
Minimally Supervised Learning of Semantic Knowledge

from Query Logs

 Mamoru Komachi Hisami Suzuki
 Nara Institute of Science and Technology Microsoft Research

 8916-5 Takayama One Microsoft Way

Ikoma, Nara 630-0192, Japan Redmond, WA 98052 USA
 mamoru-k@is.naist.jp hisamis@microsoft.com

Abstract

We propose a method for learning semantic

categories of words with minimal supervi-

sion from web search query logs. Our me-

thod is based on the Espresso algorithm

(Pantel and Pennacchiotti, 2006) for ex-

tracting binary lexical relations, but makes

important modifications to handle query

log data for the task of acquiring semantic

categories. We present experimental results

comparing our method with two state-of-

the-art minimally supervised lexical know-

ledge extraction systems using Japanese

query log data, and show that our method

achieves higher precision than the pre-

viously proposed methods. We also show

that the proposed method offers an addi-

tional advantage for knowledge acquisition

in an Asian language for which word seg-

mentation is an issue, as the method utiliz-

es no prior knowledge of word segmenta-

tion, and is able to harvest new terms with

correct word segmentation.

1 Introduction

Extraction of lexical knowledge from a large col-

lection of text data with minimal supervision has

become an active area of research in recent years.

Automatic extraction of relations by exploiting

recurring patterns in text was pioneered by Hearst

(1992), who describes a bootstrapping procedure

for extracting words in the hyponym (is-a) relation,

starting with three manually given lexico-syntactic

patterns. This idea of learning with a minimally

supervised bootstrapping method using surface text

patterns was subsequently adopted for many tasks,

including relation extraction (e.g., Brin, 1998; Ri-

loff and Jones, 1999; Pantel and Pennacchiotti,

2006) and named entity recognition (e.g., Collins

and Singer, 1999; Etzioni et al., 2005).

In this paper, we describe a method of learning

semantic categories of words using a large collec-

tion of Japanese search query logs. Our method is

based on the Espresso algorithm (Pantel and Pen-

nacchiotti, 2006) for extracting binary lexical rela-

tions, adapting it to work well on learning unary

relations from query logs. The use of query data as

a source of knowledge extraction offers some

unique advantages over using regular text.

 Web search queries capture the interest of search

users directly, while the distribution of the Web

documents do not necessarily reflect the distri-

bution of what people search (Silverstein et al.,

1998). The word categories acquired from query

logs are thus expected to be more useful for the

tasks related to search.

 Though user-generated queries are often very

short, the words that appear in queries are gen-

erally highly relevant for the purpose of word

classification.

 Many search queries consist of keywords, which

means that the queries include word segmenta-

tion specified by users. This is a great source of

knowledge for learning word boundaries for

those languages whose regularly written text

does not indicate word boundaries, such as Chi-

nese and Japanese.

Although our work naturally fits into the larger

goal of building knowledge bases automatically

from text, to our knowledge we are the first to ex-

plore the use of Japanese query logs for the pur-

pose of minimally supervised semantic category

acquisition. Our work is similar to Sekine and Su-

zuki (2007), whose goal is to augment a manually

created dictionary of named entities by finding

mailto:mamoru-k@is.naist.jp

contextual patterns from English query logs. Our

work is different in that it does not require a full-

scale list of categorized named entities but a small

number of seed words, and iterates over the data to

extract more patterns and instances. Recent work

by Paşca (2007) and Paşca and Van Durme (2007)

also uses English query logs to extract lexical

knowledge, but their focus is on learning attributes

for named entities, a different focus from ours.

2 Related Work

In this section, we describe three state-of-the-art

algorithms of relation extraction, which serve as

the baseline for our work. They are briefly summa-

rized in Table 1. The goal of these algorithms is to

learn target instances, which are the words belong-

ing to certain categories (e.g., cat for the Animal

class), or in the case of relation extraction, the

pairs of words standing in a particular relationship

(e.g., pasta::food for is-a relationship), given the

context patterns for the categories or relation types

found in source data.

2.1 Pattern Induction

The first step toward the acquisition of instances is

to extract context patterns. In previous work, these

are surface text patterns, e.g., X such as Y, for ex-

tracting words in an is-a relation, with some heu-

ristics for finding the pattern boundaries in text. As

we use query logs as the source of knowledge, we

simply used everything but the instance string in a

query as the pattern for the instance, in a manner

similar to Paşca et al. (2006). For example, the

seed word JAL in the query “JAL+flight_schedule”

yields the pattern "#+flight_schedule".
1
 Note that

we perform no word segmentation or boundary

detection heuristics in identifying these patterns,

which makes our approach fast and robust, as the

1
 # indicates where the instance occurs in the query

string, and + indicates a white space in the original Jap-

anese query. The underscore symbol (_) means there

was originally no white space; it is used merely to make

the translation in English more readable.
2
 The manual classification assigns only one category

segmentation errors introduce noise in extracted

patterns, especially when the source data contains

many out of vocabulary items.

The extracted context patterns must then be as-

signed a score reflecting their usefulness in extract-

ing the instances of a desired type. Frequency is a

poor metric here, because frequent patterns may be

extremely generic, appearing across multiple cate-

gories. Previously proposed methods differ in how

to assign the desirability scores to the patterns they

find and in using the score to extract instances, as

well as in the treatment of generic patterns, whose

precision is low but whose recall is high.

2.2 Sekine and Suzuki (2007)’s Algorithm

For the purpose of choosing the set of context pat-

terns that best characterizes the categories, Sekine

and Suzuki (2007) report that none of the conven-

tional co-occurrence metrics such as tf.idf, mutual

information and chi-squared tests achieved good

results on their task, and propose a new measure,

which is based on the number of different instances

of the category a context c co-occurs with,

lized by its token frequency for all categories:

C

cg
fcScore type

)(
log)(

)1000()1000(

)()()(

ctopFctopfC

cFcfcg

insttype

insttype





where ftype is the type frequency of instance terms

that c co-occurs with in the category, Finst is the

token frequency of context c in the entire data and

ctop1000 is the 1000 most frequent contexts. Since

they start with a large and reliable named entity

dictionary, and can therefore use several hundred

seed terms, they simply used the top-k highest-

scoring contexts and extracted new named entities

once and for all, without iteration. Generic patterns

receive low scores, and are therefore ignored by

this algorithm.

2.3 The Basilisk Algorithm

Thelen and Riloff (2002) present a framework

called Basilisk, which extracts semantic lexicons

 # of seed Target # of iteration Corpus Language

Sekine & Suzuki ~600 Categorized NEs 1 Query log English

Basilisk 10 Semantic lexicon ∞ MUC-4 English

Espresso ~10 Semantic relations ∞ TREC English

Tchai 5 Categorized words ∞ Query log Japanese

Table 1: Summary of algorithms

for multiple categories. It starts with a small set of

seed words and finds all patterns that match these

seed words in the corpus. The bootstrapping

process begins by selecting a subset of the patterns

by the RlogF metric (Riloff, 1996):

)log()(log i

i

i
i F

N

F
patternFR 

where Fi is the number of category members ex-

tracted by patterni and Ni is the total number of

instances extracted by patterni. It then identifies

instances by these patterns and scores each in-

stance by the following formula:

i

P

j
j

i
P

F

wordAvgLog

i







1

)1log(

)(

where Pi is the number of patterns that extract

wordi. They use the average logarithm to select

instances to balance the recall and precision of ge-

neric patterns. They add five best instances to the

lexicon according to this formula, and the boot-

strapping process starts again. Instances are cumu-

latively collected across iterations, while patterns

are discarded at the end of each iteration.

2.4 The Espresso Algorithm

We will discuss the Espresso framework (Pantel

and Pennacchiotti, 2006) in some detail because

our method is based on it. It is a general-purpose,

minimally supervised bootstrapping algorithm that

takes as input a few seed instances and iteratively

learns surface patterns to extract more instances.

The key to Espresso lies in its use of generic pat-

terns: Pantel and Pennacchiotti (2006) assume that

correct instances captured by a generic pattern will

also be instantiated by some reliable patterns,

which denote high precision and low recall pat-

terns.

Espresso starts from a small set of seed in-

stances of a binary relation, finds a set of surface

patterns P, selects the top-k patterns, extracts the

highest scoring m instances, and repeats the

process. Espresso ranks all patterns in P according

to reliability rπ, and retains the top-k patterns for

instance extraction. The value of k is incremented

by one after each iteration.

 The reliability of a pattern p is based on the in-

tuition that a reliable pattern co-occurs with many

reliable instances. They use pointwise mutual in-

formation (PMI) and define the reliability of a pat-

tern p as its average strength of association across

each input instance i in the set of instances I,

weighted by the reliability of each instance i:

I

ir
pipmi

pr
Ii pm i





















)(
max

),(

)(





where rι(i) is the reliability of the instance i and

maxpmi is the maximum PMI between all patterns

and all instances. The PMI between instance i =

{x,y} and pattern p is estimated by:

,**,,*,

,,
log),(

pyx

ypx
pipmi 

where ypx ,, is the frequency of pattern p instan-

tiated with terms x and y (recall that Espresso is

targeted at extracting binary relations) and where

the asterisk represents a wildcard. They multiplied

pmi(i,p) with the discounting factor suggested in

Pantel and Ravichandran (2004) to alleviate a bias

towards infrequent events.

The reliability of an instance is defined similar-

ly: a reliable instance is one that associates with as

many reliable patterns as possible.

P

pr
pipmi

ir
Pp pm i





















)(
max

),(

)(





where rπ(p) is the reliability of pattern p, and P is

the set of surface patterns. Note that rι(i) and rπ(p)

are recursively defined: the computation of the pat-

tern and instance reliability alternates between per-

forming pattern reranking and instance extraction.

Similarly to Basilisk, instances are cumulatively

learned, but patterns are discarded at the end of

each iteration.

3 The Tchai Algorithm

In this section, we describe the modifications we

made to Espresso to derive our algorithm called

Tchai.

3.1 Filtering Ambiguous Instances and Pat-

terns

As mentioned above, the treatment of high-recall,

low-precision generic patterns (e.g., #+map,

#+animation) present a challenge to minimally

supervised learning algorithms due to their am-

guity. In the case of semantic category acquisition,

the problem of ambiguity is exacerbated, because

not only the acquired patterns, but also the in-

stances can be highly ambiguous. For example,

once we learn an ambiguous instance such as Po-

kemon, it will start collecting patterns for multiple

categories (e.g., Game, Animation and Movie),

which is not desirable.

In order to control the negative effect of the ge-

neric patterns, Espresso introduces a confidence

metric, which is similar but separate from the re-

liability measure, and uses it to filter out the gener-

ic patterns falling below a confidence threshold. In

our experiments, however, this metric did not pro-

duce a score that was substantially different from

the reliability score. Therefore, we did not use a

confidence metric, and instead opted for not

ing ambiguous instances and patterns, where we

define ambiguous instance as one that induces

more than 1.5 times the number of patterns of

viously accepted reliable instances, and ambiguous

(or generic) pattern as one that extracts more than

twice the number of instances of previously ac-

cepted reliable patterns. As we will see in Section

4, this modification improves the precision of the

extracted instances, especially in the early stages of

iteration.

3.2 Scaling Factor in Reliability Scores

Another modification to the Espresso algorithm to

reduce the power of generic patterns is to use local

maxpmi instead of global maxpmi. Since PMI ranges

[–∞, +∞], the point of dividing pmi(i,p) by maxpmi

in Espresso is to normalize the reliability to [0, 1].

However, using PMI directly to estimate the relia-

bility of a pattern when calculating the reliability

of an instance may lead to unexpected results be-

cause the absolute value of PMI is highly variable

across instances and patterns. We define the local

maxpmi of the reliability of an instance to be the

absolute value of the maximum PMI for a given

instance, as opposed to taking the maximum for all

instances in a given iteration. Local maxpmi of the

reliability of a pattern is defined in the same way.

As we show in the next section, this modification

has a large impact on the effectiveness of our algo-

rithm.

3.3 Performance Improvements

Tchai, unlike Espresso, does not perform the

pattern induction step between iterations; rather, it

simply recomputes the reliability of the patterns

induced at the beginning. Our assumption is that

fairly reliable patterns will occur with at least one

of the seed instances if they occur frequently

enough in query logs. Since pattern induction is

computationally expensive, this modification

reduces the computation time by a factor of 400.

4 Experiment

In this section, we present an empirical comparison

of Tchai with the systems described in Section 2.

4.1 Experimental Setup

Query logs: The data source for instance extrac-

tion is an anonymized collection of query logs

submitted to Live Search from January to February

2007, taking the top 1 million unique queries. Que-

ries with garbage characters are removed. Almost

all queries are in Japanese, and are accompanied

by their frequency within the logs.

Target categories: Our task is to learn word cate-

gories that closely reflect the interest of web search

users. We believe that a useful categorization of

words is task-specific, therefore we did not start

with any externally available ontology, but chose

to start with a small number of seed words. For our

task, we were given a list of 23 categories relevant

for web search, with a manual classification of the

10,000 most frequent search words in the log of

December 2006 (which we henceforth refer to as

the 10K list) into one of these categories.
2
 For

evaluation, we chose two of the categories, Travel

and Financial Services: Travel is the largest cate-

gory containing 712 words of the 10K list (as all

the location names are classified into this category),

while Financial Services was the smallest, contain-

ing 240 words.

Systems: We compared three different systems

described in Section 2 that implement an iterative

algorithm for lexical learning:

2
 The manual classification assigns only one category

per word, which is not optimal given how ambiguous

the category memberships are. However, it is also very

difficult to reliably perform a multi-class categorization

by hand.

Category Seeds (with English translation)

Travel jal, ana, jr, じゃらん(jalan), his

Finance みずほ銀行(Mizuho Bank), 三井住友銀

行 (SMBC), jcb, 新 生 銀 行 (Shinsei

Bank), 野村證券(Nomura Securities)

Table 2: Seed instances for Travel and Financial Ser-

vices categories

 Basilisk: The algorithm by (Thelen and Riloff,

2002) described in Section 2.

 Espresso: The algorithm by (Pantel and Pennac-

chiotti, 2006) described in Sections 2 and 3.

 Tchai: The Tchai algorithm described in this

paper.

For each system, we gave the same seed instances.

The seed instances are the 5 most frequent words

belonging to these categories in the 10K list; they

are given in Table 2. For the Travel category, “jal”

and “ana” are airline companies, “jr” stand for Ja-

pan Railways, “jalan” is an online travel informa-

tion site, and “his” is a travel agency. In the

Finance category, three of them are banks, and the

other two are a securities company and a credit

card firm. Basilisk starts by extracting 20 patterns,

and adds 100 instances per iteration. Espresso and

Tchai start by extracting 5 patterns and add 200

instances per iteration. Basilisk and Tchai iterated

20 times, while Espresso iterated only 5 times due

to computation time.

4.2 Results

4.2.1 Results of the Tchai algorithm

Tables 3 and 4 are the results of the Tchai algo-

rithm compared to the manual classification. Table

3 shows the results for the Travel category. The

precision of Tchai is very high: out of the 297

words classified into the Travel domain that were

also in the 10K list, 280 (92.1%) were learned

rectly.
3
 It turned out that the 17 instances that

3
 As the 10K list contained 712 words in the Travel cat-

egory, the recall against that list is fairly low (~40%).

The primary reason for this is that all location names are

classified as Travel in the 10K list, and 20 iterations are

represent the precision error were due to the ambi-

guity of hand labeling, as in 東京ディズニーランド

„Tokyo Disneyland‟, which is a popular travel des-

tination, but is classified as Entertainment in the

manual annotation. We were also able to correctly

learn 251 words that were not in the 10K list ac-

cording to manual verification; we also harvested

125 new words “incorrectly” into the Travel do-

main, but these words include common nouns re-

lated to Travel, such as 釣り „fishing‟ and レンタカ

ー „rental car‟. Results for the Finance domain

show a similar trend, but fewer instances are ex-

tracted.

Sample instances harvested by our algorithm

are given in Table 5. It includes subclasses of tra-

vel-related terms, for some of which no seed words

were given (such as Hotels and Attractions). We

also note that segmentation errors are entirely ab-

sent from the collected terms, demonstrating that

query logs are in fact excellently suited for acquir-

ing new words for languages with no explicit word

segmentation in text.

4.2.2 Comparison with Basilisk and Espresso

Figures 1 and 2 show the precision results compar-

ing Tchai with Basilisk and Espresso for the Travel

and Finance categories. Tchai outperforms Basilisk

and Espresso for both categories: its precision is

constantly higher for the Travel category, and it

achieves excellent precision for the Finance cate-

gory, especially in early iterations. The differences

in behavior between these two categories are due

to the inherent size of these domains. For the

not enough to enumerate all frequent location names.

Another reason is that the 10K list consists of queries

but our algorithm extracts instances – this sometimes

causes a mismatch, e.g.,Tchai extracts リッツ „Ritz‟ but

the 10K list contains リッツホテル „Ritz Hotel‟.

10K list Not in

10K list Travel Not Travel

Travel 280 17 251

Not Travel 0 7 125

Table 3: Comparison with manual annotation:

Travel category

 10K list Not in

10K list Finance Not Finance

Finance 41 30 30

Not Finance 0 5 99

Table 4: Comparison with manual annotation:

Financial Services category

Type Examples (with translation)

Place トルコ (Turkey), ラスベガス (Las

Vegas), バリ島 (Bali Island)

Travel agency Jtb, トクー (www.tocoo.jp), ya-

hoo (Yahoo ! Travel), net cruiser

Attraction ディズニーランド (Disneyland),

usj (Universal Studio Japan)

Hotel 帝国ホテル(Imperial Hotel), リッ

ツ(Ritz Hotel)

Transportation 京浜急行(Keihin Express), 奈良交

通(Nara Kotsu Bus Lines)

Table 5: Extracted Instances

http://www.tocoo.jp/

smaller Finance category, Basilisk and Espresso

both suffered from the effect of generic patterns

such as #ホームページ „homepage‟ and #カード

„card‟ in early iterations, whereas Tchai did not

select these patterns.

Figure 1: Basilisk, Espresso vs. Tchai: Travel

Figure 2: Basilisk, Espresso vs. Tchai: Finance

Comparing these algorithms in terms of recall

is more difficult, as the complete set of words for

each category is not known. However, we can es-

timate the relative recall given the recall of another

system. Pantel and Ravichandran (2004) defined

relative recall as:

||

||
|

BP

AP

C

C

CC

CC

R

R
R

B

A

B

A

B

A

B

A
BA






where RA|B is the relative recall of system A given

system B, CA and CB are the number of correct in-

stances of each system, and C is the number of true

correct instances. CA and CB can be calculated by

using the precision, PA and PB, and the number of

instances from each system. Using this formula,

we estimated the relative recall of each system rel-

ative to Espresso. Tables 6 and 7 show that Tchai

achieved the best results in both precision and rela-

tive recall in the Travel domain. In the Finance

domain, Espresso received the highest relative

call but the lowest precision. This is because Tchai

uses a filtering method so as not to select generic

patterns and instances.

Table 8 shows the context patterns acquired by

different systems after 4 iterations for the Travel

domain.
4
 The patterns extracted by Basilisk are not

entirely characteristic of the Travel category. For

example, “p#sonic” and “google+#lytics” only

match the seed word “ana”, and are clearly irrele-

vant to the domain. Basilisk uses token count to

estimate the score of a pattern, which may explain

the extraction of these patterns. Both Basilisk and

Espresso identify location names as context pat-

terns (e.g., #東京 „Tokyo‟, #九州 „Kyushu‟), which

may be too generic to be characteristic of the do-

main. In contrast, Tchai finds context patterns that

are highly characteristic, including terms related to

transportation (#+格安航空券 „discount plane tick-

et‟, #マイレージ „mileage‟) and accommodation

(#+ホテル „hotel‟).

4.2.3 Contributions of Tchai components

In this subsection, we examine the contribution of

each modification to the Espresso algorithm we

made in Tchai.

Figure 3 illustrates the effect of each

modification proposed for the Tchai algorithm in

Section 3 on the Travel category. Each line in the

graph corresponds to the Tchai algorithm with and

without the modification described in Sections 3.1

and 3.2. It shows that the modification to the

maxpmi function (purple) contributes most signifi-

cantly to the improved accuracy of our system. The

filtering of generic patterns (green) does not show

4
 Note that Basilisk and Espresso use context patterns

only for the sake of collecting instances, and are not

interested in the patterns per se. However, they can be

quite useful in characterizing the semantic categories

they are acquired for, so we chose to compare them here.

 # of inst. Precision Rel.recall

Basilisk 651 63.4 1.26

Espresso 500 65.6 1.00

Tchai 680 80.6 1.67

Table 6: Precision (%) and relative recall: Tra-

vel domain

 # of inst. Precision Rel.recall

Basilisk 278 27.3 0.70

Espresso 704 15.2 1.00

Tchai 223 35.0 0.73

Table 7: Precision (%) and relative recall: Finan-

cial Services domain

a large effect in the precision of the acquired in-

stances for this category, but produces steadily bet-

ter results than the system without it.

Figure 4 compares the original Espresso algo-

rithm and the modified Espresso algorithm which

performs the pattern induction step only at the be-

ginning of the bootstrapping process, as described

in Section 3.3. Although there is no significant dif-

ference in precision between the two systems, this

modification greatly improves the computation

time and enables efficient extraction of instances.

We believe that our choice of the seed instances to

be the most frequent words in the category produc-

es sufficient patterns for extracting new instances.

Figure 3: System precision w/o each modification

Figure 4: Modification to the pattern induction step

5 Conclusion

We proposed a minimally supervised bootstrap-

ping algorithm called Tchai. The main contribution

of the paper is to adapt the general-purpose Es-

presso algorithm to work well on the task of learn-

ing semantic categories of words from query logs.

The proposed method not only has a superior per-

formance in the precision of the acquired words

into semantic categories, but is faster and collects

more meaningful context patterns for characteriz-

ing the categories than the unmodified Espresso

algorithm. We have also shown that the proposed

method requires no pre-segmentation of the source

text for the purpose of knowledge acquisition.

Acknowledgements

This research was conducted during the first au-

thor‟s internship at Microsoft Research. We would

like to thank the colleagues at Microsoft Research,

especially Dmitriy Belenko and Christian König,

for their help in conducting this research.

References

Sergey Brin. 1998. Extracting Patterns and Relations

from the World Wide Web. WebDB Workshop at 6th

International Conference on Extending Database

Technology, EDBT '98. pp. 172-183.

Michael Collins and Yoram Singer. 1999. Unsupervised

Models for Named Entity Classification. Proceedings

of the Joint SIGDAT Conference on Empirical Me-

thods in Natural Language Processing and Very

Large Corpora. pp. 100-110.

Oren Etzioni, Michael Cafarella, Dong Downey, Ana-

Maria Popescu, Tal Shaked, Stephen Soderland, Da-

niel S. Weld, and Alexander Yates. 2005. Unsuper-

vised Named-Entity Extraction from the Web: An

Experimental Study. Artificial Intelligence. 165(1).

pp. 91-134.

Marti Hearst. 1992. Automatic Acquisition of Hypo-

nyms from Large Text Corpora. Proceedings of the

System Sample Patterns (with English translation)

Basilisk #東日本(east_japan), #西日本(west_japan), p#sonic, #時刻表(timetable), #九州(Kyushu), #+マイレ

ージ(mileage), #バス(bus), google+#lytics, #+料金(fare), #+国内(domestic), #ホテル(hotel)

Espresso #バス(bus), 日本#(Japan), #ホテル(hotel), #道路(road), #イン(inn), フジ#(Fuji), #東京(Tokyo), #料

金(fare), #九州(Kyushu), #時刻表(timetable), #+旅行(travel), #+名古屋(Nagoya)

Tchai #+ホテル(hotel), #+ツアー(tour), #+旅行(travel), #予約(reserve), #+航空券(flight_ticket), #+格安航

空券(discount_flight_titcket), #マイレージ(mileage), 羽田空港+#(Haneda Airport)

Table 8: Sample patterns acquired by three algorithms

Fourteenth International Conference on Computa-

tional Linguistics. pp 539-545.

Patrick Pantel and Marco Pennacchiotti. 2006. Espresso:

Leveraging Generic Patterns for Automatically Har-

vesting Semantic Relations. Proceedings of the 21st

International Conference on Computational Linguis-

tics and the 44th annual meeting of the ACL. pp. 113-

120.

Patrick Pantel and Deepak Ravichandran. 2004. Auto-

matically Labeling Semantic Classes. Proceedings of

Human Language Technology Conference of the

North American Chapter of the Association for Com-

putational Linguistics (HLT/NAACL-04). pp. 321-

328.

Marius Paşca. 2004. Acquisition of Categorized Named

Entities for Web Search. Proceedings of the 13th

ACM Conference on Information and Knowledge

Management (CIKM-04). pp. 137-145.

Marius Paşca. 2007. Organizing and Searching the

World Wide Web of Fact – Step Two: Harnessing the

Wisdom of the Crowds. Proceedings of the 16th In-

ternational World Wide Web Conference (WWW-07).

pp. 101-110.

Marius Paşca and Benjamin Van Durme. 2007. What

You Seek is What You Get: Extraction of Class

Attributes from Query Logs. Proceedings of the 20th

International Joint Conference on Artificial Intelli-

gence (IJCAI-07). pp. 2832-2837.

Marius Paşca, Dekang Lin, Jeffrey Bigham, Andrei Lif-

chits and Alpa Jain. 2006. Organizing and Searching

the World Wide Web of Facts – Step One: the One-

Million Fact Extraction Challenge. Proceedings of

the 21st National Conference on Artificial Intelli-

gence (AAAI-06). pp. 1400-1405.

Ellen Riloff. 1996. Automatically Generating Extraction

Patterns from Untagged Text. Proceedings of the

Thirteenth National Conference on Artificial Intelli-

gence. pp. 1044-1049.

Ellen Riloff and Rosie Jones. 1999. Learning Dictiona-

ries for Information Extraction by Multi-Level Boot-

strapping. Proceedings of the Sixteenth National

Conference on Artificial Intellligence (AAAI-99). pp.

474-479.

Satoshi Sekine and Hisami Suzuki. 2007. Acquiring

Ontological Knowledge from Query Logs. Proceed-

ings of the 16
th

 international conference on World

Wide Web. pp. 1223-1224.

Craig Silverstein, Monika Henzinger, Hannes Marais,

and Michael Moricz. 1998. Analysis of a Very Large

AltaVista Query Log. Digital SRC Technical Note

#1998-014.

Michael Thelen and Ellen Riloff. 2002. A Bootstrapping

Method for Learning Semantic Lexicons using Ex-

traction Pattern Contexts. Proceedings of Conference

on Empirical Methods in Natural Language

Processing. pp. 214-221.

