
Split-Iterative and Sequential Multicast Scheduling
For IQ Switches

Mohammed Shoaib
Department of Electrical Engineering
Indian Institute of Technology Madras

Chennai - 600036, India: Email: shoaib.m@iitm.ac.in

Abstract— The objective of this work is to design and imple-
ment controlled (Weighted Round Robin Matching, WRRM) and
sequential iterative schemes for weight based multicast traffic
scheduling in input-queued (IQ) switches. Motivated by the
practical synthesis of a scheduler for a 64-port optical crossbar
switch, we demonstrate that limited and sequential iterations in
the Weight Based Arbiter (WBA) lead to adjustable clock speeds
and configurable designs with flexible control in the performance
characteristics close to the conventional WBA. Our FPGA sizing
experiments and clock speed evaluations show improvements
of upto 46.48% and 19.12%, respectively, over the WBA. In
addition, latency–throughput results for the proposed variations,
highlight the trade-offs between fairness, throughput, hardware
complexity and speed.

I. INTRODUCTION AND BACKGROUND

Progressive integration of traditional communication ser-
vices (Telephony, Radio, TV Broadcasting etc) into the internet
has resulted in a number of challenges, one of them being
the need for efficient multicast support. High performance
computing cores and performance critical applications demand
practical and efficient handling of multicast traffic. High effi-
ciency and low hardware complexity are the watch words in
current design methodologies. A number of architectures and
implementations have been proposed to handle multicast traffic
[3], [6]. We restrict our attention to input-queued switches
in this design exploration. In particular, we consider how
a scheduler can achieve a high throughput with efficient
hardware complexity for multicast traffic queued in a FIFO
fashion Sec.I-A.

Virtual Output Queues (VOQs) for multicast traffic have
been proposed in literature [7]. VOQs avoid Head-of-line
(HOL) blocking to a large extent but the issue with such a
queueing scheme is that, it is impractical to maintain all the
possible VOQs corresponding to all the outputs. For Example,
in a switch with N output ports, (2N − 1) queues need to
be maintained at the input. An alternative to this, called the
multiple-queue architecture has been proposed [14], [9]. This
uses k queues for N output ports, where 1 < k � (2N − 1).
This kind of a deisgn is unable to achieve high performance
or run at high speeds. FIFO queues introduce HOL blocking
but are more practical and hardware efficient [11], [8]. A
practical and efficient way to integrate multicast and unicast
scheduling was proposed in [13]. In this paper, we explore
packet-switched, crossbar-based switches.

A. FIFO queues

FIFO Input-queued (IQ) switches typically operate on fixed-
size data units called cells. R1, R2, and R3 are incoming
multicast cells which are queued up in a FIFO fashion at each
of the eight input ports. The structure of request R2 for the
Input port 07 is shown enhanced in the Figure. The queue
consists of a bitmap of N bits (N=8 here), N being the number
of switch ports, where the bit in position i indicates whether
the corresponding multicast cell requests output port i. There
are N such FIFO queues corresponding to the N switch inputs
in a N×M Switch.

B. Fanout

The total number of active requests in a particular bitmap
constitutes the fanout of that particular cell. As the input
queues are organized in a FIFO fashion, only the bitmaps at the
heads of the FIFOs are considered by the multicast scheduler.
Here fanout is used as a general term to stand for both the
constitution and the cardinality of the input vector.

C. Scheduler

A critical component of the switch is the centralized
scheduler Incoming traffic cells are scheduled (the scheduler
computes a matching between the inputs and the outputs)
and accordingly, the crossbar is configured at every cell cycle
(time slot) or a multiple of a cell cycle, called the matching
epoch. Our time slot target is 51.2ns (256-byte cells at a line
rate of 40 Gb/s [4][5]). Known optimum multicast matching
algorithms, e.g. the Concentrate and TATRA proposed in [1],
are typically complex in hardware implementation. Hence,
practically feasible, approximate algorithms are used. These
algorithms employ independent selectors (also referred to as
arbiters [10]). A popular approximate algorithm is the Weight
Based Arbiter (WBA), proposed in [1]. It was shown to be
hardware implementable and close to Concentrate in perfor-
mance. We focus on WBA in the rest of our discussion.

The main contribution of this work is an optimization of
the WBA algorithm. We propose to use the WBA algorithm
in a sequential and iterative manner to compute the scheduling
configuration. Our proposed variations yield sizeable improve-
ments in hardware area and clock speeds while achieving a
performance close to the WBA.

1–4244–0983–7/07/$25.00 c© 2007 IEEE ICICS 2007

II. THE WEIGHT BASED ARBITER

The motivation for the choice of the WBA was the search
for a multicast scheduling algorithm that could be imple-
mented in an FPGA—specifically, in a Xilinx Virtex II Pro
XC2VP100-6FF1704—for a 64-port switch. This required a
greater collective effort for the organization of the queued
packets and a more broader perspective of distribution in the
scheduling process. The WBA, proposed in [1] has specific
advantages, such as: it is simple to implement in hardware,
fair in the scheduling of traffic and achieves a high throughput.
However, the primary advantage is that, it formed a practical,
approximate alternative to the concentrate algorithm, with
reduced hardware complexity.

A. Design and Operation

The WBA scheduler assigns weights to the incoming input
cells, depending on their age and fanout at the beginning of
every time slot. Once the weights are assigned, each output
is assigned the heaviest cell. In case of multiple requests
with the same weight, the scheduler breaks ties randomly.
For fair operation, a positive weight is given to age while
fanout is weighted negatively to maximize throughput. Thus,
the older the cell, the heavier it is and larger the fanout, the
lighter it is. Basing cell grants on age and fanout results in a
compromise between extremes of pure residue concentration
and strict fairness. The weight wi of input i is computed as

wi = f ∗ fanout(HOL(i)) + a ∗ age(HOL(i)), (1)

where f and a are the weights assigned to fanout and age,
respectively. It can be shown that for an M×N switch, no cell
waits at the HOL for more than (M +f ∗ N/a−1) cell times
[1]. By means of the weights f and a, the weight calculation
can prioritize either age or fanout. In particular, if we assign
equal weights to age and fanout, no cell waits at the HOL for
more than (M + N − 1) cell times.

WBA employs fanout splitting, meaning that a cell can be
served over a course of multiple time slots. In every slot a
subset of the remaining fanout is served. This is the opposite
of one-shot scheduling, in which every cell must be served
in a single slot. As fanout splitting achieves a significant
performance benefit at a small cost, it is usually preferred [15],
[12].

Fig. 1. 64 × 64 WBA Input Block (IB) Design Schematic.

Fig. 2. 64 × 64 WBA Output Block (OB) Design Schematic.

Parallel operation of the WBA leads to two sections (or
blocks) in the scheduler design:

• The input blocks (IB) for the weight computation.
• The output blocks (OB) for the weight comparison and

grant selection.

The input block (IB): Fig. 1 shows the structure of an IB,
which has to calculate the weight for each of the input cells
based on their age and fanout. The age counter is reset with
the advance of a new cell at the HOL, and is incremented in
every time slot until the cell has been served completely. The
fanout adder computes the cell fanout. The grants coming from
the OBs are fed back to the IBs to update their age and fanout
values for the next time slot.
The output block (OB): For a M×N switch, the output block
has N comparators (corresponding to the N output ports). In
every time slot, each comparator identifies the highest weight
forwarded by the IBs and grants the input with the highest
weight denying all other requests. See Fig.2.

B. Topology

To reduce implementation complexity, an input cell must
wait in line (FIFO) until all the cells ahead of it have gained
access to all of the outputs that they have requested. The
topology of the broadcast algorithm is loop-back type and
hence needs grant information sent from the OBs to the IBs.

III. PERFORMANCE AND IMPLEMENTATION RESULTS

A. FPGA synthesis

The motivation for this synthesis is the implementation of
a crossbar scheduler for a 64-port optical switch demonstra-
tor (called OSMOSIS) with 40-Gb/s ports and a predefined
scheduling cycle (time slot) of 51.2 ns for high performance
computing applications [2][4][5]. A major challenge in this
project is to implement a 64-port scheduler with this time slot
duration in FPGAs, which were used for minimizing cost and
improving the flexibility of the design. The FPGA synthesis
results, shown in Table I, show that the 64-port WBA scheduler
fits in the target FPGA device, nearly saturating it (84% full).
The device used for implementation was ”xc2vp100-6ff1704”,
a Xilinx Virtex-II Pro series FPGA with 8 M system gates
(100 K logic cells†) and 1040 User IOs.

†Virtex logic cell = One, 4-Input LUT + One, Flip Flop + Carry Logic.
One Virtex Slice = Two Virtex logic cells.

TABLE I
NXN WBA SCHEDULER – FPGA SYNTHESIS RESULTS IN XILINX

VIRTEX-II-PRO[SPEED GRADE-6].

N 2 4 8 16 32 64

slices 22 124 538 1995 8399 37024
% slices 0.05 0.28 1.22 4.52 19.05 83.96

Min. clock
period (ns) 2.023 5.173 10.377 12.891 18.96 27.927
Max. clock
freq. (MHz) 494.31 193.31 96.37 77.57 52.74 35.81

B. Performance simulations

The latency–throughput simulation results are shown in
Fig.3. The mRRM (multicast Round Robin Matching) scheme
is a simple multicast round robin arbiter granting the request-
ing cells in a round robin fashion. This is the simplest in
implementation complexity but has poor latency–throughput
performance. The Concentrate algorithm [1] gives the best
performance score and the mRRM the worst. WBA has much
lower implementation complexity than Concentrate, yet has
comparable performance. On the other hand, WBA clearly
outperforms mRRM.

IV. WBA DESIGN ALTERNATIVES

A. Distributed WBA

The WBA has 64 IBs and 64 OBs in its core. This kind of a
bulky hardware on a single chip introduces constraints on area
and speed. An alternative to the WBA could be a distributed
design where the IBs are kept outside the MC Scheduler FPGA
which now has only the 64 OBs in it. The IBs are housed at
the test cards from where the input requests to a particular
output are generated. The weight computation is hence done at
the backend and then the weights and requests are forwarded

Fig. 3. Latency–throughput performance of the WBA scheduler.

to the scheduler to make a decision. An issue with such an
approach is the high latency and delays introduced by routing
of large signal paths and also issues of IB-OB synchronization
on different chips. To mitigate these drawbacks, we propose
the sequential WBA design.

B. Sequential WBA

The 64 × 64 WBA saturates the chip and has a delay of
about 28 ns. The Multicycle WBA design shown in Fig.4 is a
proposed alternative to the WBA. This kind of a sequential
design works in multiple cycles of the auxiliary clock to
generate the grant array which is then forwarded to the input
blocks for weight calculations in the next cell cycle. The
advantage in such an approach is that, instead of having 64
OBs in the scheduler there needs to be only one comparator
which runs in multiple cycles. A further advantage is that these
iteration cycles over which the WBA runs could be customized.
But an additional hardware investment is in a further addition
of registers and clocks to the combinatorial design.

Fig. 4. 64 × 64 Multicycle-WBA Design Schematic.

V. SPLIT ITERATIVE SCHEDULING

The WBA computes matching for all the 64 OBs in a
particular cell cycle, hence making it compeletely weight
characterized. The split-iterative design provides a choice of
iteration numbers, after which the matching is terminated
and the incomplete grant array is combined with a parallel
round robin matched array to generate a combined scheduling
decision.

A. The WRRM

The Weighted Round Robin Matching (WRRM) algorithm
has a design schematic shown in Fig.5. We catagorize such a
design as a split iterative system. The IBs at the beginning of
the scheduler, receive incoming traffic from the Head-Of-Line
(HOL) of the FIFO queues. They then compute weights for the
input ports and forward them along with the requests to the
sole comparator at the nucleus of the design. This comparator

Fig. 5. 64 × 64 WRRM Design Schematic.

works similar to the sequential WBA completing the grant
array vector over multiple cycles (iterations). The matching
is terminated after a customized number of iterations. For
example, if the matching is terminated after j iterations, the
matching is termed as WRRM, I = j. The advantage in such
an approach over the Multicycle-WBA is that all the iterations
need not complete based on the weight computations alone.
Once the highest j weights are identified and granted over j
iteration cycles, a pointer pointing to the index of the latest
granted weight is forwarded to the output blocks along with the
partially completed grant array vector. This pointer is referred
to as the Output Pointer Index (OPI). In general, a priority
scale factor could be assigned to the weight, age and fanout
independantly as p, f and a respectively. The parameters can
hence be weighted accordingly based on the preference given
to specific input ports. I in equation 2 is the index of the
weight granted in the latest iteration cycle.

OPI = I [pj × f ∗ fanout(HOL(j)) + a ∗ age(HOL(j))] (2)

The difference of this arbiter design from the Multicycle WBA
is that, the outputs from the centralized comparator in this
design are forwarded to a Round Robin Arbiter unlike in the
Multicycle WBA design, where the outputs were fed back to
the IBs and the scheduling was carried out over multiple cycles
until the grant array is complete.

The OPI, along with the partially completed grant array
and the unserved requests from the centralized comparator
is received by each the output blocks at the tail end of the
scheduler. These output blocks comprise of Programmable
Priority Encoders (PPE), which run a round robin grant al-
gorithm on the incoming requests. The OPIs serve as cursor
prioritizers for the Round Robin PPEs at the output. This
facilitates a quick parallel computation of grants in a round
robin fashion.The partially completed grant vector from the
Centralized Function Block (CFB), housing the comparator is
completed in multiple clock runs of the auxiliary clock and
the corresponding requests for the output are masked out. This

masked out request array is the one which is forwarded to the
PPEs for grant array completion. The completed array is used
for scheduling.

In this design, the WBA and Round Robin Matching (RRM)
capabilities are combined in a hybrid fashion leading to a ro-
bust and highly reconfigurable system of multicast scheduling.
In the WRRM and the Multicycle WBA design, the system
clock is split into two fast running clocks and the iteration
cycles are customized.

VI. HARDWARE IMPLEMENTATION RESULTS

A. FPGA synthesis

The implementation results of the proposed schemes are
shown in Table II and Fig.6. The Multicycle WBA has a
reduction of FPGA area (improvement of 24.52%) as the
number of comparators in the WBA design are reduced from
Sixty-Four in the conventional design to one in the Multicycle
design. The clock speed improvement is also substantial. It
is seen that there is a “clock split ”. The 27.93 ns WBA
clock is split into two clocks of 10.54 and 20.28 ns. They are
referred to as the primary and the auxiliary clocks respectively.
The auxiliary clock could be run a multiple number of times
to complete the grant array in the multicycle design. In the
WRRM implementation, the amount of hardware required
is higher than the WBA (19.09% increase). This additional
hardware component can be understood to have been included
to incorporate the 64 PPEs in the output blocks of the design.
Apart from the additional hardware investment, the WRRM
design, provides more flexibility in traffic scheduling, where
the WBA could be mixed with the RRM after a specific number
of iterations, thereby providing a dynamic design operative.
The WRRM has again two clocks – The primary and the
Auxiliary, which have min. periods of 19.04 and 14.95 ns
respectively. The Primary clock in the WRRM is slightly faster
than in the Multicycle WBA (MC-WBA) because, in the MC-
WBA the iterations are run through a combinatorial loop until
the grant array is completely matched.

B. Performance simulations

Fig.7 shows the latency vs throughput characteristics of the
proposed design schemes. The data plotted here is for a 64×64
scheduler, with uniform-uncorrelated arrivals (Bernoulli traffic)
with a mean fanout of Four. In the graph, WRRM,I=j stands

Fig. 6. FPGA area and clock speeds for a 64 × 64 scheduler.

Fig. 7. Latency vs Throughput performance of the Age-Fanout WBA
Schemes.

for WRRM scheduling of multicast traffic (WBA+RRM) with
j iterations. After j iterations, the scheduler passes on the
incomplete grant array along with the unserved requests to
be completed by Round Robin Matching in the PPEs. In the
figure, j = 0 stands for pure Round Robin Matching (RRM)
and j = 64 stands for pure WBA. Between these extremes, the
performance characteristics of the customizable scheduler with
j iterations, 0 < j < 64, is shown to lie. As the number of
iterations are increased from 0 towards 64, there is a sizeable
improvement in the latency of the scheduler. For eg. this kind
of an improvement, may be sufficient after only 4 iterations
in a specific application. Whence, the generic hardware design
of the scheme could be customized to handle only 4 WBA
iterations. After about 8 WBA iterations, the characteristics
of the WRRM design are acceptably close in performance to
the WBA. The hardware investment pointed above is further
eclipsed by this design flexibilty and performance enhance-
ment. Note that in the graph of Fig.7, the y-axis is in terms
of time-slots (cell-cycles), each of which stand for 51.2 ns as
explained in sec.II

VII. CONCLUSION

The WBA scheme proposed in [1] for scheduling of
multicast cells was synthesized on the Xilinx Virtex II Pro

TABLE II
64 × 64 MULTICAST SCHEDULER – FPGA SYNTHESIS RESULTS IN XILINX

VIRTEXII PRO. MC-WBA = MULTICYCLE WBA, AUX = AUXILIARY CLK

64×64 # slices % slices Min clk period ns Max clk speed MHz

Primary Aux Primary Aux

WBA 37024 83.96% 27.93 - 35.81 -
MC-WBA 27947 63.38% 10.54 20.28 94.86 49.31

WRRM 44094 83.96% 19.04 14.95 52.51 66.90

FPGA. The scheduler had an area occupancy of 83.96% and
a minimum clock period of 27.927 ns for a 64×64 switch.
Improvement of clock speeds by 15 − 20% and making the
design more flexible led us to investigate newer and novel
scheduling techniques - the Sequential WBA and the WRRM.
The main contribution of this paper is to propose customizable
scheduling policies and study the trade-offs in such a design
approach. It is shown here that FPGA area reductions (of upto
24.52%) are attainable in the sequential designs with respect
to the WBA. A little added complexity to integrate the WBA
and the RRM is shown to acheive flexible scheduler designs
with customizable number of iterations. An acceptable trade-
off between performance and complexity makes them practical
arbitrator choices in contemporary scheduler designs.

ACKNOWLEDGMENT

The author would like to thank François Abel and Cyriel
Minkenberg, IBM Research GmbH, Zurich Research Lab-
oratory, CH-8808, Rüschlikon, Switzerland. This work was
performed while the author was at the IBM Zurich Research
Laboratory. OSMOSIS is a contract for IBM and Corning to
develop optically-switched interconnects for supercomputers
and sponsored by the Department of Energy, USA.

REFERENCES

[1] B. Prabhakar, N. McKeown, R. Ahuja, Multicast scheduling for input
queued switches IEEE Journal of Select Areas in Communication,
vol.15, no.5, pp.855–866, June 1997.

[2] R.P. Luijten, C. Minkenberg, B.R. Hemenway, M. Sauer, and R. Grzy-
bowski, Viable opto-electronic HPC interconnect fabrics Proceedings
of the CM/IEEE SC2005 Conference on High-performance Networking
and Computing, p.18, Seattle, WA, USA, November 12-18 2005.

[3] T.T. Lee, Non-Blocking copy networks for multicast packet switching
IEEE Journal of Select Areas in Communication, vol.6, no.5, pp.1455-
1467, Dec 1988.

[4] B.R. Hemenway, R.R. Grzybowski, C. Minkenberg and R.P. Luijten,
An optical packet-switched interconnect for supercomputer applications
OSA Journal of Optical Networks, vol.3, no.12, pp.900–913, October
2004.

[5] C. Minkenberg and F. Abel, Designing a Crossbar Scheduler for HPC
Applications IEEE Micro, vol.26, issue 3, pp.58–71, May-June 2006.

[6] J.S. Turner, Design of a broadcast switching network Proceedings of
the IEEE INFOCOM, pp.667–675, 1986.

[7] M. Karol, M. Hluchyj, and S. Morgan, Input versus output queueing on
a space division switch IEEE Transactions on Communication, vol.35,
no.12, pp.1347–1356.

[8] M. Andrews, S. Khanna, and K. Kumaran, Integrated scheduling of
unicast and multicast traffic in an input-queued switch Proceedings
of the IEEE INFOCOM, pp.1144–1151, 1999.

[9] S. Gupta and A. Aziz, Multicast scheduling for switches with multiple
input queues Proceedings of Hot Interconnects, pp.28-33, 2002.

[10] N. McKeown, iSLIP scheduling algorithm for input-queued switches
IEEE Transaction on Networks, vol.7, no.2, pp.188–201, Apr 1999.

[11] N. McKeown, A fast switched backplane for a gigabit switched router
Business Communication Review, vol.27, no.12, 1997.

[12] J.Y. Hui and T. Renner, Queueing analysis for multicast packet switching
IEEE Transactions on Communication, vol.42, no.234, pp.723–731, Feb
1994.

[13] E. Schiattarella and C. Minkenberg, Fair integreated scheduling of
unicast and multicast traffic in an input queued switch Proceedings
of the IEEE ICC, Istanbul, Turkey, 2006.

[14] A. Bianco, E. Leonardi, F. Neri, C. Piglione, and P. Giaccone, On the
number of input queues to efficiently support multicast traffic in input
queued switches Proceedings of the IEEE HPSR, pp.111–116, Jun 2003.

[15] J.F. Hayes, R. Breault, and M. Mehmet-Ali, Performance analysis of a
multicast switch IEEE Transactions on Communication, vol.39, no.4,
pp.581–587, Apr 1991.

