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Abstract
The maximum flow algorithm for minimizing energy

functions of binary variables has become a standard tool in
computer vision. In many cases, unary costs of the energy
depend linearly on parameter λ. In this paper we study vi-
sion applications for which it is important to solve the max-
flow problem for different λ’s. An example is a weighting
between data and regularization terms in image segmenta-
tion or stereo: it is desirable to vary it both during training
(to learn λ from ground truth data) and testing (to select
best λ using high-knowledge constraints, e.g. user input).

We review algorithmic aspects of this parametric maxi-
mum flow problem previously unknown in vision, such as
the ability to compute all breakpoints of λ and correspond-
ing optimal configurations in finite time.

These results allow, in particular, to minimize the ratio
of some geometric functionals, such as flux of a vector field
over length (or area). Previously, such functionals were
tackled with shortest path techniques applicable only in 2D.

We give theoretical improvements for “PDE cuts” [5].
We present experimental results for image segmentation, 3D
reconstruction, and the cosegmentation problem.

1. Introduction

This paper focuses on the following problem:

[Parametric maxflow] Minimize energy functions of bi-
nary variables Eλ(x) for values of parameter λ in the
set I ⊆ R where

Eλ(x) =
∑
u∈V

(au + buλ)xu +
∑

(u,v)∈E
Vuv(xu, xv) (*)

Here G = (V, E) is an undirected graph, xu ∈ {0, 1} is the
label of node u. Terms Vuv are assumed to be submodular,
i.e. Vuv(0, 0) + Vuv(1, 1) ≤ Vuv(0, 1) + Vuv(1, 0). Set I
may be given in advance as some interval [λmin, λmax], or
it can be provided online (i.e. the next value of λ is selected
after the problem is solved for previous λ’s).

It is well known in computer vision that for a fixed value
λ energy (*) can be minimized via a min cut/max flow algo-
rithm. However, parametric maxflow algorithms remained
unnoticed in vision, despite the fact that the parametric
problems occur very frequently (see section 1.1). In this pa-
per we review algorithmic aspects of solving problem (*).
in particular the following facts: (i) there is a finite number
of breakpoints of parameter λ and corresponding optimal

solutions; (ii) all these solutions can be found in finite time
using the ES method [14, 17], which makes at most 2 calls
to the maxflow algorithm per breakpoint (on average); (iii)
the parametric algorithm can be implemented much more
efficiently in the monotonic case when coefficients bu are
either all non-negative or all non-positive [14, 32, 15] 1.

To the best of our knowledge, these results have not
been used in vision. Thus, one of our contributions is
to show the relevance of efficient algorithms for solving
the parametric maxflow problem (*) for vision applica-
tions. Note, however, that a similar algorithm has been
used for image restoration using total variation minimiza-
tion [18, 37, 11, 8].

1.1. Parametric maxflow problem (*) in vision
Many vision problems, e.g. binary image segmentation

and stereo, can be formulated in the MAP-MRF frame-
work: the goal is to minimize an energy function which
is a weighted sum of the data term and the regularization
term. This naturally leads to the parametric maxflow prob-
lem, where λ represents the weighting factor between the
two terms. Choosing the correct value of λ is a very chal-
lenging task. One standard approach taken e.g. in [2] for
image segmentation is cross-validation: learn λ discrimina-
tively on a dataset with ground truth segmentations. This
requires solving the parametric maxflow problem, so the
learning task will benefit from the algorithms reviewed in
this paper2.

While such learning may provide a reasonable value of
λ, it is generally acknowledged that a fixed value of λ can-
not work well for all images. (An example is shown in sec-
tion 4.) This motivates solving the parametric problem dur-
ing testing. An additional high-knowledge criterion would
then be needed to choose the desired λ and corresponding
segmentation. In some domains automatic criteria can be
designed by studying the problem [12]. In the lack of auto-
matic criteria, one can always resort to user selection.

Similar issues arise when flux of some vector field is
combined with regularization for image segmentation [19,
34, 21, 23] or 3D reconstruction [6]. (By the divergence the-

1Note that the algorithm in [15] for the monotonic case is called “para-
metric maximum flow”, which clashes with the name of problem (*). We
use the term “parametric maxflow” for the general problem (*).

2Note that this is a very simple form of learning. A large number of
more advanced statistical techniques were developed in the literature, e.g.
pseudo-likelihood and contrastive divergence. More general learning is
outside the scope of this paper; we refer to [25] for more details.
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orem, flux can be written as a sum of unary terms, therefore
it is a special case of the parametric maxflow problem.)
Ratio optimization Several authors [10, 19, 36, 16] pro-
posed to optimize the ratio of certain functionals for im-
age segmentation. The “ratio region” method [10] mini-
mizes Riemannian length of the boundary over weighted
area, while [19] maximizes flux of some vector field over
the boundary length. Note that [10, 19] use shortest path
based techniques which are applicable to 2D segmentation.
We observe that the parametric maxflow allows to extend
these techniques to 3D. Indeed, it is known in the frac-
tional programming literature that minimization of the ratio
of some discrete functionals can be reduced to the paramet-
ric maxflow problem (see section 3 for details). Further-
more, discrete functionals can approximate certain continu-
ous functionals such as Riemannian length/area [3, 23].

Our experimental results confirm the findings of [19]
about the usefulness of optimizing flux over length, but also
show some shortcomings of this criterion. We discuss ways
to overcome these shortcomings.
Incorporating a global constraint into segmenta-
tion Parametric maxflow is also useful for optimizing func-
tions which combine standard MRF terms and a global con-
straint which cannot be written down as a sum of unary and
pairwise terms. In [29] a monotonic parametric maxflow
was used for obtaining “balanced” binary segmentations.
(The criterion in [29] was “ratioCut” which is the ratio of
the cost of the cut over the product of areas of the two re-
gions). This approach can potentially be used for optimiz-
ing the “normalized cuts” criterion [31]. Non-monotonic
parametric maxflow was used in [30] for the cosegmenta-
tion problem whose goal is to compute spatially coherent
segmentations in two images so that their global histograms
match. We show experimentally that the ES method im-
proves on the procedure used in [30].

On a high level, parametric maxflow is useful since it
allows to compute a sequence of “reasonable” solutions by
solving a parametric problem in which MRF terms are com-
bined with a linear approximation of the global term. The
best solution is then selected by evaluating the global en-
ergy function for solutions in the sequence.
PDE cuts It was recently shown [5] that graph cuts can per-
form a gradient descent in the space of contours for certain
geometric functionals and metrics. In other words, they can
compute the motion of contour/surface under gradient flow,
thus providing an alternative numerical scheme to level sets.
The method in [5] uses non-monotonic parametric maxflow
for computing each step. Parameter λ controls the time step.
The largest breakpoint value of λ corresponds to the small-
est detectable move. (Experiments in [5] were performed
using such smallest move).

Thus, the method in [5] would benefit from the paramet-
ric maxflow algorithm. We show that the smallest move can

be computed via a monotonic parametric algorithm (see a
proof in [24]), which in general is significantly faster.

2. Solving parametric maxflow
Consider function F (λ) = minx Eλ(x). It is the min-

imum of 2|V| linear functions, therefore F is a piecewise-
linear concave function of λ with a finite number of break-
points (Fig. 1). Configurations which are optimal for at least
one λ are called dominant solutions.
Computing all breakpoints To “solve” problem (*)
for interval I = [λmin, λmax] we could compute solu-
tions x1, . . . ,xk and intervals I1 = [λmin, λ1], I2 =
[λ1, λ2], . . . , Ik = [λk−1, λ

max] such that xi is optimal for
λ ∈ Ii. This can be done via the technique known as the ES
method [14, 17]. Fig. 1(a) illustrates its geometric interpre-
tation. The method maintains a list (x1, I1), . . . , (xk, Ik)
such that solution xi is optimal for interval λ ∈ Ii and
sup Ii ≤ inf Ij for adjacent intervals Ii, Ij (j = i + 1):

init: compute minimizers xmin , xmax for λmin and λmax

if xmin = xmax set list as (xmin , [λmin, λmax])
else set list as (xmin , {λmin}), (xmax , {λmax})

while there are adjacent items (xi, Ii),(xj , Ij) with a gap,
i.e. (λi, λj)=(sup Ii, inf Ij) is non-empty:

solve linear equation Eλ(xi) = Eλ(xj)
if λi is a solution set Ij := Ij ∪ [λi, λj ]
else if λj is a solution set Ii := Ii ∪ [λi, λj ]
else there must exist unique solution λ ∈ (λi, λj):

compute minimizer x of Eλ(·)
if x = xi or x = xj set

Ii := Ii ∪ [λi, λ], Ij := Ij ∪ [λ, λj ]
else insert (x, {λ}) between (xi, Ii) and (xj , Ij)

The ES method makes at most 2B + 2 calls to the
maxflow procedure where B is the number of breakpoints
of function F in the given interval [17]. Unfortunately, in
the worst case B may be exponential in the size of the prob-
lem [7]. (The counter-example originates from the patho-
logical graph of Zadeh which was used to show that the
complexity of the simplex method may be exponential).
This does not necessarily mean, however, that such patho-
logical cases will occur in practice. In vision applications
that we tested the number of breakpoints was manageable.

We implemented the ES method using the maxflow algo-
rithm in [4]. When computing maximum flow for the next
value of λ, we reuse flow from the previous computation, as
well as search trees as in [22]. (Changing λ results in up-
dating capacities of edges from the source and to the sink.)
Computing one breakpoint In certain cases computing
all breakpoints may not be necessary. A binary search style
procedure may be more appropriate: after computing solu-
tion x for value λ ∈ (λ1, λ2) we decide whether to pro-
ceed with interval [λ1, λ] or [λ, λ2]. Then the ES method
can be run only for the appropriate interval. For exam-
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Figure 1. Parametric problem. Each configuration x corresponds
to a linear function Eλ(x). Their lower envelope gives the func-
tion F (λ) = minx Eλ(x) (shown in bold red). (a) Comput-
ing all breakpoints in the interval [λ1, λ2] for a general para-
metric problem. The ES method will run maxflow for values
λ1, λ2, λ3, λ4, λ5. (b) Ratio optimization problem; Eλ(x) =
P (x)− λQ(x) (case when minx R(x) > −∞ and there exists x
with P (x) = Q(x) = 0). Line with a negative slope correspond-
ing to configuration x intersects the OX axis at point λ = R(x).
Newton’s method starting with configuration x0 will produce the
sequence (x0, λ0), (x1, λ1), (x2, λ2).

ple, to compute the first breakpoint in [λmin, λmax] we can
process the smallest index i for which there is a gap (i.e.
sup Ii < inf Ii+1) until the first breakpoint is identified.

In our experiments such a procedure always took just a
few iterations to converge. In general, however, we are not
aware of any polynomial bounds on the number of steps. It
should be noted that polynomial-time algorithms for com-
puting a particular breakpoint do exist (see e.g. [28, 17]).
It’s not clear, though, whether they would be faster than the
simple method described above, given that experimentally
this simple method makes just a few calls to maxflow.
Monotonic case Finally, let us discuss the monotonic
case when coefficients bu in (*) are either all non-negative
or all non-positive. For concreteness, let us assume that
bu ≥ 0 for all nodes u (the other case is similar). In that
case the ES algorithm can be implemented much more ef-
ficiently [14, 15]. The key property is the nestedness of
optimal solutions [14, 32, 15]:
Proposition 2.1. (a) Suppose that x1 is optimal for λ1

and λ1 < λ. Then there exists an optimal solution
x for λ such that x1 ≥ x.

(b) Suppose that x1, x2 with x1 ≥ x2 are optimal respec-
tively for λ1, λ2 and λ1 < λ < λ2. Then there exists
an optimal solution x for λ such that x1 ≥ x ≥ x2.

(c) Function F (·) has at most |V| + 1 breakpoints.

(Here x ≥ y means that xu ≥ yu for all nodes u.) Thus,
the ES method can be modified so that the list of solu-
tions satisfies x1 > . . . > xk. For example, when com-
puting optimal solution x for λ ∈ (λi, λj) we can en-
force constraint xi ≥ x ≥ xj by fixing nodes in the set
V̄i = {u ∈ V | (xi)u = 0} to 0, and nodes in the set
Vj = {u ∈ V | (xj)u = 1} to 1. Thus, the maxflow al-
gorithm can be run only for nodes in Vij = V − V̄i − Vj ,
which may yield a significant speed-up.

We implemented this modified scheme as follows. We
explicitly maintain regions V12, . . . ,Vk−1,k (note that to-
gether with V̄1,Vk they form a partition of the set of
nodes V). Similar to the general case, we also maintain
a graph with the residual flow from previous computa-
tions. Consider the maxflow algorithm for λ ∈ (λi, λj) =
(sup Ii, inf Ij) which involves nodes in Vij . If these nodes
are all labeled as 0 or all labeled as 1, then x = xi or
x = xj , so the intervals Ii, Ij are updated but set Vij is
unchanged. Otherwise Vij is split into into two regions Vir,
Vrj containing nodes in Vij with label 0 and 1, respectively.
(Index r corresponds to the new interval {λ} inserted be-
tween i and j.) After splitting the region, we remove all
edges between them. This is justified since all arcs from
Vir to Vrj are saturated by the Ford-Fulkerson theorem (we
assume that the source corresponds to label 0), and it is easy
to see that they will remain saturated afterwards.

The worst-case complexity of this technique proposed
in [14] is O(n) maximum flow computations on a graph
with O(|V|) nodes and O(|E|) edges. The worst case may
occur if, e.g., each time Vij is split into regions of size 1
and |Vij | − 1. In our experiments, however, the splits were
rather balanced, and so the algorithm was quite efficient3.

3. Ratio minimization
Parametric maxflow problem often arises in the context

of ratio optimization. Consider two functions P,Q : X →
R where X = 2V is the set of configurations and Q(x) ≥ 0
for all x ∈ X . The goal is to minimize function

R(x) =




P (x)
Q(x) if Q(x) > 0

−∞ if Q(x) = 0, P (x) < 0
+∞ if Q(x) = 0, P (x) ≥ 0

Let λ∗ = minx∈X R(x) be the optimal value of the ra-
tio (we assume that λ∗ < +∞), and consider function
Eλ(x) = P (x) − λQ(x). It is easy to see that λ∗ ≤ λ
if and only if minx∈X Eλ(x) ≤ 0. Thus, value λ∗ can be
computed with an arbitrary precision using binary search (if
λ∗ > −∞), if we are able to minimize function Eλ(·).

Alternatively, the problem can be solved via the New-
ton’s method for fractional optimization, also known as
Dinkelbach’s method [13]. Starting with configuration x0

and value λ0 = R(x0), it produces a decreasing finite se-
quence λ0, λ1, . . . , λ

∗; upon termination, x is an optimal
solution and λ = R(x) is the minimum of the ratio:

3Note that the worst-case complexity can be improved to that of a sin-
gle maxflow computation [15]. The method in [15] uses the push-relabel
algorithm of Goldberg and Tarjan. For given λ ∈ (sup Ii, inf Ij) and
region Vij two flow computations are performed in parallel, until the first
one terminates. While this scheme improves the worst-case complexity, it
is not necessarily faster in practice than the simpler technique [1].

Finally, we mention that there are iterative algorithms for solving the
monotonic parametric maxflow problem converging in the limit [8, 38].
Unlike the methods described above, they are not guaranteed to terminate
in finite time.



[0] Initialize: pick x with R(x) < +∞, set λ = R(x).
[1] Compute minimizer x∗ of function Eλ(·).
[2] If Q(x∗) = 0, P (x∗) ≥ 0 stop.
[3] Set x := x∗, λ := R(x∗). If λ has decreased go to

step 1, otherwise stop.
This algorithm is illustrated in Fig. 1(b). In step [0] config-
uration x can be set, for example, as a minimum of Eλ(·)
for λ > λ∗. Note, in the case when minx R(x) > −∞
and there exists x with P (x) = Q(x) = 0 the algorithm is
equivalent to the method for computing the first breakpoint
described in section 2.

In order to use Newton’s method (or binary search), we
should be able to minimize efficiently function Eλ(·). This
can be done in the following special cases:

C1 P,Q are submodular, P (x) < 0 for some x.
C2 P is submodular, Q is supermodular, P (x)≥0 for all x.
C3 P is submodular, Q is modular.

Recall the the modular function is both submodular and su-
permodular; it can be written as Q(x) = b0 +

∑
u∈V buxu.

In this paper we focus on case C3 and on the following
special case of C1:

C1′ P is modular, Q are submodular, P (x)<0 for some x.

As follows from the discussion above, both C3 and C1′ can
be reduced to the parametric maxflow problem (*).

3.1. Optimizing Ratios of Geometric Functionals
We propose to combine the standard combinatorial opti-

mization techniques for ratios of submodular or supermod-
ular energies with the results in [3, 23] which show that the
following continuous surface functionals in RN

∫
∂S

g(s) ds, g(x) ≥ 0 (length (2D) or area (3D))∫
∂S

vs · ns ds (flux)∫
S

f(p) dp (volumetric potential)

can be arbitrarily closely approximated by submodular en-
ergies of binary variables on an N-dimensional grid. The re-
sults in [3, 23] apply to a wide class of metrics g (including
general anisotropic Riemannian case), to any vector field
{v}, and to any volumetric potential function f . ns denotes
the outward normal to the surface at point s.

In particular, C3 and C1′ imply that we can minimize the
following ratios of geometric surface functionals

inf
S⊂Ω

∫
∂S

g(s)ds∫
S

1 · dp
(area/volume - C3) (1)

inf
S⊂Ω

∫
S

f(p)dp∫
∂S

g(s)ds
(potential/area - C1′) (2)

inf
S⊂Ω

∫
∂S

vs · ns ds∫
∂S

g(s)ds
(flux/area - C1′) (3)

Our combinatorial optimization approach allows to mini-
mize these functionals over shapes S in a closed bounded
(compact) subset Ω ⊂ RN since in practice we can use
only finite grids to represent points in Ω. In applications Ω
corresponds to a rectangular box representing an image or a
bounded volume of interest in 3D.

Note that the minimal ratio of (1) is a (small) non-
negative number λ0 ≥ 0 since both numerator and denom-
inator are non-negative functionals. In contrast, the min-
imum ratio for (2) and (3) is a (large) negative λ0 ≤ 0.
We will assume that volumetric potential function f(p) has
negative values at least at one point (pixel) p ∈ Ω. The
flux functional in (3) is guaranteed to be strictly negative
for some shapes S unless the divergence of vector field {v}
is null everywhere.

Ratio functionals (1), (2), and (3) have already been
proposed for image segmentation by a number of authors
[10, 19]. However, they used various forms of shortest path
techniques restricting their methods to 2D applications. Our
work extends ratio optimization to 3D problems in com-
puter vision. In particular, besides segmentation of 3D med-
ical and video data our method can be used for volumet-
ric multiview reconstruction problems (see Sec. 4). Note

that our approach can not minimize another ratio
∫

∂S
g1(s)ds∫

∂S
g2(s)ds

proposed for 2D image segmentation by [36].
Since our method allows to optimize different ratios of

continuous surface functionals, it is helpful to compare geo-
metric properties of the corresponding optimal shapes. Note
that problem (1) is related to a well known in geometry
constrained isoperimetric problem or Cheeger problem [9].
The most popular form of the isoperimetric problem is to
find a shape in RN of minimum surface area when the vol-
ume is fixed. Eventhough the solution was known to ancient
Greeks (circle or sphere), a discrete version of this problem
is NP-hard. One form of constrained isoperimetric problem
is to find the shape with the lowest perimeter-to-volume ra-
tio among all shapes inside some given closed bounded sub-
set of RN . The optimal value of this ratio is called Cheeger
number. [33, 20] show some interesting examples of the
corresponding optimal Cheeger sets.

(1) states the constrained isoperimetric problem for non-
Euclidean metric. The second row in Figure 2 shows (in
red) Cheeger sets that we computed for several synthetic ex-
amples using standard metric g based on image gradients4.
As pointed out in [10], solving (1) in the context of image
segmentation has a bias to larger volumes. In order to seg-
ment a desired object one may need to crop a subset Ω close
around its border. At the same time, interesting motivation
to use Cheeger sets for image clustering is presented in [16]
which also provides a heuristic-based approximation algo-
rithm. Note that related Cheeger numbers and sets in graph

4In our experiments the boundary of the image was constrained to be
background (see [24] for more details).
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Figure 2. Optimizing ratio functionals for three simple images
(top row). Other rows show segmentation results minimizing
(from top to bottom): a) image weighted length of the boundary
over volume, b) (regional) color model over Euclidean length, c)
color model over image weighted length, d) flux of image gradi-
ents over Euclidean length of the boundary.

theory are used to describe graph’s “bottleneckness”.
Problem (2) presents a certain generalization of the con-

strained isoperimetric (Cheeger) problem. If volumetric po-
tential function f(p) = −1 for all p ∈ Ω then (2) is equiva-
lent to (1). For example, if pixel’s potentials f(p) describe
negative log-likelihoods of desired object intensities then
the bias to larger volume is replaced with the bias to the
right intensity model. For example, in row 3 and 4 of Fig. 2
we show the optimal ratio sets for the case of Euclidean and
image-based metric, respectively. In these cases, the opti-
mal sets try to maximize the number of white pixels (object
color model) with the minimum possible length. The case
of Euclidean length (row 3) reveals a strong bias to circular
shapes which might be explained by a strong connection to
the standard isoperimetric problem of ancient Greeks. Ten-
dency to undersegment is also apparent. The case of image-
weighted (Riemannian) metric (row 4) significantly reduces
these problems but it still demonstrates a trend to underseg-
ment details and to smooth out sharp corners. These prob-
lems are widely known as the “shrinking problem”.

Arguably, optimizing the ratio of flux to length (3)
presents no bias to any particular shape present in other ra-
tios in this paper. This ratio functional was first proposed
for image analysis by Jermyn and Ishikawa in [19] who also
presented an efficient combinatorial optimization algorithm
applicable to 2D problems. As they pointed out, this ratio
functional is scale independent. If vector field v represents
image gradients then the optimal ratio (3) gives the shape of

(2)

(2)

(2)

(3)

Figure 3. Larger breakpoints. The first column shows the best
ratio solution to problems (2) and (3) (in both cases, for Euclidean
length). The second and the third columns show representative
dominant solutions obtained for λ ≥ λ0. Such solutions optimize
the ratio among larger objects, see Proposition 3.1. Some real 3D
examples are shown in Fig. 5.

the highest average contrast (assuming no contrast reversals
on the boundary). Row 5 in Fig. 2 shows optimal segments
for this ratio. The single star segmented in the image on the
right has a slightly brighter color. Unlike the results above,
the tips of the star are not cut. The divergence theorem im-
plies that (3) is a special case of (2) for f = div v.
3.2. Larger breakpoints and ratio optimization

As discussed earlier, the optimal ratio is obtained for so-
lution x∗ corresponding to the smallest breakpoint value λ
of function F (λ) = minx[P (x)−λQ(x)] (see Fig. 1(b)). In
addition to x∗, the ES algorithm can compute consecutive
larger breakpoints λi and obtain a sequence x0,x1, . . . such
that xi is an optimal solution for λi+1 ≤ λ ≤ λi+2. Inter-
estingly, these consecutive solutions are also related to the
ratio optimization problem and they can be useful for image
segmentation and multiview reconstruction (see Sec. 4). It
is not difficult to show that (see Fig. 1(b)):

Proposition 3.1. (a) The sequences Q(x0), Q(x1), . . . and
R(x0), R(x1), . . . are strictly increasing. (b) Configuration
xi is an optimal solution of minx : Q(x)≥C R(x) where C =
Q(xi).

While solving the constrained problem in (b) for arbi-
trary values of C appears to be a difficult problem, it can be
solved for specific values Q(x0), Q(x1), . . ..

Specifying a lower bound on the denominator Q(x) is a
useful additional tool in finding optimal ratio segments un-
der extra constraint on segment size (see Fig. 3). For exam-
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Figure 4. Volumetric Multiview Stereo. Optimizing the ratio
of flux (of photoconsistency gradients [6]) over Euclidean sur-
face area for “gargoyle” data set (courtesy of K. Kutulakos and
S. Seitz). a) Sample camera view. b) Divergence of photoconsis-
tency gradients (volumetric potential). c) Reconstruction results.
Representative dominant solutions grow from the highest contrast
region 1 (yellow). However, the growth is not always monotonic,
e.g. there is an intermediate solution between 3 and 4 with no hole
in the object.

ple, when we minimize flux over length/area, often the first
segmentation corresponds to the highest “contrast” object
of small size. As λ increases, we find optimal solutions of
the highest contrast among all segments of larger size. Our
segmentation and reconstruction experiments (Sec. 4) show
that the optimal shape grows in size incorporating parts of
smaller contrast as the boundary length increases.

4. Experimental results
4.1. Ratio optimization in 3D

Fig. 4 shows volumetric multiview stereo reconstruc-
tion obtained by optimizing the ratio of flux of photocon-
sistency gradients [6] over the surface area. Thus, the opti-
mal result has the highest density of photoconsistency gra-
dients. However, the highest “contrast” solution just selects
one “ear” where the gradients are the highest due to visi-
bility from the largest number cameras. We reconstruct the
head and then the whole “gargoyle” by adding larger size
constraint (see Proposition 3.1). Similarly to the synthetic
examples at the bottom of Figure 3, the consecutive break-
point solutions for ratio (3) grew monotonically (from yel-
low to blue) as the surface area increased. Note that the right
breakpoint can be automatically found if a reasonable lower
bound on the model’s size is known. One may also select
the last breakpoint just before monotonicity breaks. Alter-
natively, the parametric maxflow technique allows a user to
efficiently select a good breakpoint manually.

We also ran experiments for surface fitting to a cloud of
laser scanned points based on the minimum ratio of flux of
the estimated surface normals [26] over surface area. Re-
sults can be found in [24].
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Figure 5. Image Segmentation in 3D. Optimizing various ratios
for 3D medical image data (“kidney” CT). a) Two orthogonal im-
age slices. b) Ratio of Riemannian area (based on image gradi-
ents) over volume. c) Ratio of data likelihood (intensity model)
over Riemannian area. d) Ratio of flux (of image gradients) over
Euclidean surface area.

Fig. 5 (b,c,d) shows volumetric image segmentation re-
sults optimizing ratios (1,2,3), correspondingly. Optimiz-
ing flux of image gradients over surface area (d) is equiv-
alent to finding the segment with the largest average con-
trast on its boundary. The colors (from yellow to blue) in-
dicate representative larger optimal segments as the lower
bound on surface area increases at consecutive breakpoints
(see Prop. 3.1). As in earlier examples, ratio (3) has no bias
to any particular shape and shows good alignment to de-
tails. In contrast, optimizing the ratio of image weighted
(Riemannian) surface area over volume (b) shows a strong
bias to circles coming from its close relationship with the
isoperimetric problem. The smallest ratio is achieved by the
smooth yellow blob around the kidney. Larger breakpoint
solutions monotonically switch to larger segments approx-
imating Cheeger sets for rectangles [33]. Replacing vol-
ume by color model likelihood as in (c) improves the over-
smoothing bias but many details are still undersegmented.

Image segmentation results in Fig. 5(b) also illustrate
typical dominant solutions for a closely related multi-
view reconstruction technique using volumetric ballooning.
Surface functionals combining photoconsistency-weighted
area with volumetric ballooning are common in 3D recon-
truction (e.g. [35, 27]). Choosing λ to balance these two
terms is equivalent to finding some breakpoint for the con-
strained isoperimetric (Cheeger) problem (1). As noted in
[10], the ratio of surface area to volume (1) has bias to large
segments5. Prop. 3.1 shows that the smallest size break-
point solution (e.g. yellow segment in Figure 5(b)) is the
one that minimizes ratio (1). This solution is likely to be
the most appropriate for multiview reconstruction methods
using volumetric ballooning.

5Since surface area grows quadratically w.r.t. object diameter and vol-
ume grows cubically, the ratio of the two is smaller for larger segments.
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Figure 6. Image segmentation - error statistics. The number of
misclassified pixels (error) varies with respect to λ. The optimal λ
does also vary considerably among test images (images A and B
are shown in [24]).

4.2. Choosing an optimal λ

We consider now the problem of segmenting color im-
ages using a regularization energy E(x) = λ

∑
p Dp(xp)+∑

pq Vpq(xp, xq).
The goal is to demonstrate that (i) discriminative learn-

ing of λ on a training set with ground truth segmentation
yields a reasonable value for many test images, and (ii)
the learned value λ∗ cannot work well for all images, so
the problem may need to be solved for different λ’s during
testing. These points have been raised in previous work,
e.g. [2]. The paper [2] uses a discriminative procedure for
learning λ, however they do not specify how the parametric
problem is solved.

The data likelihoods Dp of the energy come from learned
gaussian mixture models of foreground and background, as
in [2]. (We used 10 Gaussians with full covariance for each
region.) We used the dataset of 50 images with ground truth
segmentations introduced in [2]6. We split it randomly into
25 training and 25 test images. We used hard constraints
obtained by dilating ground truth segmentation by a fixed
amount which gives a “trimap” (see example in Fig. 2
in [2]). The segmentation error is defined as the percent-
age of misclassified pixels within the trimap.

The value of λ∗ that we learned on the training data us-
ing parametric maxflow algorithm was λ∗ = 0.074. Fig. 6
shows the error on the test data set. We see that there is a
range of λ ∈ [0.023, 0.12] where the error is equally low,
i.e. between 5.27% and 5.36%. The error on the test data
set is 5.34% for the learned λ∗ and if we were to choose
the optimal fixed λ of 0.023 we would get a test error of
5.27%. This shows that the training set was probably suffi-
ciently large and there was no overfitting.

At the same time, segmentation results can be consider-
ably improved by choosing for each image a different, opti-
mal λ. This gives a test error of 3.79%, which is consider-
ably lower than 5.27%. For 50% of the test images choos-
ing image-specific λ improved the error over learned value
λ∗ by more than 0.5%. Two of these examples are shown
in [24], where the optimal λ lies even outside the range of

6http://research.microsoft.com/vision/cambridge/i3l/segmentation/GrabCut.htm

[0.023, 0.12]; the corresponding error curves are in Fig. 6.
Thus, it is desirable to run parametric maxflow during

testing and let, for example, the user choose best λ. Unfor-
tunately, our implementation was not fast enough for inter-
active segmentation7. However, potentially the speed can
be improved significantly by solving the parametric prob-
lem via shortest path techniques. (The general scheme of
the ES method would still be applicable). In order to do
this, we could first compute segmentation for λ∗ and fix the
topology. This is left as a future work.

4.3. Cosegmentation using TRGC
We tested the parametric maxflow algorithm for the trust

region graph cuts (TRGC) method in [30] for the problem
of cosegmenting two images. The key optimization prob-
lem of the cosegmentation task is as follows: given an im-
age where each pixel is assigned to a certain bin and a tar-
get histogram over bins is given, compute segmentation x
which minimizes function E(x) = EMRF (x) + Ehist(x).
The first term is a contrast-dependent discontinuity cost,
and the second term is the L1 norm of the difference be-
tween the histogram of the region {u | xu = 1} and the
target histogram.

The TRGC method maintains vector y ∈ R
V and con-

figuration x such that linear function yT z + const is an
approximation of the global term Ehist(z) and x is a global
minimum of EMRF (z) + yT z. In each iteration, new ap-
proximation vector ỹ is chosen, based on current configura-
tion x. (This approximation is exact for all z that differ from
x by at most 1 pixel). Let yλ = λỹ + (1 − λ)y be the in-
terpolation between y and ỹ. The TRGC method computes
minimum xλ of approximation EMRF (z)+(yλ)T z for dif-
ferent λ’s in [0, 1], and selects pair (yλ,xλ) corresponding
to the smallest true energy E(xλ). Note, the energy will not
go up since λ = 0 corresponds to current pair (y,x).

We tested three strategies of searching interval [0, 1]:

A: [Same as in [30]] Start with λ = 1, keep halving it until
one of the following happens: (a) xλ = x; (b) λ < 10−3;
or (c) energy E(xλ) is larger compared to previous λ,
and the energy for the previous λ was smaller than E(x).

B: Similar to A, only next λ in [0, λ] is chosen as in the
ES method. (The last λ will be the smallest breakpoint,
unless the search is stopped earlier).

C: Compute all breakpoints and solutions in [0, 1].

The average results on a data-set with 20 images (part of the
ground truth data-set introduced in [2]) were as follows (for
an example see [24]):

7For the range of λ ∈ [0, 1] computing all cuts took 24.5 ∈ [3.3, 61]
secs (average over 50 images; the interval shows minimum and maximum
values), compared to 0.9secs on average for λ∗. The number of cuts was
425 ∈ [81, 1422]. For a more reasonable range λ ∈ [0.023, 0.12] (see
Fig. 6) the running time was 7 ∈ [0.64, 16.3] secs, and the number of cuts
was 110 ∈ [3, 382].



strategy final energy misclass. error time
A 1431.7 4.42% 0.37 secs
B 1111.6 3.21% 0.77 secs
C 1087.3 3.05% 10.5 secs

Here the target histogram is given by the ground truth seg-
mentation. We refer to [24] for details of initialization and
further results.

5. Conclusions
We showed that parametric maxflow algorithm from

combinatorial optimization is useful for regularization-
based N-D applications in computer vision (segmentation,
cosegmentation, multi-view stereo, surface fitting, etc). The
algorithm can efficiently find a sequence of solutions for
all values of the trade-off parameter λ. The best solution
from this sequence of dominant solutions can be selected
based on any global criteria which otherwise would be prac-
tically infeasible. Examples of such global criteria include
minimization of normalized (ratio) functionals, minimum
required size, surface total curvature, proximity to certain
prior shape, or user selection. The algorithm can be also
used to accelerate parameter learning.
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