Minimally Supervised Learning of Semantic Knowledge
from Query Logs

Mamoru Komachi
Nara Institute of Science and Technology
8916-5 Takayama
Ikoma, Nara 630-0192, Japan

mamoru-k@is.naist.jp

Abstract

We propose a method for learning semantic
categories of words with minimal supervi-
sion from web search query logs. Our me-
thod is based on the Espresso algorithm
(Pantel and Pennacchiotti, 2006) for ex-
tracting binary lexical relations, but makes
important modifications to handle query
log data for the task of acquiring semantic
categories. We present experimental results
comparing our method with two state-of-
the-art minimally supervised lexical know-
ledge extraction systems using Japanese
query log data, and show that our method
achieves higher precision than the pre-
viously proposed methods. We also show
that the proposed method offers an addi-
tional advantage for knowledge acquisition
in an Asian language for which word seg-
mentation is an issue, as the method utiliz-
es no prior knowledge of word segmenta-
tion, and is able to harvest new terms with
correct word segmentation.

1 Introduction

Extraction of lexical knowledge from a large col-
lection of text data with minimal supervision has
become an active area of research in recent years.
Automatic extraction of relations by exploiting
recurring patterns in text was pioneered by Hearst
(1992), who describes a bootstrapping procedure
for extracting words in the hyponym (is-a) relation,
starting with three manually given lexico-syntactic
patterns. This idea of learning with a minimally
supervised bootstrapping method using surface text
patterns was subsequently adopted for many tasks,
including relation extraction (e.g., Brin, 1998; Ri-

Hisami Suzuki
Microsoft Research
One Microsoft Way
Redmond, WA 98052 USA

hisamis@microsoft.com

loff and Jones, 1999; Pantel and Pennacchiotti,
2006) and named entity recognition (e.g., Collins
and Singer, 1999; Etzioni et al., 2005).

In this paper, we describe a method of learning
semantic categories of words using a large collec-
tion of Japanese search query logs. Our method is
based on the Espresso algorithm (Pantel and Pen-
nacchiotti, 2006) for extracting binary lexical rela-
tions, adapting it to work well on learning unary
relations from query logs. The use of query data as
a source of knowledge extraction offers some
unique advantages over using regular text.

* Web search queries capture the interest of search
users directly, while the distribution of the Web
documents do not necessarily reflect the distri-
bution of what people search (Silverstein et al.,
1998). The word categories acquired from query
logs are thus expected to be more useful for the
tasks related to search.

* Though user-generated queries are often very
short, the words that appear in queries are gen-
erally highly relevant for the purpose of word
classification.

* Many search queries consist of keywords, which
means that the queries include word segmenta-
tion specified by users. This is a great source of
knowledge for learning word boundaries for
those languages whose regularly written text
does not indicate word boundaries, such as Chi-
nese and Japanese.

Although our work naturally fits into the larger
goal of building knowledge bases automatically
from text, to our knowledge we are the first to ex-
plore the use of Japanese query logs for the pur-
pose of minimally supervised semantic category
acquisition. Our work is similar to Sekine and Su-
zuki (2007), whose goal is to augment a manually
created dictionary of named entities by finding

mailto:mamoru-k@is.naist.jp

of seed Target # of iteration Corpus Language
Sekine & Suzuki ~600 Categorized NEs 1 Query log English
Basilisk 10 Semantic lexicon) MUC-4 English
Espresso ~10 Semantic relations 0 TREC English
Tchai 5 Categorized words o0 Query log Japanese

Table 1: Summary of algorithms

contextual patterns from English query logs. Our
work is different in that it does not require a full-
scale list of categorized named entities but a small
number of seed words, and iterates over the data to
extract more patterns and instances. Recent work
by Pasca (2007) and Pasca and Van Durme (2007)
also uses English query logs to extract lexical
knowledge, but their focus is on learning attributes
for named entities, a different focus from ours.

2 Related Work

In this section, we describe three state-of-the-art
algorithms of relation extraction, which serve as
the baseline for our work. They are briefly summa-
rized in Table 1. The goal of these algorithms is to
learn target instances, which are the words belong-
ing to certain categories (e.g., cat for the Animal
class), or in the case of relation extraction, the
pairs of words standing in a particular relationship
(e.g., pasta::food for is-a relationship), given the
context patterns for the categories or relation types
found in source data.

2.1

The first step toward the acquisition of instances is
to extract context patterns. In previous work, these
are surface text patterns, e.g., X such as Y, for ex-
tracting words in an is-a relation, with some heu-
ristics for finding the pattern boundaries in text. As
we use query logs as the source of knowledge, we
simply used everything but the instance string in a
query as the pattern for the instance, in a manner
similar to Pasca et al. (2006). For example, the
seed word JAL in the query “JAL+flight_schedule”
yields the pattern "#+flight_schedule".' Note that
we perform no word segmentation or boundary
detection heuristics in identifying these patterns,
which makes our approach fast and robust, as the

Pattern Induction

! # indicates where the instance occurs in the query
string, and + indicates a white space in the original Jap-
anese query. The underscore symbol (_) means there
was originally no white space; it is used merely to make
the translation in English more readable.

2 The manual classification assigns only one category

segmentation errors introduce noise in extracted
patterns, especially when the source data contains
many out of vocabulary items.

The extracted context patterns must then be as-
signed a score reflecting their usefulness in extract-
ing the instances of a desired type. Frequency is a
poor metric here, because frequent patterns may be
extremely generic, appearing across multiple cate-
gories. Previously proposed methods differ in how
to assign the desirability scores to the patterns they
find and in using the score to extract instances, as
well as in the treatment of generic patterns, whose
precision is low but whose recall is high.

2.2 Sekine and Suzuki (2007)’s Algorithm

For the purpose of choosing the set of context pat-
terns that best characterizes the categories, Sekine
and Suzuki (2007) report that none of the conven-
tional co-occurrence metrics such as tf.idf, mutual
information and chi-squared tests achieved good
results on their task, and propose a new measure,
which is based on the number of different instances
of the category a context ¢ co-occurs with,
lized by its token frequency for all categories:

Score(c) = e %

g(C) = ftype(c)/ I:ins'((C)

C = f,.(ctopl000) / F; ., (ctopL000)
where fy,e is the type frequency of instance terms
that ¢ co-occurs with in the category, Fi. is the
token frequency of context c in the entire data and
ctop1000 is the 1000 most frequent contexts. Since
they start with a large and reliable named entity
dictionary, and can therefore use several hundred
seed terms, they simply used the top-k highest-
scoring contexts and extracted new named entities
once and for all, without iteration. Generic patterns
receive low scores, and are therefore ignored by
this algorithm.

2.3 The Basilisk Algorithm

Thelen and Riloff (2002) present a framework
called Basilisk, which extracts semantic lexicons

log

for multiple categories. It starts with a small set of
seed words and finds all patterns that match these
seed words in the corpus. The bootstrapping
process begins by selecting a subset of the patterns
by the RlogF metric (Riloff, 1996):

Rlog F(pattern)z%-log(ﬁ)
where F; is the number of category members ex-
tracted by pattern; and N; is the total number of
instances extracted by pattern;. It then identifies
instances by these patterns and scores each in-
stance by the following formula:

B

> log(F, +1)

AvgLog(word,) = ’ﬂf
where P; is the number of patterns that extract
word;. They use the average logarithm to select
instances to balance the recall and precision of ge-
neric patterns. They add five best instances to the
lexicon according to this formula, and the boot-
strapping process starts again. Instances are cumu-
latively collected across iterations, while patterns

are discarded at the end of each iteration.

2.4 The Espresso Algorithm

We will discuss the Espresso framework (Pantel
and Pennacchiotti, 2006) in some detail because
our method is based on it. It is a general-purpose,
minimally supervised bootstrapping algorithm that
takes as input a few seed instances and iteratively
learns surface patterns to extract more instances.
The key to Espresso lies in its use of generic pat-
terns: Pantel and Pennacchiotti (2006) assume that
correct instances captured by a generic pattern will
also be instantiated by some reliable patterns,
which denote high precision and low recall pat-
terns.

Espresso starts from a small set of seed in-
stances of a binary relation, finds a set of surface
patterns P, selects the top-k patterns, extracts the
highest scoring m instances, and repeats the
process. Espresso ranks all patterns in P according
to reliability r,, and retains the top-k patterns for
instance extraction. The value of k is incremented
by one after each iteration.

The reliability of a pattern p is based on the in-
tuition that a reliable pattern co-occurs with many
reliable instances. They use pointwise mutual in-
formation (PMI) and define the reliability of a pat-
tern p as its average strength of association across

each input instance i in the set of instances I,
weighted by the reliability of each instance i:

Z{pmi“’ D). r,(i)J

“\ max, .
r.(p)= i

where r,(i) is the reliability of the instance i and
maXpmi is the maximum PMI between all patterns
and all instances. The PMI between instance i =
{x,y} and pattern p is estimated by:

. X P Y|
pmi(i, p) =log —————
X! ly ypy
where |x, p,y|is the frequency of pattern p instan-

tiated with terms x and y (recall that Espresso is
targeted at extracting binary relations) and where
the asterisk represents a wildcard. They multiplied
pmi(i,p) with the discounting factor suggested in
Pantel and Ravichandran (2004) to alleviate a bias
towards infrequent events.

The reliability of an instance is defined similar-
ly: a reliable instance is one that associates with as
many reliable patterns as possible.

5 pmi(i, p) |
r (i) = peP maXpmi
) A
where r,(p) is the reliability of pattern p, and P is
the set of surface patterns. Note that r,(i) and r,.(p)
are recursively defined: the computation of the pat-
tern and instance reliability alternates between per-
forming pattern reranking and instance extraction.
Similarly to Basilisk, instances are cumulatively
learned, but patterns are discarded at the end of
each iteration.

r,r(p))

3 The Tchai Algorithm

In this section, we describe the modifications we
made to Espresso to derive our algorithm called
Tchai.

3.1 Filtering Ambiguous Instances and Pat-
terns

As mentioned above, the treatment of high-recall,
low-precision generic patterns (e.g., #+map,
#+animation) present a challenge to minimally
supervised learning algorithms due to their am-
guity. In the case of semantic category acquisition,
the problem of ambiguity is exacerbated, because
not only the acquired patterns, but also the in-
stances can be highly ambiguous. For example,

once we learn an ambiguous instance such as Po-
kemon, it will start collecting patterns for multiple
categories (e.g., Game, Animation and Movie),
which is not desirable.

In order to control the negative effect of the ge-
neric patterns, Espresso introduces a confidence
metric, which is similar but separate from the re-
liability measure, and uses it to filter out the gener-
ic patterns falling below a confidence threshold. In
our experiments, however, this metric did not pro-
duce a score that was substantially different from
the reliability score. Therefore, we did not use a
confidence metric, and instead opted for not
ing ambiguous instances and patterns, where we
define ambiguous instance as one that induces
more than 1.5 times the number of patterns of
viously accepted reliable instances, and ambiguous
(or generic) pattern as one that extracts more than
twice the number of instances of previously ac-
cepted reliable patterns. As we will see in Section
4, this modification improves the precision of the
extracted instances, especially in the early stages of
iteration.

3.2 Scaling Factor in Reliability Scores

Another modification to the Espresso algorithm to
reduce the power of generic patterns is to use local
maX,mi instead of global max,y,. Since PMI ranges
[o0, +o0], the point of dividing pmi(i,p) by maXymi
in Espresso is to normalize the reliability to [0, 1].
However, using PMI directly to estimate the relia-
bility of a pattern when calculating the reliability
of an instance may lead to unexpected results be-
cause the absolute value of PMI is highly variable
across instances and patterns. We define the local
max,mi Of the reliability of an instance to be the
absolute value of the maximum PMI for a given
instance, as opposed to taking the maximum for all
instances in a given iteration. Local max,m of the
reliability of a pattern is defined in the same way.
As we show in the next section, this modification
has a large impact on the effectiveness of our algo-
rithm.

3.3 Performance Improvements

Tchai, unlike Espresso, does not perform the
pattern induction step between iterations; rather, it
simply recomputes the reliability of the patterns
induced at the beginning. Our assumption is that
fairly reliable patterns will occur with at least one
of the seed instances if they occur frequently

Category
Travel
Finance

Seeds (with English translation)

jal, ana, jr, % & /(jalan), his

A T1EER4T(Mizuho Bank), = JHH{F& R
17 (SMBC), jcb, #r /E & 17 (Shinsei
Bank), #7475 (Nomura Securities)

Table 2: Seed instances for Travel and Financial Ser-
vices categories

enough in query logs. Since pattern induction is
computationally expensive, this maodification
reduces the computation time by a factor of 400.

4 Experiment

In this section, we present an empirical comparison
of Tchai with the systems described in Section 2.

4.1 Experimental Setup

Query logs: The data source for instance extrac-
tion is an anonymized collection of query logs
submitted to Live Search from January to February
2007, taking the top 1 million unique queries. Que-
ries with garbage characters are removed. Almost
all queries are in Japanese, and are accompanied
by their frequency within the logs.

Target categories: Our task is to learn word cate-
gories that closely reflect the interest of web search
users. We believe that a useful categorization of
words is task-specific, therefore we did not start
with any externally available ontology, but chose
to start with a small number of seed words. For our
task, we were given a list of 23 categories relevant
for web search, with a manual classification of the
10,000 most frequent search words in the log of
December 2006 (which we henceforth refer to as
the 10K list) into one of these categories.? For
evaluation, we chose two of the categories, Travel
and Financial Services: Travel is the largest cate-
gory containing 712 words of the 10K list (as all
the location names are classified into this category),
while Financial Services was the smallest, contain-
ing 240 words.

Systems: We compared three different systems
described in Section 2 that implement an iterative
algorithm for lexical learning:

% The manual classification assigns only one category
per word, which is not optimal given how ambiguous
the category memberships are. However, it is also very
difficult to reliably perform a multi-class categorization
by hand.

10K list Not in
Travel Not Travel 10K list
Travel 280 17 251
Not Travel 0 7 125

Table 3: Comparison with manual annotation:
Travel category

10K list Not in
Finance Not Finance 10K list
Finance 41 30 30
Not Finance 0 5 99

Table 4: Comparison with manual annotation;
Financial Services category

* Basilisk: The algorithm by (Thelen and Riloff,
2002) described in Section 2.
» Espresso: The algorithm by (Pantel and Pennac-
chiotti, 2006) described in Sections 2 and 3.
e Tchai: The Tchai algorithm described in this
paper.
For each system, we gave the same seed instances.
The seed instances are the 5 most frequent words
belonging to these categories in the 10K list; they
are given in Table 2. For the Travel category, “jal”
and “ana” are airline companies, “jr” stand for Ja-
pan Railways, “jalan” is an online travel informa-
tion site, and “his” is a travel agency. In the
Finance category, three of them are banks, and the
other two are a securities company and a credit
card firm. Basilisk starts by extracting 20 patterns,
and adds 100 instances per iteration. Espresso and
Tchai start by extracting 5 patterns and add 200
instances per iteration. Basilisk and Tchai iterated
20 times, while Espresso iterated only 5 times due
to computation time.

4.2 Results
421

Tables 3 and 4 are the results of the Tchai algo-
rithm compared to the manual classification. Table
3 shows the results for the Travel category. The
precision of Tchai is very high: out of the 297
words classified into the Travel domain that were
also in the 10K list, 280 (92.1%) were learned
rectly.® It turned out that the 17 instances that

Results of the Tchai algorithm

% As the 10K list contained 712 words in the Travel cat-
egory, the recall against that list is fairly low (~40%).

The primary reason for this is that all location names are
classified as Travel in the 10K list, and 20 iterations are

represent the precision error were due to the ambi-
guity of hand labeling, as in {7 1+ X=—F > R
“Tokyo Disneyland’, which is a popular travel des-
tination, but is classified as Entertainment in the
manual annotation. We were also able to correctly
learn 251 words that were not in the 10K list ac-
cording to manual verification; we also harvested
125 new words “incorrectly” into the Travel do-
main, but these words include common nouns re-
lated to Travel, such as #79 fishing’ and v > % %
— ‘rental car’. Results for the Finance domain
show a similar trend, but fewer instances are ex-
tracted.
Sample instances harvested by our algorithm
Type Examples (with translation)
Place kv = (Turkey), 7 A~77 A (Las
Vegas), -3 U 5 (Bali Island)

Jtb, ~ 27 — (www.tocoo.jp), ya-
hoo (Yahoo ! Travel), net cruiser

Travel agency

Attraction 7 4 A=—7 > (Disneyland),
usj (Universal Studio Japan)
Hotel #[# 74 7 /1 (Imperial Hotel), V >~

7 (Ritz Hotel)
ka7 (Keihin Express), 42 BAQ
1 (Nara Kotsu Bus Lines)

Transportation

Table 5: Extracted Instances

are given in Table 5. It includes subclasses of tra-
vel-related terms, for some of which no seed words
were given (such as Hotels and Attractions). We
also note that segmentation errors are entirely ab-
sent from the collected terms, demonstrating that
query logs are in fact excellently suited for acquir-
ing new words for languages with no explicit word
segmentation in text.

4272

Figures 1 and 2 show the precision results compar-
ing Tchai with Basilisk and Espresso for the Travel
and Finance categories. Tchai outperforms Basilisk
and Espresso for both categories: its precision is
constantly higher for the Travel category, and it
achieves excellent precision for the Finance cate-
gory, especially in early iterations. The differences
in behavior between these two categories are due
to the inherent size of these domains. For the

Comparison with Basilisk and Espresso

not enough to enumerate all frequent location names.
Another reason is that the 10K list consists of queries
but our algorithm extracts instances — this sometimes
causes a mismatch, e.g.,Tchai extracts U + > “Ritz’ but
the 10K list contains VU 47 /L ‘Ritz Hotel’.

http://www.tocoo.jp/

of inst. Precision Rel.recall
Basilisk 651 63.4 1.26
Espresso 500 65.6 1.00
Tchai 680 80.6 1.67
Table 6: Precision (%) and relative recall: Tra-
vel domain
of inst. Precision Rel.recall
Basilisk 278 27.3 0.70
Espresso 704 15.2 1.00
Tchai 223 35.0 0.73

Table 7: Precision (%) and relative recall: Finan-
cial Services domain

smaller Finance category, Basilisk and Espresso
both suffered from the effect of generic patterns
such as #4—2A~X— ‘homepage’ and #% — K
‘card’ in early iterations, whereas Tchai did not
select these patterns.

1
0.9

< _
g s =X
s
g 7 | ——— ==
£oo\/
®
£ o0s v Basilisk
£ 04
E : = Espresso
c 03
2 Tchai
Q 0.2
& 01

0

0 100 200 300 400 500

Total Lexicon Entries

Figure 1: Basilisk, Espresso vs. Tchai: Travel

1
0.9
0.8
0.7
0.6
0.5

= Basilisk

A_
\
0:2 p./ \\ Tchai

Precisionof Extracted Lexicon

04 Espresso
0.3 e
0.1
0
0 200 400 600 800

Total Lexicon Entries

Figure 2: Basilisk, Espresso vs. Tchai: Finance

Comparing these algorithms in terms of recall
is more difficult, as the complete set of words for
each category is not known. However, we can es-
timate the relative recall given the recall of another
system. Pantel and Ravichandran (2004) defined
relative recall as:

R RA_CA/C:&:PAX|A|

"R, Cs/C C, Pyx|B]

where Rap is the relative recall of system A given
system B, C, and Cg are the number of correct in-
stances of each system, and C is the number of true
correct instances. C, and Cg can be calculated by
using the precision, P, and Pg, and the number of
instances from each system. Using this formula,
we estimated the relative recall of each system rel-
ative to Espresso. Tables 6 and 7 show that Tchai
achieved the best results in both precision and rela-
tive recall in the Travel domain. In the Finance
domain, Espresso received the highest relative
call but the lowest precision. This is because Tchai
uses a filtering method so as not to select generic
patterns and instances.

Table 8 shows the context patterns acquired by
different systems after 4 iterations for the Travel
domain.* The patterns extracted by Basilisk are not
entirely characteristic of the Travel category. For
example, “p#sonic” and “google+#lytics” only
match the seed word “ana”, and are clearly irrele-
vant to the domain. Basilisk uses token count to
estimate the score of a pattern, which may explain
the extraction of these patterns. Both Basilisk and
Espresso identify location names as context pat-
terns (e.g., #5 5 ‘Tokyo’, #JuJi ‘Kyushu’), which
may be too generic to be characteristic of the do-
main. In contrast, Tchai finds context patterns that
are highly characteristic, including terms related to
transportation (#+#& 21222 “‘discount plane tick-
et’, #~ 4 L — < ‘mileage’) and accommodation
(#+47 v ‘hotel’).

4.2.3 Contributions of Tchai components

In this subsection, we examine the contribution of
each modification to the Espresso algorithm we
made in Tchai.

Figure 3 illustrates the effect of each
modification proposed for the Tchai algorithm in
Section 3 on the Travel category. Each line in the
graph corresponds to the Tchai algorithm with and
without the modification described in Sections 3.1
and 3.2. It shows that the modification to the
maX,mi function (purple) contributes most signifi-
cantly to the improved accuracy of our system. The
filtering of generic patterns (green) does not show

* Note that Basilisk and Espresso use context patterns
only for the sake of collecting instances, and are not
interested in the patterns per se. However, they can be
quite useful in characterizing the semantic categories
they are acquired for, so we chose to compare them here.

System

Sample Patterns (with English translation)

Basilisk

#3# H 74 (east_japan), #75 H A (west_japan), p#sonic, #ik#%lZ (timetable), #Ju/H (Kyushu), #+~ -1 L

—(mileage), #/3 A (bus), google+#lytics, #+k}<x(fare), #+EP(domestic), #74s7 /v (hotel)

Espresso

#/32(bus), HA#(Japan), #77 /v(hotel), #:&# (road), #-1 > (inn), 7 J#(Fuji), #3452 (Tokyo), #£}

4 (fare), #7L)0 (Kyushu), #5242 (timetable), #+/%1 7 (travel), #+4 i /& (Nagoya)

Tchai

#+757 1 (hotel), #+> 7 —(tour), #+fik17(travel), # K (reserve), #+fii% % (flight_ticket), #+#Z2Hi

72 % (discount_flight_titcket), #~ 1 L —(mileage), 3} 22 #k+#(Haneda Airport)

Table 8: Sample patterns acquired by three algorithms

a large effect in the precision of the acquired in-
stances for this category, but produces steadily bet-
ter results than the system without it.

Figure 4 compares the original Espresso algo-
rithm and the modified Espresso algorithm which
performs the pattern induction step only at the be-
ginning of the bootstrapping process, as described
in Section 3.3. Although there is no significant dif-
ference in precision between the two systems, this
modification greatly improves the computation
time and enables efficient extraction of instances.
We believe that our choice of the seed instances to
be the most frequent words in the category produc-
es sufficient patterns for extracting new instances.

1

c 09 y
] /\-. — e ————
£ 08 | L=
3 0.7
5 0
@
E e [N\~
E 0.5 e = Tchai

0.4
E Tchai-nofilter
g 03
.§ 02 = Tchai-noscaling
4
& 0.1

0
0 200 400 600 800 1000

Total Lexicon Entries

Figure 3: System precision w/o each modification

1

0.9
0.8
0.7

0.6

Precision of Extracted Lexicon

0.5 e ESPIE5SO

0.4

0.3 ———Espresso w/o pattern
0.2 induction

0.1
0
0 100 200 300 400 500

Total Lexicon Entries

Figure 4: Modification to the pattern induction step

5 Conclusion

We proposed a minimally supervised bootstrap-
ping algorithm called Tchai. The main contribution
of the paper is to adapt the general-purpose Es-
presso algorithm to work well on the task of learn-
ing semantic categories of words from query logs.
The proposed method not only has a superior per-
formance in the precision of the acquired words
into semantic categories, but is faster and collects
more meaningful context patterns for characteriz-
ing the categories than the unmodified Espresso
algorithm. We have also shown that the proposed
method requires no pre-segmentation of the source
text for the purpose of knowledge acquisition.

Acknowledgements

This research was conducted during the first au-
thor’s internship at Microsoft Research. We would
like to thank the colleagues at Microsoft Research,
especially Dmitriy Belenko and Christian Koénig,
for their help in conducting this research.

References

Sergey Brin. 1998. Extracting Patterns and Relations
from the World Wide Web. WebDB Workshop at 6th
International Conference on Extending Database
Technology, EDBT '98. pp. 172-183.

Michael Collins and Yoram Singer. 1999. Unsupervised
Models for Named Entity Classification. Proceedings
of the Joint SIGDAT Conference on Empirical Me-
thods in Natural Language Processing and Very
Large Corpora. pp. 100-110.

Oren Etzioni, Michael Cafarella, Dong Downey, Ana-
Maria Popescu, Tal Shaked, Stephen Soderland, Da-
niel S. Weld, and Alexander Yates. 2005. Unsuper-
vised Named-Entity Extraction from the Web: An
Experimental Study. Artificial Intelligence. 165(1).
pp. 91-134.

Marti Hearst. 1992. Automatic Acquisition of Hypo-
nyms from Large Text Corpora. Proceedings of the

Fourteenth International Conference on Computa-
tional Linguistics. pp 539-545.

Patrick Pantel and Marco Pennacchiotti. 2006. Espresso:
Leveraging Generic Patterns for Automatically Har-
vesting Semantic Relations. Proceedings of the 21st
International Conference on Computational Linguis-
tics and the 44th annual meeting of the ACL. pp. 113-
120.

Patrick Pantel and Deepak Ravichandran. 2004. Auto-
matically Labeling Semantic Classes. Proceedings of
Human Language Technology Conference of the
North American Chapter of the Association for Com-
putational Linguistics (HLT/NAACL-04). pp. 321-
328.

Marius Pagca. 2004. Acquisition of Categorized Named
Entities for Web Search. Proceedings of the 13th
ACM Conference on Information and Knowledge
Management (CIKM-04). pp. 137-145.

Marius Pasca. 2007. Organizing and Searching the
World Wide Web of Fact — Step Two: Harnessing the
Wisdom of the Crowds. Proceedings of the 16th In-
ternational World Wide Web Conference (WWW-07).
pp. 101-110.

Marius Pasca and Benjamin Van Durme. 2007. What
You Seek is What You Get: Extraction of Class
Attributes from Query Logs. Proceedings of the 20th
International Joint Conference on Artificial Intelli-
gence (IJCAI-07). pp. 2832-2837.

Marius Pagca, Dekang Lin, Jeffrey Bigham, Andrei Lif-
chits and Alpa Jain. 2006. Organizing and Searching
the World Wide Web of Facts — Step One: the One-
Million Fact Extraction Challenge. Proceedings of
the 21st National Conference on Artificial Intelli-
gence (AAAI-06). pp. 1400-1405.

Ellen Riloff. 1996. Automatically Generating Extraction
Patterns from Untagged Text. Proceedings of the
Thirteenth National Conference on Artificial Intelli-
gence. pp. 1044-1049.

Ellen Riloff and Rosie Jones. 1999. Learning Dictiona-
ries for Information Extraction by Multi-Level Boot-
strapping. Proceedings of the Sixteenth National
Conference on Artificial Intellligence (AAAI-99). pp.
474-479.

Satoshi Sekine and Hisami Suzuki. 2007. Acquiring
Ontological Knowledge from Query Logs. Proceed-
ings of the 16™ international conference on World
Wide Web. pp. 1223-1224.

Craig Silverstein, Monika Henzinger, Hannes Marais,
and Michael Moricz. 1998. Analysis of a Very Large
AltaVista Query Log. Digital SRC Technical Note
#1998-014.

Michael Thelen and Ellen Riloff. 2002. A Bootstrapping
Method for Learning Semantic Lexicons using Ex-
traction Pattern Contexts. Proceedings of Conference
on Empirical Methods in Natural Language
Processing. pp. 214-221.

