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Toward Verified Biological Models

Avital Sadot, Jasmin Fisher, Dan Barak, Yishai Admanit, Michael J. Stern,
E. Jane Albert Hubbard, and David Harel

Abstract—The last several decades have witnessed a vast accumulation of biological data and data analysis. Many of these data sets
represent only a small fraction of the system’s behavior, making the visualization of full system behavior difficult. A more complete
understanding of a biological system is gained when different types of data (and/or conclusions drawn from the data) are integrated
into a larger scale representation or model of the system. Ideally, this type of model is consistent with all available data about the
system, and it is then used to generate additional hypotheses to be tested. Computer-based methods intended to formulate models
that integrate various events and to test the consistency of these models with respect to the laboratory-based observations on which
they are based are potentially very useful. In addition, in contrast to informal models, the consistency of such formal computer-based
models with laboratory data can be tested rigorously by methods of formal verification. We combined two formal modeling approaches
in computer science that were originally developed for nonbiological system design. One is the interobject approach using the
language of live sequence charts (LSCs) with the Play-Engine tool, and the other is the intraobject approach using the language of
statecharts and Rhapsody as the tool. Integration is carried out using InterPlay, a simulation engine coordinator. Using these tools, we
constructed a combined model comprising three modules. One module represents the early lineage of the somatic gonad of
Caenorhabditis elegans in LSCs, whereas a second more detailed module in statecharts represents an interaction between two cells
within this lineage that determine their developmental outcome. Using the advantages of the tools, we created a third module
representing a set of key experimental data using LSCs. We tested the combined statechart-LSC model by showing that the
simulations were consistent with the set of experimental LSCs. This small-scale modular example demonstrates the potential for using
similar approaches for verification by exhaustive testing of models by LSCs. It also shows the advantages of these approaches for

modeling biology.

Index Terms—C. elegans, modeling, statecharts, verification.

1 INTRODUCTION

BIOLOGICAL systems are fundamentally similar to reactive
engineered systems. By definition, a reactive system
continuously interacts with its environment [1], which also
describes the functioning of biological systems [2], [3]. This
analogy can be extended to a comparison between building
engineered systems and the process of modeling and model
verification of biological systems [4]. The design of an
engineered system begins with the definition of a set of
requirements determined by a concept of how the system
should eventually work. These requirements not only guide
the construction and implementation of the system but are
also used in verifying the system’s correctness, that is, that
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the system acts as it should with respect to the require-
ments. Building biological models, on the other hand,
involves reverse engineering, where mechanistic models are
built to represent how the biological system works based on
information known about the system [4] (Fig. 1). By testing
an existing biological system under different conditions, we
increase our knowledge of its behavior. The observed
results from these tests can then be formalized to generate a
set of behavioral “requirements.” The inferred rules
governing the system’s behavior can then be used to
construct a mechanistic model. As in engineered systems,
these “requirements” can also be used to verify the
mechanistic model’s “correctness,” that is, its consistency
with the laboratory observations on which it was based [4]
(Fig. 1). The biological model will optimally be based on all
the available relevant information but may also include
educated assumptions about how the system functions [5].

In computer science, there are a number of accepted
terms used for ways to show that a system satisfies its
requirements. Testing is used mainly to describe the fact that
one runs, or executes, the system or a model thereof on
some inputs. In most cases, the set of inputs is infinite or
impractical. The theory of testing is concerned with finding
a “good” set of tests, which serve to somehow cover most
important cases. Verification is used to describe a rigorous
mathematical and/or algorithmic process, whereby one
proves that the program satisfies the specification. Success-
ful verification leaves no doubts as to the system’s
correctness relative to the precise specification of the
requirements. Model checking is one of the most widely
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Fig. 1. Building engineered systems versus modeling and model
verification of biological systems. The color code emphasizes the
analogy between the “real” man-made system and the lab results from
the actual biological system (both in blue) and the analogy between the
requirements of the design of the man-made system and the
hypothesized mechanistic model of the biological system (both in red).
The formalized stages of both processes are shown in brown.

used techniques for carrying out verification [6]. Exhaustive
testing is the term used for the case where the testing
actually covers all possibilities, so that the result is the same
as that for verification. This can only apply when the
number of possibilities is finite and practically small and is
therefore not normally possible and is rarely done, except in
relatively small-scale cases. Thus, when building engi-
neered systems, testing and/or verification are used to
make sure that the system behaves in the desired fashion.

In building biological models, a process analogous to
testing is the reconsideration of each of the laboratory-based
results that were used to formulate the mechanistic model
as a means to determine if the model is a sufficient
reflection of the current understanding of the system [4].
Additional laboratory-based experiments are then designed
to test hypotheses generated by the model. The fact that
there is a finite set of tests (the laboratory data) from which
mechanistic models are initially formulated, suggests the
possibility that such a model can potentially be verified by
exhaustive testing, that is, its compatibility with the data set
used to generate it can in fact be determined. Having
validated a biological model for a specific data set, new
experimental results can be added to further challenge the
validity of the model, which can be appropriately updated.
Provided adequate means to formally represent 1) the
biology represented in a mechanistic model and 2) the
experiments that generated the model, the informal process
of biological mechanistic-model building and testing can be
made amenable to formal verification methods.

Another shared feature of biological and engineered
systems is that both display functional modularity. A
functional module is a distinct unit whose function is
separable from those of other modules [7]. Several areas of
research have highlighted the modularity within biology,
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particularly in evolution and development [7], [8], [9], [10].
Because of the growing volume and complexity of biological
data, the synthesis of the various aspects of biological
analysis into a complete systemic model and the illustration
of its functional modules have come to rely more and more
on mathematical and computational methodologies.

The challenge of developing computational models of
biological systems has been the focus of many studies.
Different groups use different modeling methodologies,
including differential equations [11], Petri nets [12], and
process algebra and pi calculus [13], [14]. The work
presented in [15] shows an example of representing formal
executable models of biology using the rewriting logic
language Maude. Another approach offers models based on
Markov chains and the use of a continuous stochastic logic
and the probabilistic symbolic model checker PRISM [16].
BIOCHAM is a programming environment for modeling
biochemical systems, carrying out simulations, and query-
ing the model in temporal logic. It also provides an
interface to the symbolic model checker NuSMV [17]. Other
work use hybrid systems to model biological phenomena
[18], [19]. Different methodologies depend on the type of
system being modeled and the questions being addressed.
Our group utilizes two main methods: an intraobject, state-
based approach using statecharts and Rhapsody, and an
interobject, scenario-based approach using LSCs and the
Play-Engine [3], [20], [21], [22], [23]. These methods have
proven applicable to biology, including the field of
developmental genetics that, because of its reliance on
genotype-phenotype relationships as opposed to more
quantitative measures such as reaction diffusion kinetics,
is relatively refractory to quantitative modeling methodol-
ogies. The modeling formalisms used in our group can be
equally well implemented using other methods, for exam-
ple, state-based models can be described using Petri Nets
instead of statecharts, and scenario-based models can be
portrayed in temporal logic instead of LSCs.

Another aspect of modularity in biology stems from the
fact that different biological systems are investigated using
different experimental approaches and raise different kinds
of questions. Accordingly, we and others have proposed
that distinct aspects of the modeling strategies may be
amenable to distinct computational approaches. We further
proposed that experimental observations can be formalized
and then used to verify that a formalized proposed
mechanistic model is consistent with the data upon which
it was based [4]. The present paper implements these ideas
by creating a modular model that integrates the scenario-
based and the state-based approaches using the simulation
engine coordinator InterPlay [24]. We used both LSCs and
statecharts to create a mechanistic model that focuses on a
well-characterized cell fate decision that is part of the
development of the nematode Caenorhabditis elegans
(C. elegans) hermaphrodite somatic gonad—the anchor
cell/ventral uterine cell (AC/VU) decision. The mechanistic
model includes both inferences from available genetic data
(a genetic interaction pathway), as well as previously
unmeasured quantitative features of the pathway (for
example, synthesis and degradation rates for components
of the pathway). For testing, we generated LSCs to
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Fig. 2. (a) Gene interaction in the AC/VU decision. The interaction
between Z1.ppp and Z4.aaa is mediated by the receptor LIN-12 and the
ligand LAG-2. During the AC/VU decision, hlh-2 is required for lag-2
transcription and is down regulated posttranscriptionaly by LIN-12.
Arrows represent positive regulation and bars represent negative
regulation. Adapted from that in [34] and [33]. (b) Activity level at which
regulation is modeled. All components have basal rates of production
and degradation for both the mRNA and protein in addition to these
specific regulatory effects. *TF, transcription factor; (+), activation; (—)
inhibition.

represent the results of genetic and anatomical perturbation
experiments, from which many of the key aspects of the
mechanistic model were originally derived. We then used
these LSCs to verify computationally that the assumptions
and hypotheses in the model are consistent with the
biological observations. We divided the biological data
between the two formalisms in a way that seemed to us to
be the most natural and gave rise to a more intuitive model
construction and execution. Thus, we modeled the beha-
vioral aspect of the biological system in the scenario-based
formalism and the mechanism that underlies this behavior
in the state-based formalism.

The development of the C. elegans somatic gonad starts
from two founder cells present at hatching, Z1 and Z4,
which divide two to three times during the first larval stage
(L1) to produce the 12 cells of the gonad primordium [25].
Ten cells of the primordium have invariant fates: eight
precursors that later generate uterine and sheath/sper-
matheca cells and two terminally differentiated distal tip
cells (DTCs), which lead the growth of the elongating gonad
and play critical roles during germline development [26].
Two other cells of the primordium, named Z1.ppp and
Z4.aaa, have naturally variable fates: In the unperturbed
worm, one cell will become the terminally differentiated
anchor cell (AC), and the other will become a ventral
uterine (VU) precursor cell [25]. The final conformation of
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Fig. 3. Combining different tools for different modules. The AC/VU
decision was modeled in the state-based formalism using Rhapsody,
and the lineage of the somatic gonad was modeled in the scenario-
based formalism using the Play-Engine. InterPlay was used to connect
the two tools.

the somatic primordium depends on the outcome of the cell
fate determination process between these two cells.

The AC/VU decision occurs during the L2 stage and
depends on cell-cell interactions between Zl.ppp and
Z4.aaa that are mediated by LIN-12, a receptor of the
LIN-12/Notch family, and LAG-2, a ligand of the Delta-
Serrate-LAG-2 (DSL) family (Fig. 2a) [27], [28], [29], [30],
[31]. Z1.ppp and Z4.aaa have the potential to acquire either
the AC or the VU fate, but in wild-type animals, only one
becomes the AC, and the other becomes a VU (in 50 percent
of the animals, Z4.aaa becomes the AC, and Zl.ppp
becomes a VU, and vice versa, for the other 50 percent).
Initially, Z1.ppp and Z4.aaa both express lin-12 and lag-2.
The current understanding of the mechanism whereby
these two cells acquire stable mutually exclusive fates is
that an initially small difference in lin-12 activity between
the cells triggers the amplification of ligand and receptor
expression such that the cell with slightly higher lin-12
activity continues to transcribe lin-12 and ceases to
transcribe lag-2, whereas the cell with lower lin-12 activity
continues to transcribe lag-2 and ceases to transcribe lin-12.
Ultimately, the cell expressing high levels of /in-12 becomes
a VU, and the Iag-2 expressing cell becomes the AC [27],
[29], [32], [33]. In addition, hlh-2 promotes lag-2 transcrip-
tion during the AC/VU decision. Based on the different
patterns of expression of a hlh-2 transcriptional reporter
versus HLH-2 protein, it has been proposed that HLH-2 is
posttranscriptionally downregulated in the presumptive
VU upon LIN-12 activation as part of the negative feedback
mechanism that leads to the termination of lag-2 transcrip-
tion [34] (Fig. 2a).

Other examples of modeling Delta-Notch type decisions
include using PDEs [35], gene networks [36], hybrid
automata [18], and Petri nets [37].

The modular model we present here simulates the early
lineage of the somatic gonad cells in the scenario-based
formalism and focuses on the AC/VU decision in the state-
based formalism. We used InterPlay to integrate the two
formalisms (Fig. 3).
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Fig. 4. Model verification. After we constructed the model using
Rhapsody and the Play-Engine, we used the Play-Engine again to test
the integrated model. We created a set of simple LSCs based on lab
observations and used InterPlay to run the combined Play-Engine-
Rhapsody mechanistic model against them.

We further composed a set of LSCs representing a key
subset of the experimental data upon which the mechanistic
model was based, and again, via InterPlay, we used them to
verify that the integrated model produced the expected
outcomes (Fig. 4).

2 MEeTHODS

For more elaborate explanations of the modeling formal-
isms, please see Appendix A.

2.1 Statecharts

Statecharts is a visual formalism, developed in 1983 as a
language for specifying reactive behavior [38]. In its object-
oriented version [39], one uses statecharts to define the
behavior of objects over time, in an intraobject fashion,
based on the various states that an object can be in over its
lifetime and the events that cause it to move from one state
to another. Statecharts describe both how objects commu-
nicate and collaborate and how they carry out their own
internal behavior under different circumstances. Thus,
states are actually abstract situations in an object’s life
cycle. The language is well structured and hierarchical and
is thus relatively easy to deal with even by nonspecialists.

2.2 Rhapsody

Rhapsody is a software tool for the design of statechart-
based models [39] (http://modeling.telelogic.com). It can
automatically translate a statechart model into executable C,
C++, or Java code. Once the model (or some part thereof) is
constructed and translated into executable code, Rhapsody
can execute it so that one can observe its progress, in
animated versions of the model’s statecharts. During
animation, active states and transitions are shown in a
different color. The code can also be linked up with a
graphical rendition of the system being specified, a so-
called GUI, so as to obtain a realistic simulation of the
system in operation.

2.3 LSCs

LSCs constitute a visual formalism for specifying sequences
of events and message passing between objects [40]. The
behaviors are specified as scenarios of events and actions,
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with a variety of possibilities including scenarios that may
occur, scenarios that must occur and scenarios that are
forbidden (called antiscenarios). There are two types of
LSCs, universal and existential. Universal charts are more
relevant for modeling and are built of a prechart and main
chart. The relationship between the prechart and the main
chart can be viewed as a condition-result pair (see Fig. 5a):
Whenever the scenario in the prechart occurs (condition),
the scenario in the main chart must follow (result) [40].

2.4 Play-Engine
The Play-Engine is a recently developed tool that supports
modeling and model execution with LSCs. The Play-Engine
supports the play-in/play-out methodology, in which one
can easily represent interobject behavior and execute and
simulate a modeled system [41]. Using play-in, LSCs that
specify system behavior can easily be generated with a user-
friendly mechanism. The user first builds a graphical user
interface (GUI) of the system, with no behavior integrated in
itand then “plays” the GUI by clicking the graphical control
elements in an intuitive manner. In this way, the Play-
Engine constructs the corresponding LSCs, which determine
the sequences of events and actions, and how the system
should respond to them. Thus, play-in is analogous to
writing programs that determine system behavior.
Accordingly, play-out is analogous to running these
programs, in that it allows execution of the LSCs. Using
play-out, the user simply plays the GUI as he or she would
have done while executing a real system (for example,
clicking the “On” button on a computer). As this is
happening, the Play-Engine interacts with the GUI and
uses it to exhibit the system’s response over time. Events
occurring in the LSCs that govern system behavior during
play-out are represented in the GUI, so that the user may
view the full modeled behavior of the system operating
simultaneously. For more on LSCs, play-in/play-out, and
the Play-Engine see [41].

2.5 Interplay

InterPlay is a simulation engine coordinator that supports
cooperation and interaction of multiple simulation and
execution tools, thus helping in the scale-up process of
designing large reactive systems [24]. Among other things,
InterPlay enables the connection of the Play-Engine and
Rhapsody and can be used in distributing large systems
into their parts while retaining the ability to execute them in
tandem [24].

The connection of the Play-Engine with Rhapsody via
InterPlay is done through external non-GUI objects. Ex-
ternal objects are mirror images in the local system of
objects in a remote system, serving as an interface to it. As
such, their structure (properties and methods) is known by
the local system, as are the elements of their behavior that
are relevant to this system. Behavioral changes in the
remote objects are reflected to the mirror images, and vice
versa. The technical aspects of this reflection are carried out
by InterPlay. It is important to stress that the behavior of the
external objects is driven only by the remote system.
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Fig. 5. Examples from the model. (a) An example LSC. This LSC follows developmental time and manages the development of the gonad. If the user
clicks the Start button (the prechart, surrounded by a blue dashed line), then the Gonad object starts to measure time, and advances through the
developmental stages accordingly (the main chart, surrounded by a black rectangle). The external Gonad object, which is intended for
communication with InterPlay, is indicated with a small cloud on the right upper corner. (b) The statechart of the Cell class. The cell starts from the
unborn state, and from there, it can advance either to the 2blated state or to the Fate state. In the Ablated state, the cell’s participation in the
decision is terminated. In the Fate state, the process of fate determination takes place, at the end of which, the cell either becomes an AC or a VU.
Green rectangles represent states. There could be hierarchy among the states as seen in the Fate state, which contains a number of inner states.
Arrows at the right corner of states mean that there is a code written within them. Red arrows represent transitions between states. Filled circle arrow
heads represent transitions into a default state. Blue represents events or conditions. This figure shows examples from the separate statecharts and
LSC models and obviously does not depict the information flow between them.

3 RESULTS

3.1 Model Structure

Since our model is modular and involves the continuous
interaction of different modeling tools, we will describe its
structure by following the progress of an execution.

The model starts at the beginning of the lineage of the
somatic gonad. This component is simulated using LSCs.
The model of the lineage is constructed from two types of
GUI objects—a Gonad object, which represents the somatic
gonad as a separate entity, and the objects of the Somatic
Cells, each representing a specific cell that belongs to the
lineage that eventually composes the gonad. The GUI
depicts the gonad, and the cells in cartoon form that reflects
the activity of the underlying LSC events and that approx-
imates their relative size and positions during development,
as well as their lineal relationships and divisions (see Supp.
Fig. 1, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TCBB.2007.1076). All of the Cells objects belong to the same
class and, therefore, have the same properties and methods.
The LSCs that describe the lineage of the somatic gonad

advance according to developmental time. Every Play-
Engine clock tick represents one hour of the actual
developmental time. The LSC Developmental Time
(Fig. 5a) acts as a “manager” LSC that monitors the time
and consequently sets the developmental stage of the Gonad
object. This part of the model describes the lineage of the
somatic gonad only up to the L2 molt. For each develop-
mental stage that the gonad reaches, there is a suitable LSC
in which the relevant cells change their Divide property to
true (see Supp. Fig. 2, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TCBB.2007.1076). For each cell that divides,
there is an LSC in which the divided cell sends its two
daughter cells the method Divided. Another LSC states
that each cell that receives the method Divided from
another cell changes its Born property to true. As suggested
in [34], the outcome of the AC/VU decision is influenced by
the birth order of Z1.ppp and Z4.aaa. In the said work [34],
the authors examined the Z1 and Z4 lineages of 13 worms
and found that in 50 percent of the worms, Z1.ppp is born
first, and in the other 50 percent, Z4.aaa is born first.
Therefore, for Z1.ppp and Z4.aaa, the LSC Stochastic
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TABLE 1
Testing
Testname® | Implementation Experimental results Reference Model results Run duration®
One cell becomes
Wild type the AC and the 11
other a VU
fin-12(0) Jin-12 protein and mRNA levels set | In firn-72(0) hermaphrodites, both [21] Zl.ppp and Z4.aaa 4
- to 0. Z1.ppp and Z4. aaa become anchor cells both become ACs
In fin-12(d) hermaphrodites, both 71 474
lin-12(d) Elevate LIN-12 translation rate* Z1.ppp and Z4.aaa become ventral [21] PPp anc £4.aaa 6
- both become VUs
uterine precursor cells
Ablate somatic gonad cells in one
lsolate of the following combinations: Fates of Z1.ppp and Z4. aaa for the One cell becomes
71 and Z1.a, ZA.p, Z1.pa, ZA.ap, Z1.ppa ACIVU decision are unaffected by [26] the AC and the 11
24‘225 @ and Z4.aap or Z1.aa, Z1.ap, Z4.pp, | ablation of other somatic gonadal cells other a VU, same
' ZA.pa, Z1.pa, Z4.ap, Z1.ppa and as in wild type
Z4.aap as soon as they are born
Isolate
Zl.ppp or ) - The isolated cell
74.aaaina Elevate LIN-12 tranfslation rate, Anisolated Z1.ppp or Z4.aaa cell in fin- (either Z1.ppp or
- ablate cells as described above, as [26] 8
lin-12(d) well as cither Z1 o 74 aaa 12{d) mutants becomes a VU Z4.aaa) becomes a
background PP R VU
@
The cell that has
Mosaic Set Jin-12 protein and mRNA. In mosaics that lgck lin-12 aci_x\nty only the fin-12(0)
alysis (2) | levels to 0 in relevant cell in the Z1 or Z4 lineages, the fin-72(0) [286] genotype becomes 15
analysts Evels to U in relevant cells. cell always becomes the AC the AC. The other
cell becomes a VU
Ablate Z1 Ablation of either Z1 or Z4 results in The remaining cell
or 74 (2) Ablate Z1 or Z4. one AC (52/53 animals) (3] becomes the AC 20
Ablate Ablate Z1.ppp or Z4.aaa Ablation of the pre-AC during eatly The cells that was
presumptive | when one has a significantly lower | formation of the somatic gonad [35] not ablated 60
AC (2) activity of LIN-12 primordium results in one AC becomes the AC
. Depletion of kik-2 by RN A feeding in
hih-2 RNAI Increase degradation rate of k-2 the early L2 (hlh-2(RNAI-L2)) produces | [28] Zl.ppp and 74 aaa 45
mRNA. both become ACs
a 2 AC phenotype
lag-2(1 Set Jag-2 mRNA and protein levels | Reduction of lag-2 causesa 2 AC 27 Z1.ppp and Z4.aaa a5
ag-2(1f) to 0. phenotype (23] both become ACs
lin-12(+) driven from an LCS1-deleted
lin-12 Decrease the influence of LIN-12 promoter does not efficiently rescue the [27] Z1.ppp and Z4.aaa 0
ALCS1 as a self-transcription factor to 0. 2AC defect in a fin-12(0) mutant both become ACs
background
lin-12 . Expression of a reporter driven from an
ALCSlina Decrease the mt_‘lugnce of LIN-12 LCS1-deleted firn-12 promoter in a firn- Z1.ppp and Z4.aaa
- as a self-transcription factor to 0, . . [27] 24
lin-12(d) . 12{d) background is not observed in the both become ACs
and elevate LIN-12 translation rate. .
background presumptive VU

Z1, Z4, Z1.a, Z4.p, and so on are names of specific cells in the somatic gonad lineage.
* Numbers in parenthesis indicate the number of variant LSCs per test name if greater than 1.
Y Run duration is measured in the average number of total rounds that the model goes through to reach completion (that is, until it reaches the

FinalAC and FinalVU states).

* All protein produced is assumed to be active or activateable (see text for further explanation).

Event decides randomly which of the two cells is born first
(that is, changes its Born property to true first, see Supp. Fig.
3, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TCBB.2007.1076). This LSC gives equal chances to both cells
to be the first born cell. The change to true of the Born
property of Zl.ppp and Z4.aaa is sent to Rhapsody via
InterPlay, and this triggers the cells in the Rhapsody model
to start the cell fate determination process.

The model of the AC/VU decision, which is simulated in
Rhapsody, is composed of a Gonad class and a Cells class.
The Gonad class aids in the initialization of the simulation
(that is, setting the initial conditions for a particular
execution). The Cell class consists of two instances of the
same statechart—one for Zl.ppp and one for Z4.aaa.
Consistent with their biological behavior as an equivalence
group (that is, a group of cells with the same developmental
potential) [25], [32], [42], Z1.ppp and Z4.aaa start the

process in the wild type (here, implying the absence of
genetic or anatomical perturbations) with the same initial
conditions. During the run, however, their gene and protein
levels change as a result of their interactions. Below, we
describe the statecharts of the various classes, starting with
that of the Gonad.

3.1.1 Gonad Class Statechart

The instantiation of the Gonad statechart starts in the
InitConditions state (see Supp. Fig. 4, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2007.1076).
This state has a substatechart that specifies the variety of
initial conditions, according to the different perturbations
used to run and test this model (Table 1) (see Supp. Fig. 5,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TCBB.2007.1076). The default initial condition is the wild

type.
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3.1.2 Cell-Class Statechart

The Cell class describes the modeled processes that take
place within and between the two cells. lin-12, lag-2, and hlh-
2 are represented at transcriptional, translational, and
posttranslational levels, representing the production of
mRNA and protein products (see Supp. Table 1, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2007.1076).
Although exact levels of these molecules have not been
measured experimentally, we assigned relative values that
were adjusted during model building to produce the desired
behavior. There is also a representation of mRNA and
protein degradation. This set of values produced a result of
one cell becoming an AC and, the other, a VU every time we
run the system. If we change one or several of these values,
the system can oscillate. However, there could be other sets
of values for which the ratio between them will produce
similar results. We assume that all produced protein is active
or able to be activated: In the case of the wild-type LIN-12
receptor, the activity of the protein is contingent on the
neighboring cell producing the ligand. All of these proper-
ties are depicted as attributes of the class Cell. The processes
of transcription and translation and the interaction between
the cells are implemented in C++ as operations (see Supp.
Table 2, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB.2007.1076).

For each of the genes, the calculation includes a basal
transcription and degradation rate for the mRNA and, also,
a basal translation and degradation rate for the protein.
Additional terms are included in the operations to account
for the known regulatory steps in this system (see Figs. 2a
and 2b). These include 1) the effect of LIN-12 as a self-
activating transcription factor on the /in-12 mRNA level,
2) the effect of LAG-2 of the neighbor cell as a signal that
activates LIN-12, and 3) the effect of HLH-2 as a transcrip-
tion factor on the /ag-2 mRNA level. In addition, since LIN-
12’s negative effect on HLH-2 is postulated to be post-
translational [34], the protein level of HLH-2 is computed
not only as a factor of the protein’s basal translation and
degradation rates, but also as a factor of the influence of
activated LIN-12 as a negative regulator.

The strength of the effect of a transcription factor on the
transcription rate of its target gene is described by a
monotonic s-shaped function [43]. This function is used
each time there is a calculation of a transcriptional regulation
interaction between two elements in the system (see Fig. 2b).
It determines the extent of the influence one element has
over the activity level of another element, taking into
consideration the current activity level of the influencing
element. We also introduce into the system a random level of
noise (between —5 percent and +5 percent) each time we
update both mRNA and/or protein levels of each of the
three key components. This simulates the natural biological
fluctuations of the efficiency of these processes.

3.2 A Run of the Model

At each execution of the model, there are two active copies
of the statechart for the class Cell—one for Z1.ppp and one
for Z4.aaa. Each copy of the statechart has its own list of
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attributes and operations that change during the run (see
Supp. Tables 1 and 2, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TCBB.2007.1076). The statechart of the Cell
class starts at the UnBorn state (Fig. 5b). Once Z1.ppp and
Z4.aaa are born according to the lineage modeled in the
Play-Engine, the message evBorn is received by Rhapsody
via InterPlay.

The Cell statechart then advances into the state Fate
(Fig. 5b), in which the model represents the process of cell
fate determination, including a set of two substatecharts to
separate events that occur upon reaching the “decision
threshold” of LIN-12 levels from the final stage of cell fate
acquisition. The Fate state starts at the UnDiff (for
Undifferentiated) state (Fig. 5b). In this state, the level of
the genes and proteins are updated. The fate of the cell is
determined when the level of LIN-12 protein in a cell
reaches one of two critical levels—either a lower-bound
AC threshold or an upper bound VU threshold. If the level
of LIN-12 drops below the AC threshold, the cell advances
to the AC state (Fig. 5b), in which a substatechart ensures
that the FinalAC fate is not reached until the AC state is
stable, that is, has reached an additional (arbitrary) 1 unit
below the AC threshold (see Supp. Fig. 6, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2007.1076). In
this state, a loop updates the LIN-12 level within the
maintainAC state by iterating the same calculation
method that was used in the UnDiff state. Once this
one-unit difference is achieved, the cell advances to the
FinalAC state. Similarly, if at the end of the UnDiff state
the level of LIN-12 protein in the cell exceeds the VU
threshold, the cell advances to the VU state (Fig. 5b).
Again, this state has a substatechart that assures that this
level of LIN-12 is maintained before the cell advances to
the FinalVU state.

When the cells in the Rhapsody model reach their final
fate, the result is sent back to the Play-Engine, again
through InterPlay, and the appropriate final conformation
of the somatic gonad primordium—>5R or 5L [25]—is set
and displayed via the GUI (see Supp. Fig. 1c, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2007.1076). An
example of an outcome of a run of the model under normal,
wild-type conditions can be seen in Supp. Fig. 7, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2007.1076.

3.3 Model Testing

We created a set of 18 LSCs (Table 1) to test the model, each
of which represents a condition-result experiment. These
LSCs consist of a prechart that states the initial condition of
the experiment (for example, lin-12(0) indicates that lin-12 is
homozygous for a null allele) and a main chart that
describes the end result of that condition (Z1.ppp and
Z4.aaa both become ACs, for example, see Supp. Fig. §,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TCBB.2007.1076). These LSCs do not contain any informa-
tion about the mechanism that led to the result. Methods of
an object in the Play-Engine model are mapped to events of



its mirror object in the statecharts model. Thus, when such a
method is called, the appropriate event is triggered; the
object moves to the indicated state, and the initial
conditions are updated accordingly.

In the Rhapsody component of the model, the statechart
of the Gonad initializes the conditions for each test. For
example, for lin-12(0), the mRNA and protein levels of /in-
12 in both Z1.ppp and Z4.aaa are set to zero (Table 1). When
running the model, the user can choose which test to
conduct, either through Rhapsody or through the Play-
Engine. The user may also define new tests by constructing
the suitable LSCs and/or states. The appropriate events are
sent via Inter-Play, and they consequently trigger the
progression of the model. Once the model finishes its
execution, the test-LSCs are either satisfied or not satisfied.
If they were satisfied, this implies that the outcome of the
simulation driven by the mechanism depicted in the model
is consistent with the laboratory observations represented
by the LSCs.

We used the set of experimental observations shown in
Table 1 and tested, one by one, the combined statechart-LSC
model. In the course of applying these tests, we had to make
small adjustments to the parameters of the mechanistic
model and to check again if it displayed the desired
behavior. Eventually, all of the test-LSCs were satisfied,
meaning that the mechanistic model we built was consistent
with the laboratory observations tested (see Supp. Figs. 9-
17, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TCBB.2007.1076). For laboratory observations in which the
experimental outcomes were nondeterministic, our model is
deterministic and therefore produces the most frequent
results. That is, where the biological outcome was incom-
plete penetrance of a given phenotype, our model only
produces the most penetrant phenotype. Future modeling
work will address a more realistic representation of
nondeterministic outcomes. Though the model and the
tests thereof are not comprehensive—that is, these are but a
small subset of the relevant experiments reported in the
literature that relate to the AC/VU decision—this set is
sufficient to illustrate the process, utility, and further
potential of this style of modeling and model verification.

4 DISCUSSION

Complex systems are built by combining together simpler
parts of the system. The process of modeling biological
systems requires the integration of the mechanistic rules by
which the smaller pieces operate. In this paper, we
combined two formal modeling approaches in computer
science that were originally developed for the systems
design field. These were used to construct a model for
certain aspects of the development of the somatic gonad of
C. elegans. In particular, we focused on the AC/VU decision.
We then used one of the approaches to formally test the
integrated model using a defined set of biological condition-
result experiments.

As biological processes are studied, the relevant data
frequently have distinct features. For instance, some of the
data are observations of normal behavior, whereas other
data are obtained after specific perturbations of the normal
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system. The mechanisms underlying the behavior under
normal conditions are often inferred from the results of
experiments conducted under perturbed conditions. In
addition, data from many different aspects of the biology
are often combined into a mechanistic model. For example,
the behavior of a condition that alters the activity of a given
gene can be combined with information about the identity of
the protein encoded by the gene and from relevant
biochemical experiments. These combined inferences are
collected into a mechanistic model from which testable
hypotheses are derived and then lead to additional experi-
ments. It was previously suggested [4] that by using a
scenario-based approach (LSCs) to formalize the observed
behaviors and experimental perturbations of a biological
system and a state-based approach (statecharts) to formalize
the mechanisms underlying these behaviors, one can
formally verify that the mechanistic model reproduces the
system’s known behavior.

Here, we have followed this idea: We used different
computational approaches to model different aspects of the
system. As the lineage of the somatic gonad cells is more
intuitively depicted in the form of scenarios, we chose to
describe it using the interobject approach of LSCs. We also
used an LSC-based approach to represent condition-result
laboratory experiments and their outcomes. The AC/VU
decision, however, is a continuous process, consisting of
feedback loops among key components that influence the
states of the two cells, Z1.ppp and Z4.aaa. Moreover, based
on additional more general knowledge about genetic
information transfer and the dynamic behavior of the
mRNA and protein components of the system, we
incorporate into the statecharts model additional quantita-
tive features, some of which have not yet been measured
directly in the lab. We chose to model this part of the system
using the intraobject approach of statecharts to represent
the interactions between three of the crucial components
that regulate this cell fate decision and their molecular
dynamics. Thus, our mechanistic model includes quantita-
tive aspects of the system that may provide additional
insights as future laboratory measurements are made. We
used InterPlay as an interface connecting the LSC and
statecharts-based aspects of the model (Fig. 3).

This approach has several more broadly applicable
advantages. Each module is a stand-alone model. Thus,
we can choose to explore different aspects of the systems
separately by looking at each module by itself or to
investigate the complete system by looking at the integrated
model. This flexibility is useful on several levels: When
building the model, one can concentrate on developing a
single component without influencing other components of
the system. It is also possible to distribute the modeling
work between several investigators/developers, each re-
sponsible for a single module. Then, for the complete
system, all modules can be connected. Another advantage is
that investigators interested in diverse facets of the modeled
system can look at the processes that interest them on their
own or as a part of the full system.

We used the same modular approach for the verification
of the model. The statecharts-based model incorporates
inferences from a wide set of studies. Using a small set of
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core behaviors, we were able to demonstrate that this
model can reproduce these fundamental behaviors. To do
this, we summarized this key set of previously published
laboratory observations in the form of LSCs and used them
to test that the mechanistic model we constructed was
consistent with these laboratory observations (Fig. 4). Thus,
we allowed the Play-Engine to follow the combined
Rhapsody and Play-Engine model execution and ensured
that our mechanistic model matches these experimental
observations. This approach demonstrates the potential for
model verification. The modular approach is very con-
venient, because it enables us to test the components of the
system either separately or combined. Further tests can be
used to help develop a more complete model of this
system. Since our mechanistic model also includes pre-
viously unmeasured quantitative aspects of the system,
this type of modeling can serve to simulate experiments to
determine these important values.

The AC/VU decision is a process of cell fate determina-
tion between two initially equivalent cells. This process is
mediated by members of the Delta/Notch gene family—
LIN-12, a receptor from the LIN-12/Notch family, and
LAG-2, a member of the DSL (Delta-Serrate-LAG-2) family.
Members of the Delta/Notch family are involved in such
processes in various organisms [45]. The proposed mechan-
ism for this cell fate determination is similar to leader-
election algorithms in computer science. These algorithms
are designed to solve a problem in which a leader needs to
be chosen in a network of initially identical elements. A
natural observation is that if all elements are identical, the
problem cannot be solved deterministically, and one unique
leader cannot be elected [46]. This implies that the only way
to solve the leader-election problem is to somehow break
the symmetry. The assumption made in some of the
algorithms designed to solve this problem is that each
element in the network starts the process with some unique
identifier (sometimes chosen at random), which distin-
guishes the elements and makes it possible to break the
symmetry. The elements in the network then communicate
with each other and send their identifiers across the
network. Eventually, a leader is elected according to the
nature of these identifiers [46]. The change in symmetry in
the biological interactions is presumed to be due to some
kind of stochastic event, which gives one of the cells the
advantage in adopting the leader fate [45]. In the AC/VU
decision, this event is biased by the birth order, which
enables one of the cells to start accumulating LIN-12 before
the other [34]. The LIN-12 activity level could act as the
unique identifier in the algorithm by which the leader is
eventually chosen.

The modular nature of our modeling approach makes it
easily expandable. One can simply connect additional
modules of the system to the existing configuration using
any computational tool desired. Furthermore, since every
component of the model is stand alone, it is possible to
choose just one of the components and incorporate it into
another system. Thus, this model can be integrated into the
ongoing efforts in our group to model C. elegans vulval
development [21], [23]. Another plausible expansion of this
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model is the construction of additional aspects of C. elegans
gonadogenesis.

APPENDIX A
MODELING FORMALISMS

Parts of this appendix were adapted from that in [3], [24],
and [47].

A.1 The State-Based Formalism

In our work, we use the language of statecharts [38] and the
Rhapsody tool [39] (http://www.ilogix.com) to implement
the state-based specification. Statecharts are naturally suited
for the specification of objects that have clear internal
behavior, an approach that has been called intraobject [40].
Together with object model diagrams, they provide a
graphical representation of the dynamics of objects using
states, transitions, events, and conditions [39].

Object model diagrams [39] show the static structure of a
system. They describe the types of objects in the system, the
attributes and operations that belong to those objects, and
the static relationship that can exist between classes.

Statecharts define the behavior of objects [38], [39],
including the various states that an object can enter into
over its lifetime and the messages or events that cause its
transition from one state to another. A statechart attached to
a class specifies the behavior of all instances thereof. The
language makes it possible to visualize the behavior of an
object in a way that emphasizes the elements in its life cycle.

Objects can communicate by exchanging messages
between their statecharts. In order to communicate, two
objects must be related by some kind of association. Via
these associations, as defined in the object model diagram,
one object can refer to its associated objects. The commu-
nication between objects can be effected either by event
generation or by invoking triggered operations.

Rhapsody is a model-driven development environment
supporting statecharts and object model diagrams [39],
(http:/ /www .ilogix.com). In addition to providing a
computerized visual design environment for performing
object-oriented modeling, Rhapsody is capable of automa-
tically translating any syntactically legal model into an
executable code (in C, C++, or Java). Once the application is
built, Rhapsody can animate the running application so that
one can observe its progress in animated versions of the
model’s statecharts. Animation shows the current states and
transitions by coloring them uniquely. In Rhapsody, the
transitions between graphical diagrams and executable
code are bidirectional: During the compilation stage, the
object model diagram and the statecharts are translated into
executable code, and while animating the application, the
executable code is translated back into diagrams.

A.2 The Scenario-Based Formalism

We use the language of LSCs [40], [41] and the Play-Engine
[41] tool to implement the scenario-based formalism. LSCs
are scenario-based and interobject in nature and are particu-
larly suited for describing behavioral requirements. LSCs
extend classical message sequence charts (MSCs) with logical
modalities, depicted as hot and cold elements in the charts.
The language thus achieves far greater expressive power
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than MSCs and is comparable to that of temporal logic [48].
In particular, LSCs can specify possible mandatory and
forbidden scenarios and can be viewed as specifying multi-
modal restrictions over all possible system runs.

LSCs have two types of charts, universal and existential.
Universal charts are used to specify restrictions over all
possible system runs and, thus, constrain the allowed
behaviors. A universal LSC typically contains a prechart
and a main chart. The semantics is that if the scenario in the
prechart executes successfully, then the system is forced to
satisfy the scenario given in the main chart. Existential
charts, on the other hand, specify sample interactions
between the system and its environment and are required
only to be satisfied by at least one system run. Thus,
existential LSCs do not force the application to behave in a
certain way in all cases, and simply illustrate longer
(nonrestricting) scenarios that provide a broader picture of
the behavioral possibilities to which the system gives rise.

LSCs may contain two types of conditions—hot and cold.
Hot conditions are mandatory and must always be true; if
not, the requirements are violated and the system aborts.
However, when dealing with time, the system simply waits
until the specified condition holds. On the other hand, if a
cold condition is false, the surrounding subchart is exited.
An LSC can also contain scoped forbidden elements, listed
in a separate area beneath the main chart. For example, a
hot forbidden condition that becomes true within its scope
causes the requirements to be violated and the system
aborts, whereas a cold one becoming true causes the chart
or subchart which is its scope to be exited.

The Play-Engine is the tool built to support LSCs [41]. It
enables the system designer to capture behavioral require-
ments by “playing in” the behavior of the target system and
to execute the specific behavior by “playing out.” The play-
in process requires that the user first build a GUI of the
system, with no behavior built into it. The user then “plays”
the GUI by clicking the graphical control elements and thus
giving the engine sequences of events and actions and
teaching it how the system should respond to them. As this
is being done, the Play-Engine continuously constructs the
corresponding LSCs automatically.

While play-in is the analog of writing programs, play-out
is the analog of running them. Here, the user simply plays
the GUI as he would have done when executing the real
system (for example, clicking buttons). As this is going on,
the Play-Engine interacts with the GUI and uses it to reflect
the system’s state at any given moment. The scenarios
played in, using any number of LSCs, are all taken into
account during play-out, so that the user gets the full effect
of the system with all its modeled behaviors operating
correctly in tandem. All specified ramifications entailed by
an occurring event or action will immediately be carried out
by the engine automatically, regardless of where in the
LSCs it was originally specified.
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