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ABSTRACT
We propose a novel viral platform for building an incentive-
based off-line market for digital media. A user who owns a
multimedia clip, can resell it to other end-users such that
the revenue is controlled by the copyright owner. For each
transaction, the seller retains part of the revenue as an in-
centive for participating in the distributed economy. Trans-
actions can be committed off-line anywhere, anytime, and
by anyone who owns a mobile media player equipped with
a near-field wireless. In this paper we propose and discuss
a cryptographic algorithm based upon atomic receipt ex-
change as a foundation of the platform. We also showcase
the profit-making potential of the new platform via a net-
work simulator and an economic model extrapolated from
real-life data.

1. INTRODUCTION
Most economic ecosystems for digital media are based

upon the “on-line store” model that markets, recommends,
sells, and stores content onto users’ computing devices. A
popular example of such a system is Apple’s combination of
an on-line store, iTunes, with a media player device, the
iPod [1]. Alternatively, peer-to-peer file sharing systems
have gained substantial traction since the introduction of
Napster [2]. At its peak in 2001, Napster serviced more
than 2.5 billion MP3 downloads per month. iTunes recently
announced its billionth transaction since 2001 – a sales rate
two orders of magnitude lower than the peak Napster trans-
fer rate. Although hard to compare for numerous reasons,
e.g., availability of digital media players substantially dif-
fered worldwide for 2001 and 2006, one can observe strong
discrepancy in performance.

Both distribution technologies leave a lot to be desired.
In a typical file-sharing system copyright owners are isolated
from the economic flow, not making any revenues from file
trafficking. Consequently, the entertainment industry has
sought legal action aimed at financially impairing services
that enable file sharing [16]. For certain systems such as
BitTorrent [8], media is partitioned and sprayed onto sev-
eral hosts making it difficult for copyright owners to legally
point to a specific copyright violator. Alternatively, the pro-
tection of digital content distributed via legal channels such
as iTunes, is supported by digital rights management (DRM)
tools. Typically, a DRM system encrypts the media using
a secret key securely stored in the media player [3]. Such
systems suffer from the exposure of the secret key – once re-
vealed, it can be used to arbitrarily edit the copyright data
[4, 5, 7]. This problem has affected copyright holders to seek

for revenue on-line primarily via client-server architectures,
where majority of the marketing, storage, and processing
burden is imposed upon the server farm while limiting cus-
tomers to purchase clips only when they are on-line.

1.1 An Off-line Economy for Digital Content
In this manuscript, we propose a novel platform for mar-

keting and selling digital content, which enables several key
features:

• off-line sales – an end-user of a copy of particular
digital content can sell the content to another end-
user without the immediate assistance of the copyright
holder or the service provider.

• immediate purchase – pending a successful data trans-
fer, the buyer can play the content immediately.

• incentive-based sales – one part of the proceeds is as-
signed to the copyright holder and another credited
to the participating sales-force. Parties’ accounts are
updated once either seller’s or buyer’s device estab-
lishes a connection to the Internet or some other form
of global communication.

The platform aims to enable selling digital content by any-
one, anywhere, and anytime – posing few restrictions to the
network and business models that can be established within
the platform. Initially, two or more devices would discover
each other and learn each others’ content via a wireless com-
munication channel, e.g., 802.15.3 WPAN [9]. 802.15.3 sup-
ports transfer rates in the 11-55Mbps range, sufficient for
music clip transfers in several seconds with a low energy
bill.

A buyer and a seller could engage in price negotiation fol-
lowed by the atomic transaction protocol introduced in this
paper. This protocol is fully distributed, off-line, and peer-
to-peer; however, the act of committing a transaction, i.e.,
updating users’ accounts, is based on a client-server archi-
tecture. The proceeds of each trade are processed upon con-
necting seller’s or buyer’s portable media player to a global
network such as the Internet or a wireless access point.

Integrity of payments is enforced using two features: a
portable tamper-resistant media player and an efficient cryp-
tographic protocol. The protocol relies on public key cryp-
tography [17]. In a simple version, each device stores user’s
public-private key-pair locally. The private key is used to
sign receipts for transactions performed by the device. This
key is protected using strong tamper-resistant hardware [27,
28, 29, 30, 31, 33].
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Figure 1: The type of data exchange enabled after
“breaking” a protected media player. DarkNet play-
ers can exchange files with no limitations - however,
when they talk to players in the protected world,
they can only do so via the proposed protocol.

Each media player conforms to the transaction protocol
that protects the economy as long as the user does not
“break” its tamper-resistance [12]. As opposed to tradi-
tional DRM systems [4], where by “breaking” one player all
players are “broken,” here each device owns a distinct pri-
vate key. Thus, each player must be “broken” individually.
We classify the attacks as follows:

(i) Software-only attacks must be prevented by using
a hardware-monitored compartmentalized trusted OS
[10].

(ii) In the partial hardware attack, the adversary de-
stroys the protected private key while “breaking” a
tamper-resistant player [27, 28, 29, 30, 31]. Then, the
adversary would alter/replace device’s software to cre-
ate a device that can locally share data in unlimited
fashion. Even though the device is “broken” our objec-
tive is still met as owners of “broken” players cannot
participate in the viral economy. This type of an at-
tack is hard to prevent fully – thus, we assume that its
success should incur relatively high cost for the adver-
sary.

(iii) In the full hardware attack, the adversary gains
access to the private key and obtains full access to de-
vice’s features. The success of the platform depends
upon building a device that can render such attacks
cost-ineffective to adversaries. Tamper-resistant de-
vices based, for example, on zeroization mechanisms,
have already been built and widely used successfully
in similar applications, e.g., electronic wallets [27, 28,
29, 30, 31].

1.2 Related Work
Considering the size of the music market alone estimated

at around $12B in the US, there has been surprisingly few
solutions that uniquely address the distribution and eco-
nomics of digital media. A technology particularly related
to our work, and to the best of our knowledge, the first to
address incentive-based digital media economies, has been
deployed at Weedshare [13, 14]. All sales are executed on-
line as all participants are interconnected to the Weedshare
servers during transactions – this greatly limits the economic
build-up.

Other types of incentive-based systems have been pro-
posed for peer-to-peer systems with an emphasis on the free-

rider problem [15], i.e., the existence of users that partic-
ipate in sharing files only as consumers, not contributors,
thus, increasing contributors’ costs. Nearly all incentive-
based peer-to-peer mechanisms are focused on limiting free-
riders, who themselves are usually a consequence of the
availability of free content on peer-to-peer systems. Free
content has recently been greatly reduced in file-sharing sys-
tems due to legal action from copyright holders [16]. In the
proposed system, much alike Weedshare, we aim at the other
part of the content distribution spectrum where copyright
holders are not isolated economically from the distribution
channels. The goal is to, using the convenience of immedi-
ate off-line transactions, sway users from peer-to-peer dis-
tribution into another model which directly benefits both
copyright holders for improved, inexpensive marketing and
scalable e-commerce system; and customers for media avail-
ability and economic participation in the distribution chain.

2. ATOMIC OFF-LINE TRANSACTION
There exist four entities in an atomic off-line transaction:

seller s, buyer b, service provider p, and trusted author-
ity t. The service provider is contracted by the copyright
holders to resell and/or organize the sales of their digital
content. The service provider is responsible for realizing the
payments in the system via credit cards or other form of
banking. Much alike in a traditional e-commerce transac-
tion, the trusted authority issues a public-private key-pair
to each entity including certificates that authenticate the
distributed public keys. This information is used so that
users can authenticate each other and prove identities when
buying clips or redeeming credits for transactions.

We assume that RSA is used as a public-key cryptosys-
tem [17] by following the IEEE 1363-2000 standard IFSP-
and IFVP-RSA version 2 [18]. For a given entity x, we de-
note its public-private key-pair as {px, rx} respectively. In
order to vouch for the authenticity of their public key, each
entity other than the trusted authority, owns a certificate
cx = {px, sx}, which contains the signature sx = SPrt(px),
where function SPa(b) denotes RSA’s signing primitive of
message b using private key a. Certificates are verified by
proving px = V Ppt(sx), where function V Pa(b) denotes
RSA’s verification primitive of signature b using the public
key a. Just as in modern certificate verification protocols, we
assume that pt is known to all devices. Finally, each device
is assumed to contain a certificate of the service provider,
cp = {pp, sp = SPrt(pp)}, upon enrolling in the service.

2.1 Transaction Objectives
Each atomic transaction must fulfill several objectives re-

lated to associated threat models. The basic premise is that
either buyer’s or seller’s device is likely to be eventually con-
nected to a global network following an off-line transaction.
This way, transactions are eventually committed with p so
that b is billed and s is credited with the incentive. To
commit a transaction, it is sufficient that only one of the
participants connects to p. In such a system, the objec-
tive is to prevent manipulations that may benefit either of
the entities in an unfair manner. We consider the following
threat model:

A Non-repudiation of executed transactions. b
must not be able to repudiate a transaction after which
she downloaded the digital content from s.



B Mutual initiation. s must not be able to create an
arbitrary transaction with a certain b unless he gains
total control over b’s media device either physically or
via a software virus. The latter case can be prevented
by demanding physical action to initiate a transaction
such as a “purchase” button that enables data trans-
mission on contact only.

C Limited damage in case of device loss. A lost
media device could enable the party who finds it to
realize only limited financial gain γ defined by the user.
Amount γ equals the total purchasing power that a
device may have between two synchronization events
with p.

D Device revocation. When an adversary misappro-
priates a media device, she can participate in transac-
tions that are identified by p as fraudulent after the
act. Here, after the adversary obtains digital content
from s off-line, s and p discover that the transaction
was fraudulent when s connects to p. To prevent this,
lost or misused devices can be identified, catalogued,
and this list distributed to all devices upon connec-
tion with p. Thus, an updated seller device should be
able to verify the financial validity of the buyer before
realizing a transaction.

E Transaction integrity. Both buyers and sellers must
not be able to alter any information about committed
transactions.

F Robustness to communication failure. Upon com-
munication failure, a buyer or seller must not be able
to enjoy the benefits of the transaction, without all de-
tails of the transaction being reflected. For example, b
could pay for a media clip and lose connection during
download. When connecting with p, b should present
her transaction receipt to resume download.

G Media piracy prevention via traditional meth-
ods. The platform should protect copyright hold-
ers from piracy via traditional DRM methods such as
symmetric encryption and licenses [3]. Such systems
are vulnerable as encryption keys can be reverse en-
gineered from players and decrypted content can be
captured either digitally or using an analog recorder.

H Disabling clients who do not commit transac-
tions. Certain sellers may refuse to take their sales
credits to benefit their “buyers” with free content. A
user may certainly decide never to connect its media
device online or “break” its device and remove its his-
tory of non-committed transactions. In both cases,
the user must pay an indirect price: by not being able
to participate in the distributed economy and by in-
vesting effort and funds into “breaking” the tamper-
resistant media device. The goal in this case is to offset
the higher likelihood for multimedia piracy due to the
convenient wireless transfer between sharing devices,
with additional direct and indirect costs incurred by
the adversary.

The list of requirements, A-H, resembles off-line usage of
credit cards with sellers being able to verify canceled buy-
ers’ credit cards upon connection with the issuing bank. The

convenience of the system lies in the effect that a credit card-
like payment system is established to support an incentive
based economy that benefits all parties involved in the dis-
tribution of digital content.

2.2 Transaction Protocol
The set of requirements imposed upon this type of trans-

action seems equivalent to the constraints involved with si-
multaneous contract signing [21]. There, two parties who do
not trust each other desire to simultaneously commit to a
contract over a communication channel. Since simultaneous
data exchange is impossible in practice, there exists a need
for a protocol which enables this feature. To date, the con-
tract signing problem in the absence of a trusted party has
not been solved deterministically and efficiently [22].

We show that a simple protocol for atomic receipt ex-
change can address the system requirements without the
complexity associated with fairness of simultaneous contract
signing [21]. In essence, b and s authenticate each other, b
sends a signed incentive to buy, s sends a receipt, and only
after the acknowledgment of b that she received the receipt,
the atomic transaction is executed. Then, s may send the
content to b.

I – Authentication and Key Exchange. Initially,
the two parties must authenticate each other. This is a
task already provided in traditional cryptographic protocols
such as TLS1.0 [19]. According to the TLS1.0 Handshake
Protocol, the opposing sides perform several tasks:

• exchange certificates, cb and cs; then, each side verifies
the opposing side’s certificate by proving that ps =
V Ppt(ss) and pb = V Ppt(sb),

• exchange information to compute a 48-byte master-
secret used to create session keys,

• establish a way of encrypting and compressing data
during the following private communication, and

• establish a session identifier as well as a flag specifying
whether the session is resumable.

II – Checking the Revocation List. In order to sat-
isfy requirement D, s must verify whether b has a valid
account with p. For that reason, p must synchronize con-
nected players with the latest list of “invalid” players (i.e.,
their public keys). In order to prevent the list from growing
excessively, each account has an expiration date specified
in the account’s certificate. Players with expired accounts
cannot purchase content. Thus, if buyer’s account is expired
or on the list of revoked players, the transaction is aborted.
Otherwise, it proceeds with the buyer’s commitment.

III – Marketing. It is important that b receives the
content that is marketed. As a marketing ploy, the s may
forward to b a version of the content that may be of superior
quality compared to the copy that is later uploaded to the
buyer. When committing to a purchase, b wants to receive
assurance that the clip of interest, a, is of particular identity
and quality. There may be several versions of this assurance
subprotocol. Here, we outline two examples.

• III.a – Buyer likes clip, does not know author,
title. In this case, s provides clip’s cut-out, ac, which
has been approved by the copyright holder as an ad-
vertisement, to b. In addition, the holder provides the
purchasing data:



m′
1 = {ID(a), s′1 = SPrp(H(ac, ID(a)))}, (1)

where ID(a) returns a distinct identifier and descrip-
tor of clip a. The descriptor may include clip’s cod-
ing quality, version, copyright holder, license agree-
ment, and price. Function H(a) returns a crypto-
graphic hash, such as SHA-256 [20], of the clip a. By
listening to ac, computing H(ac, ID(a)), and verifying
against s′1 using provider’s public key pp, b can get as-
surance that she will ultimately receive the clip a that
p associated with ac.

Most importantly, note that s can keep competitive ad-
vantage on the market by not revealing the author and
title of the advertised clip to b. Our system enables
this feature – the party who owns a can ask p to pro-
vide m̂′

1 = { ˆID(a), s′1 = SPrp(H(ac, ˆID(a)))}, where
ˆID(a) does not contain identifying information for a.

The advertisement receipt m̂′
1 can also be provided to

a buyer by a seller. An additional economic tool is
system’s ability to attach a price to m̂′

1 which a buyer
(i.e., potential seller) must pay to obtain. Finally, after
purchasing the clip, b obtains the full ID(a).

• III.b – Buyer knows author, title, buys clip
from seller w/o preview. In this case, s imme-
diately sends out:

m′′
1 = {ID(a), s′′1 = SPrp(H(ID(a)))} (2)

to b who can verify that s is offering the desired clip
without media preview.

IV – Buyer’s Commitment. In case b desires to pur-
chase certain digital content, she commits to the purchase
by sending a signed intent of purchase to s. The intent
is represented using m2 = {i, s2 = SPrb(H(i))}, where
i = {m′

1 or m′′
1 ,b, s, Pc} and Pc contains purchase data such

as date/time/location,1 license and price. Message Pc can
also include a request to buy an advertisement receipt m̂′

1

for a (see step III.a). The buyer sends m2 to s as a transac-
tion request. The seller can verify the purchase intent using
buyer’s public key pb. In order for both sellers and buyers
to protect their privacy, their public keys pb and ps are used
as pointers to transaction participants in message i instead
of b and s for privacy issues).

The price and license may be negotiated between b and s.
Copyright owners must be careful in setting up pricing rules
for their content as buyers and sellers can seek alternative
payment channels (e.g., cash, trade). Here is an extreme
example. A copyright holder did not assign a minimum
price to its content a. The holder relied upon seller’s in-
centives in the form of percentage of revenue to motivate
selling the content at a higher price. Sellers could sell a at
high price but in cash, circumventing system’s payment sys-
tem. Then, they would report a transaction price of $0 to
p and retain the full actual revenue to themselves. In order
to account for this problem, the copyright holder has to use
lower-bounded pricing. The holder has to incorporate this

1In case transaction participants want to protect their privacy,
they should be able to chose whether to record such data within
the transaction receipt.

type of “incentive” in its economic model when setting up
the price/incentive rules.

Finally, in order to prevent a software attack on the buyer
as described in requirement B, the system allows the buyer’s
commitment to be sent to the seller only upon a hardware-
assisted approval by the buyer, e.g., by pressing a “pur-
chase” button on the device.

V – Seller’s Receipt. In order for b to claim her
purchase to p, she must receive a receipt from s. The
receipt is constructed as: m3 = {Pr, SPrs(H(j))}, where
j = {m2, Pr} and Pr contains receipt information required
by p. The buyer can verify the receipt using seller’s public
key ps. If the verification is successful, b can claim a from
s or if communication is terminated, from p. If the latter
event occurs, p can credit the incentive to seller’s account
even without synchronization with seller’s device.

VI – Buyer’s Ack. Upon receiving and verifying seller’s
receipt, b sends an acknowledgment signal, m4 = SPrb(m3),
back to s. Upon receiving and verifying the acknowledg-
ment, s can claim the incentive independent of buyer’s com-
munication with p. Hence, b can commit the transaction
with p independent of s after step V. For s to claim his
incentives independent of b, step VI must be finalized.

VII – Content Download. Upon receiving and ver-
ifying m4, s starts with the upload of a. The content is
encrypted with a session key derived from the session mas-
ter key (created in step I). The buyer can immediately start
enjoying her purchase. If the transaction included the cor-
responding advertisement receipt m̂′

1 (see step III.a), then
s must upload this data.

The act of downloading the media clip in this protocol is
a matter of mutual agreement between s and b. The act can
be interrupted by lack of power, communication, or inten-
tionally at either one of the devices. The overall transaction
is not affected by unsuccessful step VII, as both b and s
have their receipts to claim the content and incentive in-
dependently. The protocol may introduce certain marginal
fairness issues discussed in Subsection 2.3. Subsection 2.5
discusses how the protocol can be altered so that the act
of media transfer can be probabilistically guaranteed and
priced.

VIII – Claiming Incentives. The seller is credited with
his incentives upon the following two events.

• The seller received a valid m4, in which case he submits
to p the following message {m3, m4}. Upon successful
verification of signatures in m3 and m4, p credits s
with the incentive and forwards the reminder of the
revenue to the copyright holder associated with a.

• In the alternate case, b never received the digital con-
tent. When she contacts p to download the content
from its server with a proof of purchase m3, s is cred-
ited with his incentive. Both actions are executed
pending a successful verification of signatures in m3.

Communication failure can occur in steps VI or VII and
still the transaction can be committed in the first case by
b and in the second by s contacting p. If communication
failure or some other form of not conforming to the protocol
occurs in steps I–V, the transaction is voided.

2.3 Discover Only, Buy Elsewhere
Interestingly, the communication between s and b can be

terminated for whatever reason after step V is and step VI
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Figure 2: (left) Illustration of steps in the protocol for atomic off-line transaction of digital goods. (right) Events

involved in guaranteeing the upload of purchased media to buyer’s media player.

is not finalized. Then, reporting the transaction is up to b –
if reported, she will obtain the content and s the incentive.
If she decides not to obtain the content, s never receives
the incentive as the transaction is never fully completed by
b. Later, b can obtain the same content from some other
source. This may be perceived as unfair to the first seller.
We refer to this problem as “discover only, buy elsewhere”
(DOBE). The DOBE fairness issue can be addressed in our
system from two perspectives.

Prevention. First, the protocol in step III.a already
prevents DOBE by enabling s to advertise a clip without
revealing identifying information about it. Since the ad-
vertisement receipt m̂′

1 can be priced, in a free market the
probability that a buyer walks out of a transaction with info
about the clip, is likely to set the price tag on m̂′

1. Hence,
if a seller deems that DOBE is likely in his environment, he
can purchase m̂′

1 and use it while marketing.
Handling. Even without an advertisement receipt, s can

still take certain actions if he suspects b will commit DOBE.
He may report the receipt of m2 from b. As m2 contains
ID(a), with a simple lookup into its transaction database,
p can verify whether b has bought the same clip elsewhere.
Several actions are possible at that point; probably the least
costly is to affect buyer’s reputation. Just as in common
trading markets such as eBay, one’s reputation is evaluated
from a set of positive and negative transaction closures. Sub-
section 2.4 discusses the maintenance of user reputation in
the system. Finally, this approach may have certain nega-
tive effects on the system. If users deem their reputation as
an important leverage, it is beneficial for sellers to push all
their advertisement to prospective buyers hoping that they
will be the first seller to offer a clip that a buyer will even-
tually buy. As buyers can shop for only few clips at once,
the only way to prevent this, is to disable push marketing.

2.4 User Reputation
The concept of user (buyer or seller) reputation, common

in on-line marketplaces, can be enforced in our system as
well. For example, p can maintain reputations by issuing
reputation certificates to users upon their synchronization.
Each certificate may include a reputation quantifier that can
be verified by another party in step II of the off-line transac-
tion protocol. Upon claiming a sale transaction, p updates
the user with his/her most current reputation status. If the
user is a seller, this update must be credited before issu-
ing the transaction credit to the seller. Otherwise, sellers
can receive credits and never update their favorable repu-
tation mark. Finally, since a user with a “broken” player
can reinstate his favorable mark at will, it is important to
set relatively frequent expiration dates on such certificates
in order to force users into common updates of their reputa-
tion status. The efficacy of such systems in realistic market
environments has been a subject of analysis and constant
improvement [24, 25] – here, it is beyond the scope of this
paper.

2.5 Pricing the Bandwidth
Media download while both devices are off-line, has func-

tional value for both the buyer and the seller. The buyer
can play the content immediately. The seller consumes ad-
ditional energy to transfer a relatively large media file. The
seller may chose to avoid uploading the media file to pre-
serve energy as an act of unfairness. For example, with a
cost of about US$5 per communication device, BlueTooth
transfers data at a rate of at most 721Kbps, low-cost Zig-
Bee at up to 250Kbps, and more expensive 802.11g devices
at 54Mbps. As a common media clip is typically in the 2-
8MB range, download can take substantial time and produce
a significant energy bill. To address this issue, we propose
an additional, optional sequence of steps to the protocol
which enables the seller to price the actual download into
the transaction. Thus, the buyer can obtain a purchase re-
ceipt for one price and both the receipt and the content for
another, higher price. The optional part of the protocol is



illustrated in Figure 2(right).
In order to realize such a transaction, a buyer b has to

specify the type of transaction (receipt or receipt+media)
as well as the price when creating the intention to purchase.
This is denoted in the field Pc in step IV. At step VII, a
seller s partitions the content a into K packets and sends
them independently to b. One of the objectives is to force
b to upload all K packets in order to play any perceptually
significant portion of a. Thus, s initially generates a fresh en-
cryption key k, encrypts a in CBC mode (denoted as Ek(a);
[26], pp.229, §7.2.2), and creates a message e = k||Ek(a).
Message e is then partitioned into K parts, {e1, . . . , eK},
which are then sent to b in decreasing order of their index,
i.e., part e1 is the last, K-th packet sent to b. Each packet
transmission is followed by an acknowledgment of receipt.
The last two acknowledgments, ackK−1 and ackK , in the
process are signed by b, where ackj = SPrb(H(i||j)). After
receiving ackK−1, s sends the last packet eK . The buyer
can decrypt and play the content after this step. However,
b is still required to send ackK to s. When s receives ackK ,
he can claim the additional pricing incentive to the service
provider by supplying ackK with all other data as presented
in step VIII.

Several incident cases may arise in this procedure:

(i) b may receive eK but fail to send ackK to s due to
loss of power or communication. However, b can ac-
knowledge the completion of this transaction when she
synchronizes with the service provider. Hence, in this
case s depends upon b to communicate eventually with
the service provider in order to claim his incentives.

(ii) After receiving eK , b may maliciously chose not to
send ackK to s so that she can obtain the service of
downloading the content off-line for free.2

(iii) b may have not sent ackK because she never received
eK ; s cannot distinguish between (ii) and (iii) because
communication with b has ceased.

The system can address the problem of distinguishing be-
tween (ii) and (iii) using at least two strategies. First, users
do not decide upon individual protocol actions – in order
to be able to alter the protocol steps, b must “break” her
player’s tamper-resistance and alter its software; two actions
that should incur substantial cost. Second, after an incom-
plete transaction s can inform the service provider about
the incident. The report includes ackK−1 in addition to all
other messages described in step VIII. Since the likelihood
of case (iii) is relatively small, the service provider can af-
fect the reputation of b and possibly, additionally charge
b and credit s with his incentive. Thus, user’s reputation
becomes a probabilistic reflection of its economic trustwor-
thiness. Even a perfectly policy-obeying buyer is expected
to have certain small percentage p of negative feedback. This
expectation can be reduced proportionally to the size of eK ,
i.e., for that reason, we assume that eK = k. For systems
where p ¿ 10−2, malicious parties can obtain negligible
benefits by performing (ii) approximately every 1

p
transac-

tions. Finally, s can report a transaction incident with b
even tough s received ackK – in this case s wishes to dis-
credit b’s reputation for some reason. To prevent this event,

2Note that b still must pay for the purchase receipt in order to
download the content.

downloads are always reported by buyers to service providers
so that any similar accusations can be cleared.

2.6 Privacy
In any setting where tamper-resistant hardware hosts pro-

tected software, typically the issue of privacy is raised. Pri-
vacy and security often affect one another and in certain
cases it is difficult to ethically resolve and define the right-
ful balance (e.g., separating crime reporting from privacy
protection). In our system, we aim to adopt a common
but controversial standard applied in banking and other ser-
vices where the service provider as a trusted authority keeps
record of all transactions in a manner that protects user pri-
vacy. With all the ambiguities of such a protection standard,
the frontier for privacy protection can be defined from the
perspective of the buyer and seller. Ultimately, one would
not want that the buyer or seller can show the transaction
receipt to a third party in order to reveal seller’s or buyer’s
identity respectively, with the associated type of content.

The buyer and the seller exchange identifying information
when they establish a secure connection in step I. As the
public key of either of the users is sufficient to pinpoint its
owner, it is important to anonymize user public keys while
retaining their full functionality and system security. This
can be achieved by distributing single-usage public-private
key-pairs to users. A participant in a transaction can option-
ally use such a key-pair in case she wants to stay anonymous.
Such key-pairs are supported with certificates issued by the
service provider which can set correct expiration dates and
reputation scores.

3. THE MODEL
Economic modeling is certainly not a new art [44]. In

economics, a model is a theoretical construct that repre-
sents economic processes by a set of variables and a set of
logical and quantitative relationships between them. As in
other fields, models are simplified frameworks designed to
illuminate complex processes. In light of the uncertainties
that real-life markets typically experience, most economic
models typically leave a lot to be desired [36]. Correspond-
ingly, our objective is not to model absolute but relative
values in economic ecosystems built for digital media. We
use a simple probabilistic behavioral specification for all eco-
nomic variables and conclude results via simulation. The
goal is to compare the novel viral economy for digital media
to existing or hybrid systems while exploring economic tools
such as dynamic pricing, various marketing strategies, and
end-user behavioral models. In this section we present the
key economic variables and the evolution process of the viral
structures.

3.1 The Variables
The model has three roles: (i) a service provider, p, who

is contracted by the copyright holder to organize the sales
and marketing of digital media a; (ii) a seller, s, who is an
end-user who has already acquired a copy of a and tries to
resell it; and (iii) a buyer, b, any end-user with potential
interest in acquiring a from p or s. The model allows only
one service provider and multiple buyers and sellers. These
entities, particularly buyers and sellers, can organize in a
highly dynamic fashion, posing almost no restrictions to the
network and business models than can be established within
the platform.
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Figure 3: Illustration of the viral market.

The model is configured using the following parameters:

3.1.1 Server Retail Price PSP0(t)

PSP0(t) models the retail price that b pays for each copy
sold directly by p at time t. Time t = 0 defines the moment
when p introduces the new clip a to the market. In our
system, p has the power to adjust PSP0(t) over time to ad-
dress a potentially varying demand for a. For example, by
setting up a high PSP0(t), p can sway users away from its
servers into the viral network and thus, lower transaction
costs. In existing “on-line store” systems such as iTunes,
we have PSP0(t) = const., although we consider dynamic
pricing in such scenarios as well.

3.1.2 Server Viral Price PSP (t)

PSP (t) denotes the price that p asks from s for each copy
sold by s to another user b at time t. The service provider
enforces PSP (t) by issuing certificates with a desired price.
Therefore, it is expected that PSP (t) is a monotonically de-
creasing function as certificates with higher PSP (t) are not
likely to spread in the viral network. Intuitively, this is an
expected pricing strategy as the content becomes out-of-date
and more common among users.

3.1.3 Buyer’s Reservation Price: PB(b, t̄)

PB(b, t̄) models the price that b is willing to pay for a
at time t̄. PB(b, t̄) is generated individually for each user
b. The time axis t̄ is shifted w.r.t. t as the pricing curve
is initiated from the moment b learns about a for the first
time via traditional or viral marketing. Our PB(b, t̄) model
accounts for the initial appeal that a produces with users,
i.e., a user is likely to pay more for a freshly discovered
content; this price decays with time.

This model is a direct consequence of the Bass diffusion
model that classifies users into innovators, early adopters,
early and late majority, and laggards [45]. Data shows that
eagerly anticipated media typically has exponentially de-
creasing diffusion patterns different from the Bass model
[46, 47, 48, 49]. Examples of such diffusion patterns are il-
lustrated in Figure 4. Consequently, the question arises on
how buyer’s reservation price should be defined to reflect
these models [50], in particular for eagerly anticipated me-
dia as it is the largest source of profits. To the best of our
knowledge, such modeling has not been done to date.

In this paper we propose a simple exponential model for
PB(b, t̄). We estimated its parameters based upon a simple
user study on 50 subjects. Its existence in the overall eco-
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Figure 5: Illustration of the models developed for
PB(b, t) and q(s, IS).

nomic model is only exemplary as its accuracy is only spec-
ulative due to the small number of subjects who helped de-
fine the model. Figure 5(left) illustrates the PB(b, t̄) curves
generated for N = 2000 users. We generated PB(b, 0) using
a χ2-pdf with an expander variable that linearly increases
the mean value of PB(b, 0). In Figure 5(left), we generated
1
N

PN
i=1 PB(bi, 0) = $1.14. Finally, we modeled the time-

varying decay using a Gaussian pdf – note that the model is
such that shortly after discovery, in certain cases PB(bi, t̄)
may also increase probabilistically for certain buyers. Even-
tually, buyer’s interest phases out to an asymptotic low price
PB(b,∞). We generated PB(b,∞) using the same distribu-
tion model as PB(b, 0) with a lower mean value; for example

in Figure 5(left) we have 1
N

PN
i=1 PB(bi,∞) = $0.79.

3.1.4 Seller’s Incentive IS

IS denotes the incentive that s receives for selling a copy
of a to b. We model seller’s behavior independent of t by
establishing a probability q(s, IS) that a transaction is exe-
cuted based upon IS . We generate the q(s, IS) model indi-
vidually for each seller s – we model the quantifying curve
using a Gaussian cdf with a varying mean and low vari-
ance that points to relatively sharp, phase-transition-like
decision-making by the sellers. Figure 5(right) illustrates
the q(s, IS) curves generated for 2000 users. In the experi-
ments, we used the {PB , q}-model presented in Figure 5.

3.1.5 Viral Transaction Price PS

Viral transaction price PS denotes the price that b pays
to s for a where s 6= p. PS has two components: PS =



PSP (t) + IS . The buyer and the seller engage in price ne-
gotiation prior to the transaction. Thus, PS is established
based upon the equilibrium of PB(b, t) and q(s, IS). The
price negotiation algorithm is reviewed later in the text.

3.1.6 Marketing Strategy R(t)

R(t) represents the efficacy of traditional marketing for
p. A buyer can learn about a in two ways, by traditional or
viral marketing. The key differentiator is the fact that viral
does not, whereas traditional marketing does cost the service
provider. R(t) is the ratio of users informed via traditional
marketing at time t over the entire buyer population. Sum-
mation of R(t) over time comprises the overall traditional
marketing effort. Typically we can have

P∞
t=0 R(t) > 1 due

to marketing imperfections, i.e., the effort of marketing may
reach already informed users at each time step.

3.1.7 Probability of Transaction Occurrence qT

If the price is affordable, b buys a with probability qT . We
use this parameter to model the convenience of buying from
anyone, anywhere, and anytime using the proposed off-line
peer-to-peer transaction protocol. Client-server scenarios do
not have this feature and should be penalized by reducing
qT . Thus, qT takes two values, qT0 and qT1 when content is
sold by p or virally respectively (qT0 ≤ qT1).

3.1.8 Non-Recurring Start-Up Cost CSU

CSU models the non-recurring start-up cost that p pays
for initiating the business. It relates to building the server
farm, the related software, and other intangibles. In our
model CSU is linearly proportional to the maximum number
of simultaneous3 server calls that p receives from its account
holders over the content lifetime.

3.1.9 Operational Costs COP0 and COP1

COP0 and COP1 model the total operational cost that p
pays for a single direct and viral transaction respectively.
The costs include the network bandwidth, maintenance of
the server farm, etc. Because reporting a viral transaction
does not involve content download, we assume that COP0 À
COP1 .

3.1.10 Cost of Traditional Marketing CM

CM models the cost of traditional marketing. At a mo-
ment t, p spends CMR(t)N in order to inform R(t)N ran-
domly selected users from the user population about a. In
addition to uninformed buyers, this effort may redundantly
inform existing sellers as well as buyers who know about the
content but have not purchased it for some reason.

3.2 The Optimization Objective
Regardless of the transaction protocol that builds the eco-

nomic ecosystem, the objective that p has, is simple to de-
fine. We can compute the profit, Π, fetched by p as follows:

3At time step t.

Π =

∞X
t=0

[(PSP0(t)− COP0)NB0(t)]

+

∞X
t=0

[(PSP (t)− COP1)NB1(t)]

− NCM

∞X
t=0

R(t)

− CSU
∞

max
t=0

[NB0(t) + αNB1(t)] . (3)

where NB0(t) denotes the number of direct buyers from p at
time t and NB1(t) denotes the number of viral buyers at time
t. Parameter α is used to scale the setup costs for the case
when transactions are executed directly w.r.t. p (including
the downloads) and virally. We simplify the parameter space

by assuming that α =
COP1
COP0

.

Given an existing {PB , q, qT } user-behavior model, the
optimization goal can be defined as:

arg max
PSP0 (t)

PSP (t)

R(t)

Π. (4)

3.3 The Viral Network Model
We model the viral marketing network as a time-varying

graph G{N,E(t)}, where N = {n1, . . . ,nN} is the set of all
N users in the network, E(t) is the set of all bidirectional
edges in the network at time t. An edge e(ni,nj , t) ∈ E(t)
signifies that users ni and nj can exchange data at time t.

We developed a model for E(t) inspired by the work on
epidemic data dissemination in complex networks [51, 52,
53]. There, information spreads like an epidemic through
local interaction between nodes. After obtaining the infor-
mation, the nodes forward the message to their neighbors in
a random manner. Eventually, the entire system becomes
“infected” with information. We rely on the Scale Free (SF)
network model which has been shown to model more accu-
rately large scale networks such as the Internet [37]. We
denote as ki the degree of a node ni. The SF model dis-
tributes node degrees across the network according to the
Power-Law: Pr[ki = κ] ∼ κ−γ with γ ≤ 3 for most real-
world networks.

Although the SF network model has been assumed as an
accurate model of Internet connectivity based upon exper-
imental data [37, 54], modeling of various types of social
networks via the SF network model has been disputed. For
example, it has been shown that if we look at communities
of interests in a specific topic, discarding the major hubs
of the Web, the distribution of links is no longer a power
law but resembles more a normal distribution, as observed
in [55]. Still, we speculate that the considered viral network
should take the shape of a SF network as many collaborative
networks have already demonstrated SF properties.

We used the Barabasi-Albert (BA) SF network construc-
tion algorithm [37] which mimics the growth of the Internet.
It starts with a set of m0 nodes and a newly introduced
node is attached to m existing nodes at each time step. The
probability that a link connects the new node to an exist-
ing node is linearly proportional to the actual degree of the



existing node. This procedure is repeated until all nodes
are added – the resulting network is expected to follow the
Power-Law degree distribution with γ = 3 and average de-
gree k̄ = N−1PN

i=1 ki = 2m. This network is an example
of a highly heterogeneous network where the degree distri-
bution has unbounded fluctuations. An accurate model for
building time-varying edges f : E(t) → E(t+1) is an impor-
tant component of the overall ecosystem model, however for
brevity and lack of experimental data and related work [38,
39] we chose to simplify our presentation. In the current
model, we generate E(t + 1) independently from E(t) while
preserving individual node degrees in G.

3.4 Model Evolution
The model evolves in three steps: (A) traditional market-

ing, (B) direct sales from p, and (C ) viral sales.
Step A – Marketing. Initially, p markets the upcoming

media clip a by spending CM to inform a single user. At
the end of this stage, NR(t) users are potential buyers of a.
The only location they can buy a at this moment is p.

Step B – Direct Sales: At this stage, p starts selling
a at price PSP0(t). The informed users initiate their reser-
vation price curves to obtain PB(t). The potential buyers
whose PB(t) is higher or equal to PSP0(t) buy a from p with
probability qT0. Each buyer who has purchased a automat-
ically becomes a seller. The remaining buyers who couldn’t
afford the content wait until the next step.

Step C – Viral Sales: At this stage, each seller in N
contacts its neighbors to virally market a. Contacted buyers
who learn about a for the first time initiate their reservation
price curves. All informed buyers enter the price negotiation
process with their neighboring sellers with probability qT1.

In the simple case when a buyer b is contacted by a single
seller s, we assume that s will negotiate a sales price equal
to PB(b, t). This can be done simply by starting from a
relatively high price and slowly reducing the offer. Then, s
calculates his incentive as IS = PB(b, t)−PSP (t) and decides
to participate in the transaction with probability q(s, IS).

If b faces a group of K sellers S = {s1, . . . , sK} at the
same time, then b will probabilistically negotiate the lowest
price possible from S. The buyer is going to offer a low price
(e.g., PSP (t)), then gradually increase it until one of the
sellers accepts it. For each offered price, each seller si ∈ S
would compute the corresponding incentive IS and enter the
transaction with probability q(si, IS).

Finally, all informed buyers who were not contacted by p
in step A ponder a transaction with p. If their current reser-
vation price is higher than PSP0(t), they make the purchase
at that price with probability qT0.

Stages A-C are repeated in the model for each time step
t. The model can be stopped until all users buy the clip or
when t reaches a particular deadline T .

The presented model and its evolution target realistic sce-
narios. We pertain to model the artistic appeal that me-
dia causes when first experienced. As our platform sup-
ports buying media in coffee shops, bars, restaurants, on
the beach, at stadiums, essentially at arbitrary locations
and times, one can assume that the artistic appeal of media
should push users to pay more and/or with higher likeli-
hood shortly after they have been introduced to the media
for the first time. While viral marketing has been successful
in many economic scenarios, media may be one of its best

targets. For example, historically, for millennia music has
been conveyed virally for the lack of any other mechanism.
Similarly, viral marketing tends to create sense of commu-
nity among groups of users who engage in file trading. Both
the social effects as well as the unparalleled convenience in
managing data are some of the reasons why we speculate
that the proposed system is a significantly more powerful
economic platform for end-users than the existing “on-line
store” model. The benefits that stem from the proposed
platform are not unilateral; copyright holders can also ad-
just their marketing and pricing strategies to optimize prof-
its. In the remainder of this paper, we focus on analyz-
ing copyright holder’s strategies for profit optimization and
comparing these results with the state-of-the-art.

3.5 The “On-line Store” Model
The “on-line store” model, typical of modern media dis-

tribution, can be presented as a subspace in the proposed
generic model. By setting the following parameters:

PSP0(t) = const. PSP = ∞ qT1 = 0, (5)

we do not build the viral network, hence, we allow for sales
only from p. For a given {PB , q, qT } user-behavior model,
p is aiming to maximize its profit:

Π =

∞X
t=0

[(PSP0(t)− COP0)NB0(t)]

− NCM

∞X
t=0

R(t)− CSU
∞

max
t=0

NB0(t). (6)

The evolution of the “on-line store” model is equivalent
to the generic case presented in Subsection 3.4. As the viral
marketing phase does not exist, stage C is ignored.

The “on-line store” model is important for an additional
reason. It can be used to compute system parameters such
as CSU and CM based on well-documented data. For exam-
ple, an existing survey points to the cost-profit distribution
for iTunes [40]. The PSP0 = 99¢ price-tag is split as follows:

• copyright holders receive 60-70¢ as revenues before
their operational costs; we assume that the marketing
costs of copyright owners may range within 5-10¢,

and on the service provider’s side only:

• marketing costs 5-10¢,
• actual financial transaction costs 10-15¢,
• staff payroll ranges from 3-5¢,
• negotiated bandwidth may cost 2-5¢, and

• start-up costs to establish an “on-line store” are esti-
mated at 5-10¢4,

which accounts for profits at the service provider’s side that
may range from a 16¢ loss to a 14¢ gain.5 Using the costs
4The original estimate in [40] ranges between 2-3¢. Infrastructure
costs were amortized over 10 years – however, studies show that
server farms are typically refreshed every 3-4 years. Thus, we
have increased these costs accordingly.
5The reason why the estimated range is relatively wide lies in
the fact that Apple has never published an official study for their
pricing/cost model for iTunes.



presented here, for an arbitrary number N of users in the
ecosystem, we can compute CM and CSU based upon the
cost components represented in Eqn.6. These costs can then
be used in simulations of other economic ecosystems.

3.6 The DarkNet Model
In the proposed ecosystem, the DarkNet [11] is reality

just as in the “on-line store” model. “Broken” players could
engage in unlimited file sharing with other “broken” play-
ers, which is DarkNet’s state-of-the-art. Fortunately, “bro-
ken” players cannot invent new and replay or adjust existing
transactions – thus, players from the DarkNet cannot claim
any additional financial benefits from the system. Interest-
ingly, pirated media could be sold via the proposed ecosys-
tem so that the profits belong to the rightful copyright owner
(and no other destination) [64].

We model two costs related to the DarkNet that balance
the decision for each user whether to make the investment to
“break” her player. Let’s assume that the number of copies
that the user obtains freely after switching to the DarkNet
is K. We denote the cost of “breaking” a device as X. This
cost should be substantial (i.e., users should not be able to
“break” players via a software attack only). As opposed to
early tamper-resistant systems [33], modern e-cash systems
based upon secure smart-cards have fared well in adversarial
environments [34]. Next, we denote the likelihood that a
DarkNet user is identified as ε1. The legal fine in this case
is J . A DarkNet user can now amortize costs to compute
the overall price per clip: PD0 = K−1(X + ε1J). A user u
is likely to switch to the DarkNet if PD0 is smaller than the
average price u pays per clip minus the expected average
incentives u receives for selling purchased content.

Here, an important question arises: if a DarkNet user
u can resell6 pirated material, can the profits that u makes
help reduce PD0? We mark this question for further research
– obviously, this problem is non-existent if sellers are allowed
to sell only legally purchased content.

The price of pirated material in the state-of-the-art file
sharing systems equals PD1 = ε2JK−1, where ε2 is the prob-
ability that a DarkNet user is identified. One may argue
that ε1 ¿ ε2 as it is easier to associate an IP address with
user’s correct identity than detect off-line DarkNet users.
However, as technology improves and media players with
wireless broadband become reality, we expect that eventu-
ally ε2 = ε1. Then, DarkNet’s state-of-the-art may improve
even further, leaving few choices to copyright holders beyond
the proposal introduced in this paper.

4. DYNAMIC PRICING
From Eqn.4 we observe that the optimization goal for p

is to find out a pricing strategy for both PSP0(t) and PSP (t)
and a marketing strategy R(t) that maximize its profit Π for
an unknown {PB , q, qT } user-behavior model. While most
current pricing systems adopt PSP0(t) = const. [56], here we
propose a novel dynamic pricing heuristic which addresses
variable demand. Although studied dynamic pricing meth-
ods have shown efficiency in profit optimization [57, 58, 59,
60], we could not deploy previous work due to the novel-
ties introduced in our ecosystem. We developed a novel
derivative-following dynamic pricing strategy [57, 61, 62]

6Seller s can sell a pirated clip a in the legal ecosystem only if p
issues a certificate to s for a.

that addresses the key trade-offs in our economic ecosys-
tem under a fixed marketing plot. The proposed heuristic
consists of two parts: one for PSP0(t); the other for PSP (t).
At each time step t, p adjusts PSP0(t) and PSP (t) based on
the sales from the previous time step t − 1. The price ad-
justment ∆(t) can be additive or multiplicative. We define
two efficiency statistics ΓSP0(t) and ΓSP (t):

ΓSP0(t) =
NB0(t)

[N −NS(t− 1)]

1

R(t)
(7)

ΓSP (t) =
NB1(t)

N −NS(t− 1)

N

NS(t− 1)
, (8)

where NS(t) denotes the number of sellers at time t. The
first term in Eqn.7 measures the ratio of potential buyers
who have purchased content in the previous step. Thus,
ΓSP0(t) represents the ratio between the actual and expected
revenues stemming from transactions directly with p. Simi-
larly, the first term in Eqn.8 is the inverse of the actual sales
fetched virally, while the second term measures the revenue
potential stemming from the viral network. We alter PSP0

based upon the sale efficiency derivative:

∆PSP0(t) = ∆PSP0(t− 1) sign

�
∂ΓSP0(t)

∂t

�
, (9)

where θ = |∆PSP0(t)| is the magnitude of the dynamic price
updates. Parameter θ affects the final profits negligibly if
the time sampling unit is of fine granularity.

Algorithm 1 Dynamic Pricing for PSP0(t) and PSP (t)

1: t = 0: ΓSP0(0) = Γ0, ΓSP (0) = Γ1, set initial prices to
PSP0(0) and PSP (0), initialize ∆PSP0 = ∆PSP = δ > 0;

2: t = 1: PSP0(1) = PSP0(0) and PSP (1) = PSP (0).
3: t > 1: calculate ΓSP0(t − 1) and ΓSP (t − 1) according

to Eqns.7 and 8 respectively.

∆PSP0(t− 1) = ∆PSP0(t− 2) sign
h

∂ΓSP0 (t−1)

∂t

i
.

∆PSP (t− 1) = ∆PSP (t− 2) sign
h

∂ΓSP (t−1)
∂t

i
.

PSP0(t) = PSP0(t− 1) + ∆PSP0(t− 1),

PSP (t) =

�
PSP (t− 1) , ∆PSP (t− 1) > 0

PSP (t− 1) + ∆PSP (t− 1) , otherwise

The intuition behind this heuristic is that when ΓSP0(t)
is higher than ΓSP0(t − 1), the price change from time t −
1 is deemed as efficient and we maintain its direction and
vice versa. ∆PSP0(1) is determined similarly by comparing
ΓSP0(1) with a constant ΓSP0(0) = Γ0, which represents the
expected sale efficiency at t = 0.

New prices in the viral network are introduced by issu-
ing appropriate sales certificates. As higher prices are un-
likely to spread in the viral network, we put a constraint on
the pricing strategy ∂PSP (t)/∂t ≤ 0. Therefore, the pric-
ing strategy for PSP (t) is derived equivalent to Eqn.9 with
a difference that it maintains (does not increase) the price
when better sale efficiency is observed. The dynamic pric-
ing algorithm is initialized similar to the heuristic for PSP0 .
Both heuristics are summarized in Algorithm 1.

As long as the time sampling granularity for this strat-
egy is relatively high compared to the smoothness of the
revenues curves, the proposed dynamic pricing algorithm
should perform near-optimally [63] as it has the ability to



adapt to the market demand. In this version of the pa-
per, we do not evaluate joint pricing-marketing strategies;
instead we assume a specific R(t) empirically optimized for
each of the evaluated systems: the off-line viral ecosystem
as well as the “on-line store” model.

4.1 Accounting for Certificate Updates
When p issues a certificate that sets a new asking price

for media a, it can reach sellers in two ways. First, all con-
tent sold at time t is associated with the new cert. Sec-
ond, devices that already contain a (i.e., current sellers) can
connect to p and refresh their certs. In the first case, the
price-setting cost is included in COP0 ; in the second one, the
cert-update action can be modeled separately as operation
cost COP2 (mainly, the bandwidth costs for cert delivery;
typically, certs are updated in bundles). For our model, we
assumed COP2 = βCOP1 , β = 0.1.

We propagate certs during system evolution as follows.
For each time step t, a ratio ω of all existing sellers in G
connects to p to update their certs. The overall cost of
cert updates is computed as CCU =

P∞
t=1 ωNS(t) and it is

subtracted from Π in Eqn.3. CCU can be reduced if sellers
are allowed to update their certs virally.

Accounting for cert updates results in pricing diversity
across the viral network. This is certainly a realistic conse-
quence and manifests with a trade-off. Since PSP (t) is ex-
pected to decrease over time, p actually makes more profit
from a single sale when an outdated cert is used. In addition,
p is expected to lose sales volume because higher-priced out-
of-date certs are more likely to match fewer buyers’ PB(t)
curves. We have experimented with ecosystems where these
effects are both ignored and accounted for.

5. SIMULATION RESULTS
We examine three scenarios for the off-line system: fixed

and dynamic pricing and dynamic pricing with cert propaga-
tion. For comparison purpose, we also examine fixed and dy-
namic pricing for the “on-line store” model. We first study
the performance of both systems with the same marketing
strategy. Then, we vary the marketing for each system to
maximize their profits and compare the results. Finally, we
look into the effect of content popularity on profit, a feature
not exhibited by fixed pricing systems.

5.1 Equivalent Marketing Strategies
We first compare the performance of the viral system

vs. the “on-line store” model under a specific traditional
marketing strategy: after the initial R(0) = 0.2; uniform
marketing effort is deployed for the remaining T time steps,
i.e., R(t) is chosen such that

PT
t=0 R(t)=1. We examine a

relatively large and realistic range for PSP0 ∈ [0.7, 2.5]. For
each PSP0 value, we look into PSP ∈ PSP0 + [−0.2, 0.2] and
choose a value for PSP that optimizes the profit. COP0 ,
CM and CSU are chosen as described in Subsection 3.5.
The total number of users (potential buyers) in the sys-
tem is N = 2000. For each scenario, we examine COP1 ∈
{ 2

3
, 1

15
}COP0 , qT0 ∈ {0.1, 0.5}, and qT1 = qT0 + 0.4. The

range for COP1 reflects the upper and lower bound on the es-
timated spectrum of operational costs in the proposed econ-
omy with respect to the “on-line store” model [40]. Simi-
larly, we addressed marketing content with different appeal
to consumers (qT0 ∈ {0.1, 0.5}) and modeled the appeal of
the same content when purchased anytime, anywhere with

qT1 = qT0 + 0.4.
The results are shown in Figures 6-9, where “iT” denotes

the “on-line store” model, “OL” stands for our proposed
off-line system, “F” and “D” represent fixed and dynamic
pricing respectively, and “C” means we consider cert prop-
agation. We analyze the results in terms of profit, total
sales, and the expected price each buyer pays for the media.
All profit results are reported as the combined profit of the
copyright holder and the service provider.

Remark 1: Dynamic > Fixed Pricing Dynamic pric-
ing results in higher profits than fixed pricing for both sys-
tems. Figure 6 shows that dynamic pricing gives more profit
than fixed pricing both the iT (7.7% profit increase) and
OL (25.8%) system. Even with the costs of cert updates
included, dynamic pricing still offers substantially higher
profit than fixed pricing.

Remark 2: OL > iT Profits for the OL systems are sig-
nificantly higher than for the iT systems under both pricing
strategies. The increase can be as high as 169%. Accounting
for certificate updates increases operational costs only by a
small amount (less than 5% profit decrease). In addition,
note that there were few values PSP0 values that resulted in
the best iT system being better than the worst OL system.
Distribution of profits and operational, setup, and market-
ing expenses for configurations that fetch optimal profit for
each of the five economies under consideration, is presented
as pie-charts in Figure 13(left column).
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Figure 7: Number of transactions at qT0 = 0.5.

Remark 3: qT0 ↑ ⇒ profit ↑ Profit increases as qT0

increases. From Figures 6(a,b), one can observe that the
partial derivative of the profit vs. qT0 is higher for the OL
systems. Because OL systems enable users to purchase me-
dia near the moment t̄ = 0 of their introduction to new con-
tent, we conclude that OL systems perform better within
this dimension of the market. Finally, for the case when
qT0 = qT1 = 0.5 one can observe from Figures 6(a,b) that
the increase in maximum profit over the searched space
{PSP0 , PSP1}, is still substantial (over 77%) for OL vs. iT
systems.

Remark 4: Improved Customer Satisfaction for OL
Systems As shown in Fig.7, dynamic pricing results in
higher number of transactions compared to fixed pricing in
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Figure 6: Profit: (a) qT0 = 0.1, COP1 = 0.017, (b) qT0 = 0.5, COP1 = 0.017; (c)qT0 = 0.5, COP1 = 0.167.

both systems. In addition, the total number of transac-
tions is significantly higher for the best OL system than for
the best iT system. The premier feature behind this con-
sequence is the efficiency of viral compared to traditional
marketing. Although this comparison seems marginal with
respect to fetched profit, it is important from the perspective
of the end-users. Higher number of transactions translates
to improved user satisfaction as more users are able to enjoy
the media shortly after they were initially introduced to it.
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Figure 8: Profit as a function of the user population.

Remark 5: profit ≈ a1N + a2 We conjecture that prof-
its linearly increase as user population N increases for all
variants of both systems. As shown in Figure 8, the rate of
increase for the best OL system is more than twice as that
of the best iT system.

Remark 6: Expected Buyer’s Price With the increase
of PSP0 , the expected price that a buyer pays does not
change in the OL system as much as it changes in the iT
systems. Figure 9 illustrates the expected buyer’s price with
respect to different PSP0 values. The expected buyer’s price
is significantly higher in iT systems with fixed pricing than
any other case.

In the fixed-price iT system, buyer’s expected price is con-
trolled by p as buyers have no other choices. Interestingly,
buyer’s expected price for the fixed price OL system shows
a similar trend when PSP0 is low. As PSP0 increases, buy-

ers start obtaining the content virally, thus, the expected
buyer’s price decreases. This fact points to an anomaly of
the fixed-price iT model that although users pay high price
for media, p still retains low profit due to fewer transactions
and high setup costs. This points to the obvious appeal
of the DarkNet in this case as high content prices justify
the risk of content piracy. Similarly, the incentives given to
sellers may sway them away from piracy as their expected
payments are lower compared to the iT systems.
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Figure 9: Expected buyer’s price with qT0 = 0.1,
COP1 = 0.0167.

5.2 Optimized Marketing Strategies
Due to the inherent differences in the iT and OL ecosys-

tems, different marketing strategies result in maximum prof-
its for these models. Here, we fixed the initial marketing ex-
pense R(0) = 0.2, chose constant marketing for the remain-
der of the content’s sales lifecycle, and varied the marketing
intensity to try to maximize empirically the profit for each
system. We found that under the same parameter setting as
in Section 5.1,

PT
t=1 R(t) ≈ 10 resulted in maximal profits

for the iT model, while
PT

t=1 R(t) ≈ 0 achieved maximum
profit for the OL systems. Figure 11 illustrates the obtained
profits under these marketing strategies.

Remark 7: Low Marketing Costs in OL To achieve
maximal profit, the iT model needs to put intensive effort on



traditional marketing, while the OL model almost does not
need any marketing after the initial R(0). From Figure 11,
one can observe that the maximal profit obtained by the OL
model is 75% higher than that of the iT model. Distribution
of profits and operational, setup, and marketing expenses for
configurations that fetch optimal profit for each of the five
economies under consideration, is presented as pie-charts in
Figure 13(right column).

5.3 Content Popularity vs. Seller Behavior
Here we model media popularity by linearly increasing

βPB(0), the average starting buyer reservation price, using
a variable β denoted as “expander.” Setting β = 1 corre-
sponds to the PB model illustrated in Figure 5. In addition,
we model as p the incentive IS for which the average q(IS)
reaches probability 0.5. The higher the p, the less likely the
seller closes on a transaction for a particular incentive IS .
We simulated and recorded the best profits that each of the
“expander” and p values produced w.r.t. the remainder of
the parameter space – the results are shown in Figures 10
and 12(a-c) and for both iT and OL systems.

Remark 8: ∂Π
∂β OL

> ∂Π
∂β iT

and ∂Π
∂p OL

> ∂Π
∂p iT

The first

derivatives of the profit vs. popularity and profit vs. seller
functions are higher for the OL systems compared to the iT
systems. Figure 12 shows that OL systems consistently give
higher profits than iT systems for media of different pop-
ularity under various sellers’ behavior patterns. For better
comparison, we incorporate the upper and lower bound of
Figures 12(a-c) into Figure 10, where we observe that the
proposed system has higher profit for content with various
popularity than iT system even when the sellers are quite
greedy (p as large as 2). The advantage of the proposed sys-
tem over the iT system is retained for various content and
sellers’ behavior patterns.
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Figure 10: The effect of content popularity and
seller behavior on profits of iT and OL models.

5.4 Why Piracy is Less Likely in OL Models?
According to the piracy model introduced in Subsection

3.6, one could analyze the appeal of the DarkNet. The key
statistic to analyze is the buyer’s expected price (Remark 5).
From the experiments, we can conclude that the iT system
with fixed price is the most prone to piracy as the expected

buyer’s price follows linearly the increase in PSP0 . On the
other hand, OL models outsource operating and marketing
costs to and share part of the profit with end-users in the
form of incentives. Due to the improved availability (i.e.,
marketing) of content, users can buy content at the peak
of their PB(t) curves generating more revenues per transac-
tion. In our experiments, we actually ignored the effect that
users are expected to to pay more in the OL model know-
ing that their expected price will be lower due to the fu-
ture incentives. In summary, due to reduced operating costs
and better availability of content our simulations indicate
that the OL systems should fare better with the DarkNet
model discussed in this paper. One way for the iT model
to address the problem of piracy is to resort to dynamic
pricing which has demonstrated significantly better perfor-
mance than fixed pricing both in terms of profits as well as
the expected buyer’s price.

Computing the costs of piracy PD0 and PD1 in the OL and
iT models respectively is not simple as it is difficult to assess
all related parameters. Assuming ε2 → ε1 ≈ 0 as a trend in
building portable media players, one can rely only upon the
cost X of “breaking” the tamper-resistance of the portable
media players to balance the cost of piracy with the benefits
of participating in an economy for digital media. From such
a perspective, given large enough X, the proposed system is
a promising alternative to traditional economic models for
distribution of multimedia.

6. DISCUSSION
The economic model and the simulation methodology pre-

sented in this paper are important from two perspectives.
First, they represent a methodology where hypotheses on
business strategies related to the economics of multimedia
can be verified and optimized. Second, it opens up the argu-
ment on improving the accuracy of similar models. This ar-
gument would involve further research on fine-tuning the de-
ployed submodels such as the PB(b, t̄) or the q(s, IS) model
or the time-variance of the scale free network model. In
this paper, we used simplified representations of most sub-
models extrapolated based upon existing literature [42, 41]
and simple user studies. While its accuracy can be disputed,
the overall modeling paradigm presented in this paper is the
first step towards quantifying the economic efficacy of differ-
ent multimedia distribution platforms. Finally, the proposed
platform could be used for relative as opposed to absolute
economic measurements – it could be used to explore a large
space of economic situations where competing technologies
could be compared in relative manner. With such an ob-
jective in this paper – we produced a relative comparison
of several economic ecosystems and demonstrated the bene-
fits of viral marketing, anytime/anywhere transactions, and
dynamic pricing to copyright holders, service providers, and
end-users.

7. SUMMARY
We have introduced a conceptually novel platform for

building economic ecosystems for digital goods. Based upon
a simple cryptographic protocol, the platform enables users
to sell the digital content they own to others so that result-
ing revenues are controlled by the copyright holders. As a
driving force to marketing and sales, sellers retain portion
of the revenue as an incentive. To showcase the economic
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Figure 11: Comparison of the iT and OL models with marketing strategies that aim to maximize their profit.
(a) profit; (b) number of total buyers; (c) buyer’s expected price.
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Figure 12: The effect of content popularity and seller behavior on profits for iT and OL models with (a) fixed
pricing, (b) dynamic pricing, and (c) dynamic pricing with cert-update.

benefits of the proposed content distribution paradigm, we
introduced a novel economic model based upon a simulator
for scale-free networks and viral traffic to compare the novel
ecosystem with the existing “on-line store” model. The de-
rived model and simulation methodology are important from
two perspectives. First, they represent a methodology where
hypotheses on business strategies related to the economics
of multimedia can be verified and optimized. Second, they
opens up the argument on improving the accuracy of sim-
ilar models. This argument would involve further research
on fine-tuning the deployed submodels such as the PB(b, t̄)
or the q(s, IS) model or the time-variance of the scale free
network model. In this paper, we used simplified represen-
tations of most sub-models extrapolated based upon exist-
ing literature [42, 41] and simple user studies. We use the
proposed model for relative economic measurements – we
explored a large space of economic situations where compet-
ing technologies could be compared in relative manner. As a
result, the new distribution platform showcased substantial
profit increase compared to the “on-line store” model mainly
due to substantial reduction in operational and marketing
costs, end-user-driven dynamic pricing, and increased sales.
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Figure 13: Profit and cost distribution for optimum
profit points identified in Figure 6 (left column) and
Figure 11 (right column).


