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Abstract

This paper presents a robust algorithm to deblur two
consecutively captured blurred photos from camera shak-
ing. Previous dual motion deblurring algorithms succeeded
in small and simple motion blur and are very sensitive to
noise. We develop a robust feedback algorithm to perform
iteratively kernel estimation and image deblurring. In ker-
nel estimation, the stability and capability of the algorithm
is greatly improved by incorporating a robust cost function
and a set of kernel priors. The robust cost function serves
to reject outliers and noise, while kernel priors, including
sparseness and continuity, remove ambiguity and maintain
kernel shape. In deblurring, we propose a novel and robust
approach which takes two blurred images as input to infer
the clear image. The deblurred image is then used as feed-
back to refine kernel estimation. Our method can success-
fully estimate large and complex motion blurs which cannot
be handled by previous dual or single image motion deblur-
ring algorithms. The results are shown to be significantly
better than those of previous approaches.

1. Introduction

Motion deblurring is a highly ill-posed problem where
the observed blurred image B is the convolution of un-
known latent image I with an unknown blur kernel k, plus
noise n:

B=I®k+n.

Deblurring a single image is difficult when the kernel is un-
known. Blind deconvolution works only for low frequency
blur kernels. Image prior is used to estimate the blur kernel
from real images [5, 10]. However, these approaches are not
robust enough and sometimes heavy human interactions are
involved [8].

Methods using multiple images to perform blur esti-
mation have been proposed in [1, 4, 13, 15]. They seek
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Figure 1. Dual-image deblurring given two blurred images. Full
images are shown in Figure 8.

to utilize the correlation among blurred images, based on
the assumption that all blur observations come from the
same latent image. Promising results have been obtained
using multiple-image deblurring algorithms but they are
still limited to simple directional motion. Algorithm us-
ing blur/noisy image pair [18] yields good kernel estima-
tion and deblurring results, but it needs an exposure bracket-
ing function which is not available in many consumer level
cameras, thus limiting the application range.

In this paper, we propose a dual-image deblurring algo-
rithm which takes the advantage of burst capture capability
of both compact and DSLR cameras. In kernel estimation,
we propose a robust cost function to reject noise and out-
liers. We also apply a continuity prior together with sparse-
ness prior to maintain kernel shape and resolve ambiguity.
We will show that the estimation of blur kernels is greatly
improved. After the motion kernels have been estimated,
we propose a novel deblurring algorithm, which uses two
blurred images to produce a clear image. The deblurring
algorithm is robust to both kernel noise and image noise.
It also greatly suppresses ringing artifacts while preserving
image details. The estimation of blur kernels are further
refined given the deblurred image in the iterative feedback
procedure.

Because the proposed dual-image kernel estimation and
dual-image deblurring modules are both robust, their com-
bination will compensate each other to improve the accu-
racy. The feedback iteration robustly corrects estimation
errors and gradually recovers image and kernel details. We
will show by synthetic and real examples that the our ap-
proach greatly outperform previous approaches.



This paper is organized as follows: We start in Section 2
by reviewing and analyzing previous dual image deblurring
framework [13]. After we have analyzed the limitations of
previous work, we present the robust kernel estimation al-
gorithm in Section 3. We then describe the dual-image de-
blurring algorithm in Section 4. The feedback approach is
then presented in Section 5 and our results are shown in
Section 6. This paper is concluded in Section 7.

2. Analysis of Previous Work

In this section we briefly review and analyze previous
dual image kernel estimation algorithm [13]. Assuming the
blurring process for two observations B; and By can be
written as follows:

B =1I®ky +n, By = I ® ks + no, (1)
where I is the latent clear image. k;, ko are two motion blur
kernels to be solved by minimizing the following energy
function:

E(ki, ko) = Eq(ki, ko) + a (Ereg(k1) + Ereg(ka)), (2)
where the data energy
Ea(ki, ks) = ||B1 @ ks — By @ ki |,

and regularization E,.4(k;) = |k;||* are both quadratic.
Although good results have been shown in previous papers,
this scheme is very limited.

First of all, quadratic cost function works well only when
the estimation noise is Gaussian. In the data energy, the es-
timation noise is non-Gaussian even we assume the original
observation noise is Gaussian. We substitute Equation 1
into the error term defined in the data energy and we com-
pute the estimation noise

Nest = DB1®ky—Ba®k
= n1 ®@ky—n2®ky, 3)

where it can be easily seen that the actual estimation noise
associated with the blur process is highly non-Gaussian.

The second limitation of the formulation is that the solu-
tion is ambiguous. Suppose (ki, ko) is the correct solution,
then all motion kernel pairs (k; ® k', ko ® k’) also mini-
mize the data energy E, as long as the common blur kernel
k'’ is non-negative. Although the regularity term E,..4 helps
to smooth kernel values in order to reduce noise, it does
not help to resolve the ambiguity, because convolving one
common kernel k' may even reduce E,., while keeping Eq
unchanged.

The reason why [4, 13] achieve good results despite the
limitations we describe above is that they mainly deal with
directional motion, which is relatively simple and restrains

(b)
Figure 2. Kernel estimation under two pairs of synthetic motion.
(a) Clear image. (b) Two pairs of ground truth kernels. (c)—(e)
Estimation results at different noise levels. (¢c) o = 0.0001. (d)
o = 0.001. (e) o = 0.01. We assume the range of image intensity
to be [0, 1].

the ambiguity. We will show, by synthetic examples, that
line motion can be easily resolved in noise-free situation.
But this method is not robust when there exists observation
noise, or the motion blur is complex.

As shown in the first two rows of Figure 2(c), the es-
timated line motion are close to the ground truth. If we
use realistic complex blur kernels (resized from [5]) to
synthesize motion blur, the results are very ambiguous as
shown in the third and fourth rows. Furthermore, if noise
ni,ns ~ N(0,02) is added to the observations B; and Bo,
the estimation fails quickly when the noise level increases.

We analyze the reason why traditional approaches are
adversely affected by noise, by examining the quadratic
data energy of Equation 2 which is equivalent to E (k) =

0.0001 | 0.0005 | 0.001 | 0.005 | 0.01 | 0.02

o
e | 0.0362 | 0.0560 | 0.1176 | 2.068 | 8.168 | 32.81

Table 1. The minimum eigenvalue e of AT A+a>T increases as the
noise level o increases. We use the image and simple line motion
kernel in Figure 2 and set o = 0.03.

kT(ATA + o®1)kT where A = [Ay, —A4] is the combi-
nation of Toeplitz matrices and k = [k, ko|. Ideally, the
solution is the eigenvector (with a scale/shift) correspond-
ing to the minimum eigenvalue which ideally equals to /.
We compute the minimum eigenvalue of matrix A” A+a?2I
at different noise levels. It can be seen in Table 2, with
the increase of noise level, the minimum eigenvalue also in-
creases. In other words, the existence of noise affects the
optimality of the correct solution, that is, making the esti-
mation very vulnerable to local minima, as shown in Fig-
ure 2.



3. Robust Kernel Estimation

Observation noise and outliers are important issues in
motion deblurring when we deal with real-world images.
In this section, we introduce a robust approach to estimate
blur kernels. We propose to use a robust cost function as the
estimator, which effectively rejects noise and outliers. Be-
sides incorporating kernel sparseness prior to resolve ambi-
guity, we also propose a kernel continuity prior to increase
the estimation robustness.

3.1. Robust Cost Function

We have shown that the quadratic cost function is not ro-
bust to non-Gaussian noise and we propose to use a more
robust cost function. Robust statistics has been applied to a
number of vision problems [2, 6, 9], where robust estima-
tors has been proposed which are less sensitive to noise and
outliers. In this work, we use the Lorentzian estimator [3]:

p(r) = log (1 + % (£)2> . @)

The quadratic cost function and the robust cost function
are compared in Figure 3. When the error is small, the cost
of robust estimator grows faster than quadratic, and when
the error is large, it increases at a pace slower than linear.

(b)
Figure 3. Comparing the quadratic and Lorentzian cost functions
and their derivative functions. (a) Quadratic. (b) Lorentzian.

We then define the data energy of the dual deblur prob-
lem as follows:

Ed(kl, kg) = / p(B1 R ks — By ® kl)dQ7 (®)]
Q

where p(-) is the robust cost function defined above.

In our implementation, we use an iterative reweighted
least square (IRLS) approach to approximate the robust cost
function. The residual comes from the data energy » = Ak.
We define the diagonal reweighting matrix W with ele-

ments
2
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The reweighted data energy now becomes F,;(k) =
kT ATW Ak. Signals which are predicted accurately will be
given larger weights in the next iteration, while the weights
of outliers will be reduced. This procedure effectively over-
comes noise and outliers, and will be evaluated in Sec-
tion 3.3.

3.2. Kernel Prior: Sparseness and Continuity

While the robust cost function improves the data energy
in estimating blur kernel, we should also impose better ker-
nel regularities in kernel estimation. It is well known that
the kernel should be sparse, i.e., there are only a few large
values in the kernel, while most values are zero. The sparse-
ness prior, as described in [5], can be formulated by fitting
a mixture of exponential distributions on the kernel values:

p(k7) o 3" wmAme A 0 < K < 1 )
m
and the sparseness energy defined on kernel k; can be writ-
ten as:

Ey(k;) = —aZ(logp(kif))- (8)

The sparseness prior effectively prevents the kernel from
being too smooth and can be implemented by IRLS using
similar techniques in [11]. However, another problem arises
when using sparseness prior: the estimated kernel some-
times becomes too sparse with only a few isolated dots, as
shown in Figure 4.

One important observation of the motion blur is that the
motion is continuous, which reflects the fact that the CCD
sensors are continuously charged during camera shaking.
It is therefore desirable that the value of the blur kernel is
spatially smooth.

We propose a kernel continuity prior to constrain the
spatial smoothness of kernel in shape. It is defined by the
anisotropic diffusion tensor where we treat the kernel k as
a 2D image, -

Vk+Vkt ©)

VK[~
where Vk- is the vector perpendicular to the local gradient
Vk. The energy which regularizes the kernel continuity is
thus defined as:

D=

E.(k) = [ VK"D(Vk)VkdQ. (10)

Note that it differs from the regularization term E,.,(k),
which only smoothes the values of the kernel elements. The
anisotropic diffusion tensor has a nice property, where the
amount of diffusion depends on local geometry. As de-
scribed in [16, 17], the diffusion can be implemented by
a local 2D Gaussian convolution at each iteration. The size
and orientation of Gaussian convolution are adaptive to lo-
cal structure of the blur kernel at the current iteration.
The total energy of kernel estimation is summarized as:

2

E(ki, ko) = Ea(ki, ko) + Y (Es(ki) + Ec(ki)), (11)
i=1

and it is minimized by iteratively applying the conjugate

gradient updates for the data and sparseness energy and

the anisotropic diffusion. This process converges usually

within 50 iterations.



3.3. Evaluation

We summarize this section by evaluating the proposed
kernel estimation approach. As shown in Figure 4. Using
sparseness prior with quadratic cost gives good estimation
at medium noise level but fails at higher noise level. Com-
bining the robust cost function and kernel continuity prior
with sparseness, kernels can be well estimated at very high
noise level.

o =0.01
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Figure 4. Evaluation against noise. (a) Using sparseness prior and
quadratic cost function, at two different noise levels. (b) and (c)
Estimation using robust cost function, sparseness and continuity
priors. Please refer to Figure 2 for the ground truth kernels. (d)
and (e) Noisy patches cropped from the grayscale blurred images.

We further test the robust data energy against outliers.
We occlude the clear image with two different occluders
before applying motion blur, as shown in Figure 5. The
proposed kernel estimation algorithm automatically down-
grades the weight of outliers thanks to the robust cost func-
tion. As shown by the estimated kernels, the proposed ro-
bust kernel estimation algorithm is not sensitive to outliers.

(a) (b) (© (d)
Figure 5. Robust outlier rejection. (a) Two blurred images are oc-
cluded differently. (b) Weight map of the second IRLS iteration.
(c) Final weight map. (d) Estimated kernels.

4. Dual-image Deblurring

One of the most robust 2D deconvolution techniques is
the Richardson-Lucy (RL) algorithm [12, 14], which com-
putes the maximum likelihood estimate of the clear im-
age. However, it usually generates ringing artifacts in the
deblurred image. In [11], a deconvolution algorithm us-
ing natural image prior is introduced to reduce ringing ar-

tifacts providing accurate blur kernel. The blurred/noisy
approach [18] deblurs image using gain controlled RL al-
gorithm to suppress ringing. Because we take two blurred
images as input, our approach is different.

We use the estimated blur kernels together with two
blurred images to reconstruct the clear image. In this dual-
image deblurring algorithm, a deconvolution energy is de-
fined:

E(I) = p1(I @ ks — By) + p2(I @ ka — Ba) + E(I), (12)
where E(I) is the sparseness prior of image gradients as
used in [11]. One important advantage of our approach is
that we make use of the strong constraint that the deblurred
image should be consistent with both blurred observations.
However, there might exist outliers or inconsistence be-
tween two images. In order to deal with this, we design
the correlated robust cost functions p1 (), p2(-) which have
similar property as that we used in kernel estimation.

In dual-image deblurring, outliers are the set of pixels
inconsistent between two blurred images, such as the two
artificially added birds in Figure 5. We should first identify
outliers and avoid inconsistent solution by selecting pixels
to deblur from only one blurred image at these locations.
We implement the robust cost functions by reweighted least
square and correlate the weighting matrices W and W'/, We
rewrite Equation 12 as follows:

E(I) = |W(I @ky — By)||*+||W'(I @ ks — Bo)||*+E(I).

We then define the residuals and uncorrelated weights:

2
reieka T By nmaa

2
! — _ = -
r"=1®ky — Ba, v 2524_%2. (13)

The correlated reweight matrix W and W are diagonal with
elements:

v
v l)1+1),7UZZT or v, >T
43 -
P, v, <T and v, <T ’

The threshold 7 is set to reject outliers. When the
weights v and v’ from either image is large, pixels from both
images are used to reconstruct the clear image. At locations
where the weights from both images are small, the algo-
rithm switches to single image deconvolution. P = {0, 1}
is a predefined indicator to decide which image the algo-
rithm relies on when outlier/inconsistence is detected.

We use the blurred images and estimated kernels from
Figure 5 to perform deblurring. As shown in Figure 6,
our algorithm improves significantly over single-image RL
method [12] and algorithm using sparseness prior [11].



They exhibit either visible ringing artifacts, or loss of de-
tails. On the contrary, there are much fewer artifacts and
details are well retained in our result. We also compute the
PSNRs of the deblurred images, and the dual-image ap-
proach has much higher PSNR than other two methods.

Single image RL
(a) 26.14dB

Single w/ prior
(b) 30.30dB

Dual-image w/ prior
(c) 32.64dB

: ?' I ‘1_:]
W/O rejection

Ground truth
(d) ©) ®

Figure 6. Deblurring synthetic images. (a)-(c) compare deblurring

result with previous approaches. The second row shows the resid-

ual comparing to the ground truth. (d)-(f) show the effectiveness

of dual-image deblurring with outlier rejection.

With outlier rejection

5. Robust Feedback Algorithm for Joint Ker-
nel Estimation and Image Deblurring

We have presented robust kernel estimation and deblur-
ring algorithms in previous sections. As we have demon-
strated, our dual-image deblurring algorithm produces good
results even when the estimated kernels are not perfectly
accurate, because it can correct errors by enforcing consis-
tence between two observations. We believe that the priors
used in kernel estimation and those used in image deblur-
ring provide different information and the deblurred image
can be used to help the kernel estimation. In this section,
we present a novel feedback approach to iteratively refine
the kernel estimation as well as the deblurred images.

After we have obtained the clear image I from Section 4,
we feed it back to the kernel estimation step, where a feed-
back energy is defined as:

(a) 32.64dB
Figure 7. Deblurred result before and after feedback. The second
row shows the residual comparing to the ground truth.

(b) 35.39dB

We use the robust cost function again, because it can also
account for inaccurately estimated pixels values in the de-
blurred image / which can be suppressed as outliers.

The feedback energy is combined with the original data
energy and kernel priors. Now we write the kernel estima-
tion energy as:

E(ki,k2) = Ea(ki, ko) + Zz Ey (k)
+ Zi (s By (ki) + acEo(k;)),i = 1,2, (16)

We now summarize the proposed feedback approach as
in Algorithm 1.

Algorithm 1 Feedback Approach

Step 1: Initial kernel estimation using two blurred images.
Step 2: Deblurring using two images and estimated kernels.
Step 3: Kernel refinement.

Repeat Step 2 and 3 until convergence.

Initial estimation E

Bi

ZI

Blurred images

Kernel refinement

Feedback

Dual-image
deblurring

To illustrate the effectiveness of the feedback algorithm,
we compare the close-up views of the deblurred results be-
fore and after executing the feedback iterations. The visual

Kernels




(a)
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Figure 8. Deblurring MAP photos. (a) Two blurred inputs. (b) Deblurred results of (a), using single image kernel estimation [5] and
RL deblurring algorithm. (c) Deblurred image using the proposed approach. (d) Top: estimated kernels from two blurred images in (a)
respectively using single image kernel estimation. Bottom: estimated kernels using proposed approach. Kernel size is 19 by 19.

(a) (b) (c)

Figure 9. Comparing deblurring algorithms using the estimated kernels from our approach. (a) Single image deblurring results using RL
algorithm. (b) Single image deblurring results using image priors [11]. (¢) Dual-image deblurring results.

artifacts are further reduced after feedback. The increasing
PSNR indicates that it improves the image accuracy as well
as the kernel accuracy. We will show in Section 6, where the
feedback approach refines kernel estimation and deblurring
for very challenging real example.

6. Experiments

We have tested our algorithm on synthetic data and now
we carry out experiments on a variety of real objects. The
photos were taken by consecutive shooting at the same ex-
posure time. We interactively align the blurred images us-
ing Photoshop [7] to rectify rotation and large translation
between image pair.

The first example is MAP shown in Figure 8. We com-

pare kernel estimation with single image algorithm. Two
blur kernels are independently estimated as described in [5].
We then deblur the two input images using the RL algo-
rithm. We can see that the single image approach estimates
reasonable kernels but they are not accurate enough. The
kernels estimated from the proposed approach are much
more accurate as shown in the figure. The deblurred image
from our dual-image deblurring algorithm is much better
than that from the single image approach.

Using the MAP images, we also compare the deblurring
results using the proposed dual-image algorithm with pre-
vious single image algorithms, where the same kernels esti-
mated from our approach are used. From the close-up views
in Figure 9, we can see that RL algorithm still produces vis-
ible ringing artifacts, even if the kernel is very accurate. The
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Figure 10. Deblurring WALL photos. (a) Two blurred inputs. (b) Left: estimated kernels using single image approach. Kernel size 51 by
51. Middle: estimated kernels using proposed approach, before feedback iterations. Right: refined kernels after feedback iterations. Kernel
size is 99 by 99. (c) Deblurred images using kernels estimated from single image approach and RL deblurring algorithm. The input images
are downsampled to 50% size. (d) Deblurred image using the proposed approach.

reason is that there exist image noise and loss of high fre-
quency detail in both image and kernel. Using image pri-
ors in single-image deblurring can reduce artifacts but this
method may oversmooth the image. Our result exhibits few
artifact and preserves details very well, as shown in Fig-
ure 9(c), because the proposed approach successfully makes
two input images complementary to each other.

We show one challenging example WALL in Figure 10.
The blurred images are very noisy and the motion blur is
quite large (50 ~ 75 pixels). Because the noise model in [5]
may not afford to work at the original resolution, we down-
sample the input images to half resolution and run the sin-
gle image algorithm to estimate blur kernels, which is sug-
gested in the implementation of [5]. We tried our best to
choose image region and tune parameters but the output ker-
nel estimates seem not good enough. On the contrary, we
runs the proposed approach at the original resolution, and it
outputs much better kernels given two blurred images. Our
approach robustly estimates good kernels in the initial iter-
ation and they are refined after several feedback iterations.

Without the feedback iterations, the kernels are not accurate
enough. In the end, the dual-image approach successfully
outputs very clear image as shown in Figure 10.

We finally test our algorithm on another very challeng-
ing example FLOWER. There are several difficulties: the
input blurred photos have pixels closed to saturation; small
depth variation of scene; the camera position is not strictly
fixed. We show in Figure 11 that our approach can still out-
put good kernel estimation and deblurring results despite of
these difficulties. This example shows the robustness of the
proposed approach against outliers and noise, and it can be
applied to a wide range of real-world images.

The running time of our algorithm is linear with the im-
age size, kernel size and the number of iterations. For a
small size problem with image size 320X240, and kernel
size 25X25, each feedback iteration takes 3 minutes on a
Intel P4 3.2G desktop machine. It usually requires about
5 to 10 feedback iterations to converge depending on the
difficulty of the input data.



7. Conclusions

We have presented a novel dual-image motion deblurring
algorithm. The individual modules, which include robust
dual-image kernel estimation and dual-image deblurring al-
gorithms outperform previous approaches respectively. The
feedback approach proposed in this paper combines kernel
estimation and deblurring to iteratively refine the results.
We have shown by synthetic and real examples the effec-
tiveness of our approach. Future work may include speed-
ing up the system and investigating automatic alignment al-
gorithms combined with deblurring, so that our approach
can be applied to multiple input images and videos.
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