) [10] and 3D Morphable

Models (3DMMs) [7]. We have taken the liberty to simplify the presentation and change the

2



notation from [10] and [7] to highlight the similarities and differences between the two types of

models. Note that our definition of an AAM corresponds to that of an “Independent AAM” in [18].

2.1 2D Active Appearance Models

The 2D shape of an Active Appearance Model (AAM) is defined by a 2D triangulated mesh and

in particular the vertex locations of the mesh. Mathematically, the shape s of an AAM is defined

as the 2D coordinates of the n vertices that make up the mesh:

s =

 u1 u2 . . . un

v1 v2 . . . vn

 . (1)

AAMs allow linear shape variation. This means that the shape matrix s can be expressed as a base

shape s0 plus a linear combination of m shape matrices si:

s = s0 +
m∑

i=1

pi si (2)

where the coefficients p = (p1, . . . , pm)T are the shape parameters.

AAMs are normally computed from training data consisting of a set of images with the shape

mesh (usually hand) marked on them [10]. The Iterative Procrustes Algorithm and Principal Com-

ponent Analysis (PCA) are then applied to compute the base shape s0 and the shape variation si.

The base shape s0 is the mean shape computed by the Procrustes algorithm and the matrices si are

the (reshaped) PCA eigenvectors corresponding to the m largest eigenvalues.

The appearance of the AAM is defined within the base mesh s0. Let s0 also denote the set

of pixels u = (u, v)T that lie inside the base mesh s0, a convenient notational shortcut. The

appearance of the AAM is then an image A(u) defined over the pixels u ∈ s0. AAMs allow linear

appearance variation. This means that the appearance A(u) can be expressed as a base appearance
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A0(u) plus a linear combination of l appearance images Ai(u):

A(u) = A0(u) +
l∑

i=1

λiAi(u) (3)

where the coefficients λ = (λ1, . . . , λl)
T are the appearance parameters. The base appearance A0

and appearance modes Ai are usually computed by applying PCA to the shape normalized training

images [10]. The base appearance A0 is the mean appearance and the appearance images Ai are

the PCA eigenvectors corresponding to the l largest eigenvalues.

Although Equations (2) and (3) describe the AAM shape and appearance variation, they do

not describe how to generate an AAM model instance. AAMs use a simple 2D image forma-

tion model (sometimes called a normalization), a 2D similarity transformation N(u; q), where

q = (q1, . . . , q4)
T contains the rotation, translation, and scale parameters [18]. Given the AAM

shape parameters p = (p1, . . . , pm)T, Equation (2) is used to generate the shape of the AAM s.

The shape s is then mapped into the image with the similarity transformation to give N(s; q).

Equation (3) is used to generate the AAM appearance A(u) from the AAM appearance parameters

λ = (λ1, . . . , λl)
T. The AAM model instance with shape parameters p, image formation parame-

ters q, and appearance parameters λ is then created by warping the appearance A(u) from the base

mesh s0 to the model shape mesh in the image N(s; q). In particular, the pair of meshes s0 and

N(s; q) define a piecewise affine warp from s0 to N(s; q) which we denote N(W(u; p); q). For

each triangle in s0 there is a corresponding triangle in N(s; q) and each pair of triangles defines a

unique affine warp. See [18] for more details.

2.2 3D Morphable Models

We now describe the 3D model that we use in this paper. We describe it as a 3D Morphable Model

to give full credit to the seminal work in [7]. But note that the model here is a subset of the model

in [7]. For example, we do not include a reflectance model, like the Phong model used in [7]. Our

goal is to define a 3D model that uses the geometric aspects of 3D Morphable Models [7] but is
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also the direct 3D equivalent of the 2D Active Appearance Model in Section 2.1; i.e. the models

should be as close as possible, except in the dimension of the shape model.

The 3D shape of a 3D Morphable Model (3DMM) is defined by a 3D triangulated mesh.

Mathematically, we define the shape s (“overline” or “bar” is used throughout this paper to denote

the 3D model equivalent of a 2D model quantity) of a 3DMM as the 3D coordinates:

s =


x1 x2 . . . xn

y1 y2 . . . yn

z1 z2 . . . zn

 (4)

of the n vertices that make up the mesh. 3DMMs allow linear shape variation. The shape matrix s

can be expressed as a base shape s0 plus a linear combination of m shape matrices si:

s = s0 +
m∑

i=1

pi si. (5)

where the coefficients p = (p1, . . . , pm)T are the 3D shape parameters.

3DMMs are normally computed from training data consisting of a number of 3D range scans

with the mesh vertices located in them [7]. PCA is then applied to the 3D coordinates of the training

meshes. The base shape s0 is the mean shape and the matrices si are the (reshaped) eigenvectors

corresponding to the m largest eigenvalues.

The appearance of a 3DMM is defined within a 2D texture-map image. In this texture-map,

there is a 2D triangulated mesh that has the same topology (vertex connectivity) as the base 3D

mesh s0. Each 2D mesh point in the texture map is then associated with its corresponding 3D mesh

vertex to define a 3D triangulated appearance model. Let s∗0 denote the set of pixels u = (u, v)T

that lie inside this 2D mesh. The appearance of the 3DMM is then an image A(u) defined over

the pixels u ∈ s∗0. 3DMMs also allow linear appearance variation. The appearance A(u) can be
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expressed as a base appearance A0(u) plus a linear combination of l appearance images Ai(u):

A(u) = A0(u) +
l∑

i=1

λiAi(u) (6)

where the coefficients λ = (λ1, . . . , λl)
T are the appearance parameters. The base appearance A0

and the appearance images Ai are computed by applying PCA to the texture components of the

range scans, appropriated warped onto the 2D triangulated mesh s∗0 [7].

To generate a 3DMM model instance an image formation model is needed to convert the 3D

shape s into a 2D mesh, onto which the appearance is warped. As in [21], we use the scaled

orthographic model defined by the projection matrix:

P =

 ix iy iz

jx jy jz

 (7)

and the offset of the origin (ou, ov)T. The two vectors i = (ix, iy, iz) and j = (jx, jy, jz) are the

projection axes. We require that the projection axes are equal length and orthogonal; i.e. we require

that i · i = ixix + iyiy + iziz = jxjx + jyjy + jzjz = j · j and i · j = ixjx + iyjy + izjz = 0. The

result of imaging the 3D point x = (x, y, z)T with this scaled orthographic model is the 2D point:

u = Px +

 ou

ov

 . (8)

Note that the scaled orthographic projection has 6 degrees of freedom which can be mapped onto

a 3D pose (yaw, pitch, roll), a 2D translation, and a scale. The 3DMM model instance is then com-

puted as follows. Given the shape parameters pi, the 3D shape s is computed using Equation (5).

Each 3D vertex (xi, yi, zi)
T is then mapped to a 2D vertex using Equation (8). (Note that during

this process the visibility of the triangles in the mesh should be computed and respected.) The

appearance is then computed using Equation (6) and warped onto the 2D mesh using the piecewise

affine warp defined by the mapping from the 2D vertices in s∗0 to the corresponding 2D vertices
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computed by the applying Equation (8) to the 3D shape s.

2.3 Similarities and Differences

AAMs and 3DMMs are similar in many ways. They both consist of a linear shape model and a

linear appearance model. In particular, Equations (2) and (5) are almost identical. Equations (3)

and (6) are also almost identical. The main difference between them is that the shape component

of the AAM is 2D (see Equation (1)) whereas that of the 3DMM is 3D (see Equation (4)).

Note that there are other differences between 2D AAMs [10] and 3DMMs [7]. For example,

(1) 3DMMs are usually constructed to be denser; i.e. consist of more triangles, and (2) because of

their 3D shape and density, 3DMMs can also use the surface normal in their appearance model.

In this paper, we address the differences between 2D and 3D face models in general, rather than

specifically comparing AAMs and 3DMMS.

3 Representational Power

It is a common preconception that 3D models are “more powerful” than 2D models. In this section,

we investigate to what extent this is really the case (for the scaled orthographic image formation

model in Equation (8).) The shape of either a 2D or 3D model instance is a vector of 2D points in

an image. In Section 3.1 we show that the set of all such 2D point vectors generated by a 3D model

can also be generated by a 2D model1. On the other hand, we also show that 3D models are more

compact than 2D models. In particular, we show that up to approximately 6 times as many shape

parameters may be needed by a 2D model to represent the same phenomenon represented by a 3D

model. Finally, in Section 3.2 we show that, in general, when a 2D model is used to model a 3D

phenomenon the resulting 2D model can generate model instances that are not physically realizable

(in the sense that there are valid 2D model instances that are not valid 3D model instances.) Note

that the analysis in this section ignores occlusion which is covered in [20].

1Note that this result is required for the Constrained 3D Fitting algorithm in Section 5.3 to be meaningful.
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3.1 Equivalence and Number of Parameters

The shape variation of a 2D model is described by Equation (2) and N(u; q). That of an 3D model

is described by Equations (5) and (8). We can ignore the offset of the origin (ou, ov)T in the scaled

orthographic model because this offset corresponds to a translation which can be modeled by the

2D similarity transformation N(u; q). The 2D shape variation of the 3D model is then:

 ix iy iz

jx jy jz

 ·
(
s0 +

m∑
i=1

pi si

)
(9)

where (ix, iy, iz), (jx, jy, jz), and the 3D shape parameters pi vary over their allowed values. The

projection matrix can be expressed as the sum of 6 matrices:

 ix iy iz

jx jy jz

 = ix

 1 0 0

0 0 0

+ iy

 0 1 0

0 0 0

+ iz

 0 0 1

0 0 0

+

jx

 0 0 0

1 0 0

+ jy

 0 0 0

0 1 0

+ jz

 0 0 0

0 0 1

 . (10)

Equation (9) is therefore a linear combination of:

 1 0 0

0 0 0

 · si,

 0 1 0

0 0 0

 · si,

 0 0 1

0 0 0

 · si,

 0 0 0

1 0 0

 · si,

 0 0 0

0 1 0

 · si, and

 0 0 0

0 0 1

 · si (11)

for i = 0, 1, . . . ,m. The shape variation of the 3D model can therefore be represented by the

following 2D shape vectors:

s6∗i+1 =

 1 0 0

0 0 0

 · si, s6∗i+2 =

 0 1 0

0 0 0

 · si, s6∗i+3 =

 0 0 0

0 0 1

 · si,
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(a) (b)

Figure 1: A scene consisting of a static cube and 3 points moving along fixed directions. (a) The base
configuration. (b) The cube viewed from a different direction with the 3 points (8,9,10) moved.

s6∗i+4 =

 0 0 0

1 0 0

 · si, s6∗i+5 =

 0 0 0

0 1 0

 · si, s6∗i+6 =

 0 0 0

0 0 1

 · si (12)

for i = 0, 1, . . . ,m. In total as many as m = 6 × (m + 1) 2D shape vectors may be needed to

model the same shape variation as the 3D model with only m 3D shape vectors. Although many

more shape vectors may be needed, the main point is that 2D models can represent any geometric

phenomena that 3D models can. (Note that although theoretically more than 6 times as many 2D

shape vectors may be needed, in practice not that many are required. Typically 2-3 times as many

are needed.)

3.2 3D Realizability of 2D Model Instances

If it takes 6 times as many parameters to represent a certain phenomenon with an 2D model than

it does with the corresponding 3D model, the 2D model must be able to generate a large number

of model instances that are impossible to generate with the 3D model. In effect, the 2D model has

too much representational power. It describes the phenomenon in question, plus a variety of other

shapes that are “physically unrealizable.” If the parameters of the 2D model are chosen so that

the orthogonality constraints on the corresponding 3D projection axes i and j do not hold, the 2D

model instance is not realizable with the 3D model. An example is presented in Figure 1.

The scene in Figure 1 consists of a static cube (7 visible vertices) and 3 moving points (dia-
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mond, triangle, and square.) The 3 points can move along the three axes at the same, non-constant

speed. The 3D shape of the scene s is composed of a base shape s0 and a single 3D shape vector

s1. The base shape s0 correspond to the static cube and the initial locations of the three moving

points. The 3D shape vector s1 corresponds to the motion of the three moving points (8,9,10).

We randomly generated 60 sets of shape parameters p1 and camera projection matrices P. We

then used these to synthesize the 2D shapes of 60 3D model instances. We then computed the 2D

shape model by performing PCA on the 60 2D shapes. The result consists of 12 shape vectors,

confirming the result above that as many as 6× (m+ 1) 2D shape vectors might be required.

The resulting 2D shape model can generate shapes that are impossible to generate with the 3D

model. One concrete example is the base 2D shape s0. In our experiment, s0 turns out to be:

−0.194 −0.141 −0.093 −0.146 −0.119 −0.167 −0.172 −0.027 0.520 0.539

0.280 0.139 0.036 0.177 −0.056 0.048 0.085 −1.013 0.795 −0.491

 .
(13)

To show that s0 is not a 3D model instance, we first note that s0 can be uniquely decomposed into:

s0 =

 0.053 0.026 0.048

−0.141 0.091 −0.106

 s0 +

 0.087 0.688 0.663

−0.919 0.424 −0.473

 s1. (14)

The projection matrices in this expression are not legitimate scaled orthographic matrices (i.e.

composed of two equal length, orthogonal vectors). Therefore, s0 is not a valid 3D model instance.

One question that might be asked at this point is whether the redundancy in the 2D model is

a problem in practice. In Section 5.5 we present quantitative fitting results that can be interpreted

as showing that the redundancy in the 2D model leads to significantly more local minima (lower

fitting robustness) when fitting 2D models, compared to the corresponding 3D model.
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3.3 Summary

Although we have shown that a 2D model can be used to model a 3D face just as well as a 3D

model, the parameterization is less compact and the 2D model will be able to generate “physically

unrealizable” face instances; i.e. not all 2D face model instances are valid projections of 3D faces.

As a result, the fitting of 2D face models is more prone to local minima and so is less robust. See

Section 5.5 for empirical results that validate this claim. One additional benefit of 3D models is

that the parameterization is more natural. The head pose is contained in the scaled orthographic

camera matrix P rather than being confused with the non-rigid face motion in the 2D shape model.

4 Construction

Usually 2D face models are constructed from 2D image data and 3D face models from 3D range

scans. In Section 4.1 we investigate how a 2D face model can be converted into a 3D model. In

Section 4.2 we show how a 3D model can be projected into 2D and describe how such a procedure

is useful for building 2D models that better model rotated faces.

4.1 Constructing a 3D Model from a 2D Model

Suppose we have a 2D AAM. A natural question to ask is whether it can be upgraded to a 3D model

(in isolation). One approach might be to sample the model, generate 2D point sets, and apply a

non-rigid structure-from-motion algorithm such as [28]. The argument in Section 3.2, however,

shows that doing this may well lead to sets of 2D points with no consistent 3D interpretation.

Instead, we need to use 2D point sets from real images of the face as input because we know that

these sets have a consistent 3D interpretation. In particular, suppose that we have a collection of

images of one or more faces I t(u) for t = 0, . . . , N , have fit the 2D AAM to each image, and that

the 2D AAM shape parameters in image I t(u) are pt = (pt
1, . . . , p

t
m)T. Using Equation (2) we can
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then compute the 2D AAM shape vector st:

st =

 ut
1 ut

2 . . . ut
n

vt
1 vt

2 . . . vt
n

 (15)

for t = 0, . . . , N . The images I t(u) could be the training images used to build the AAM, but could

also be a larger set with a denser sampling of pose and expression variation.

An alternative approach would be to apply the same non-rigid structure-from-motion algorithm

[28] to the original data used to build the AAM. Besides the ability to include more data, the main

advantage of first building the AAM and then fitting to a set of images is that this process removes

noise. Non-rigid structure-from-motion can be a fairly noise-sensitive process. Because of the

large number of parameters being estimated, it can also be prone to overfitting. In our experience,

the noise removal in the AAM construction and fitting process, and the ability to use far more data,

dramatically improve performance.

A variety of non-rigid structure-from-motion algorithms have been proposed to convert the

feature points in Equation (15) into a 3D shape model. Bregler et al. were perhaps the first to

study the problem [9]. Later, Torresani et al. proposed an algorithm to simultaneously reconstruct

the non-rigid 3D shape and camera projection matrices [26]. This trilinear optimization involves

three types of unknowns, 3D shape vectors, shape parameters, and projection matrices. At each

step, two of the unknowns are fixed and the third refined. Brand proposed a similar non-linear

optimization method [8]. Both of these methods only use the usual orthonormality constraints on

the projection matrices [25]. In [28] we proved that only enforcing the orthonormality constraints

in a linear algorithm is ambiguous and demonstrated that it can lead to an incorrect solution. We

now outline how our linear algorithm [28] can be used to compute 3D shape modes from the

2D AAM fitting data in Equation (15). Any of the other algorithms mentioned above could be

used instead, although they do not have the advantage of a linear solution. Since they are large

non-linear optimizations, they require good initial estimates to converge.
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We begin by stacking the 2D AAM fitting data from Equation (15) into a measurement matrix:

W =



u0
1 u0

2 . . . u0
n

v0
1 v0

2 . . . v0
n

...
...

...
...

uN
1 uN

2 . . . uN
n

vN
1 vN

2 . . . vN
n


. (16)

If this data can be explained by m 3D shape modes, the matrix W can be factored into:

W = MB =



P0 p0
1 P0 . . . p0

m P0

P1 p1
1 P1 . . . p1

m P1

...
...

...
...

PN pN
1 PN . . . pN

m PN




s0

...

sm

 (17)

where each Pi, i = 0, . . . , N is a 2× 3 projection matrix (see Equation (7) for a definition), M is

a 2(N + 1) × 3(m+ 1) scaled projection matrix, and B is a 3(m + 1) × n shape matrix (setting

the number of 3D shape model vertices n equal to the number of AAM vertices n.) Since m is the

number of 3D shape vectors, it is usually small and the rank of W is at most 3(m+ 1).

We perform a Singular Value Decomposition (SVD) on W and factorize it into the product of

a 2(N + 1)×3(m+ 1) matrix M̃ and a 3(m+ 1)×n matrix B̃. This decomposition is not unique.

It is only determined up to a linear transformation. Any non-singular 3(m+ 1)× 3(m+ 1) matrix

G and its inverse G−1 could be inserted between M̃ and B̃ and their product would still equal W .

The scaled projection matrix M and the shape vector matrix B are then given by:

M = M̃ ·G, B = G−1 · B̃ (18)

where G is a corrective matrix. The first step in solving for G is to impose the usual orthonor-

mality constraints matrices [25]. If we represent G as the columns G = (g0 · · · gm) where gk, k =
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0, . . . ,m are 3(m+ 1)× 3 matrices, the left half of Equation (18) takes the form:

M̃ · gk =



p0
k P0

p1
k P1

...

pN
k PN


, k = 0, . . . ,m. (19)

Denote gkg
T
k by Qk. Using the orthogonality properties of Pi outlined in Section 2.2 we have:

M̃2i+1QkM̃
T
2i+1 = M̃2i+2QkM̃

T
2i+2 (20)

M̃2i+1QkM̃
T
2i+2 = 0 (21)

for i = 0, . . . , N , and where M̃i is the ith row of M̃ . Equations (20) and (21) provide 2(N + 1)

linear constraints on the symmetric matrix Qk, which consists of (9(m + 1)2 + 3(m + 1))/2

unknowns. In [28], however, we proved that even if 2(N + 1) ≥ (9(m+ 1)2 + 3(m+ 1))/2, these

orthonormality constraints are not sufficient to determine Qk.

Although the 3D shape modes span a unique shape space, the basis of the space is not unique.

Any non-singular linear transformation of the shape vectors yields a new set of shape vectors. We

therefore need an additional set of constraints. Without loss of generality, we can assume that

the 3D shapes in the first (m + 1) frames are independent2 and treat them as the 3D shape basis.

Equivalently, we can specify the shape parameters in the first (m+ 1) frames to be:

pi
i =

1

|Pi|
for i = 0, . . . ,m

pi
j = 0 for i, j = 0, . . . ,m, i 6= j (22)

where |Pi| = iixi
i
x + iiyi

i
y + iizi

i
z. See Equation (7) in Section 2.2 for the definition of P. Combining

2If the first (m + 1) shape vectors are not independent, we can find (m + 1) frames in which the shapes are
independent by examining the singular values of their image projections. We can then reorder the images.

14



these constraints with Equation (19) leads to another set of linear constraints on Qk:

M̃2i+1QkM̃
T
2j+1 =


1 if i = j = k

0 if i 6= k
(23)

M̃2i+2QkM̃
T
2j+2 =


1 if i = j = k

0 if i 6= k
(24)

M̃2i+1QkM̃
T
2j+2 = 0 if i 6= k or i = j = k (25)

M̃2i+2QkM̃
T
2j+1 = 0 if i 6= k or i = j = k (26)

where i = 0, . . . ,m and j = 0, . . . , N . Enforcing the (roughly) 4(m+1)(N +1) linear constraints

in Equations (23)–(26) and the 2(N + 1) linear constraints in Equations (20) and (21) leads to

a closed-form solution for Qk. Since Qk = gkg
T
k we can solve for gk using SVD [25] and then

recover M and B using Equation (18). However, because each gk is estimated independently, the

orthogonal Procrustes method must be used to place all of the estimates in a common coordinate

frame [29].

We illustrate the computation of a 3D shape model from a 2D shape model in Figure 2. We

first constructed a 2D AAM for 5 people using approximately 20 training images of each person.

In Figure 2(A) we include the AAM mean 2D shape s0 and the first 3 (of 8) 2D shape variation

modes s1, s2, and s3. In Figure 2(B) we include the AAM mean appearance A0 and an illustration

of the appearance variation. Instead of displaying the appearance modes themselves, we display

the result of adding and subtracting the first 3 (of 40) modes to the mean appearance. For example,

+A1 denotes the addition of the first appearance mode to the mean appearance; i.e. A0 + A1.

Next we use the 2D AAM to track short 180 frame videos of each of the 5 subjects to generate

the input to the non-rigid structure-from-motion algorithm. One example frame for 4 of the 5

subjects is included in Figure 2(C). The results of our 3D model construction algorithm are shown

in Figure 2(D). In particular, we display the mean 3D shape s0 and the first 3 (of 4) 3D shape

modes s1, s2, and s3, with the 3D shape modes illustrated as arrows on the mean shape.
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A

s0 s1 s2 s3

B

A0 +A1 − A1 +A2 − A2 +A3 − A3

C
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4

D

s0 s1 s2 s3

Figure 2: Model and Dataset 1: Constructing a 3D model from 2D data for a 5 person model.
(A) The 2D AAM shape variation. (B) The 2D AAM appearance variation. (C) Example frames
of the AAM being used to track 4 of the 5 subjects, the input to our algorithm. (D) The output of
our algorithm, the mean 3D shape s0 and the first 3 (of 4) 3D shape modes s1, s2, and s3.

Similar results for a different model and dataset are included in Figure 3. In this case, the 2D

AAM is constructed from 20–30 training images of each of 9 subjects, has 9 2D shape modes, and

59 2D appearance modes. We use the 2D AAM to track 150 frame videos for 9 subjects. The

output of our algorithm consists of a 3D model with 4 3D shape modes, of which we show the

mean 3D shape s0 and the first 3 modes s1, s2, and s3 in Figure 3(D).
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s0 s1 s2 s3

Figure 3: Model and Dataset 2: Constructing a 3D model from 2D data. (A) The 2D AAM shape
variation. (B) The 2D AAM appearance variation. (C) Example frames of the AAM being used to
track 4 of the subjects, the input to our algorithm. (D) The output of our algorithm, the mean 3D
shape s0 and the first 3 (of 4) 3D shape modes s1, s2, and s3.

4.2 Constructing a 2D Model from a 3D Model

Constructing a 2D model from a 3D model is easier than the other way around. We actually al-

ready did this in Section 3.2 when we were searching for a “physically unrealizable” 2D model

instance. We simply take the 3D model, generate a large number of model instances (which are 2D

shape vectors), and then construct the 2D model in the usual manner. The 3D model parameters

and scaled orthographic projection matrix parameters can either be sampled systematically or ran-

domly. In practice, we use a systematic sampling of the 2D (yaw/pitch) pose space and non-rigid

shape space. (Scale, roll, and translation do not need to be sampled as they are modeled by the
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2D similarity transformation.) In Figure 4 we include 15 (of 465) example 3D model instances

-30

0

30

30 -30060 -60

Figure 4: 3D model instances generated using the 3D model in Figure 2(D). The pose is sampled
systematically and the non-rigid shape randomly. These model instances are a subset of a set of
465 used to re-generate the 2D shape model in Figure 2(A), and which is evaluated in Figure 5.

generated from the 4-dimensional 3D shape model in Figure 2(D). These 465 training examples

were then used to re-generate the 8-dimensional 2D shape model in Figure 2(A). The result is a

new 2D shape model with 9 modes.

A natural question, however, is: “why would you ever want to convert a 3D model into a 2D

model?” One possibility is when working with either a 2D or a 2D+3D model [27] (to obtain real-

time fitting speed) and trying to build models that can model the face across large pose variation.

Although algorithms have been proposed to build 2D AAMs in the presence of occlusion caused

by large pose variation in the training set [11], another way to build a 2D AAM than can model

large pose variation is to: (1) build a normal 2D model using training data with no occlusion

and so limited pose variation, (2) convert the 2D model into a 3D model using the approach in

Section 4.1, and finally (3) convert the resulting 3D model back into a 2D model using an extending

sampling of the camera matrix to model increased pose variation and self occlusion. Some results
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of performing this three-step procedure are included in Figure 5. In particular, for 3 different head
O
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0 Degrees Yaw 30 Degrees Yaw 60 Degrees Yaw

Figure 5: An example of 2D model construction from a 3D model. We display 3D model instances
(solid blue line) and the closest 2D model instance (dashed green line) for 3 different head poses.
We display the closest 2D model instances for the original 2D model (top row) and the new 2D
model computed from the 3D model (bottom row). The results show that the new 2D model
computed from the 3D model is better able to model faces at high degrees of pose variation.

poses (0 degrees yaw, 30 degrees yaw, and 60 degrees yaw) we display the 3D model instance

(solid blue line) and the closest 2D model instance (dashed green line) for both the original 2D

model and the new 2D model computed from the 3D model. The results show that the new 2D

model computed from the 3D model is better able to model faces at high degrees of pose variation

than the original 2D model was able to.

4.3 Summary

We have shown how 3D models can be constructed from 2D models, and vica versa. In particular,

3D models such as 3D Morphable Models [7, 6] and 2D+3D Active Appearance Models [27] can

be constructed from images collected with the same cameras that will be used in the final applica-

tion. The training data is therefore more closely matched to the application data, a property that

generally results in better (fitting and application) performance. On the other hand, one residual
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advantage of building 3D models from 3D range scans is that it is currently easier to build dense

3D models from range scans (although the non-rigid structure-from-motion algorithms described

in this section could obviously operate on dense sets of features.) Techniques have been proposed

for computing dense 3D models from 2D data, however, currently the models constructed in this

manner do not match the quality of 3D models constructed from 3D range scans.

5 Fitting

In [3, 18] we proposed a real-time algorithm for fitting 2D Active Appearance Models. On the other

hand, Romdhani and Vetter recently presented an algorithm for fitting 3D Morphable Models that

operates at around 30 seconds per frame [21]; i.e. thousands of times slower. In this section, we

investigate the relative fitting speed of 2D and 3D models. We begin in Section 5.1 with a brief

review of our real-time algorithm for fitting 2D AAMs. This algorithm is based on the inverse

compositional image alignment algorithm [4]. In Section 5.2 we present a brief argument of why

the inverse compositional algorithm does not generalize naturally to 3D shape models [5]. In

Section 5.3, we propose a work around to this problem, a real-time algorithm for fitting a 3D

model that operates by fitting the 3D model indirectly through a 2D model [27]. After a qualitative

evaluation of the 3D fitting algorithm in Section 5.4, we present a quantitative comparison of the

robustness, rate of convergence, and computational cost of the 2D and 3D fitting algorithms in

Sections 5.5–5.6.

5.1 Efficient 2D Model Fitting

The goal of fitting a 2D AAM [18] is to minimize:

∑
u∈s0

[
A0(u) +

l∑
i=1

λiAi(u)− I(N(W(u; p); q))

]2

(27)
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simultaneously with respect to the shape p, appearance λ, and normalization q parameters. The

algorithm in [18] uses the “Project Out” algorithm [12] (described in more detail with an empirical

evaluation that highlights some limitations of the algorithm in [1]) to break the optimization into

two steps. We first optimize:

‖A0(u)− I(N(W(u; p); q))‖2span(Ai)⊥
(28)

with respect to p and q, where ‖ · ‖2span(Ai)⊥
denotes the square of the L2 norm of the vector

projected into orthogonal complement of the linear subspace spanned by the vectors A1, . . . , Al.

Afterwards, we solve for the appearance parameters using the linear closed-form solution:

λi = −
∑
u∈s0

Ai(u) · [A0(u)− I(N(W(u; p); q))] (29)

where the shape p and normalization q parameters are the result of the previous optimization.

Equation (29) assumes that the appearance vectors Ai(u) have been orthonormalized.

In [18] we showed how to use the inverse compositional algorithm [4] to optimize the expres-

sion in Equation (28) with respect to the shape parameters p and the normalization parameters q.

The main technical contribution allowing the use of the inverse compositional algorithm is a proof

that approximately minimizing:

‖A0(u)− I(N(W(u; p + ∆p); q + ∆q))‖2span(Ai)⊥
(30)

with respect to ∆p and ∆q, and then updating p ← p + ∆p and q ← q + ∆q, is the same to a

first order approximation as approximately minimizing:

‖A0(N(W(u; ∆p); ∆q))− I(N(W(u; p; q))‖2span(Ai)⊥
(31)
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with respect to ∆p and ∆q, and then updating the warp using the inverse compositional update:

N(W(u; p); q) ← N(W(u; p); q) ◦N(W(u; ∆p); ∆q)−1. (32)

The algorithm itself then consists of iterating two main steps. The first step computes:

 ∆p

∆q

 = −H−1
2D

 ∆pSD

∆qSD

 (33)

where the steepest descent parameter updates

 ∆pSD

∆qSD

 are:

 ∆pSD

∆qSD

 =
∑
u∈s0

[SD2D(u)]T [A0(u)− I(N(W(u; p); q))] . (34)

In this expression, the steepest descent images SD2D(u) are the concatenation of:

SD2D(u) =

[∇A0
∂N ◦W

∂p

]
span(Ai)⊥

[
∇A0

∂N ◦W

∂q

]
span(Ai)⊥

 (35)

one for the shape, and one for the normalization parameters. The Hessian matrix H2D is:

H2D =
∑
u∈s0

[SD2D(u)]T SD2D(u). (36)

The second step consists of updating the warp with the inverse compositional update in Equa-

tion (32). The inverse compositional algorithm obtains its efficiency from the fact that Equa-

tions (35) and (36) can be pre-computed for any given model. The Hessian can even be pre-

multiplied by the steepest descent images. (This pre-computation is omitted in the presentation

above to allow easier explanation of the extension of the algorithm in Section 5.3 below.) All that

is left is: (1) a piecewise affine warp to generate I(N(W(u; p); q)), (2) an image subtraction to
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generate A0(u)− I(N(W(u; p); q)), (3) m+ 4 image dot products where there are m shape and

4 similarity normalization parameters, and (4) the inverse compositional update to the warp. Al-

though computing the inverse compositional warp update is involved [18], it is not computationally

demanding because it only requires operations on the mesh, rather than on the images. All four of

these steps can be implemented in real-time [18].

5.2 Invalidity of the 3D Inverse Compositional Algorithm

At this point it is natural to ask whether the inverse compositional algorithm generalizes to 3D mod-

els. Unfortunately, the direct generalization violates one of the key assumptions made in the proof

of correctness [5]. In particular, when the 3D-to-2D projection matrix P is added to the image part

of the model fitting goal, the inverse compositional algorithm is not applicable. Note, however,

that at least two “work-arounds” have been proposed to avoid this problem: (1) the 2D+3D con-

strained fitting algorithm described in Section 5.3 and (2) the implicit 2D parameterization of [21]

described in Section 5.8.

In the proof of equivalence of the forwards and inverse compositional algorithms in [4], an

assumption is made that:

‖A0(N(W(u; ∆p); ∆q))− I(N(W(u; p; q))‖2span(Ai)⊥
= O(∆p,∆q). (37)

Intuitively, in order to replace gradients of I in the forwards compositional algorithm with gra-

dients of A0 in the inverse compositional algorithm, I and A0 must be approximately the same,

after compensating for the geometric distortion modeled by the warp N ◦W, and working in the

subspace span(Ai)
⊥ to compensate for the appearance variation. The assumption in Equation (37)

is reasonable in the 2D case. Informally, it says that the model matches the image reasonably well

at the correct solution, the implicit assumption made by the model fitting process anyway. If we
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Figure 6: An illustrative example to help explain the invalidity of the inverse compositional algorithm when
directly applied to a 3D model. Left: A 2D surface imaged by a camera generates an equivalent 3D image
where the ray through each pixel has a constant intensity. Right: If the 2D surface is rotated (by a warp
W(x;p), say) the corresponding 3D images agree on the surface after compensating for the rotation, but
they disagree away from the surface. Their 3D gradients at the surface are therefore not interchangeable.

generalize Equation (37) to 3D we end up with:

∥∥∥A0(P(W(x; ∆p)))− I(P(W(x; p)))
∥∥∥2

span(Ai)⊥
= O(∆p) (38)

where W(x; p) is a 3D warp with 3D shape parameters p using 3D coordinates x rather than

2D coordinates u. Note that because the 3D versions of the algorithms use the 3D gradients

of A0(P(x)) and I(P(x)), Equation (38) must hold both on the surface of the object and in an

infinitesimal 3D neighborhood around the surface. However, while it is reasonable to assume that

Equation (38) holds for x on the surface of the object, Equation (38) does not hold (in general; e.g.

for non-zero rotations) for points off the surface of the object.

The functions I(P(x)) and A0(P(x)) can be thought of as implicitly defined 3D images; for

each 3D point x a unique intensity I(P(x)) or A0(P(x)) is defined. Essentially the image is pro-

jected out into 3D space. A simple illustrative example is given in Figure 6. If the surface is rotated

in 3D (say), without moving the camera, a different 3D image is created that is not simply a rotated

version of the 3D image created by the unrotated object. The rotated 3D images will agree on
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the surface of the object, where they both correspond to the light irradiate by the object, but the

directions of constant intensity depend on the direction to the camera center of projection. The

gradients of the two 3D images therefore do not agree on the surface, even after compensating for

the rotation. In the case of the inverse compositional algorithm, the first 3D image is I(P(x)) and

the second rotated surface A0(P(x)). The above argument says that the 3D gradient of I(P(x))

cannot be replaced by the 3D gradient of A0(P(x)) and so the direct generalization of the inverse

compositional algorithm is not correct. It is of course possible to compute the appropriate cor-

rection to the gradient, but this would need to be done online, depending on the current estimate

of the 3D warp and so the Hessian (etc) would need to be updated. This would eliminate the

computational speedup obtained by the inverse computational algorithm.

5.3 Constrained 3D Fitting

One way to avoid the problem just described is to use both a 2D model and a 3D model. The 2D

model is fit to the image subject to the constraints that the 2D model equals the projection of the 3D

model. In essence, the 3D model is fit to the image3 through the 2D model. The image gradients

are 2D, so the inverse compositional algorithm can be used. Imposing the constraints between the

2D and 3D models can be performed without significantly reducing the speed of the algorithm, as

we will now show. The result is a real-time 3D model fitting algorithm.

Suppose we have a 2D shape model defined by Equation (2) and a 3D shape model defined by

Equation (5). Denote the result of mapping the 2D model into an image with the normalization

N(u; q) by N(s; q) = N (s0 +
∑m

i=1 pi si; q). Similarly, denote the projection of the 3D model

into the image by P
(
s0 +

∑m
i=1 pi si

)
+

 ou . . . ou

ov . . . ov

. See Equation (8) in Section 2.2 for

a definition of the scaled orthographic image formation model being used in this paper. We can

3A quick note on this interpretation of the algorithm. We optimize a function G2(2D) + K ·F 2(2D, 3D) where G
models how well the 2D model matches the image, F models how well the 2D model matches the projection of the
3D model, and K is a large weight. One interpretation of optimizing this function is that F is a just prior on G. If F is
such that given 3D, there is just a single set 2D such that F 2(2D, 3D) = 0 (which is the case for us), then an equally
valid interpretation of the algorithm is that G is optimized with respect to the 3D parameters through the 2D ones.
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impose the constraints that the projection of the 3D shape model equals the normalized 2D shape

model as soft constraints with a large weight K by modifying the fitting goal in Equation (27) to:

∑
u∈s0

[
A0(u) +

l∑
i=1

λiAi(u)− I(N(W(u; p); q))

]2

+ K ·

∥∥∥∥∥∥∥∥P
(
s0 +

m∑
i=1

pi si

)
+

 ou . . . ou

ov . . . ov

−N

(
s0 +

m∑
i=1

pi si; q

)∥∥∥∥∥∥∥∥
2

. (39)

The first term in Equation (39) is the 2D fitting goal of Equation (27). The second term imposes the

constraint that the projection of the 3D model equals the normalized 2D shape. The optimization

is performed simultaneously with respect to the 2D shape parameters p, the 2D normalization

parameters q, the appearance parameters λ, the 3D shape parameters p, the parameters of the

scaled orthographic projection matrix P (see below for more details), and the offset to the origin

(ou, ov)T. In the limit K →∞ the constraints become hard. In practice, a suitably large value for

K results in the system being solved approximately as though the constraints are hard. Finally note

that for the constraints in the second term of Equation (39) to make sense, we need the argument

in Section 3.1 to show that the projection of any 3D shape can also be generated by a 2D shape

model. In a sense, Section 3.1 is a “proof of correctness” of this formulation of 3D model fitting.

As above, we use the “Project Out” algorithm [12] and first optimize:

‖A0(u)− I(N(W(u; p); q))‖2span(Ai)⊥

+ K ·

∥∥∥∥∥∥∥∥P
(
s0 +

m∑
i=1

pi si

)
+

 ou . . . ou

ov . . . ov

−N

(
s0 +

m∑
i=1

pi si; q

)∥∥∥∥∥∥∥∥
2

. (40)

with respect to p, q, p, P, and (ou, ov)T. Afterwards, we solve for λ using Equation (29).

In [2] we showed how to extend the inverse compositional algorithm to allow constraints on
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the warp parameters. Equation (40) is of the form:

G(p; q) + K ·
∑

t=u,v

n∑
i=1

F 2
ti

(p; q; p; P; ou; ov) (41)

where G(p; q) = ‖A0(u)− I(N(W(u; p); q))‖2span(Ai)⊥
, F 2

ui
(p; q; p; P; ou; ov) is the component

of the L2 norm in the second term corresponding to vertex ui, and F 2
vi

(p; q; pP; ou; ov) is the

component corresponding to vertex vi. In the usual forwards additive (Lucas-Kanade) algorithm

[4], we solve for updates the the parameters ∆p and ∆q that approximately minimize G(p +

∆p; q + ∆q). With the inverse compositional algorithm, however, (see [2]) we effectively solve

for updates to the parameters that approximately minimize:

G(p + Jp∆p; q + Jq∆q) (42)

where to a first order approximation:

N(W(u; p + Jp∆p); q + Jq∆q) ≈ N(W(u; p); q) ◦N(W(u; ∆p); ∆q)−1 (43)

In this expression Jp is an m × m matrix and Jq is an 4 × 4 matrix. The meaning of Jp is, for

example, given a small change ∆p to the warp parameters, how do the parameters of the right hand

side of Equation (43) change. Both Jp and Jq depend on p and q. We describe how to compute

them (in combination with ∂Fti

∂p
and ∂Fti

∂q
) in Appendix A. We experimentally verified that failure

to take into account Jp and Jq in the inverse compositional update can cause the algorithm to fail,

particularly for large pose variation. The 2D shape and the projection of the 3D shape diverge.

The Gauss-Newton inverse compositional algorithm to minimize Equation (41) then consists
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of iteratively computing:



∆p

∆q

∆p

∆P

∆ou

∆ov



= −H−1
3D





∆pSD

∆qSD

0

0

0

0



+K ·
∑

t=u,v

n∑
i=1

[
SDFti

]T
Fti(p; q; p; P; ou; ov)



(44)

where:

SDFti
=

(
∂Fti

∂p
Jp

∂Fti

∂q
Jq

∂Fti

∂p

∂Fti

∂P

∂Fti

∂ou

∂Fti

∂ov

)
(45)

and:

H3D =



H2D 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


+K ·

∑
t=u,v

n∑
i=1

[
SDFti

]T [
SDFti

]
. (46)

After the parameter updates have been computed using Equation (44), the warp is updated using

Equation (32), the 3D shape parameters are updated p ← p + ∆p, and the origin offsets are

updated ou ← ou + ∆ou and ov ← ov + ∆ov. The update to the camera matrix P is slightly more

involved because there are only really 4 degrees of freedom. See Appendix A for the details.

Although Equations (44–46) may appear fairly complex, the problem is now m + 4 + m + 6

dimensional rather thanm+4 dimensional, and the only things that can be precomputed are the 2D

steepest descent images SD2D(u) and the 2D HessianH2D, implementing these equations does not

take significantly more computation than implementing Equations (33) and (34). The reasons are:

(1) the summations in Equations (44) and (46) are over 2n vertex u and v coordinates rather than

over the thousands of pixels in the model u ∈ s0, (2) as shown in Section 3, usually m � m and

so the difference in dimensionality is not so great, and (3) this optimization is more constrained
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and so requires less iterations to converge (see experimental results below for more details.)

5.4 Qualitative Evaluation

In Figure 7 we include 4 examples of the 3D algorithm fitting to a single input image, 2 for

Dataset 1 Figure 2), and 2 for Dataset 2 (Figure 3.) In the left column we display the initial config-

uration, in the middle column the results after 5 iterations, and in the right column the results after

the algorithm has converged. In each case, we display the input image with the current estimate of

the 3D shape mesh overlayed in white. The 3D shape is projected onto the image with the current

camera matrix. In the top right of each image, we also include renderings of the 3D shape from

two different viewpoints. In the top left of the image, we display estimates of the 3D pose extracted

from the current estimate of the camera matrix P. We also display the current estimate of the 2D

shape as blue dots. In the accompanying movie fit.mpg we include the full fitting movie for

a few more challenging examples from Dataset 1. In this movie, we start the algorithm quite far

from the correct solution and so a relatively large number of iterations are required.

In Figure 8 we include 12 frames of the 3D algorithm being used to track faces. The results for

Dataset 1 in the top 2 rows are examples tracking a subset of the 5 people used to build the model

in Figure 2. The results for Dataset 2 in the bottom 2 rows are examples tracking people who were

not in the training data used to build the model in Figure 3. A movie concatenating tracking results

for all 5 people in Dataset 1 and the 6 people not in Dataset 2 is included in track.mpg.

The range of convergence of the 3D fitting algorithm is sufficient to allow initialization and

re-initialization from a face detector. We run the 3D tracking algorithm in a foreground thread.

In a background thread we first run a real-time face detector and then apply the 3D tracking al-

gorithm to the result. The foreground tracking thread is re-initialized whenever the background

thread gives a better fit than the foreground thread gave on the same frame. The accompanying

movie fd initialize.mpg includes a screen capture of the system, a few frames of which are

included in Figure 9. Overall, the tracking thread runs at 30Hz on a dual 3.0GHz PC, limited by

the camera. See Section 5.6 for more details of the computational cost of the fitting algorithm.
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Figure 7: Examples of the 3D algorithm fitting to a single image, 2 for Dataset 1 in Figure 2, and 2 for
Dataset 2 in Figure 3. We display the 3D shape estimate (white) projected onto the original image and also
from a couple of other viewpoints in the top right of each image. In the top left of each image we display
estimates of the 3D pose extracted from the current estimate of the camera matrix P. We also display the
2D shape estimate (blue dots.) See fit.mpg for a few more challenging examples from Dataset 1.

30



yaw

roll: +0.5

−10.9

pitch

−0
.0

yaw

roll: +0.0

−3.1

pitch

+0
.1

yaw

roll: −3.9

+8.1

pitch

+0
.9

Person in Dataset 1 Person in Dataset 1 Person in Dataset 1

yaw

roll: −0.1

−0.9

pitch

−1
.9

yaw

roll: −2.7

−11.0

pitch

−1
3.

6

yaw

roll: +0.3

+10.4

pitch

−9
.7

Person in Dataset 1 Person in Dataset 1 Person in Dataset 1

yaw

roll: +0.2

−0.9

pitch

+8
.5

yaw

roll: +0.6

−0.5

pitch

+6
.1

yaw

roll: +0.8

+1.7

pitch

−5
.3

Person not in Dataset 2 Person not in Dataset 2 Person not in Dataset 2

yaw

roll: +1.7

+4.2

pitch

−1
5.

3

yaw

roll: +4.4

+7.1

pitch

−1
4.

8

yaw

roll: +3.0

+7.1

pitch

−3
.9

Person not in Dataset 2 Person not in Dataset 2 Person not in Dataset 2

Figure 8: Example frames from the accompanying movie track.mpg. This movie concatenates tracking
results for the 5 people in Dataset 1 and 6 people not used to build the model in Dataset 2.
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Frame 000 Frame 039 Frame 063

Frame 180 Frame 259 Frame 300

Frame 350 Frame 393 Frame 428

Figure 9: A few frames from the accompanying movie fd initialize.mpg illustrating our integrated
real-time 3D tracking system, with automatic initialization and re-initialization using a face detector. The
subject enters the field of view of the camera. The face detector finds their face and initializes the tracker.
When the person occludes their face temporally, the tracker is re-initialized after the face becomes visible
again. Overall, the tracking thread in the system runs at 30Hz on a dual 3.0GHz PC, limited by the camera.

5.5 Quantitative Comparison: 2D Fitting vs. 3D Fitting

Directly comparing the fitting performance of 2D AAMs [10] and 3DMMs [7] is difficult because

of the numerous small differences in the models and algorithms. See Section 2.3. On the other

hand, comparing the 2D fitting algorithm [18] with the 3D fitting algorithm in Section 5.3 is a

more direct comparison of the inherent properties of 2D and 3D face models. Almost all of the

code in the two algorithms is the same. The 3D algorithm just has a little extra code to deal with

the second term in Equation (39).
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(A) Fitting Robustness (B) Rate of Convergence

Figure 10: A comparison of the fitting robustness and rate of convergence of the 2D fitting algo-
rithm [18] with the 3D fitting algorithm following the same evaluation protocol as [18]. The results
show that the 3D algorithm is both more robust (A) than the 2D algorithm and converges faster (B)
in terms of number of iterations.

In Figure 10 we present results comparing the fitting robustness and rate of convergence of the

2D fitting algorithm [18] with the 3D fitting algorithm, following the protocol in [18]. In the top

row we present results for Dataset 1 (Figure 2) and in the bottom row for Dataset 2 (Figure 3.) In

the left column we present fitting robustness results. These results are generated by first generating

a “convergence point” for each algorithm by tracking a set of videos. For Dataset 1 we use 828

frames from 5 videos of the 5 subjects in the training set. For Dataset 2 we use 900 frames from 6

videos of 6 subjects not in the training set. For each frame we then generate a number of trials by

perturbing the 2D shape parameters from the convergence point. We follow the procedure in [18]

and weight the similarity and 2D shape parameters so that the algorithms would be approximately

equally likely to convergence if perturbed independently in similarity and shape. We generate 20

trials for each of a set of larger and larger perturbations. We then run both fitting algorithms from
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the perturbed convergence point and determine whether they converge by comparing the final RMS

2D shape error with the convergence point. In particular, we used a threshold of 1.0 pixels to define

convergence.

The rate of convergence results in the right column are generated by perturbing away from the

convergence point in a similar manner. In this case we consider 2 different perturbation magni-

tudes, which result in the 2 curves for each algorithm. For each set of trials, we compute the average

RMS pixel error after each iteration for all of the trials that end up converging to within 1.0 pixels.

We then plot this value against the iteration number, resulting in the plots in Figure 10(B).

The results in Figure 10 show that the 3D fitting algorithm is both more robust than the 2D

algorithm [18] (A) and converges faster (B) in terms of the number of iterations. The results hold

for both datasets. The improvement in performance is slightly more for the harder Dataset 2 (where

the fitting is to subjects not in the training data) than for Dataset 1 (where the fitting it to subjects

in the training data). The fact that the 3D algorithm is more robust than the 2D algorithm may at

first glance be surprising; the 3D optimization is higher dimensional and so it might be expected to

suffer from more local minima. This reasoning is incorrect. Instead, we argue that because the 2D

model can generate “physically unrealizable” model instances (see Section 3.2), it is actually more

prone to local minima than a 2D model constrained to only move as though it were 3D. Because

of the tight coupling of parameters, the effective number of degrees of freedom of the 2D model is

more than that of the 3D model.

5.6 Computational Cost

In Table 1 we compare the fitting speed of the 3D fitting algorithm with that of the 2D fitting

algorithm [18]. We include results for both the model in Dataset 1 (8 2D shape modes, 4 similarity

parameters, 40 appearance modes, 4 3D shape modes, 6 camera parameters, and 29,976 color

pixels) and the model in Dataset 2 (9 2D shape modes, 4 similarity parameters, 59 appearance

modes, 4 3D shape modes, 6 camera parameters, and 30,000 color pixels). The 2D fitting algorithm

[18] operates at 70–80 frames per second and the 3D fitting algorithm operates at 65–70 frames
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Table 1: Fitting speed comparison on a dual, dual-core 2.5GHz PowerPC Macintosh G5 with 4GB of
RAM. We include results for both the model in Dataset 1 (8 2D shape modes, 4 similarity parameters, 40
appearance modes, 4 3D shape modes, 6 camera parameters, and 29,976 color pixels) and the model in
Dataset 2 (9 2D shape modes, 4 similarity parameters, 59 appearance modes, 4 3D shape modes, 6 camera
parameters, and 30,000 color pixels). Although the 3D algorithm is slightly slower than the 2D algorithm,
it still operates comfortably in real-time, and requires slightly fewer iterations to converge.

2D Fitting 3D Fitting

Frames per Second Iterations per Frame Frames per Second Iterations per Frame
Dataset 1 73.1 2.74 65.4 2.72
Dataset 2 80.9 2.65 71.2 2.26

per second, both results computed on a dual, dual-core 2.5GHz PowerPC Macintosh G5 with 4GB

of RAM. Note that the 3D algorithm requires slightly fewer iterations to converge on average than

the 2D algorithm, particularly for Dataset 2, further validating the results in Figure 10(B).

5.7 Summary

Although fitting 2D face models in real-time is possible using the inverse compositional algorithm,

we have outlined in Section 5.2 why naively extending this algorithm to 3D is not possible. We

also presented a solution to this difficulty, the simultaneous fitting of both a 2D and a 3D model.

The result is a real-time 3D model fitting algorithm. Experimental results show 3D model fitting to

be both inherently more robust and converge in fewer iterations than 2D model fitting, confirming

that 3D is a more natural parameterization of faces than 2D.

5.8 Related Approaches

Another possible approach to 3D model fitting is the one taken in [21]. Due to the density of their

models and a variety of other details, the current implementation of their algorithm is quite slow,

requiring several seconds per frame. There seems to be no theoretical reason why the algorithm

could not be implemented in real-time for the models of the complexity used in this paper. Romd-

hani and Vetter avoid the difficulty in 3D fitting described in Section 5.2 by “un-rolling” the 2D

surface in 3D space and posing the problem as mapping from a 2D texture space to a 2D image.
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The 3D shape p and the camera matrix P are embedded in a 2D shape warp W(u; p) rather than a

3D shape warp W(x; p). The 2D inverse compositional algorithm is not directly applicable to the

un-rolled texture maps because the identity warp is not one of the warps W(u; p) [4]. Romdhani

and Vetter avoid this problem by generalizing the inverse compositional algorithm to allow a warp

update:

W(u; p) ← W(u; p) ◦W(u; p†)−1 ◦W(u; p† + ∆p) (47)

where p† is a fixed vector of parameters. This equation should be compared with the usual update

in Equation (32). The incremental warp is W(u; p†) ◦W(u; p† + ∆p)−1 rather than W(u; ∆p).

This definition of the update leads to the Jacobians of the warp being evaluated at p† leading to a

dependence on p†. Empirically, the authors find that the algorithm performs better when p ≈ p†.

To ameliorate this undesirable property, the authors pre-compute the steepest descent images and

Hessian for multiple different p† and use the closest one in the online phase of the algorithm. A

direct comparison between our 3D fitting algorithm and the algorithm in [21] on the same 3D

model is outside the scope of this paper which focuses on comparing 2D and 3D face models.

However, such a comparison is an interesting area for future work.

6 Conclusion

We have compared 2D and 3D face models along a variety of axes. The main conclusion is that

3D models are overall preferable to 2D models. The 3D parameterization is more compact (up

to 6 times fewer parameters), more natural (i.e. head pose and non-rigid shape deformation are

separated), 3D model fitting is more robust and requires fewer iterations to converge, and 3D

occlusion reasoning is more powerful. Two of the frequently cited negatives of 3D models, slow

fitting and construction requiring range data, have been addressed. We have presented a linear non-

rigid structure-from-motion algorithm [28] for the construction of a 3D model from 2D tracking

results and a real-time 3D model fitting algorithm [27]. One final benefit of 3D models is that

multi-camera model fitting is far easier [15].
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On the other hand, the differences between 2D and 3D models are not as great as is sometimes

claimed. Ignoring the size of the model and assuming a scaled orthographic camera, 2D models

have the same representational power as 3D, separating the head pose from the non-rigid head

shape deformation is possible, and approximate occlusion reasoning is possible. The one limita-

tion of 2D models that is hard to avoid is that fitting them is inherently less robust than 3D. The

underlying cause of this problem is the “over-parameterization” of 2D models and the resulting

ability to generate numerous “physically unrealizable” model instances. See Section 3.2.

7 Retrospective

We end by briefly describing how the research described in this paper was influenced by the work

and philosophy of Takeo Kanade.

7.1 Application Area

This paper falls into the application area of “computer analysis of human faces,” one of the most

active areas in computer vision. This area was opened up by Takeo’s PhD thesis [14] which pro-

posed the world’s first computerized face recognition system. Since then, Takeo has published a

number of other seminal papers in face processing, opening up new sub-areas to study, including

face detection [22] and facial expression recognition [24].

7.2 Techniques

Our algorithm for constructing 3D face models from 2D face models is a “factorization” algo-

rithm. This non-rigid structure-from-motion algorithm is an extension of Takeo’s original “fac-

torization” algorithm for rigid structure-from-motion [25]. Our 2D and 2D+3D face model fitting

algorithms are both image alignment algorithms, and ultimately extensions of Takeo’s original

“Lucas-Kanade” algorithm [17].
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7.3 Philosophy

On a philosophical level, Takeo has emphasized the importance of “registration” in face processing;

i.e. the accurate mapping of image pixels onto the anatomical parts of the face to which they

correspond. He has argued that accurate registration is a pre-requisite for robust face recognition,

and most other face processing tasks. Our interest in the problems of face model construction and

fitting was initially aroused by the potential use of face models as a general purpose registration

algorithm, by which the image pixels are registered with anatomical locations in the face model.

Another philosophical point that Takeo has argued is the importance of using the “appropriate”

models in computer vision. For example, his work on “factorization” [25] illustrates the benefits of

using a linear camera model, which although rarely a perfect model, is often sufficiently accurate,

has the benefits of simplicity, and is often the most “appropriate” model. In this paper, we have

attempted to characterize the benefits of 2D and 3D face models along various axes, a characteri-

zation that we hope will help readers determine whether 2D or 3D models are the most appropriate

for their application.
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A Computing the Steepest Descent Geometry SDFti

In Section 5.3 we omitted the details of how the steepest descent geometry constraints:

SDFti
=

(
∂Fti

∂p
Jp

∂Fti

∂q
Jq

∂Fti

∂p

∂Fti

∂P

∂Fti

∂ou

∂Fti

∂ov

)
(48)

are computed. The first two components of SDFti
are computed as follows. Since the only com-

ponent of Fti that includes p or q is N (s0 +
∑m

i=1 pi si; q), ∂Fti

∂p
Jp is the (negative of the) rate of

change of the destination of the warp in the right hand side of Equation (43) with respect to ∆p.

Similarly, ∂Fti

∂q
Jq is the (negative of the) rate of change of the destination of the warp in the right

hand side of Equation (43) with respect to ∆q. These two expressions can be estimated by setting

each of the parameters in ∆p and ∆q in turn to be a small value (say, 1.0), setting all the other

parameters to be 0.0, and then using the warp composition (see [18]) to estimate the perturbation

to the destination of the right-hand side of Equation (43).

The other components of SDFti
are somewhat simpler:

∂Fti

∂pj

= Psj,
∂Fti

∂ou

=

 1 . . . 1

0 . . . 0

 , ∂Fti

∂ov

=

 0 . . . 0

1 . . . 1

 . (49)

The camera matrix P is more complicated because it has 6 variables, but only 4 degrees of freedom.

We perform the update similarly to how 3D rotations are treated in [23]. We first extract the scale
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from the matrix:

P = σ

 ix iy iz

jx jy jz

 (50)

and constrain the projection axes i = (ix, iy, iz) and j = (jx, jy, jz) to be orthonormal. We compute

the update to the scale ∆σ using:

∂Fti

∂σ
=

 ix iy iz

jx jy jz

 s (51)

where s =
(
s0 +

∑m
i=1 pi si

)
and then update the scale σ ← σ+ ∆σ. We also compute small angle

updates ∆θx, ∆θy, ∆θz to the camera matrix using:

∂Fti

∂∆θx

= P


0 0 0

0 0 −1

0 1 0

 s,
∂Fti

∂∆θy

= P


0 0 1

0 0 0

−1 0 0

 s,
∂Fti

∂∆θy

= P


0 −1 0

1 0 0

0 0 0

 s

(52)

update the camera matrix:

P ← P


1 −∆θz ∆θy

∆θz 1 −∆θx

−∆θy ∆θx 1

 (53)

and finally reinforce the orthonormality constraints on P.
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