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Abstract. Efficient global optimization techniques such as graph cut
exist for energies corresponding to binary image segmentation from low-
level cues. However, introducing a high-level prior such as a shape prior or
a color-distribution prior into the segmentation process typically results
in an energy that is much harder to optimize. The main contribution
of the paper is a new global optimization framework for a wide class
of such energies. The framework is built upon two powerful techniques:
graph cut and branch-and-bound. These techniques are unified through
the derivation of lower bounds on the energies. Being computable via
graph cut, these bounds are used to prune branches within a branch-
and-bound search.
We demonstrate that the new framework can compute globally optimal
segmentations for a variety of segmentation scenarios in a reasonable
time on a modern CPU. These scenarios include unsupervised segmen-
tation of an object undergoing 3D pose change, category-specific shape
segmentation, and the segmentation under intensity/color priors defined
by Chan-Vese and GrabCut functionals.
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1 Introduction

Binary image segmentation is often posed as a graph partition problem. This is
because efficient graph algorithms such as mincut permit fast global optimiza-
tion of the functionals measuring the quality of the segmentation. As a result,
difficult image segmentation problems can be solved efficiently, robustly, and
independently of initialization. Yet, while graphs can represent energies based
on localized low-level cues, they are much less suitable for representing non-local
cues and priors describing the foreground or the background segment as a whole.

Consider, for example, the situation when the shape of the foreground seg-
ment is known a priori to be similar to a particular template (segmentation
with shape priors). Graph methods can incorporate such a prior for a single
pre-defined and pre-located shape template[14, 21]. However, once the pose of
the template is allowed to change, the relative position of each graph edge with
respect to the template becomes unknown, and the non-local property of shape
similarity becomes hard to express with local edge weights. Another example
would be the segmentation with non-local color priors, when the color of the
foreground and/or background is known a priori to be described by some para-
metric distribution (e.g. a mixture of the Gaussians as in the case of GrabCut
[26]). If the parameters of these distributions are allowed to change, such a non-
local prior depending on the segment as a whole becomes very hard to express
with the local edge weights.

An easy way to circumvent the aforementioned difficulties is to alternate the
graph partitioning with the reestimation of non-local parameters (such as the
template pose or the color distribution). A number of approaches [6, 17, 26, 16]
follow this path. Despite the use of the global graph cut optimization inside
the loop, local search over the prior parameters turns these approaches into
local optimization techniques akin to variational segmentation [7, 9, 24, 29]. As
a result, these approaches may get stuck in local optima, which in many cases
correspond to poor solutions.

The goal of this paper is to introduce a new framework for computing glob-
ally optimal segmentations under non-local priors. Such priors are expressed by
replacing fixed-value edge weights with edge weights depending on non-local pa-
rameters. The global minimum of the resulting energy that depends on both the
graph partition and the non-local parameters is then found using the branch-
and-bound tree search. Within the branch-and-bound, lower bounds over tree
branches are efficiently evaluated by computing minimal cuts on a graph (hence
the name Branch-and-Mincut).

The main advantage of the proposed framework is that the globally opti-
mal segmentation can be obtained for a broad family of functionals depending
on non-local parameters. Although the worst case complexity of our method is
large (essentially, the same as the exhaustive search over the space of non-local
parameters), we demonstrate that our framework can obtain globally optimal
image segmentation in a matter of seconds on a modern CPU. Test scenarios in-
clude globally optimal segmentation with shape priors where the template shape
is allowed to deform and to appear in various poses as well as image segmenta-
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tion by the optimization of the Chan-Vese [7] and the GrabCut [26] functionals.
In all cases, bringing in high-level non-local knowledge allows to solve difficult
segmentation problems, where local cues (considered by most current global op-
timization approaches) were highly ambiguous.

2 Related Work

Our framework employs the fact that a submodular quadratic function of boolean
variables can be efficiently minimized via minimum cut computation in the asso-
ciated graph [2, 11, 19]. This idea has been successfully applied to binary image
segmentation [3] and quickly gained popularity. As discussed above, the approach
[3] still has significant limitations, as the high-level knowledge such as shape or
color priors are hard to express with fixed local edge weights. These limitations
are overcome in our framework, which allows the edge weights to vary.

In the restricted case, when unary energy potentials are allowed to vary and
depend on a single scalar non-local parameter monotonically, efficient algorithms
known as parametric maxflow have been suggested (see e.g. [20]). Our framework
is however much more general then these methods (at a price of having higher
worst-case complexity), as we allow both unary and pairwise energy terms to
depend non-monotonically on a single or multiple non-local parameters. Such
generality gives our framework flexibility in incorporating various high-level pri-
ors while retaining the globality of the optimization.

Image segmentation with non-local shape and color priors has attracted a
lot of interest in the last years. As discussed above, most approaches use either
local continuous optimization [29, 7, 24, 9] or iterated minimization alternating
graph cut and search over non-local parameter space [26, 6, 17]. Unfortunately,
both groups of methods are prone to getting stuck in poor local minima. Global-
optimization algorithms have also been suggested [12, 27, 28] . In particular, si-
multaneous work [10] presented a framework that also utilizes branch-and-bound
ideas (paired with continuous optimization in their case). While all these global
optimization methods are based on elegant ideas, the variety of shapes, invari-
ances, and cues that each of them can handle is limited compared to our method.

Finally, our framework may be related to branch-and-bound search methods
in computer vision (e.g. [1, 22]). In particular, it should be noted that the way our
framework handles shape priors is related to previous approaches [15, 13] that
used tree search over shape hierarchies. However, neither of those approaches
accomplish pixel-wise image segmentation.

3 Optimization Framework

In this section, we discuss our global energy optimization framework for obtain-
ing image segmentations under non-local priors1. In the next sections, we detail
how it can be used for the segmentation with non-local shape priors (Section 4)
and non-local intensity/color priors (Section 5).
1 The C++ code for this framework is available at the webpage of the first author.



4 Extended technical report of ECCV-2008 publication

3.1 Energy Formulation

Firstly, we introduce notation and give the general form of the energy that can
be optimized in our framework. Below, we consider the pixel-wise segmentation
of the image. We denote the pixel set as V and use letters p and q to denote
individual pixels. We also denote the set of edges connecting adjacent pixels
as E and refer to individual edges as to the pairs of pixels (e.g. p, q). In our
experiments, the set of edges consisted of all 8-connected pixel pairs in the raster.

The segmentation of the image is given by its 0−1 labeling x ∈ 2V , where
individual pixel labels xp take the values 1 for the pixels classified as the fore-
ground and 0 for the pixels classified as the background. Finally, we denote the
non-local parameter as ω and allow it to vary over a discrete, possibly very large,
set Ω. The general form of the energy function that can be handled within our
framework is then given by:

E(x, ω) = C(ω)+
∑
p∈V

F p(ω)·xp+
∑
p∈V

Bp(ω)·(1−xp)+
∑
p,q∈E

P pq(ω)·|xp−xq| . (1)

Here, C(ω) is a constant potential, which does not depend directly on the
segmentation x; F p(ω) and Bp(ω) are the unary potentials defining the cost
for assigning the pixel p to the foreground and to the background respectively;
P pq(ω) is the pairwise potential defining the cost of assigning adjacent pixels
p and q to different segments. In our experiments, the pairwise potentials were
taken non-negative to ensure the tractability of E(x, ω) as the function of x for
graph cut optimization [19].

All potentials in our framework depend on the non-local parameter ω ∈ Ω.
In general, we assume that Ω is a discrete set, which may be large (e.g. millions
of elements) and should have some structure (although, it need not be linearly
or partially ordered). For the segmentation with shape priors, Ω will correspond
to the product space of various poses and deformations of the template, while
for the segmentation with color priors Ω will correspond to the set of parametric
color distributions.

3.2 Lower Bound

Our approach optimizes the energy (1) exactly, finding its global minimum using
branch-and-bound tree search [8], which utilizes the lower bound on (1) derived
as follows:
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min
x∈2V ,ω∈Ω

E(x, ω) = min
x∈2V

min
ω∈Ω

C(ω) +
∑
p∈V

F p(ω)·xp +
∑
p∈V

Bp(ω)·(1− xp)+

∑
p,q∈E

P pq(ω)·|xp − xq|

≥ min
x∈2V

min
ω∈Ω

C(ω) +
∑
p∈V

min
ω∈Ω

F p(ω)·xp+

∑
p∈V

min
ω∈Ω

Bp(ω)·(1− xp) +
∑
p,q∈E

min
ω∈Ω

P pq(ω)·|xp − xq|

 =

min
x∈2V

CΩ +
∑
p∈V

F pΩ ·xp +
∑
p∈V

BpΩ ·(1− xp) +
∑
p,q∈E

P pqΩ ·|xp − xq|

 = L(Ω) . (2)

Here, CΩ , F pΩ , BpΩ , P pqΩ denote the minima of C(ω), F p(ω), Bp(ω), P pq(ω)
over ω ∈ Ω referred below as aggregated potentials. L(Ω) denotes the derived
lower bound for E(x, ω) over 2V ⊗ Ω. The inequality in (2) is essentially the
Jensen inequality for the minimum operation.

The proposed lower bound possesses three properties crucial to the Branch-
and-Mincut framework:
Monotonicity. For the nested domains of non-local parameters Ω1 ⊂ Ω2 the
inequality L(Ω1) ≥ L(Ω2) holds (the proof is given in the Appendix).
Computability. The key property of the derived
lower bound is the ease of its evaluation. Indeed,
this bound equals the minimum of a submodular
quadratic pseudo-boolean function. Such function
can be realized on a network graph such that each
configuration of the binary variables is in one-to-one
correspondence with an st-cut of the graph having
the weight equal to the value of the function (plus
a constant CΩ) [2, 11, 19]. The minimal st-cut corre-
sponding to the minimum of L(Ω) then can be com-
puted in a low-polynomial of |V| time e.g. with the
popular algorithm [5].

The fragment of the network
graph realizing L(Ω) (edge
weights shown in boxes).
(see e.g.[19] for details)

Tightness. For a singleton Ω the bound is tight: L({ω}) = minx∈2V E(x, ω). In
such case, the minimal st-cut also yields the segmentation x optimal for this ω
(xp = 0 iff the respective vertex belongs to the s-component of the cut).

Note, that the fact that the lower bound (2) may be evaluated via st-mincut
gives rise to a whole family of looser, but cheaper, lower bounds. Indeed, the
minimal cut on a network graph is often found by pushing flows until the flow
becomes maximal (and equal to the weight of the mincut) [5]. Thus, the se-
quence of intermediate flows provides a sequence of the increasing lower bounds
on (1) converging to the bound (2) (flow bounds). If some upper bound on
the minimum value is imposed, the process may be terminated earlier without
computing the full maxflow/mincut. This happens when the new flow bound
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exceeds the given upper bound. In this case it may be concluded that the value
of the global minimum is greater than the imposed upper bound.

3.3 Branch-and-Bound Optimization

Finding the global minimum of (1) is, in general, a very difficult problem. Indeed,
since the potentials can depend arbitrarily on the non-local parameter spanning
arbitrary discrete set Ω, in the worst-case any optimization has to search ex-
haustively over Ω. In practice, however, any segmentation problem has some
specifically-structured space Ω. This structure can be efficiently exploited by
the branch-and-bound search detailed below.

We assume that the discrete domain Ω can be hierarchically clustered and
the binary tree of its subregions TΩ = {Ω = Ω0, Ω1, . . . ΩN} can be constructed
(binarity of the tree is not essential). Each non-leaf node corresponding to the
subregion Ωk then has two children corresponding to the subregions Ωch1(k) and
Ωch2(k) such that Ωch1(k) ⊂ Ωk, Ωch2(k) ⊂ Ωk. Here, ch1(·) and ch2(·) map the
index of the node to the indices of its children. Also, leaf nodes of the tree are
in one-to-one correspondence with singleton subsets Ωl = {ωt}.

Given such tree, the global minimum of (1) can be efficiently found using
the best-first branch-and-bound search [8]. This algorithm propagates a front of
nodes in the top-down direction (Fig. 1). During the search, the front contains a
set of tree nodes, such that each top-down path from the root to a leaf contains
exactly one active vertex. In the beginning, the front contains the tree root
Ω0. At each step the active node with the smallest lower bound (2) is removed
from the active front, while two of its children are added to the active front (by
monotonicity property they have higher or equal lower bounds). Thus, an active
front moves towards the leaves making local steps that increase the lowest lower
bound of all active nodes. Note, that at each moment, this lowest lower bound
of the front constitutes a lower bound on the global optimum of (1) over the
whole domain.

At some moment of time, the active node with the smallest lower bound
turns out to be a leaf {ω′}. Let x′ be the optimal segmentation for ω′ (found via
minimum st-cut). Then, E(x′, ω′) = L(ω′) (tightness property) is by assumption
the lowest bound of the front and hence a lower bound on the global optimum
over the whole domain. Consequently, (x′, ω′) is a global minimum of (1) and
the search terminates without traversing the whole tree. In our experiments,
the number of the traversed nodes was typically very small (two-three orders
of magnitude smaller then the size of the full tree). Therefore, the algorithm
performed global optimization much faster than exhaustive search over Ω.

In order to further accelerate the search, we exploit the coherency between
the mincut problems solved at different nodes. Indeed, the maximum flow as
well as auxiliary structures such as shortest path trees computed for one graph
may be “reused” in order to accelerate the computation of the minimal st-cut
on another similar graph [3, 18]. For some applications, this trick may give an
order of magnitude speed-up for the evaluation of lower bounds.
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Fig. 1. Best-first branch-and-bound optimization on the tree of nested regions
finds the globally-optimal ω by the top-down propagation of the active front
(see text for details). At the moment when the lowest lower bound of the front
is observed at leaf node, the process terminates with the global minimum found
without traversing the whole tree.

In addition to the best-first branch-and-bound search we also tried the depth-
first branch-and-bound [8]. When problem-specific heuristics are available that
give good initial solutions, this variant may lead to moderate (up to a factor
of 2) time savings. Interestingly, the depth-first variant of the search, which
maintains upper bounds on the global optimum, may benefit significantly from
the use of flow bounds discussed above. Nevertheless, we stick with the best-first
branch-and-bound for the final experiments due to its generality (no need for
initialization heuristics).

In the rest of the paper we detail how the general framework developed above
may be used within different segmentation scenarios.

4 Segmentation with Shape Priors

4.1 Constructing Shape Prior

We start with the segmentation with shape priors. The success of such segmen-
tation crucially depends on the way shape prior is defined. Earlier works have
often defined this prior as a Gaussian distribution of some geometrical shape
statistics (e.g. control point positions or level set functions) [29, 24]. In reality,
however, pose variance and deformations specific to the object of interest lead
to highly non-Gaussian, multi-modal prior distributions. For better modeling
of prior distributions, [9] suggested the use of non-parametric kernel densities.
Our approach to shape modeling is similar in spirit, as it also uses exemplar-
based prior. Arguably, it is more direct, since it involves the distances between
the binary segmentations themselves, rather than their level set functions. Our
approach to shape modeling is also closely related to [15] that used shape hier-
archies to detect or track objects in image edge maps.

We assume that the prior is defined by the set of exemplar binary segmenta-
tions {yω|ω ∈ Ω}, whereΩ is a discrete set indexing the exemplar segmentations.
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Then the following term introduces a joint prior over the segmentation and the
non-local parameter into the segmentation process:

Eprior(x, ω) = ρ(x,yω) =
∑
p∈V

(1− yωp )·xp +
∑
p∈V

yωp ·(1− xp) , (3)

where ρ denotes the Hamming distance between segmentations. This term clearly
has the form (1) and therefore its combinations with other terms of this form can
be optimized within our framework. Being optimized over the domain 2V ⊗ Ω,
this term would encourage the segmentation x to be close in the Hamming
distance to some of the exemplar shapes. Note, that the Hamming distance in
the continuous limit may be interpreted as the L1-distance between shapes. It
is relatively straightforward to modify the term (3) to replace the Hamming
distance with discrete approximations of other distances (L2, truncated L1 or
L2, data-driven Mahalonobis distance, etc.).

The full segmentation energy then may be defined by adding a standard
contrast-sensitive edge term [3]:

Eshape(x, ω) = Eprior(x, ω) +
∑
p,q∈E

λ
e−
||Kp−Kq||

σ

|p− q|
·|xp − xq| , (4)

where ||Kp − Kq|| denote the SAD (L1) distance between RGB colors of the
pixels p and q in the image (λ and σ were fixed throughout the experiments
described in this section), |p− q| denotes the distance between the centers of the
pixels p and q (being either 1 or

√
2 for the 8-connected grid). The functional

(4) thus incorporates the shape prior with edge-contrast cues.
In practice, the set Ωshape could be huge, e.g. tens of millions exemplars.

Therefore, representation and hierarchical clustering of the exemplar segmen-
tations yω, ω ∈ Ω may be challenging. In addition, the aggregated potentials
for each node of the tree should be precomputed and stored in memory. Fortu-
nately, this is accomplishable in many cases when the translation invariance is
exploited. In more detail, the set Ωshape is factorized it into the Cartesian prod-
uct of two sets Ωshape = ∆⊗Θ. The factor set ∆ indexes the set of all exemplar
segmentations yδ centered at the origin (this set would typically correspond to
the variations in scale, orientation as well as non-rigid deformations). The factor
set Θ then corresponds to the shift transformations and ensures the translation
invariance of the prior. Any exemplar segmentation yω, ω = δ⊗θ is then defined
as some exemplar segmentation yδ centered at the origin and then shifted by the
shift θ.

Being much smaller than Ωshape, both factor sets can be clustered in hier-
archy trees. For the factor set ∆ we used agglomerative clustering (a complete
linkeage algorithm that uses the Hamming distance between the exemplar seg-
mentations). The factor set Θ uses the natural hierarchical clustering of the
quad-tree. Then the tree over Ωshape is defined as a “product” of the two factor
trees (we omit the details about the particular implementation). The aggregated
potentials FΩ and BΩ in (2) for tree nodes are precomputed in a bottom-up



Extended technical report of ECCV-2008 publication 9

Exemplars yω Non-local shape prior+Edge cues Intensity+Edge cues

Fig. 2. Using the shape prior constructed from the set of exemplars (left column)
our approach can accomplish segmentation of an object undergoing general 3D
pose changes within two differently illuminated sequences (two middle columns).
Note the varying topology of the segmentations. For comparison, we give the re-
sults of a standard graph cut segmentation (right column): even with parameters
tuned specifically to the test images, separation is entirely inaccurate.

pass and stored in memory. The redundancy arising from translation invariance
is used to keep the required amount of memory reasonable.

Note the three properties of our approach to segmentation with shape priors.
Firstly, since any shapes can be included in Ωshape, general 3D pose transfor-
mations and deformations may be handled. Secondly, the segmentations may
have general varying topology not restricted to segments with single-connected
boundaries. Thirdly, our framework is general enough to introduce other terms
in the segmentation process (e.g. regional terms used in a standard graph cut
segmentation [3]). These properties of our approach are demonstrated within the
following experiments.

4.2 Experiments

Single object+3D pose changes. In our first experiment, we constructed
a shape prior for a single object (a coffee cup) undergoing 3D pose changes.
We obtained a set of outlines using “blue-screening”. We then normalized these
outlines (by centering at the origin, resizing to a unit scale and orienting the
principle axes with the coordinate axes). After that we clustered the normalized
outlines using k-means. A representative of each cluster was then taken into the
exemplar set. After that we added scale variations, in-plane rotations, and trans-
lations. As a result, we got a set {yω|ω ∈ Ωshape} containing about 30,000,000
exemplar shapes(while the set ∆ contained about 1900 shapes).
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Fig. 3. Results of the global optimization of (5) on some of the 170 UIUC car
images including 1 of the 2 cases where localization failed (bottom left). In
the case of the bottom right image, the global minimum of (4) (yellow) and
the result of our feature-based car detector (blue) gave erroneous localization,
while the global minimum of their combination (5) (red) represented an accurate
segmentation.

The results of the global optimization of the functional (4) for the frames from
the two sequences containing clutter and camouflage are shown in Fig. 2. On
average, we observed that segmenting 312x272 image took about 30 seconds of
an Intel-2.40 GHz CPU and less than 1 Gb of RAM. The proportion of the nodes
of the tree traversed by the active front was on average about 1 : 5000. Thus,
branch-and-bound tree search used in our framework improved very considerably
over exhaustive search, which would have to traverse all leaves (1 : 2 of the tree).

As a baseline algorithm, we considered the segmentation with a “standard”
graph cut functional, replacing non-local shape prior term with a local intensity-
based term

∑
p∈V(I − Ip)·xp, adjusting the constant I for each frame so that

it gives the best results. However, since the intensity distributions of the cup
and the backgrounds overlapped significantly, the segmentations were grossly
erroneous (Fig. 2 – right column).

Object class+translation invariance. In the second experiment, we per-
formed the segmentation with shape priors on UIUC car dataset (the version
without scale variations), containing 170 images with cars in uncontrolled envi-
ronment (city streets). The prior set ∆ was built by manual segmentation of 60
training images coming with the dataset. The set of shifts Θ was defined by the
varying size of test images. While the test image sizes varyied from 110x75 to
360x176, the size of Ωshape varied from 18,666 to 2,132,865. We computed the
globally optimal segmentations under the constructed prior using the energy (4).

Using the bounding boxes of the cars provided with the dataset, we found
that in 6.5% of the images the global minima corresponded to clutter rather than
cars. To provide a baseline for localization accuracy based on edge cues and a
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set of shape templates, we considered Chamfer matching (as e.g. in [15]). For
the comparison we used the same set of templates, which were matched against
truncated Canny-based chamfer distance (with optimally tuned truncation and
Canny sensitivity parameters). In this way, the optimal localization failed (i.e.
corresponded to clutter rather than a car) in 12.4% of the images.

Clearly, segmenting images using (4) takes into account the shape prior and
edge-contrast cues, but ignores the appearance typical for the object category
under consideration. At the same time, there exists a large number of algorithms
working with image appearance cues and performing object detection based
on these cues (see e.g. [23] and references therein). Typically, such algorithms
produce the likelihood of the object presence either as a a function of a bounding
box or even in the form of per-pixel “soft segmentation” masks. Both types of
the outputs can be added into the functional (1) either via constant potential
C(Ω) or via unary potentials. In this way, such appearance-based detectors can
be integrated with shape prior and edge-contrast cues.

As an example of such integration, we devised a simple detector similar in
spirit to [23]. The detector looked for the appearance features typical for cars
(wheels) using normalized cross-correlation. Each pixel in the image then “voted”
for the location of the car center depending on the strength of the response to
the detector and the relative position of the wheels with respect to the car center
observed on the training dataset. We then added an additional term Cvote(ω) in
our energy (1) that for each ω equaled minus the accumulated strength of the
votes for the center of yω:

Eshape&detect(x, ω) = Cvote(ω) +Eprior(x, ω) +
∑
p,q∈E

λ
e−
||Kp−Kq||

σ

|p− q|
·|xp−xq| , (5)

Adding the appearance-based term improved the robustness of the segmen-
tation, as the global optima of (5) corresponded to clutter only in 1.2% of the
images. The global minima found for some of the images are shown in Fig. 3.
Note, that for our simple detector on its own the most probable bounding box
corresponded to clutter on as much as 14.7% of the images.

In terms of the performance, on average, for the functional (5) the segmenta-
tion took 1.8 seconds and the proportion of the tree traversed by the active front
was 1 : 441. For the functional (4), the segmentation took 6.6 seconds and the
proportion of the tree traversed by the active front was 1 : 131. This difference
in performance is natural to branch-and-bound methods: the more difficult and
ambiguous is the optimization problem, the larger is the portion of the tree that
has to be investigated.

5 Segmentation with Color/Intensity Priors

Our framework can also be used to impose non-local priors on the intensity or
color distributions of the foreground and background segments, as the examples
below demonstrate.
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5.1 Segmenting Grayscale Images: Chan-Vese Functional

183x162, time=3s,
proportion=1:115

300x250, time=4s,
proportion=1:103

385x264, time=16s,
proportion=1:56

371x255, time=21s,
proportion=1:98

Fig. 4. The global minima of the Chan-Vese functional for medical and aerial
images. These global minima were found using our framework in the specified
amount of time; specified proportion of the tree was traversed.

In [7] Chan and Vese have proposed the following popular functional for the
variational image segmentation problem:

E(S, cf , cb) = µ

∫
∂S

dl+ν

∫
S

dp+λ1

∫
S

(
I(p)− cf

)2

dp+λ2

∫
S̄

(
I(p)− cb

)2

dp ,

(6)
where S denotes the foreground segment, and I(p) is a grayscale image. The
first two terms measure the length of the boundary and the area, the third and
the forth terms are the integrals over the fore- and background of the difference
between image intensity and the two intensity values cf and cb, which correspond
to the average intensities of the respective regions. Traditionally, this functional
is optimized using level set framework [25]converging to one of its local minima.

Below, we show that the discretized version of this functional can be opti-
mized globally within our framework. Indeed, the discrete version of (6) can be
written as (using notation as before):

E(x, (cf , cb)) =
∑
p,q∈E

µ

|p− q|
·|xp − xq|+

∑
p∈V

(
ν + λ1(I(p)− cf )2

)
·xp+

∑
p∈V

λ2

(
I(p)− cb

)2

·(1− xp) .
(7)

Here, the first term approximates the first term of (6) (the accuracy of the
approximation depends on the size of the pixel neighborhood [4]), and the last
two terms express the last three terms of (6) in a discrete setting.

The functional (7) clearly has the form (1) with non-local parameter ω =
{cf , cb}. Discretizing intensities cfand cb into 255 levels and building a quad-
tree over their joint domain, we can apply our framework to find the global
minima of (6). Example globally optimal segmentations are shown on Fig. 4.
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5.2 Segmenting Color Images: GrabCut functional

In [26], the GrabCut framework for the interactive color image segmentation
based on Gaussian mixtures was proposed. In GrabCut, the segmentation is
driven by the following energy:

EGrabCut(x, (GMf , GM b)) =
∑
p∈V
− log(P(Kp|GMf ))·xp+

+
∑
p∈V
− log(P(Kp|GM b))·(1− xp)+

∑
p,q∈E

λ1 + λ2·e−
||Kp−Kq||2

β

|p− q|
·|xp − xq| .

(8)

Here, GMf and GM b are Gaussian mixtures in RGB color space and the first
two terms of the energy measure how well these mixtures explain colors Kp of
pixels attributed to fore- and background respectively. The third term is the con-
trast sensitive edge term, ensuring that the segmentation boundary is compact
and tends to stick to color region boundaries in the image. In addition to this
energy, the user provides supervision in the form of a bounding rectangle and
brush strokes, specifying which parts of the image should be attributed to the
foreground and to the background.

The original method [26] minimizes the energy within EM-style process, al-
ternating between (i) the minimization of (8) over x given GMf and GM b and
(ii) refitting the mixtures GMf and GM b given x. Despite the use of the global
graph cut optimization within the segmentation update step, the whole process
yields only a local minimum of (8). In [26], the segmentation is initialized to the
provided bounding box and then typically shrinks to one of the local minima.

The energy (8) has the form (1) and therefore can be optimized within
Branch-and-Mincut framework, provided that the space of non-local parameters
(which in this case is the joint space of the Gaussian mixtures for the foreground
and for the background) is discretized and the tree of the subregions is built. In
this scenario, however, the dense discretization of the non-local parameter space
is infeasible (if the mixtures contain n Gaussians then the space is described by
20n − 2 continuous parameters). It is possible, nevertheless, to choose a much
smaller discrete subset Ω that is still likely to contain a good approximation to
the globally-optimal mixtures.

To construct such Ω, we fit a mixture of M = 8 Gaussians G1, G2, ...GM
with the support areas a1, a2, ...aM to the whole image. The support area ai here
counts the number of pixels p such as ∀j P(Kp|Gi) ≥ P(Kp|Gj). We assume that
the components are ordered such that the support areas decrease (ai > ai+1).
Then, the Gaussian mixtures we consider are defined by the binary vector β =
{β1, β2 . . . βM} ∈ {0, 1}M specifying which Gaussians should be included into
the mixture: P(K|GM(β)) =

∑
i βiaiP(K|Gi) /

∑
i βiai.

The overall set Ω is then defined as {0, 1}2M , where odd bits correspond to
the foreground mixture vector βf and even bits correspond to the background
mixture vector βb. Vectors with all even bits and/or all odd bits equal to zero
do not correspond to meaningful mixtures and are therefore assigned an infinite



14 Extended technical report of ECCV-2008 publication

cost. The hierarchy tree is naturally defined by the bit-ordering (the first bit
corresponding to subdivision into the first two branches etc.).

Image+input GrabCut[26](−618) Branch&Mincut(−624) Combined(−628)

Image+input GrabCut[26](−593) Branch&Mincut(−584) Combined(−607)

Fig. 5. Being initialized with the user-provided bounding rectangle (shown in
green in the first column) as suggested in [26], EM-style process [26] converges
to a local minimum (the second column). Branch-and-Mincut result (the third
column) escapes that local minimum and after EM-style improvement lead to
the solution with much smaller energy and better segmentation accuracy (the
forth column). Energy values are shown in brackets.

Depending on the image and the value of M , the solutions found by Branch-
and-Mincut framework may have larger or smaller energy (8) than the solutions
found by the original EM-style method [26]. This is because Branch-and-Mincut
here finds the global optimum over the subset of the domain of (8) while [26]
searches locally but within the continuous domain. However, for all 15 images in
our experiments, improving Branch-and-Mincut solutions with a few EM-style
iterations [26] gave lower energy than the original solution of [26]. In most cases,
these additional iterations simply refit the Gaussians properly and change very
few pixels near boundary (see Fig. 5).

In terms of performance, for M = 8 the segmentation takes on average a
few dozen seconds (10s and 40s for the images in Fig. 5) for 300x225 image.
The proportion of the tree traversed by an active front is one to several hundred
(1:963 and 1:283 for the images in Fig. 5).

This experiment suggests the usefulness of Branch-and-Mincut framework as
a mean of obtaining good initial point for local methods, when the domain space
is too large for an exact branch-and-bound search.
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6 Conclusion

The Branch-and-Mincut framework presented in this paper finds global optima
of a wide class of energies dependent on the image segmentation mask and non-
local parameters. The joint use of branch-and-bound and graph cut allows effi-
cient traversal of the solution space. The developed framework is useful within a
variety of image segmentation scenarios, including segmentation with non-local
shape priors and non-local color/intensity priors.

Future work includes the extension of Branch-and-Mincut to other problems,
such as simultaneous stitching and registration of images, as well as deriving
analogous branch-and-bound frameworks for combinatorial methods other than
binary graph cut, such as minimum ratio cycles and multilabel MRF inference.
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Appendix: Proof of the monotonicity of the lower bound

By definition (see (2) in section 3.2), our bound L(Ω) equals

L(Ω) = min
x∈2V

min
ω∈Ω

C(ω) +
∑
p∈V

min
ω∈Ω

F p(ω)·xp+

∑
p∈V

min
ω∈Ω

Bp(ω)·(1− xp) +
∑
p,q∈E

min
ω∈Ω

P pq(ω)·|xp − xq|

 , (9)

where x ∈ 2V is the segmentation vector, V is the set of pixels, ω is the non-local
parameter, C,F p, Bp, P pq are real-valued functions of ω.

We need to prove that if Ω1 ⊂ Ω2 then L(Ω1) ≥ L(Ω2) (monotonicity).
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Proof. Let us denote with A(x, Ω) the expression within the outer minimum
of (9):

A(x, Ω) =

min
ω∈Ω

C(ω) +
∑
p∈V

min
ω∈Ω

F p(ω)·xp+

∑
p∈V

min
ω∈Ω

Bp(ω)·(1− xp) +
∑
p,q∈E

min
ω∈Ω

P pq(ω)·|xp − xq|

 . (10)

Then, (9) reformulates as:

L(Ω) = min
x∈2V

A(x, Ω) . (11)

Assume Ω1 ⊂ Ω2.
Let us prove that for any fixed x, for all pixels p and edges pq, the following

holds:

min
ω∈Ω1

C(ω) ≥ min
ω∈Ω2

C(ω) (12)

min
ω∈Ω1

F p(ω)·xp ≥ min
ω∈Ω2

F p(ω)·xp (13)

min
ω∈Ω1

Bp(ω)·(1− xp) ≥ min
ω∈Ω2

Bp(ω)·(1− xp) (14)

min
ω∈Ω1

P pq(ω)·|xp − xq| ≥ min
ω∈Ω2

P pq(ω)·|xp − xq|. (15)

This is because, firstly, all values xp, 1− xp, and |xp − xq| are non-negative
(recall that all xp takes the value of 0 or 1) and, secondly, all minima on the left
sides are taken over a subset of the domain of the same minima on the left sides.

Consider for instance (15) for some edge pq. If |xp−xq| = 0 then (15) is trivial
(0 ≥ 0). Otherwise (if |xp − xq| = 1) (15) is eqivalent to minω∈Ω1 P

pq(ω) ≥
minω∈Ω2 P

pq(ω), which is true because the domain on the left lies inside the
domain on the right (Ω1 ⊂ Ω2 by assumption). Same argument holds for all
inequalities (12)–(15).

Summing up inequalities (12)–(15) over all pixels p and edges pq and taking
into account the definition (10), we get:

∀x A(x, Ω1) ≥ A(x, Ω2) . (16)

I.e. monotonicity holds for any fixed x.
Let x1 be the segmentation delivering the global optimum of A(x, Ω1): x1 =

argminx∈2V A(x, Ω1). Let x2 be the segmentation delivering the global optimum
of A(x, Ω2): x2 = argminx∈2V A(x, Ω2).

Then,

L(Ω1) = A(x1, Ω1) ≥ A(x1, Ω2) ≥ A(x2, Ω2) = L(Ω2) . (17)
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Here, the first equality is by the definition of L, A, x1 (see (11)); the following
inequality follows from (16); the next inequality is by the definition of x2; the
last equality is by the definition of L, A, x2 (see (11)).

Therefore:
L(Ω1) ≥ L(Ω2) .


