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Figure 1: Non-blind deconvolution. From left to right: input blurred image and blur kernel (estimated from the blurred image using [Fergus
et al. 2006]), standard Richardson-Lucy (RL) [Lucy 1974] result, and our result.

Abstract. Ringing is the most disturbing artifact in the image
deconvolution. In this paper, we present a progressive inter-scale
and intra-scale non-blind image deconvolution approach that sig-
nificantly reduces ringing. Our approach is built on a novel edge-
preserving deconvolution algorithm called bilateral Richardson-
Lucy (BRL) which uses a large spatial support to handle large blur.
We progressively recover the image from a coarse scale to a fine
scale (inter-scale), and progressively restore image details within
every scale (intra-scale). To perform the inter-scale deconvolution,
we propose a joint bilateral Richardson-Lucy (JBRL) algorithm so
that the recovered image in one scale can guide the deconvolution
in the next scale. In each scale, we propose an iterative residual
deconvolution to progressively recover image details. The experi-
mental results show that our progressive deconvolution can produce
images with very little ringing for large blur kernels.

1 Introduction

The goal of image deconvolution/deblurring is to reconstruct a true
image I from a degraded image B that is the convolution of the true
image and a spatial invariant/variant kernel K:

B = noise(I ⊗ K), (1)

where ⊗ is the convolution operator, and noise(·) is the noise pro-
cess. The problem is called blind deconvolution if both kernel and
image are unknown, or non-blind deconvolution if only the image is
unknown. The image deconvolution is not only critical to many sci-
entific applications such as astronomical imaging, remote sensing,
and medical imaging, but also important for consumer photography
and computational photography.

In consumer photography, image blurring is often unavoidable due
to insufficient lighting, use of a telephoto lens, or use of a small

aperture for a wide depth of field. As resolution increases, cam-
era manufacturers have begun to compete on the basis of mechan-
ical image stabilization. In computational photography, the cap-
tured image is usually a convolved image that needs to be de-
convolved, for instances, in coded exposure [Raskar et al. 2006],
masked aperture [Levin et al. 2007; Veeraraghavan et al. 2007],
multi-aperture [Green et al. 2007], light field microscopy [Levoy
et al. 2006], and wavefront coding [Dowski and Johnson 1999].

However, the deconvolved image usually contains unpleasant de-
convolution artifacts due to the ill-posedness of the deconvolution
even if the kernel is known. Because the kernel is often band-
limited with a sharp frequency cut off, there will be zero values
or near-zero values in its frequency response. At those frequencies,
the direct inverse of the kernel usually has a very large magnitude,
causing excessive amplification of signal and noise. The two most
prevalent resulting artifacts are ripple-like ringing around the edges
and amplified noise. Ringing artifacts are periodic overshoots and
undershoots around the edge, which decay spatially away from the
edge, as shown in the middle of Figure 1. It is extremely difficult to
remove these artifacts after the deconvolution. Moreover, we can-
not obtain the true kernel in practice. The inaccurate kernel will
also amplify the artifacts and result in undesired image structures.

In this paper, we focus on non-blind deconvolution. In many scien-
tific applications, the kernel is known. In the computational photog-
raphy systems, the kernel is usually known or known up to a scale.
For consumer photography, there are a number of effective ways to
estimate the kernel. For instance, the kernel due to the camera mo-
tion can be effectively estimated from a single image [Fergus et al.
2006], from a secondary sensor [Ben-Ezra and Nayar 2003], from
a secondary image [Yuan et al. 2007], from an accelerometers, or
from a gyroscopes [Invensense.com ]. The kernel due to simple ob-
ject motion such as 1D motion, affine transformation, or in-plane
rotation, can be estimated automatically or interactively [Raskar
et al. 2006; Levin 2006; Jia 2007].

To reduce undesirable artifacts, edge regularization tech-
niques [Terzopoulos 1986; Rudin et al. 1992; Geman and Yang
1995; Black et al. 1998; Dey et al. 2006; Levin et al. 2007]
have been proposed using a non-Gaussian prior on the image
to add strong regularization for the smooth regions and weak
regularization for the sharp edges. Thus, the sharp edges are
preserved while the ringing artifacts are reduced.

Unfortunately, the current edge preserving methods only work well
for relatively small kernels (e.g., <15 pixels) because these meth-



ods need to first locate the image edges in the initial blurred im-
age or the image recovered in each iteration. If the blur kernel is
large, locating the image edges in the first iteration becomes diffi-
cult. Consequently, inappropriate regularization yields poor results.

Our approach. We propose a progressive inter-scale and intra-
scale non-blind deconvolution that preserves the edges and reduces
the ringing artifacts, especially for the large kernel. First, we pro-
gressively perform the deconvolution in the scale space. At the
coarsest scale, we are able to obtain reasonably good edges as the
kernel is small. Using the recovered edges in one scale as a guide,
we can more accurately locate the edges in the finer scale. Thus,
we progressively apply an appropriate regularization from coarse
to fine so that the sharp edges in the finest scale can be eventu-
ally recovered. Second, in each scale, we also progressively carry
out the deconvolution by an iterative residual deconvolution algo-
rithm. This algorithm gradually recovers more and more image
details/edges which could not been recovered in the previous scale.

The above inter-scale and intra-scale deconvolution relies on a
novel deconvolution algorithm called joint bilateral Richardson-
Lucy (JBRL). The JBRL preserves the edges by taking both the
image itself and a guide image into account. The guide image is
the recovered image from the previous scale in the inter-scale de-
convolution, or the restored image from the previous iteration in
the intra-scale deconvolution. The JBRL algorithm is built on a
proposed, more fundamental edge-preserving algorithm called bi-
lateral Richardson-Lucy (BRL), which introduces a bilateral regu-
larization by borrowing the idea of bilateral filtering [Tomasi and
Manduchi 1998; Durand and Dorsey 2002]. The BRL can handle
larger blur kernels because it uses a much larger spatial support.

By performing our progressive intra-scale and inter-scale deconvo-
lution, we can recover the sharp edges and fine details while sub-
stantially suppress the ringing artifacts, as shown in Figure 1.

2 Related work

Non-blind deconvolution. There is an abundant literature on the
non-blind deconvolution. The reader is referred to [Banham and
Katsaggelos 1997] for classical methods, such as Wiener filter,
Kalman filter, and Tikhonov regularization [Tikhonov 1943]. In
this paper, we focus on the work most relevant to ours.

Edge-preserving regularization [Geman and Reynolds 1992] gives
limited or small penalties on large image edges according to a non-
Gaussian prior, e.g., TV regularization [Rudin et al. 1992; Dey et al.
2006]. In [Levin et al. 2007], excellent results are obtained us-
ing a sparse, natural image prior which encouraging the majority
of image pixels piecewise smooth. Other priors include controlled
continuity funcition [Terzopoulos 1986] and half-quadratic func-
tion [Geman and Yang 1995]. See [Black et al. 1998] for a summary
for various robust functions.

Image edges can also be preserved by explicitly introducing seg-
mentation. [Mignotte 2006] uses the adaptive regularization, parti-
tioning the image into homogeneous regions during each iteration.
Bar et al. [2006] couple the deconvolution and segmentation using
a Mumford-Shah regularization.

Most multi-scale deconvolution methods [Murtagh et al. 1995;
Neelamani et al. 2004; Figueiredo et al. 2007] operate in the
wavelet domain. Essentially, these approaches also try to preserve
the edges by adaptive regularization on the wavelet coefficients.

The above approaches share a common weakness: if the blur ker-
nel is large, it is difficult to find edges in the blurred image or the
restored image in each iteration.

... ...
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Figure 2: Progressive deconvolution. The image is progressively
reconstructed from coarse scale to fine scale. At the top scale 0, we
recover and upsample the deconvoluted image using the bilateral
RL algorithm. At each scale l, we apply the iterative residual de-
convolution (which is based on the joint bilateral RL algorithm) to
progressively recover image details.

Blind deconvolution. A comprehensive literature review for the
blind deconvolution can be found in [Kundur and Hatzinakos 1996].
Early works [Reeves and Mersereau 1992; Caron et al. 2002] usu-
ally only handle a simple parametric form of the kernel. Later, Fer-
gus et al. [2006] showed that a very accurate kernel can be esti-
mated for blur due to camera shake by using natural image statistics
together with a sophisticated variational Bayes inference algorithm.
They recover the image using the standard Richardson-Lucy (RL)
algorithm [Lucy 1974]. Spatially variant kernel estimation has also
been studied in [Bardsley et al. 2006; Levin 2006]

Deconvolution in computational photography. The deconvolu-
tion is an essential component in one branch of computational pho-
tography: computational optics, which captures optically coded
(convolved) images followed by computational decoding (decon-
volution) to produce new images. For example, a coded aperture in
time is used for motion deblurring [Raskar et al. 2006] and image
super-resolution [Agrawal and Raskar 2007], and a coded aperture
in space is used for depth estimation and refocusing [Levin et al.
2007; Veeraraghavan et al. 2007; Green et al. 2007], modulated
light field capturing [Veeraraghavan et al. 2007], and improving
the pinhole camera in astronomy [Zand 1996]. In light field mi-
croscopy [Levoy et al. 2006], the 3D volume is reconstructed from
a focal stack by a 3D deconvolution. In wavefront coding [Dowski
and Johnson 1999], the final image is deconvolved from a depth-
independent out-of-focus image.

3 Overview

In this section, we present an overview of our progressive decon-
volution framework. We build a pyramid {Bl}L

l=1 of the full-

resolution blurred image B, and a pyramid {Kl}L
l=1 of the blur

kernel K using bicubic downsampling and scale factor of
√

2. Our
goal is to progressively recover an image pyramid {I l}L

l=1 from
coarse to fine. Figure 2 is the flowchart and Figure 3 shows an
example.

At the top scale 0, we directly apply the proposed bilateral RL
(BRL) algorithm (Section 4). The recovered image at this scale
contains few ringing artifacts because the BRL algorithm can ef-
fectively suppress the ringing when the kernel is relatively small.
Then, we upsample the image for the next scale using the BRL al-
gorithm again.

At each scale l, we use the upsampled result I l from the previous
scale as a guide image. We apply the joint bilateral RL (JBRL) algo-
rithm (Section 5.1) which uses guide image I l to guide the deconvo-
lution. Moreover, we progressively recover the image details by an
iterative residual deconvolution algorithm (Section 6.1). The coarse
details are first recovered using strong regularization strength, and
the fine details are later restored using weak regularization strength,
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Figure 3: Progressive deconvolution example. (a) from left to right: blurred image, blur kernel, result by standard RL algorithm, and ground
truth image. (b) progressively recovered images from coarse scale to fine scale by our approach. (c) in each scale, the guide image is the
upsampled image from the previous scale. The image details are progressively recovered. The numbers in braces are the iteration steps.
Compared with the standard RL result, our final result (scale 6 in (b)) contains much fewer ringing artifacts.

as shown in Figure 3 (c). Finally, we upsample the resulting image
for the next scale.

Using the above progressive inter-scale and intra-scale deconvolu-
tion, we gradually recover an image with few ringing artifacts, as
shown in Figure 3(b).

4 Bilateral Richardson-Lucy (BRL)

We first revisit the Richardson-Lucy (RL) deconvolution algo-
rithm [Lucy 1974], then introduce our edge-preserving deconvo-
lution algorithm which we call bilateral Richardson-Lucy (BRL).
BRL is the building block of our progressive deconvolution frame-
work.

Richardson-Lucy (RL). For a Poisson noise distribution, the like-
lihood probability of the image I can be expressed as:

p(B|I) =
∏

x

(I ⊗ K)(x)B(x) exp {−(I ⊗ K)(x)}
B(x)!

, (2)

where Bp = Poisson((I ⊗ K)(x)) is a Poisson process for each
pixel x. For simplicity, we omit x in the following equations. The
maximum likelihood solution of I can be obtained by minimizing

the following energy:

I∗ = arg min
I

E(I), (3)

where

E(I) =
∑

{(I ⊗ K) − B · log[(I ⊗ K)]} . (4)

Taking the derivative of E(I) and assuming the normalized kernel

K (
∫

K(x)dx = 1), the Richardson-Lucy (RL) algorithm [Lucy
1974] iteratively updates the image according to:

It+1 = It

[

K∗ ⊗ B

(It ⊗ K)

]

, (5)

where K∗ is the adjoint of K, i.e, K∗(i, j) = K(−j,−i), and t is
a time step. The RL algorithm has two important properties: non-
negativity and energy preserving. The non-negativity constrains es-
timated values be negative. The algorithm preserves the total energy
of the image in the iteration. These two properties give the superior
performance of the RL algorithm. In addition, the RL algorithm is
efficient; it requires only two convolutions and two multiplications
per iteration.



4.1 Bilateral Richardson-Lucy (BRL)

The RL algorithm does not preserve the edges in the design of the
regularization. So we add a new edge-preserving regularization
term EB(I) to the energy (3):

I∗ = arg min
I

[E(I) + λEB(I)], (6)

where λ is the regularization factor. We define the term EB(I) as:

EB(I) =
∑

x

∑

y∈Ω

f(|x − y|)ρ(|I(x)− I(y)|), (7)

where f(·) is the spatial filter and ρ(·) is the robust penalty function.
We take a Gaussian for the spatial filter

f(|x − y|) = exp

(

−|x − y|2
2σs

)

.

The spatial support Ω centered at each pixel x controls the amount
of neighboring pixels involved. We adaptively set the radius of spa-
tial support rΩ to match the size of the blur kernel: rΩ = 0.5rK ,
where rK is the radius of the blur kernel. The spatial variance σs

could be derived from the radius rΩ: σs = (rΩ/3)2.

For the robust function ρ(·), we choose the following form:

ρ(|I(x)− I(y)|) = 1 − exp

(

−|I(x) − I(y)|2
2σr

)

.

It gives a large but limited penalty on the image difference |I(x) −
I(y)| for the range variance σr. We adaptively set the range vari-
ance to 0.01×|max(I)−min(I)|2 by following [Kopf et al. 2007].

By minimizing (6), we get a regularized version of RL algorithm:

It+1 =
It

1 + λ∇EB(It)

[

K∗ ⊗ B

(It ⊗ K)

]

. (8)

The derivative ∇EB(I) can be computed efficiently by:

∇EB(I) =
∑

y∈Ω

(

Id
y − Id

y Dy

)

, (9)

where Dy is the displacement matrix (operator) which shifts the

entire image Id
y by |~e| pixels in the direction of ~e. Here, ~e denotes

the displacement vector from each pixel x to its neighbor pixel y.
Id

y is a weighted long-range gradient image in the direction of ~e.

For each pixel x in the image Id
y ,

Id
y (x) = f(|x − y|)g(|I(x)− I(y)|) · (I(x) − I(y))

σr

, (10)

where the range filter g(|I(x)− I(y)|) = 1− ρ(|I(x)− I(y)|) =

exp(− |I(x)−I(y)|2

2σr

) is a Gaussian filter. The weight for the dif-

ference |I(x) − I(y)| is computed by a bilaterally weighted filter
f(·)g(·) in image and range, also called bilateral filter [Tomasi and
Manduchi 1998; Durand and Dorsey 2002].

The gradient image Id
y controls the regularization of each pixel.

Without the bilateral filter, Id
y would place a large penalty on large

image gradient, so the process would smooth the sharp edges. The
bilateral filter, however, preserves the sharp edges because it takes
on smaller values as the spatial distance and/or the range distance
increase. Because we apply a bilateral regularization term in (7), we
call the deconvolution algorithm in (8), bilateral Richardson-Lucy
(BRL).

Tikhonov regularization TV regularization

Levin’s method our approach

Figure 4: Comparison of three regularization algorithms. Our ap-
proach is able to recover more image details.

The BRL adaptively uses the information in a large spatial support
(11 × 11 in this case). Figure 4 shows the comparison of five de-
convolution algorithms: standard RL, Tikhonov regularization, TV
regularization [Dey et al. 2006], Levin’s method [Levin et al. 2007],
and our algorithm. In this example, we downsample the blurred im-
age so that the blur kernel size is about 15 pixels. The results show
that BRL preserves image edges well, suppresses ringing artifacts,
and recovers more image details.

Although using a larger spatial support helps, blurred images with
large blur kernels are still beyond the capability of the BRL algo-
rithm. Figure 5 (a) shows the BRL result for 40 × 40 kernel. De-
tails are also suppressed. In the next two sections, we present a
progressive deconvolution approach which is capable of effectively
handling large blur kernels.

5 Progressive Inter-scale Deconvolution

The basic idea of progressive deconvolution is to use an image as
guide for the deconvolution. In the inter-scale level, we use the
image recovered in the one scale as the guide image for the decon-
volution in the next scale. In the intra-scale level, we use the image
restored in one iteration as the guide image for the next iteration. In
this section, we first introduce the inter-scale deconvolution.

Figure 3 (a) shows a blurred image with a 40 × 40 blur kernel.
The leftmost image (scale 0) in Figure 3 (b) is the deconvolution
result by the BRL at the coarsest scale. As we can see, this coarse
scale image provides more useful edge information than the original
blurred image. If we may exploit the information from this image
for the deconvolution in the next scale, we can obtain a better result.
If we continue the process from coarse to fine, better result at the
finest scale can be obtained.

To exploit the edge information in the guide image, we propose a
joint bilateral RL (JBRL) algorithm as follows, motivated by the
successful joint bilateral filtering in [Petschnigg et al. 2004; Eise-
mann and Durand 2004; Kopf et al. 2007].

5.1 Joint Bilateral Richardson-Lucy (JBRL)

Let the upsampled image from the previous scale be the guide im-
age Ig. We change the new regularization term that we introduced
in the above section to a joint term EJB(I ; Ig) that takes both the
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Figure 5: Results on a 40 × 40 kernel. (a) bilateral RL (BRL). (b) progressive inter-scale deconvolution using joint bilateral RL (JBRL).
More details are recovered. (c) progressive inter-scale and intra-scale deconvolution. Much finer details are restored. (d) true image.

image and the guide image into account:

EJB(I ; Ig) =
∑

x

∑

y∈Ω

f(|x − y|)g′(|Ig(x) − Ig(y)|)ρ(|I(x)− I(y)|), (11)

where g′(|Ig(x) − Ig(y)|) is the range filter applied on the guide
image Ig . We also use a Gaussian for this range filter:

g′(|Ig(x) − Ig(y)|) = exp

(

−|Ig(x) − Ig(y)|2
2σg

r

)

,

where σg
r is the range variance, which is adaptively set to 0.01 ×

|max(Ig) − min(Ig)|2. To reconstruct the image, we minimize:

I∗ = arg min
I

[E(I) + λEJB(I ; Ig)]. (12)

The derivation of corresponding RL algorithm is the same except
that Equation (10) became:

Id
y (x) = f(|x − y|)g(|I(x)− I(y)|) ·

g′(|Ig(x) − Ig(y)|) · (I(x) − I(y))

σr

. (13)

The additional range filter g′(|Ig(x) − Ig(y)|) decreases the reg-
ularization at places where the image gradient |Ig(x) − Ig(y)| is
large in the guide image Ig. Thus, the regularization is adaptively
guided by two kinds of forces: the “internal force” g(|I(x)−I(y)|)
from the image itself and the “external force” g′(|Ig(x) − Ig(y)|)
from the guide image. Figure 6 shows the effectiveness of the joint
bilateral RL.

Figure 5 (b) shows the progressive inter-scale deconvolution result
which is better than the BRL result in Figure 5 (a). However, many
details are not be recovered. In the next section, we introduce the
intra-scale deconvolution to restore more fine details in each scale.

Upsampling with BRL In a typical scale space approach, the solu-
tion in one scale is upsampled for the next scale, usually by a sim-
ple bilinear or bicubic interpolation schema. These methods tend
to smooth the edges, so are insufficient for our approach. We adopt
the BRL to upsample the image as follows. We assume that the
bicubic upsampled image Iu is a degraded version of the intended
hi-resolution Ih. The degradation is approximated by a small Gaus-
sian blur kernel k: Iu = Ih ⊗ k with the standard deviation of 0.5
for the upsampling factor

√
2. We found that the approximation

gives very good results for our purpose of producing an upsampled
image with sharp edges.

6 Progressive Intra-scale Deconvolution

The progressive inter-scale deconvolution only focus on the loca-
tion of the edge but not the edge strength or scale. In fact, the im-
age with strong edges requires large global regularization strength

residual blurred image guide image 

bilateral RL joint bilateral RL 

Figure 6: Joint bilateral RL. Top: residual blurred image ∆B and
guide image Ig. Bottom: deblurred residual layers ∆I by bilateral
RL and joint bilateral RL. The latter recovers more details.

(λ) to effectively suppress the ringing in the smooth regions be-
cause the magnitude of ringing artifact is usually proportional to
the amplitude of the jumping edges. However, large regulariza-
tion strength will also suppress the detail recovery. Therefore, we
propose a progressive intra-scale deconvolution to recover image
details step-by-step by decreasing the regularization strength, using
an iterative residual deconvolution as follows.

6.1 Iterative residual deconvolution

The residual deconvolution proposed in [Yuan et al. 2007] performs
the deconvolution on the relative image to reduce the absolute am-
plitude, and so to reduce the resulting ringing artifacts. We integrate
this idea into an iterative deconvolution scheme that progressively
recovers image details while decreasing the regularization strength.
The algorithm is described in Figure 7.

In each iteration, we first compute the blurred residual image
∆B = B−Ig⊗K. Then, we apply the joint bilateral RL to recover
the detail layer ∆I from the blurring equation ∆B = ∆I⊗K. The
image Ig is first used as the guide image in the joint bilateral RL
algorithm, and then is updated with recovered layer of details ∆I
for the next iteration.

This amounts to minimizing the following energy by decreasing the
regularization strength λ during iterations:

∆I∗ = arg min
∆I

[E(∆I) + λEJB(∆I ; Ig)], with λt+1 = γλt,

(14)



residual blurred image:

joint bilateral RL deconv:

detail layer:

guide image:

Ig

∆B = B − Ig ⊗ K

∆B = ∆I ⊗ K

∆I

Ig = Ig + ∆I

Figure 7: Iterative residual deconvolution. First, we calculate a
residual blurred image ∆B using the guide image Ig which is com-
puted from the previous scale. Second, the detail layer ∆I is recov-
ered by the joint bilateral RL (JBRL) with the help from the guide
image Ig. Last, the guide image Ig is updated by adding the new
recovered detail layer.

where γ is a decay factor. In our implementation, we set the decay
factor to 1

3
and iterate three times to recover three layers of details.

As shown in Figure 3 (c), each iteration recovers a layer of image
details and the layers represent finer and finer image details.

Hi-pass JBRL for ringing suppression In the last iteration (the
third one), the regularization strength decreases to λ

9
and becomes

too small to effectively suppress ringing. We find that the frequen-
cies of the most noticeable ringing artifacts are usually lower than
the frequencies of the details that we want to recover in the last iter-
ation. Furthermore, human perception tolerates small scale ringing
in highly textured regions. Based on this observation, we add an
energy term EH(∆I) to enforce a smoothness constraint on the
middle range of frequencies of the recovered details:

∆I∗ = arg min
I

[E(∆I) + λEJ(∆I ; Ig) + βEH(∆I)], (15)

where β is a scale parameter set to 0.4λ. The term EH(∆I) =
∑

x
∆I ⊗ G is the sum of filtered image ∆I ⊗ G by a Gaussian

kernel G with the variance σh = σs. In other words, we add a
mid-scale regularization term to suppress the most unpleasant mid-
scale ringing artifacts while allow the recovery of fine details. We
only add this regularization in the last iteration. Figure 8 shows the
results with and without the energy term EH(∆I), and extracted
the ringing layer.

Figure 5 (c) shows the result by our final inter-scale and intra-scale
deconvolution and the intra-scale deconvolution. Much more de-
tails are recovered with the intra-scale deconvolution, compared
with the results in Figure 5 (a) and (b).

7 Experimental Results

We apply our progressive deconvolution on a variety of real images.
11, Figure 12 and 13 are three image blurred due to camera shake:
a painting in the museum, an outdoor photographer, and a toy mon-
key. We estimate the blur kernels of these images by Fergus’s single
image method [Fergus et al. 2006]. The estimated kernel sizes are
27 × 27, 38 × 38 and 39 × 39 respectively.

In our experiments, we generally set the spatial variances to the
default values and adaptively set the range variances in bilateral
RL and joint bilateral RL. The regularization factor λ balances the
details recovery and ringing suppression. For the example in Fig-
ure 11, we use a large value 0.05 since the contrast in this image is
high. For other examples, we use the default value 0.03.

The toy monkey in Figure 11 is taken by a telephoto len with effec-
tive 320mm focal length (200mm lens on a DSLR with 1.6 cropping

joint bilateral RL

ringing layer hi-pass, joint bilateral RL

residual blurred image

Figure 8: Hi-pass JBRL in the last iteration at the scale 5. The
ringing layer is computed by subtracting the hi-pass JBRL result
from the JBRL result. All images are enhanced for display.

factor). The image is blurred even with the shutter speed 1/15 secs
and 5.0 aperture. Our approach produces a high quality, natural
looking image compared with standard RL.

In Figure 12, we compare our approach with four leading meth-
ods: standard RL, TV regularization [Dey et al. 2006], Levin’s
method [Levin et al. 2007], and wavelet regularization [Murtagh
et al. 1995]. For the standard RL, we run 20 iterations. For the other
three methods, we fine tune their regularization factors to produce
the most visually pleasant results by balancing the detail recovery
and ringing reduction. Standard RL produces the most noticeable
ringing. The three regularization methods reduce the ringing arti-
facts to a certain degree, but also suppress or blur the image details.
Our approach can recover finer image details and thin image struc-
tures while successfully suppress ringing.

Figure 13 shows cropped views of an outdoor scene. We show the
result by standard RL and TV regularization for the comparison in
the paper. A full comparison is in the supplementary material. As
we can see, the camera, tripod, and shutter release cable are well
reconstructed. The subtle color noises in our result can be removed
by post-processing in the chrominance channels, but we show the
raw deconvolution result here.

In Figure 14, we apply our approach on two examples from [Fergus
et al. 2006]. The blurred images and estimated kernels are obtained
from author’s website1. Note that the main contributions of [Fer-
gus et al. 2006] are on kernel estimation and they use the standard
RL for the non-blind deconvolution. In this paper, we provide a
new non-blind deconvolution algorithm which can further improve
the quality of the recovered image. The combination of the two
approaches is a powerful solution for single image deblurring.

We also apply our approach to an example from [Yuan et al. 2007].
Figure 15(a) is the blurred image and Figure 15(b) is the result
from [Yuan et al. 2007] in which a blurred/noisy image pairs are
used. Figure 15(c) is the result by combing Fergus et al’s ker-
nel estimation and our non-blind deconvolution only using a single
blurred image as the input. The obtained result is comparable to the
result by the Yuan et al’s two image approach.

1http://cs.nyu.edu/fergus/research/deblur/
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Figure 9: The DFT curves of a 1D scanline in 5 images: true im-
age, blurred image, deconvolved results by BRL (no inter-scale, no
intra-scale), by JBRL (inter scale only) and JBRL (inter-scale and
intra-scale).

8 Discussion

Frequency analysis. To better understand the effectiveness of the
inter-scale and intra-scale deconvolution, we perform an analysis
in the frequency domain. We compute one-dimensional Discrete
Fourier Transform (DFT) of a scanline (262th row) in four images
shown in Figure 5 and the corresponding blurred image. The DFT
curves of five scanlines are compared in Figure 9. The main conclu-
sion drawn from the figure is that all three techniques we proposed -
BRL, inter-scale deconvolution, and intra-scale deconvolution play
important roles in recovering of high frequency contents.

Limitations. What is the largest kernel size in the capability of our
approach? It depends on the image size and the frequency spectrum
of the blur kernel. When the kernel size is approaching the image
size, the boundary effect will arise. Figure 10 (top) shows the recov-
ered result using a very large motion blur kernel 160× 160, for the
image size of 700× 525. The system is severely under-constrained
because more unknown pixels outside the image contribute to the
blurred image.

The frequency spectrum of the blur kernel also determines how
much image details we are able to recover. In Figure 10 (bottom),
we apply our approach on the blurred image with a 40 × 40 gaus-
sian kernel. Most high-frequency components have already lost in
the low-pass blurring procedure. We can successfully suppress the
ringing artifacts but are not able recover all image information due
to the frequency loss.

9 Conclusion

The image deconvolution is an important and long-standing prob-
lem for many applications. In this paper, we have presented a pro-
gressive inter-scale and intra-scale non-blind image deconvolution
approach. We have developed two novel edge-preserving deconvo-
lution algorithms, bilateral RL and joint bilateral RL, to make the
progressive deconvolution effective. The results obtained by our
approach show that a combination of progressive inter-scale and
intra-scale deconvolution can recover visually pleasing images with
very little no ringing.

In the future, we plan to extend our approach to 3D deconvolu-
tion [Levoy et al. 2006]. We are also interested to apply the pro-
gressive framework to other restoration problems requiring edge
preservation, such as image denoising or surface reconstruction.

Figure 10: Limitations. Top: our result on a 160×160 motion blur
kernel. Boundary artifacts appear. Bottom: our result on a 40×40
gaussian kernel. High frequency details destroyed in the blurring
process cannot be recovered.
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Figure 12: A painting in the museum. Top (from left to right): blurred image and estimated kernel, standard RL, and TV regularization.
Middle (from left to right): Levin’s method, wavelet regularization, and our approach. Bottom: close-up views in the lexicographic order.

Figure 13: An outdoor photographer. Top: blurred image and kernel, standard RL, and our approach. Bottom: close-up views of blurred
image, standard RL, TV regularization, and our approach.



(a) blurred image and kernel (b) [Fergus et al. 2006] (c) our result (d) close-up views

(a) blurred image and kernel (b) [Fergus et al. 2006] (c) our result (d) close-up views

Figure 14: (a) The input blurred images and estimated kernels are borrowed from [Fergus et al.2006]. (b) Their results (borrowed from [Fer-
gus et al. 2006]) are achieved by a standard RL algorithm given estimated kernel. (c) our decovolution results from the same blurred images
and estimated kernels (d) Close-up views show our results contain fewer ringing artifacts and ghosting effects than Fergus et al.’s result.

(a) blurred image and kernel (b) [Yuan et al. 2007] (c) our result (d) close-up views

Figure 15: (a) The input blurred image is borrowed from [Yuan et al. 2007] and the kernel is estimated from the blurred image using [Fergus
et al. 2006]. (b) The deconvolution result (borrowed from [Yuan et al. 2007]) is achieved from a pair of images(blurred/noisy). (c) our
non-blind deconvolution result is computed from the blurred image only. The kernel is estimated by [Fergus et al. 2006].


