banner above paper title

An Abstract, Approximation-Based Approach to Embedded Code
Pointers and Partial-Correctness

Zhaozhong Ni

Microsoft Research
One Microsoft Way, Redmond, WA 98052, U.S.A.

zhaozhong.ni@microsoft.com

Abstract

To support higher-order type-like features such as embedded cod
pointers in logic-based verification, one approach is to build a
syntactic assertion logic that combines logic and types. But it is
not totally satisfactory in various aspects. Another approach is to
use approximation to simulate the behavior of types and typing
invariants in logic, but this pollutes program specifications and
proofs with complex approximation details. Additionally, existing

approximation-based work supports embedded code pointers with-

out partial-correctness guarantee.

We propose a new abstract, approximation-based approach to

support embedded code pointers in logic-based verification. Our
specification language and inference rules are independent of ap
proximation, thus allowing programs to be certified abstractly.

For the support of embedded code pointers, this benefits not only

interactive-verification, but certifying compilation and automated

theorem proving as well. Approximation is only used to establish
soundness and partial-correctness. This proves to be advantageo
for meta theory design and mechanizing. Additionally, we easily
support dynamic code generation. The central idea should be ap
plicable to other higher-order features. Our work is presented on

and mechanized in, but not limited to, assembly languages and the,

Coq proof-assistant.

Categories and Subject DescriptorsCR-number $ubcategory
third-level

General Terms terml, term2

Keywords keywordl, keyword2

1.

Embedded code pointers (ECPs, e.g., higher-order functions),

Introduction

among other features such as general reference and recursive type
are common features found in type systems, such as typed assembly’

languages (TAL) [11, 6]. In the context of proof-carrying code [14,
1], there have been more focuses on certifying systems and low-
level code that are hard to handle safely with traditional type sys-

tems, as well as reducing the size of trusted computing base (TCB)

to the minimum. Recent work such as [1, 2, 3, 4, 16, 18, 13, 12, 8]

[Copyright notice will appear here once "preprint’ option is removed.]

short description of paper

aim to combine the expressive power of Hoare logic [7, 9] with the
modularity of type systems to achieve better logic-based verifica-
ion. It is important for these systems to support those higher-order
features well, particularly for ECPs, which are crucial for objects,
closures, and modularity in general.

Depending on the expressiveness and productivity require-
ments, different components of software system are and will be
certified at different abstraction levels (e.g., high-level, interme-
diate, and assembly) by different methods (e.g., type-based, au-
tomated first-order logic based, and interactive high-order logic
based). Unlike type systems which are userfriendly for the support
of ECPs (the reasoning of syntactic ECP types is not done by the
programmer, thus the complexity of ECP support details is irrel-

evant provided they are sound), logic-based verifications present
user friendliness as an important issue: both theorem prover writ-
ers/users and interactive-verification programmer need to be able
to comfortably deal with ECP formulas and their reasoning, on top
of the already daunting task of first/higher-logic reasoning. Since

Yhe control flows which integrate software components are often

higher-order and involve ECPs, to obtain guarantees about mul-

tiple components or about the entire software system, certifying
compiler writers desire not only user friendliness, but also good
specification/proof portability for the support of ECPs.

One approach to support embedded code pointers and other
higher-order features is to build new “syntactic” assertion logic
layers, combining higher- or first-order logic and type construc-
tors, above the (mechanized) meta logic. Recent examples of these
approaches include Spec# by Barnett et al. [4], XCAP by Ni and
Shao [16, 18, 17], HTT by Nanevski et al. [13, 12], and GTAL
by Hawblitzel et al. [8]. Since these systems are designed with
type systems being the backbone, their support of higher-order fea-
tures is similar to that of traditional type systems in both modu-
larity and user friendliness. Some of them have been used to do

Interactive [18, 8] or automated [4] program verification, as well

's source [4] or target [17, 8] languages for certifying compila-
ion. They can also guarantee partial-correctness (implicit in some
cases). However, there are several aspects in which these work are
not totally satisfactory, especially for interactive and automated
logic-based program verification and proof-preserving certifying
compilation.

One problem is the establishment and mechanization of the
meta theory. Since the hybrid assertion logic layers are quite ex-
pressive, the corresponding meta theories are also large and com-
plex, often more complex than a typical higher-order logic/type
system. Formalizing their meta properties, such as consistency and
soundness, is by no means trivial. As a matter of fact, XCAP is the
only one of the above systems that comes with fully mechanized
meta theory. Most of the other systems come only with meta theory

2008/11/25

on paper for subsets of their frameworks. This is clearly not ideal orems (the definition of which are also “approximation-free”). Our
for logic-based verification. approximation is expressive enough to express dynamic code gen-
Since the assertion and meta logics are not at the same level, inerations and other forms of code morphing. By avoiding building
assertion logic it is not possible to directly express and reason aboutsyntactic assertion logic, we avoided building complex meta the-
meta properties related to those type-like features. For example,ories and being hindered by various implementation annoyances.
to permit dynamic allocation, current program specification has to The central idea of this paper should be applicable to other higher-
be “monotonic” over the growth of the heap. For syntactic type order features, such as general references and recursive types. Our
systems, this may hold true for all possible types (e.g., in TAL Work is presented on an ideal RISC assembly machine and fully
there is usually a “heap extension” lemma [11]). In hybrid assertion mechanized in the Coq proof-assistant. However, our result should
logics, one has to carefully control the expressive power of program apply to other abstract levels as well as similar higher-order logics.
specifications or provide special “stubs” to indirectly refer to these Our full mechanization result is available for download at [15].
properties, both bringing in more complexity. The paper is organized as follows. We first introduce our tar-
Similarly, as those type-like features usually require the cre- get machine and briefly review the syntactic XCAP approach [16]
ation and maintenance of certain meta-level invariants, such asand semantic approximation-based FPCC approach [3] in Sect. 2.
global heap typing, it is difficult to reason about runtime opera- We then present the user-friendly abstract assertion logic and pro-
tions involving or temporarily breaking these invariants. Examples gram logic in Sect. 3. In Sect. 4, we present our approximation-
of these are self-modifying code, garbage collections, concurrency based model for embedded code pointers and prove soundness and
runtimes, etc. In fact, in [8, 10], two different assertion logics have partial-correctness. We show how to support dynamic code genera-
to be used for the mutator and collector, respectively, to certify sys- tion in Sect. 5. Finally, we compare with related work and conclude
tems with GC. This introduces additional complexity into the sys- in Sect. 6.
tem and enlarges the TCB.
An alternatiye approach.to support embedded code .poinlters 2. Background
and other type-like features is by doing “semantic” approximation
in logic to simulate the behavior of type constructors and typing We use Coq as a mechanized meta logic and assume the following
invariants. Among recent work in this line, the most representative syntax.
one is the FPCC semantic model work by Appel et al. [1, 2,
3]. Since there is no additional syntactic layers defined, there is (18" A, B ::=Type |z [Az:A.B[AB|A —B
no need to establish large and complex meta theories. Because | Ilz: A. B | inductive definitions | ...
the semantic approximation model of those higher-order features
are defined in the same logic in which the latter is defined, one
could potentially specify and reason about “meta” properties of
the program specifications, and even certify those run-time code For non-dependent and dependent pairs, wedise B and Xz :
hidden below the type-interface, such as dynamic code generationA. B to represent their types, andi, B) and (A4, B) for their
and garbage collection. terms. We also writ&z. B for Xz : Type. B.
Nevertheless, there are also drawbacks that are currently pre-
venting the approximation-based approach from being used effec- Target machine. We use a common target machine throughout
tively for logic-based verification. One problem is the pollution our discussions. We define the syntax and the operational semantics
of program specifications and proofs with complex approximation Of the target machine in Figure 1. A complete program consists of
model details. Not only are they not user-friendly (not too surpris- @ code heap, a dynamic state component made up of the register
ing given that these systems [1, 2, 3] are primarily designed for file and data heap, and an instruction sequence. The instruction set
foundational proof generation from a typial typed-assembly lan- is minimal but its extensions are straightforward. The operational
guage, albeit making it challenging for them to be used for logic- Semantics of this language (see Figure 2) should pose no surprise.
based verifications purpose), they also prevent program specifica-Note that it is illegal to access undefined heap locations, or jump
tions and proofs from being reusable across different approxima- to a code label that does not exist; under both cases, the execution
tion (or potentially non-approximation) models (for different fea- gets stuck.
ture sets). In addition, existing approximation-based work have

been focusing on non-stuckness and can only support embeddedPyntactic approach: XCAP. XCAP [16] is a logic-based verifica-
code pointers without partial-correctness guarantee [3]. tion framework for assembly code with modular support of embed-

In this paper, we propose a new approach to embedded codeded code pointers and impredicative polymorphisms. It has been

pointers and partial-correctness in logic-based verification. We fol- USed to mechanically verify partial-correctness of an x86 machine

low the approximation-based idea and apply it to embedded code context library [18] in Coq. XCAP's assertion logic works by defin-

pointers, making sure partial-correctness is not sacrificed. Although N9 & syntactic layer calleextended logical propositior(®ropX)
our approximation model is already constructed in a relatively above _th_e meta logic and using syntactic inference rules to establish
lightweight and modular way, we do not stop here. We design an the validity of PropX. o
abstract specification language, a.k.a, assertion logic, as well as a_ Figure 3 defines’ropX, the core of the XCAP specification.
set of abstract program inference rules, a.k.a., program logic. Both PropXcan be viewed as a lift of the (Coq) meta logic propositions,
our assertion and program logics are completgtract from extended with acptr constructor. Roughly speakingeptr £ a)
any approximation details. Users only need to learn and manipu- aSSerts that code labelis valid with preconditiora. PropX can
late these “approximation-free” constructs (about 110 lines of Coq P€ used to construct assertions. For example, to specifyrthat
code) to certify, compile, and link programs with ECPs while en- andr2 store different values, we write(H, R). (R(r1) #R(r2)).
joying partial-correctness guarantee and much better productivity We define code heap specifications and assertion subsumptions
than the syntactic approach. accordingly. N N _

The approximation model we built for embedded code pointers 10 establish thealidity of extended propositionKCAP defines

is only used to establish the soundness and partial-correctness the@ Set of syntactic validity rules. The interpretation of extended
propositions[P], is defined as their validity under the empty

(Prop) p,q ::=True|False|pAqg|pVgq|pDq|Vz:A.p
| 3x: A. p | inductive predicates | . ..

short description of paper 2 2008/11/25

(Program) P == (C,S,I) (PropX) P,Q := (p)|cptrfa|PAQ|PVQ|P—Q

(Statg S == (H,R) | Vo:A.P|Fz: AP
(Mem) H i={1~ w}" | Va: A—PropX P

(Regfile R i={r ~ w}* | 3a: A—PropXPp

(Reg r = {rk}ke{o“.m} (Assertion a € State— PropX
(Word, Labelg w, £,1 ::= i (nat nums) (CdHpSpec) ¥ = {f~ a}”
(CodeHeap C n={f ~ I} (AssertImp) a=>a’ A VI,S. [a]y S O [[a']]\I,S
(InstrSeq I n=c;l|jdf|jmpr
(StepImp) a=c a’ £ V¥,S.[a], SD[a'], Nextc(S)

(Instr) ¢ n=bgtirs, i, |addirg, s,

|add rgq,rsTy | moviry,i
| mov rg,rs |Idrg,rs()
|stra(i),rs|...

Figure 1. Selected syntax of target machine U, H{a}P| (Well-formed Progran

U, FC:U, U, H{a}1 ([aly_ S)

Figure 3. Assertion language of XCAP

[ifI= [then(C, (H,R),T) — ‘ G
_ (PROQ)
jd £ (C, (H,R),C(£)) whenf € dom(C) v, H{a} (C,S,I)
jmpr (C, (H,R),C(R(x))) whenR(r) € dom(C)
bgtirs, i, f; I’ | (C, (H,R),T") whenR(rs) <i; U, FC:¥| (Well-formed Code Heap
(C, (H,R),C(£)) whenR(r,) >1
ol (C,Nextc(H,R), I') U, H{a}l Vi (coHP)
[ifc= [thenNextc (A, R) = | U, H{fi~0,.. . fowI}:{fi~al,...,fh~an}
dd rg,rs H, R{rs~R(r;)+R)
;Ovl;dd rr:t EH REZWREL%}) ()}) U {a}I| (Well-formed Instruction Sequenge
movirg,i |(H,R{rq~1i})
[drg,rs(i) |(H,R{ra~H(R(rs)+1)}) a=xa UH{a'} I
whenR(rs)+14 € dom(H) c€{add, addi, mov, movi, Id, st, ...}
strq(i),rs |(H{R(rq)+i~R(rs)},R) TF 1 (SEQ
whenR (za)+i € dom(H) {a} e
_ _ _ _ (A(H,R). (R(rs) <i) Aa(H,R)) = a’
Figure 2. Selected operational semantics of target machine (AMH, R). (R(rs)>i) A a (H,R)) = U(£)
environment. Consistency dfropX interpretation, { (False)], vH{a}l f € dom(V) (BGTI)
is not provable,” is a corollary of the following theorem. U {a} bgtirs,i,£;1
THEOREM 2.1 (Soundness oPropX Interpretation). a= U(f) fcdom(¥) o)
o If [{p)]y thenp; W{a}jd £
o if [cptrf a]y, thenW(f) = a; a= (A(H,R).Ja".a’ (H,R) A cptr R(r) a’) (mP)
o if [PAQ], then[P], and[Q]y; UH{a}jmpr
* it [PwQ]y then eithe P, or[Q]y: (AS.cptr £ U(£)AaS) = a' £edom(¥) Wh{a'}l
o if [P~qQ], and[P], then[Q],; U {a}l (EcP)
o if [Wa:A.P], andB: Athen[P[B/a]]y;
o if [Fa: A.P], then there exist®: A such thaf P[B/a] [; Figure 4. Inference rules of XCAP
e if [Wa: A—PropX P], anda: A—PropXthen[Pla/a]]; tion sequence judgment is that if the state satisfies precondition
o if [Fa: A—PropX P],, then there exista: A —PropX such then executing instruction sequeride safe with respect t&. For
that[Pla/al]y. ... v simple instructions, XCAP requires the pre- and post-condition to

satisfy the weakest precondition relation. A direct jump is safe as
On the program logic side, XCAP shares great similarity with long as the target code’s precondition is weaker than the current
typical typed assembly languages. We present the XCAP inferenceone. For an indirect jump, the current precondition has to guaran-
rules in Figure 4. A program is well-formed in XCAP if each of its tee that the target address is a well-formed code label with a weaker
components is. For a code heap to be well-formed, each block in precondition. The(Ecp) rule allows one to make local code point-
it must be well-formed. The intuition behind well-formed instruc- ers first-class.

short description of paper 3 2008/11/25

The following derived rules allow weakening of preconditions, program specifications and proofs. Additionally, the definition of
extension of code heap specifications, and safe static linking of code pointer predicate in [3], presented as the following, prohibits

separately certified code heaps. partial-correctness. (We use the original annotations here.)
UH{all a =a ¥ DO w 2 . | i
{a} : : 2% (WEAKEN) codeptr(7) = 3Jl:Loc A >!(slot(pc,just 1) A 7 = safe).
U H{a'} I

safe £ Vm:Mem.validmem(m) = safemem(m)
U, FCily W, Gyl
dom(C1)Ndom(Cz) =0

U, (£) =0, ,(f) VEcdom(W,,)Ndom(¥,) safeq(s) £ True

safemem(m) £ {((n, ¥),v) | safe,(v,m)}

(LINK)
U, U, FCUCe: T UW, saferr1(s) 2 (3s'.s+— s')AVs . s+— s = safey s
XCAP suffers from the same problems as other “syntactic” ap- For any indirect jump to an embedded code pointer specified with
proaches. For example, although structure-wisepX is simi- codeptr, after the jump, the only thing guaranteed is non-stuckness.

lar to first-order propositional logic, soundness and consistency of This makes it much less interesting for logic-based verification
PropX interpretation still take around 5,000 lines [18] of very \here expressive power is desired.

dense Coq code to establish.

For another example, the following proposition says assegtion
is monotonic over the extension of code heap:

VS, U, %0 C U D [aS], D[aS]y

3. User Friendly Abstract Assertion and Program
Logics

In this section, we present an assertion logic (specification lan-
yet there is no general way to embed this meta-proposition into a guage) and a program logic (program inference rules). Both are
program assertion. Thus, one can not expect to be able to extendjefined without any knowledge of the details of approximation, or
code heap dynamically. whether approximation is even used at all.

We notice that syntactic approaches such as XCAP, as well as
o ; : syntactic type systems such as TAL, provide conceptually clean
modal model [3] uses approximation to build semantic models and user-friendly support of embedded code pointers. One key ob-

for typed assembly languages. With no syntactic assertion logic X X . X
defitrilgd, there is ng nee%l togestablish Iargeycomplex meta theor(:;]es.servatlon here is that embedded code pointer predicates and types

Because the semantic approximation model of those higher-order?ri u‘;'?g AaF?(fj reasonetil abohut bi’j programrp(f?rs in llellr:‘ abst:jact way.
features are defined in the same logic in which the latter is defined ? ed bl kor éxamp e"b\lN €n doing proot for well- ormedness
and used, one could specify and reason about “meta” properties of2f cde blocks, no possible reasoning abaptir constructor de-

the program specifications, such as “necessity” (i.e., monotonic- pends on the a.c.tual Interpretation of it. In Figure 4, one can see
ity over “world” growth). For example, they have no problem in thatcptr propositions can be mtr_oduced by ru(ecp), consumed_
supporting dynamic allocation of general reference cells. by rule (JmP), or they can get either preserved or dropped during

Instead of using the original notations and formulas from [3] subsumptions.
we transform and present them in a way that matches better with So the first idea he(e Is to mak_e tistr predlgate as abstract
the rest of this paper. as possible. The question is what is the typedf* N

For example, instead of defining data heap specification as the The parameters uptr are t_h_e address, the precondition, as well
intuitive yet ill-formed definition as follows—¢ stands for partial ~ 2S the global code heap specification (conceptually, a mapping from
mapping) addresses to preconditions). Since the global code heap specifica-

tion is only used byptr, we make the specification and its type

dSpec £ Label — (Word — dSpec — Prop) abstract. Our assertion type now becomes

Approximation-based approach: FPCC / modal modelThe

since dSpec appears on both side of the definition and causes VSpec:Type.
circularity, Appel et al. defined the following indexed code heap vcpir : Label — (State — Spec — Prop) — Spec — Prop.
specification
s YW : Spec.
dSpecn 2 Label — (Word — s<n dSpeci— Prop) State — Prop.
. S .
where a collection ofveakerdata heap specification,, _,, dSpeci, Since the three quantified variables above are used for the same

are used to approximat&Spec up to(n — 1) steps in the future of yyrpose—embedded code pointers, we pack them and obtain the
execution. And the index-less data heap specification type is just afo|lowing type

dependent pair:
>.Spec.

S
D L2 yn ,_d 3
Spec e icn dSpeci (Label — (State — Spec — Prop) — Spec — Prop) X Spec

The general reference predicatéis then defined as which we name in Figure 5 a%. After moving ahead the position
ref1t ((n,(Vn,..., %)) : DSpec) of State in the above assertion type, our assertion should now be

where the value typeis of typeW ord — DSpec — Prop. State — &' — Prop.

Appel et al. [3] supports embedded code pointers following the Comparing this with the XCAP assertion definition in Figure 3, we
same approach by reusing the natural number index in the “world” defineX — Prop as our newPropX as in Figure 5, together with
for approximation. These approximation details have to appear in other constructs.

short description of paper 4 2008/11/25

(X) o € XSpec.(Label —
(State — Spec — Prop) —
Spec— Prop)
X Spec

(PropX) P € X — Prop
(Assertion a € State— PropX
(CdHpSpec) ¥ == {f~ a}”
(AssertImp) a=a' £ Vo,S.aSocD>a'So

(StepImp) a=¢c a’ = Vo,S.aSo D a' Nextc(S) o

Figure 5. Assertion language (abstract from approximation)

(Well-formed Program

v, FC:0, U, H{a}l
(Vo. (V(£,2")eV,.cptrfa’ o) DaSo)
PROG
T, F{a} (C.5.0) (PRo9
U, FC:¥| (Well-formed Code Heap
OK a; \I/,N I—{az}Hl VE;
(cDHP)
U, F{fi~L,. . fawI b {fi~al,...,fnwan}
¥ {a}I| (Well-formed Instruction Sequenge
(A, R),0.R(rs)<i A a(H,R) o) = a’
(MH,R),0.R(rs)>i A a(H,R) o) = ¥(f)
UH{a'}l fed v
{2’} om(¥) (BGTI)

U {a} bgtirs,i,£;1

a= (A(H,R),o.3a".a" (H,R) ¢ A cptrR(r)a’ o)
U H{a}jmpr

(ImP)

(AS,0.cptrf U(f) 0 AaSa) = a’
fedom(¥) UH{a'} 1
U {a}l

(ECP)

Figure 6. Changed inference rules (abstract from approximation)

Since thecptr predicate is packed i, we define the following
“dummy” cptr predicate to automate the task of unpackingick
out and applyptr, etc.,

cptr £ a (Spec, (cptr, ¥))
2 cptr £ (XS, V. a'S (Spec, (cptr, ¥'))) ¥

and can easily define a relaxesdeptr predicate similar to the one
in [16]

codeptrfac £ Ja'.cptrfa’c A a=a'.

short description of paper

We present a set of abstract inference rules in Figure 6. Given
the similarity between our assertion logic and XCAP's, these rules
are very similar, with all the changes highlighted. RuléSEQ)
and (JD) are unchanged and omitted.

In rule (cpHP) we now require the following check on every
assertion

OK a 2 Vo,0’. (V£,a’. cptrfa’ o Dcptrfa’ o)
OVS.aSo>aS¢o’

to make sure that it is monotonic over the growth of code heap
specification. It is up to the programmer to decide how to achieve
OK for certain assertion. In general he can turn anyinto one
that satisfieIC by the following lifting:

AS. Ao.Vo'. (V£,a’.cptrfa’ o Deptrfa’o’) D aSo'.

We discuss the usage 61K in the next section.

For top-level rule (PROG), since our code heap specification is
now abstract, we do not have a concrete code heap specification to
pack and supply to assertions. We instead require the initial asser-
tions to hold on all concrete code heap specifications that contain
all the code pointers in the abstract specification. In practice, many
programs’ initial precondition is empty anyway, which makes this
trivially true. The derived rule{WEAKEN) and (LINK) in Sect. 2
still hold.

The following are the soundness and partial-correctness theo-
rems. They are proved in the next section by building “semantic”
approximation. Since our code heap specification is not specified
pointwise, the theorem below only guarantees partial-correctness
at control-flow transfer points. This is by no means a limitation of
our approach. One can easily alter the machine model and infer-
ence rules to allow the code heap specification to be more detailed
or point-wise.

THEOREM 3.1 (Soundness).
If U {a} P then for any numben there exist®’ such thaP—"
P

THEOREM 3.2 (Partial-Correctness).
If ¥ +{a} P then for anyn there exist{C, S, I) such thatP—"
(C,S,I) and

1. if I = jd f then there exists such that¥(f) S o;
2. if I = jmp r then there exists such thatV (S.R(r)) S o;

3.if I = bgtirs, i, f andS.R(xrs) > 4 then there exists such
that¥(f) S o.

There isnorestriction on how these theorems should be proved.
Other than the approximation-based approach used in the next sec-
tion, there could be different ways to do so. Indeed, our abstract
specification and inference rules are very general and truly inde-
pendent from the underlying meta-theory proof.

Our abstract language enjoys stronger expressive power than
XCAP [16, 18]. All XCAP code can be certified in our language.
The reader can refer to [16, 18] for examples of how ECP can be
used in logic-based verification.

Figure 7 shows coq code for this section, excluding target ma-
chine and auxiliary library. These are all that a programmer would
ever need to see and use.

5 2008/11/25

Definition X := {Spec : _ & ((Label -> (State -> Spec -> Prop) -> Spec -> Prop) * Spec) typel}.

Definition PropX := X -> Prop.

Definition Assertion := State -> PropX.

Definition CdHpSpec := Map Label Assertion.

Notation "a ==> b" := (forall s x, (a : Assertion) s x -> (b : Assertion) s x)

(at level 70, right associativity).

Definition cptr f (a : Assertion) x := match x with existT Spec (pair cptr Si) =>
cptr £ (fun S Si => a S (existT _ Spec (pair cptr Si))) Si

end.

Definition codeptr f a x := exists a’, cptr £ a’ x /\ a ==> a’.

Definition ok A (a : A -> PropX) :=
forall x y, (forall f a, cptr f a x -> cptr f a y) -> forall s, as x > asy.
Implicit Arguments ok [A].

Inductive WFiseq : CdHpSpec -> Assertion -> InstrSeq -> Prop :=
| wfiseq : forall Si a ¢ I a’, a ==> (fun s x => exists s’, Next ¢ s s’ /\ a’ s’ x) ->
WFiseq Si a’ I -> WFiseq Si a (iseq c I)
| wfbgt : forall Si a rs rt £ I (a’ a’’ : Assertion),
(forall s x, (Rsrs<= Rsrt/\aszx) ->a’szx) —>
(forall s x, (Rsrs> _Rsrt/\Naszx)->a szx) —>
lookup Si f a’ -> WFiseq Si a’’ I -> WFiseq Si a (bgt rs rt £ I)
wfbgti : forall Si ars w f I (a’ a’’ : Assertion),
(forall s x, (Rsrs<=w/\asx)->a’ sx) —>
(forall s x, (Rsrs> w/\aszx)->a szx) —>

lookup Si f a’ -> WFiseq Si a’’ I -> WFiseq Si a (bgti rs w £ I)
| wfjd : forall Si a f a’, lookup Si f a’ -> a ==> a’ -> WFiseq Si a (jd f)
| wifjmp : forall Si a r, a ==> (fun s x => exists a’, cptr (Rsr) a’ x /\ a’ s x)

-> WFiseq Si a (jmp r)

wfecp : forall Si a f a’ a’’ I, WFiseq Si a’ I -> lookup Si f a’’ ->
(fun s x => cptr £ a’’ x /\ a s x) ==> a’ -> WFiseq Si a I.

Definition WFcode Si C (Si’ : CdHpSpec) :=
forall f a, lookup Si’ f a -> ok a /\ exists I, Map.lookup C £ I /\ WFiseq Si a I.

Definition WFprog Si a P := match P with pair C (pair s i) =>
WFcode Si C Si /\ WFiseq Si a i /\ forall x, (forall f a, lookup Si f a -> cptr f a x) -> a s x
end.

Figure 7. The complete coqg code a programmer would see and use
4. An Approximation Model and Meta-Theory (Ym.a1mS1) D (Vm.azamS2) D ... D (Vm.a, mS,) D ...

Proofs
))) o and in many case&/m. a; m S;) is strong enough or as good as
In this section we build an approximation-based model for ECPs to ?ai Si).

establish the soundness and partial-correctness theorems. The full "\, jafine a “concrete” approximation-based specification lan-

detail can b_e fpund in [15].) S guage as well as translations from the abstract specifications in the
The basic idea of approximation is, if one wants to prove the |5t section in Figure 8. These constructs are “concrete” because
sequence they all involve certain details of our approximation model. Al-
though this kind of concrete specification constructs are directly
used by some other approximation-based work as their real pro-
gram specifications, here concrete specifications and proofs are
only used for the purpose of establishing soundness and partial-
correctness guarantees, and should not be revealed to end program-
mers. As discussed in the previous section, abstract assertion and
aimS; Day(m—1)S2D...0a, (m—n+1)S, D ... program logics are all they need in order to carry out verifications.
The collection type of indexed code heap specificatidipec
for everym. If that is the case, then one can easily get the following is similar todSpec in Section 2. The dependent pair &pec and
sequence its index forms the baseline concrete code heap specification type

a1S1 DasSeD...Da, S, D...

and for some reason can not specify or prove it, one might instead
be able to add a natural number index {t&;} and prove the
following sequences

short description of paper 6 2008/11/25

(¢Spec0) o] € unit
(¢Spec (n+1)) 0] € (cSpecn)
x (Label —
(State — .Spec n — Prop))
(i Spec) P € XYn..Specn
(;Assertior) b € State— ;Spec — Prop
(;CdHpSpec) P = {f~ b}"
(AssertTr) [a] £ XS, ®. aS (;Spec, (;cptr, @))

[I>

(CdSpecTr) [{f~a}]] = {f~ [a]}"

Figure 8. Concrete approximation-based specification language

iSpec. With the concrete assertion type beiigite — ; Spec — Prop.
A more general concrete code heap specificatio@igéH pSpec.

But the assertions in it can not directly take itself as an argu-
ment. Instead, we define the following “cap” function to construct
assertion-friendly; Spec specifications by only keeping a finite
number of indicies in it.

[¥]o = tt
(%) i1 = ([9],, {£ 1 AS.A¢. 9(£) S (n, ¢)})

We define the concrete monotonicity condition as follows:
iOKb £ VS,4,n.bS (n+1,|¢],,.,) DbS(n,[¥],)

and prove the following lemma to go from abstract to concrete
monotonicity.

LEMMA 4.1 (OK to ;OK Preservation).
If OK athen;OK [a].

The concrete embedded code pointers prediggier is then
defined as

scptrf£ b ({n, @) : iSpec) = ;OKbATY. Y(f) =bA[Y]n = ¢

The abstract top-level program well-formedness rule is trans-
formed into a concrete rule with the change on the well-formedness
of state.

A

U FC:V; Vg H{a}l (Vo [&] S [[Y6]],)

\IJG #{a} ((Cv S7]I)

The following lemma shows that the abstract rule entails the con-
crete rule.

(PROG)

LEMMA 4.2 (Rule (PROG) to Rule (PROG) Preservation).
If Ut pRog{a} P thenV + pROG/{a} P.

With the concrete approximation model defined in this section,

we are able to show that the above invariant gets preserved during

the execution, in particular,
(Vn. [a1]] S1 [[¥c]1,) D (Vn. [a2] Sa [[¥e]),) D -
and finally prove the soundness and partial-correctness theorems.

Further comparison with XCAP. By avoiding an extra layer of
syntax, we can directly reuse many of Coq’s built-in features. For
example, for program specification we automatically have full sup-
port of impredicative polymophisms (semi-supported in XCAP,

short description of paper

elimination disallowed) anihductive definitions (not supported
for PropX in XCAP). Many of Coq’sbuilt-in proof tactics are
much more effective now than on the syntadficop X constructs
in XCAP.

The new approach presented in this paper effectively reduces
the implementation overhead XCAP has encountered. For example,
the old PropX meta theory, which is about 5,000 lines of Coq
code [16, 18], is replaced by less than 300 lines of code. More
importantly, unlike the old implementation, the new approach
longer needs to use de Bruijn indices to represent impredicative
polymorphisms. Overall, we expect the simplification in program
specification and proof will reduce the lines of those code in [18]
by 60% to 80%.

Similar to previous work [16, 3], we assume the support of
impredicative polymorphisms and dependent types in the (mech-
anized) meta logic.

Monotonicity is the only additional cost, comparing to the syn-
tactic approach such as XCAP. It is easy to prove when the usage
of implication in program specifications is limited. As the next sec-
tion will show, this monotonicity will be used anyway to support
dynamic code heap generation.

5. Supporting Dynamic Code Generation

XCAP, as well as the discussion presented in the previous sec-
tions, only talks about constant code heap programs. Given the
approximation-based treatment of embedded code pointers in our
new framework, we are able to specify and reason about meta-
properties, such a® (monotonicity over growth of code heap),
of specifications, and easily support dynamic code generation. In
this section we present one simple example of this. We expect that
the raw power of our approximation model should suffice for other
more complex and useful dynamic code generation and updating,
as well as self-modifying code in general.

The target machine in Sect. 2 does not support dynamic code
generation. We extend it with the following virtual dynamic code
generation instruction.

[ifI=
loadcode r: [I'; T”

[then(C, (H,R),I) — |
(C{f —T7}, (H R{r:~£}),I")
wheref ¢ dom(C)

Apparently,loadcode does not correspond to any single physical
instruction, as it automatically finds an available code address and
writes an instruction sequendéinto the code heap in one step.
Note, however, that this does not make the support of dynamic code
generation any easier.

To certify this single instruction, we add the following new ab-
stract instruction sequence rule to join those presented in Figure 6.

OK & UH{a'}1 UH{a"}T
(A(H,R), 0. cptr R(r:) a’ o A
Fu. a (H,R{ri~vw})o) = a
U +{a} loadcode r[I]; '

1"

(LOoADCODE)

To load a code block into the code heap, one has to provide a valid
precondition under which the code block is well-formed. This is
the only change to the abstract assertion and program logics.

The approximation model we build in the previous section is
already powerful enough for dynamic code generations. We only
need to change the concrete top-level invariant rule to the following

2008/11/25

U, CU UHC:¥ Uk{a}l
(V' n. (P C9') D [&] S [[¥]],)

v, + C,S,I .

o H{ah(C.51) Conclusion. We present a new approach to support embed-

The soundness and partial-correctness theorems still hold, ex-ded code pointers with partial-correctness in logic-based verifica-
cept that the latter needs some small changes as follows. tion. Our approach utilizes approximation technology to establish
the soundness and partial-correctness guarantee. All approxima-

THEOREMS5.1 (Partial-Correctness (Dynamic Code Generation)). tion details are abstracted out and hidden from the programmer.
Our work reaches a nice balance between existing syntactic and
approximation-based approaches and will also improve the pro-

ments on interactive theorem proving to certify more systems code,
with at least one magnitude higher productivity.

(PROG)

If U +{a} P then for anyn there exist§C, S,I) such thatP—"
(C,S,1I) and

1if I = jdf andf € dom(¥) then there exists such that
U(£f)So;

2.if I = jmpr andS.R(r) € dom(¥)then there exists such
that¥ (S.R(x)) S o;

3.if I = bgtirs,4,f, SR(rs) > ¢, andf € dom(¥) then there
existso such that?(£) S o.

6. Related Work and Conclusion

GTAL [8] is a logic-based assembly verification system. Its asser-
tion logic is a mixture of higher-order logic, dependent types, linear
types, embedded code pointers, as well as recursive types. GTAL
does not support general references. Unlike XCAP, GTAL does not
lift meta logic propositions into its assertion logic. Thus it has a
much more complex assertion logic. GTAL has been used to cer-
tify garbage collector code, while the mutator code is certified by
a smaller type language defined in GTAL. Its meta theory has not
been mechanized.

Spec# [4] extends C# language’s type system with more ex-
pressive constructs, including (machine-)logical pre- and post-
conditions, verified either statically by automatic theorem prover or
dynamically by run-time checking. The potential use of machine-
logical specification and dynamic checking makes Spec# a bit dif-
ferent from other approaches mentioned in this paper.

Hoare type theory [13, 12] is a stateful dependent type system
with embedded logical assertions. Similar to XCAP, it lifts logical
assertions and proofs into the type systems. However, HTT starts
with a functional language instead of assembly languages. HTT
supports embedded code pointers that can be used to certify high-
level effectful programs. HTT currently does not support general

ductivity of logic-based verification.

References

[1] A. W. Appel and A. P. Felty. A semantic model of types and machine
instructions for proof-carrying code. Froc. 27th ACM Symposium
on Principles of Programming Languaggmges 243-253, Jan. 2000.

[2] A. W. Appel and D. McAllester. An indexed model of recursive
types for foundational proof-carrying coddCM Transactions on
Programming Languages and Syste2®&(5):657-683, Sept. 2001.

[3] A. W. Appel, P.-A. Mellies, C. D. Richards, and J. Vouillon. A very
modal model of a modern, major, general type systenPrét. 34th
ACM Symposium on Principles of Programming Languageages
109-122, Nice, France, Jan. 2007.

[4] M. Barnett, K. R. M. Leino, , and W. Schulte. The spec# programming
system: An overview. ICASSIS 20Q4volume 3362 ofLNCS
Springer-Verlag, 2004.

[5] H. Cai, X. Feng, Z. Shao, and G. Tan. Towards logical reasoning
about code pointers. Unpublished manuscript; Tsinghua University.

[6] J.Chen, C. Hawblitzel, F. Perry, M. Emmi, J. Condit, D. Coetzee, and
P. Pratikakis. Type-preserving compilation for large-scale optimizing
object-oriented compilers. IRroc. 2008 ACM Conference on
Programming Language Design and Implementatjmage to appear.
ACM Press, 2008.

[7] R. W. Floyd. Assigning meaning to programS@ommunications of
the ACM Oct. 1967.

[8] C. Hawbilitzel, H. Huang, L. Wittie, and J. Chen. A garbage-
collecting typed assembly language. Rroc. 2007 ACM SIGPLAN
International Workshop on Types in Language Design and Implemen-
tation, New York, NY, USA, Jan. 2007. ACM Press.

[9] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACNDct. 1969.

references and recursive types. Its meta theory has not been mechIlo] A. McCreight, Z. Shao, C. Lin, and L. Li. A general framework for

anized.

Cai et al. [5] shares one common goal with us: to build an
approximation-based model for embedded code pointers with

certifying garbage collectors and their mutatorsPhac. 2007 ACM
Conference on Programming Language Design and Implementation
pages 468-479, San Diego, CA, June 2007.

partial-correctness. After building their model, they also adapt the [11] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F

XCAP set of inference rules. The model they built does not rely
on dependent types, which is an advantage over our model. How-
ever, we expect that their model will not support dynamic growth

to typed assembly language. Rroc. 25th ACM Symposium on
Principles of Programming Languagegages 85-97. ACM Press,
Jan. 1998.

of the code heap (and the data heap, when similar modeling is built [12] A. Nanevski, A. Anmed, G. Morrisett, and L. Birkedal. Abstract

for general reference) with the presence of impredicative polymor-
phisms. Their approximation details, although slightly simpler, is
explicit in program specifications and proofs. They also support
recursive types with the same model.

Future work. Our approach should be applicable to other higher-

order features such as general references and recursive types. It

predicates and mutable adts in hoare type theoryPrbt. 2007
European Symposium on Programmimmages 189-204, Braga,
Portugal, Mar. 2007.

[13] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and

separation in hoare type theory. Rroc. 11th ACM SIGPLAN
International Conference on Functional Programmipgges 62—73,
Portland, OR, USA, Sept. 2006. ACM Press.

will also be interesting to see how these various features should [14] . Necula. Proof-carrying code. Rroc. 24th ACM Symposium on

be optimally mixed in a same system, so that the abstract-concrete
separation be best preserved.

Given the simplicity of our solution, it should be much easier to
certify code that is similar to those in [18]. It is our goal to combine
the new solution for embedded code pointers with other improve-

short description of paper

[15] Z. Ni.

Principles of Programming Languagesages 106-119, New York,
Jan. 1997. ACM Press.

Implementation for an abstract, approximation-based
approach to embedded code pointers and partial-correcthesg:
//research.microsoft.com/~nzz/, Feb. 2008.

8 2008/11/25

[16] Z. Niand Z. Shao. Certified assembly programming with embedded
code pointers. IrProc. 33rd ACM Symposium on Principles
of Programming Languagepages 320-333, Charleston, South
Carolina, Jan. 2006.

[17] Z. Ni and Z. Shao. A translation from typed assembly languages
to certified assembly programming. Technical Repartp:
//flint.cs.yale.edu/flint/publications/talcap.html,
Dept. of Computer Science, Yale Univ., New Haven, CT, Nov. 2006.

[18] Z. Ni, D. Yu, and Z. Shao. Using XCAP for systems programming:
Machine context management. fmoc. 20th International Confer-
ence on Theorem Proving in Higher Order Logigaiges 189—-206,
Kaiserslautern, Germany, Sept. 2007.

short description of paper 9 2008/11/25

