
banner above paper title

An Abstract, Approximation-Based Approach to Embedded Code
Pointers and Partial-Correctness

Zhaozhong Ni
Microsoft Research

One Microsoft Way, Redmond, WA 98052, U.S.A.
zhaozhong.ni@microsoft.com

Abstract
To support higher-order type-like features such as embedded code
pointers in logic-based verification, one approach is to build a
syntactic assertion logic that combines logic and types. But it is
not totally satisfactory in various aspects. Another approach is to
use approximation to simulate the behavior of types and typing
invariants in logic, but this pollutes program specifications and
proofs with complex approximation details. Additionally, existing
approximation-based work supports embedded code pointers with-
out partial-correctness guarantee.

We propose a new abstract, approximation-based approach to
support embedded code pointers in logic-based verification. Our
specification language and inference rules are independent of ap-
proximation, thus allowing programs to be certified abstractly.
For the support of embedded code pointers, this benefits not only
interactive-verification, but certifying compilation and automated
theorem proving as well. Approximation is only used to establish
soundness and partial-correctness. This proves to be advantageous
for meta theory design and mechanizing. Additionally, we easily
support dynamic code generation. The central idea should be ap-
plicable to other higher-order features. Our work is presented on
and mechanized in, but not limited to, assembly languages and the
Coq proof-assistant.

Categories and Subject DescriptorsCR-number [subcategory]:
third-level

General Terms term1, term2

Keywords keyword1, keyword2

1. Introduction
Embedded code pointers (ECPs, e.g., higher-order functions),
among other features such as general reference and recursive types,
are common features found in type systems, such as typed assembly
languages (TAL) [11, 6]. In the context of proof-carrying code [14,
1], there have been more focuses on certifying systems and low-
level code that are hard to handle safely with traditional type sys-
tems, as well as reducing the size of trusted computing base (TCB)
to the minimum. Recent work such as [1, 2, 3, 4, 16, 18, 13, 12, 8]

[Copyright notice will appear here once ’preprint’ option is removed.]

aim to combine the expressive power of Hoare logic [7, 9] with the
modularity of type systems to achieve better logic-based verifica-
tion. It is important for these systems to support those higher-order
features well, particularly for ECPs, which are crucial for objects,
closures, and modularity in general.

Depending on the expressiveness and productivity require-
ments, different components of software system are and will be
certified at different abstraction levels (e.g., high-level, interme-
diate, and assembly) by different methods (e.g., type-based, au-
tomated first-order logic based, and interactive high-order logic
based). Unlike type systems which are userfriendly for the support
of ECPs (the reasoning of syntactic ECP types is not done by the
programmer, thus the complexity of ECP support details is irrel-
evant provided they are sound), logic-based verifications present
user friendliness as an important issue: both theorem prover writ-
ers/users and interactive-verification programmer need to be able
to comfortably deal with ECP formulas and their reasoning, on top
of the already daunting task of first/higher-logic reasoning. Since
the control flows which integrate software components are often
higher-order and involve ECPs, to obtain guarantees about mul-
tiple components or about the entire software system, certifying
compiler writers desire not only user friendliness, but also good
specification/proof portability for the support of ECPs.

One approach to support embedded code pointers and other
higher-order features is to build new “syntactic” assertion logic
layers, combining higher- or first-order logic and type construc-
tors, above the (mechanized) meta logic. Recent examples of these
approaches include Spec# by Barnett et al. [4], XCAP by Ni and
Shao [16, 18, 17], HTT by Nanevski et al. [13, 12], and GTAL
by Hawblitzel et al. [8]. Since these systems are designed with
type systems being the backbone, their support of higher-order fea-
tures is similar to that of traditional type systems in both modu-
larity and user friendliness. Some of them have been used to do
interactive [18, 8] or automated [4] program verification, as well
as source [4] or target [17, 8] languages for certifying compila-
tion. They can also guarantee partial-correctness (implicit in some
cases). However, there are several aspects in which these work are
not totally satisfactory, especially for interactive and automated
logic-based program verification and proof-preserving certifying
compilation.

One problem is the establishment and mechanization of the
meta theory. Since the hybrid assertion logic layers are quite ex-
pressive, the corresponding meta theories are also large and com-
plex, often more complex than a typical higher-order logic/type
system. Formalizing their meta properties, such as consistency and
soundness, is by no means trivial. As a matter of fact, XCAP is the
only one of the above systems that comes with fully mechanized
meta theory. Most of the other systems come only with meta theory

short description of paper 1 2008/11/25

on paper for subsets of their frameworks. This is clearly not ideal
for logic-based verification.

Since the assertion and meta logics are not at the same level, in
assertion logic it is not possible to directly express and reason about
meta properties related to those type-like features. For example,
to permit dynamic allocation, current program specification has to
be “monotonic” over the growth of the heap. For syntactic type
systems, this may hold true for all possible types (e.g., in TAL
there is usually a “heap extension” lemma [11]). In hybrid assertion
logics, one has to carefully control the expressive power of program
specifications or provide special “stubs” to indirectly refer to these
properties, both bringing in more complexity.

Similarly, as those type-like features usually require the cre-
ation and maintenance of certain meta-level invariants, such as
global heap typing, it is difficult to reason about runtime opera-
tions involving or temporarily breaking these invariants. Examples
of these are self-modifying code, garbage collections, concurrency
runtimes, etc. In fact, in [8, 10], two different assertion logics have
to be used for the mutator and collector, respectively, to certify sys-
tems with GC. This introduces additional complexity into the sys-
tem and enlarges the TCB.

An alternative approach to support embedded code pointers
and other type-like features is by doing “semantic” approximation
in logic to simulate the behavior of type constructors and typing
invariants. Among recent work in this line, the most representative
one is the FPCC semantic model work by Appel et al. [1, 2,
3]. Since there is no additional syntactic layers defined, there is
no need to establish large and complex meta theories. Because
the semantic approximation model of those higher-order features
are defined in the same logic in which the latter is defined, one
could potentially specify and reason about “meta” properties of
the program specifications, and even certify those run-time code
hidden below the type-interface, such as dynamic code generation
and garbage collection.

Nevertheless, there are also drawbacks that are currently pre-
venting the approximation-based approach from being used effec-
tively for logic-based verification. One problem is the pollution
of program specifications and proofs with complex approximation
model details. Not only are they not user-friendly (not too surpris-
ing given that these systems [1, 2, 3] are primarily designed for
foundational proof generation from a typial typed-assembly lan-
guage, albeit making it challenging for them to be used for logic-
based verifications purpose), they also prevent program specifica-
tions and proofs from being reusable across different approxima-
tion (or potentially non-approximation) models (for different fea-
ture sets). In addition, existing approximation-based work have
been focusing on non-stuckness and can only support embedded
code pointers without partial-correctness guarantee [3].

In this paper, we propose a new approach to embedded code
pointers and partial-correctness in logic-based verification. We fol-
low the approximation-based idea and apply it to embedded code
pointers, making sure partial-correctness is not sacrificed. Although
our approximation model is already constructed in a relatively
lightweight and modular way, we do not stop here. We design an
abstract specification language, a.k.a, assertion logic, as well as a
set of abstract program inference rules, a.k.a., program logic. Both
our assertion and program logics are completelyabstract from
any approximation details. Users only need to learn and manipu-
late these “approximation-free” constructs (about 110 lines of Coq
code) to certify, compile, and link programs with ECPs while en-
joying partial-correctness guarantee and much better productivity
than the syntactic approach.

The approximation model we built for embedded code pointers
is only used to establish the soundness and partial-correctness the-

orems (the definition of which are also “approximation-free”). Our
approximation is expressive enough to express dynamic code gen-
erations and other forms of code morphing. By avoiding building
syntactic assertion logic, we avoided building complex meta the-
ories and being hindered by various implementation annoyances.
The central idea of this paper should be applicable to other higher-
order features, such as general references and recursive types. Our
work is presented on an ideal RISC assembly machine and fully
mechanized in the Coq proof-assistant. However, our result should
apply to other abstract levels as well as similar higher-order logics.
Our full mechanization result is available for download at [15].

The paper is organized as follows. We first introduce our tar-
get machine and briefly review the syntactic XCAP approach [16]
and semantic approximation-based FPCC approach [3] in Sect. 2.
We then present the user-friendly abstract assertion logic and pro-
gram logic in Sect. 3. In Sect. 4, we present our approximation-
based model for embedded code pointers and prove soundness and
partial-correctness. We show how to support dynamic code genera-
tion in Sect. 5. Finally, we compare with related work and conclude
in Sect. 6.

2. Background
We use Coq as a mechanized meta logic and assume the following
syntax.

(Term) A, B ::= Type | x | λx :A. B | A B | A →B

| Πx :A. B | inductive definitions | . . .
(Prop) p, q ::= True | False | p ∧ q | p ∨ q | p ⊃ q | ∀x :A. p

| ∃x :A. p | inductive predicates | . . .
For non-dependent and dependent pairs, we useA × B andΣx :
A. B to represent their types, and(A, B) and 〈A, B〉 for their
terms. We also writeΣx. B for Σx :Type. B.

Target machine. We use a common target machine throughout
our discussions. We define the syntax and the operational semantics
of the target machine in Figure 1. A complete program consists of
a code heap, a dynamic state component made up of the register
file and data heap, and an instruction sequence. The instruction set
is minimal but its extensions are straightforward. The operational
semantics of this language (see Figure 2) should pose no surprise.
Note that it is illegal to access undefined heap locations, or jump
to a code label that does not exist; under both cases, the execution
gets stuck.

Syntactic approach: XCAP. XCAP [16] is a logic-based verifica-
tion framework for assembly code with modular support of embed-
ded code pointers and impredicative polymorphisms. It has been
used to mechanically verify partial-correctness of an x86 machine
context library [18] in Coq. XCAP’s assertion logic works by defin-
ing a syntactic layer calledextended logical propositions(PropX)
above the meta logic and using syntactic inference rules to establish
the validity ofPropX.

Figure 3 definesPropX, the core of the XCAP specification.
PropXcan be viewed as a lift of the (Coq) meta logic propositions,
extended with acptr constructor. Roughly speaking,(cptr f a)
asserts that code labelf is valid with preconditiona. PropX can
be used to construct assertions. For example, to specify thatr1
andr2 store different values, we writeλ(H,R). 〈R(r1) 6=R(r2)〉.
We define code heap specifications and assertion subsumptions
accordingly.

To establish thevalidity of extended propositions, XCAP defines
a set of syntactic validity rules. The interpretation of extended
propositions[[P]]Ψ is defined as their validity under the empty

short description of paper 2 2008/11/25

(Program) P ::= (C, S, I)

(State) S ::= (H,R)

(Mem) H ::= {l Ã w}∗

(Regfile) R ::= {r Ã w}∗

(Reg) r ::= {rk}k∈{0...31}

(Word, Labels) w, f, l ::= i (nat nums)

(CodeHeap) C ::= {f Ã I}∗

(InstrSeq) I ::= c; I | jd f | jmp r

(Instr) c ::= bgti rs, i , f | addi rd, rs, i

| add rd, rsrt | movi rd, i

| mov rd, rs | ld rd, rs(i)

| st rd(i), rs | . . .

Figure 1. Selected syntax of target machine

if I = then(C, (H,R), I) 7−→
jd f (C, (H,R),C(f)) whenf∈dom(C)
jmp r (C, (H,R),C(R(r))) whenR(r)∈dom(C)
bgti rs, i , f; I′ (C, (H,R), I′) whenR(rs)≤ i ;

(C, (H,R),C(f)) whenR(rs)> i
c; I′ (C, Nextc(H,R), I′)

if c = thenNextc(H,R) =

add rd, rsrt (H,R{rd ÃR(rs)+R(rt)})
mov rd, rs (H,R{rd ÃR(rs)})
movi rd, i (H,R{rd Ã i})
ld rd, rs(i) (H,R{rd ÃH(R(rs)+i)})

whenR(rs)+i ∈ dom(H)
st rd(i), rs (H{R(rd)+i ÃR(rs)},R)

whenR(rd)+i ∈ dom(H)

Figure 2. Selected operational semantics of target machine

environment. Consistency ofPropX interpretation, “[[〈False〉]]Ψ
is not provable,” is a corollary of the following theorem.

THEOREM 2.1 (Soundness ofPropX Interpretation).

• If [[〈p〉]]Ψ thenp;

• if [[cptr f a]]Ψ thenΨ(f) = a;

• if [[P∧∧ Q]]Ψ then[[P]]Ψ and[[Q]]Ψ;

• if [[P∨∨ Q]]Ψ then either[[P]]Ψ or [[Q]]Ψ;

• if [[P→→ Q]]Ψ and[[P]]Ψ then[[Q]]Ψ;

• if [[∀∀α :A. P]]Ψ andB :A then[[P[B/α]]]Ψ;

• if [[∃∃α :A. P]]Ψ then there existsB :A such that[[P[B/α]]]Ψ;

• if [[∀∀α :A→PropX. P]]Ψ anda :A→PropXthen[[P[a/α]]]Ψ;

• if [[∃∃α :A→PropX. P]]Ψ then there existsa :A→PropX such
that[[P[a/α]]]Ψ. . . .

On the program logic side, XCAP shares great similarity with
typical typed assembly languages. We present the XCAP inference
rules in Figure 4. A program is well-formed in XCAP if each of its
components is. For a code heap to be well-formed, each block in
it must be well-formed. The intuition behind well-formed instruc-

(PropX) P, Q ::= 〈p〉 | cptr f a | P∧∧ Q | P∨∨ Q | P→→ Q

| ∀∀x :A. P | ∃∃x :A. P

| ∀∀α :A→PropX. P

| ∃∃α :A→PropX. P

(Assertion) a ∈ State→ PropX

(CdHpSpec) Ψ ::= {fÃ a}∗

(AssertImp) a⇒a′ , ∀Ψ, S. [[a]]Ψ S ⊃ [[a′]]Ψ S

(StepImp) a⇒c a′ , ∀Ψ, S. [[a]]Ψ S ⊃ [[a′]]Ψ Nextc(S)

Figure 3. Assertion language of XCAP

ΨG `{a}P (Well-formed Program)

ΨG ` C :ΨG ΨG `{a} I ([[a]]Ψ
G
S)

ΨG `{a} (C, S, I)
(PROG)

ΨIN ` C :Ψ (Well-formed Code Heap)

ΨIN `{ai} Ii ∀fi

ΨIN ` {f1 ÃI1, . . . , fn ÃIn} :{f1 Ãa1, . . . , fn Ãan} (CDHP)

Ψ `{a} I (Well-formed Instruction Sequence)

a⇒c a′ Ψ `{a′} I
c∈{add, addi, mov, movi, ld, st, . . .}

Ψ `{a} c; I (SEQ)

(λ(H,R). 〈R(rs)≤ i〉 ∧∧ a (H,R)) ⇒ a′

(λ(H,R). 〈R(rs)> i〉 ∧∧ a (H,R)) ⇒ Ψ(f)

Ψ `{a′} I f∈ dom(Ψ)

Ψ `{a} bgti rs, i , f; I
(BGTI)

a⇒ Ψ(f) f∈dom(Ψ)

Ψ `{a} jd f
(JD)

a⇒ (λ(H,R). ∃∃ a′. a′ (H,R) ∧∧ cptr R(r) a′)

Ψ `{a} jmp r
(JMP)

(λS. cptr f Ψ(f)∧∧ a S) ⇒ a′ f∈dom(Ψ) Ψ `{a′} I
Ψ `{a} I (ECP)

Figure 4. Inference rules of XCAP

tion sequence judgment is that if the state satisfies preconditiona,
then executing instruction sequenceI is safe with respect toΨ. For
simple instructions, XCAP requires the pre- and post-condition to
satisfy the weakest precondition relation. A direct jump is safe as
long as the target code’s precondition is weaker than the current
one. For an indirect jump, the current precondition has to guaran-
tee that the target address is a well-formed code label with a weaker
precondition. The(ECP) rule allows one to make local code point-
ers first-class.

short description of paper 3 2008/11/25

The following derived rules allow weakening of preconditions,
extension of code heap specifications, and safe static linking of
separately certified code heaps.

Ψ `{a} I a′ ⇒ a Ψ′ ⊇ Ψ

Ψ′ `{a′} I (WEAKEN)

ΨIN 1 ` C1 :Ψ1 ΨIN 2 ` C2 :Ψ2

dom(C1)∩dom(C2)=∅
ΨIN 1(f)=ΨIN 2(f) ∀f∈dom(ΨIN 1)∩dom(ΨIN 2)

ΨIN 1∪ΨIN 2 ` C1∪ C2 :Ψ1∪Ψ2
(LINK)

XCAP suffers from the same problems as other “syntactic” ap-
proaches. For example, although structure-wisePropX is simi-
lar to first-order propositional logic, soundness and consistency of
PropX interpretation still take around 5,000 lines [18] of very
dense Coq code to establish.

For another example, the following proposition says assertiona
is monotonic over the extension of code heap:

∀S, Ψ, Ψ′.Ψ ⊆ Ψ′ ⊃ [[a S]]Ψ ⊃ [[a S]]Ψ′

yet there is no general way to embed this meta-proposition into a
program assertion. Thus, one can not expect to be able to extend
code heap dynamically.

Approximation-based approach: FPCC / modal model.The
modal model [3] uses approximation to build semantic models
for typed assembly languages. With no syntactic assertion logic
defined, there is no need to establish large complex meta theories.
Because the semantic approximation model of those higher-order
features are defined in the same logic in which the latter is defined
and used, one could specify and reason about “meta” properties of
the program specifications, such as “necessity” (i.e., monotonic-
ity over “world” growth). For example, they have no problem in
supporting dynamic allocation of general reference cells.

Instead of using the original notations and formulas from [3],
we transform and present them in a way that matches better with
the rest of this paper.

For example, instead of defining data heap specification as the
intuitive yet ill-formed definition as follows (⇀ stands for partial
mapping)

dSpec , Label ⇀ (Word→ dSpec→Prop)

since dSpec appears on both side of the definition and causes
circularity, Appel et al. defined the following indexed code heap
specification

dSpec n , Label ⇀ (Word→ S
i<n dSpec i→Prop)

where a collection ofweakerdata heap specification,
S

i<n dSpec i,
are used to approximatedSpec up to(n− 1) steps in the future of
execution. And the index-less data heap specification type is just a
dependent pair:

DSpec , Σn.
S

i<n dSpec i.

The general reference predicateref is then defined as

ref l t (〈n, (Ψn, . . . , Ψ0)〉 : DSpec)

, ∀0<i<=n. xtyi ⇐⇒ Ψi(l)

where the value typet is of typeWord→DSpec→Prop.
Appel et al. [3] supports embedded code pointers following the

same approach by reusing the natural number index in the “world”
for approximation. These approximation details have to appear in

program specifications and proofs. Additionally, the definition of
code pointer predicate in [3], presented as the following, prohibits
partial-correctness. (We use the original annotations here.)

codeptr(τ) , ∃l :Loc ∧B!(slot(pc, just l) ∧ τ ⇒ safe).

safe , ∀m :Mem. validmem(m) ⇒ safemem(m)

safemem(m) , {((n, Ψ), v) | safen(v, m)}

safe0 (s) , True

safek+1 (s) , (∃s′. s 7→ s′) ∧ ∀s′. s 7→ s′ ⇒ safek s′.

For any indirect jump to an embedded code pointer specified with
codeptr, after the jump, the only thing guaranteed is non-stuckness.
This makes it much less interesting for logic-based verification
where expressive power is desired.

3. User Friendly Abstract Assertion and Program
Logics

In this section, we present an assertion logic (specification lan-
guage) and a program logic (program inference rules). Both are
defined without any knowledge of the details of approximation, or
whether approximation is even used at all.

We notice that syntactic approaches such as XCAP, as well as
syntactic type systems such as TAL, provide conceptually clean
and user-friendly support of embedded code pointers. One key ob-
servation here is that embedded code pointer predicates and types
are used and reasoned about by programmers in an abstract way.
Take XCAP for example, when doing proof for well-formedness
of code blocks, no possible reasoning aboutcptr constructor de-
pends on the actual interpretation of it. In Figure 4, one can see
thatcptr propositions can be introduced by rule(ECP), consumed
by rule (JMP), or they can get either preserved or dropped during
subsumptions.

So the first idea here is to make thiscptr predicate as abstract
as possible. The question is what is the type ofcptr?

The parameters tocptr are the address, the precondition, as well
as the global code heap specification (conceptually, a mapping from
addresses to preconditions). Since the global code heap specifica-
tion is only used bycptr, we make the specification and its type
abstract. Our assertion type now becomes

∀Spec :Type.

∀cptr : Label→ (State→Spec→Prop)→Spec→Prop.

∀Ψ:Spec.

State→Prop.

Since the three quantified variables above are used for the same
purpose—embedded code pointers, we pack them and obtain the
following type

ΣSpec.

(Label→ (State→Spec→Prop)→Spec→Prop)× Spec

which we name in Figure 5 asX . After moving ahead the position
of State in the above assertion type, our assertion should now be
of type

State→X →Prop.

Comparing this with the XCAP assertion definition in Figure 3, we
defineX →Prop as our newPropX as in Figure 5, together with
other constructs.

short description of paper 4 2008/11/25

(X) σ ∈ ΣSpec. (Label→
(State→Spec→Prop)→

Spec→Prop)

×Spec

(PropX) P ∈ X →Prop

(Assertion) a ∈ State→ PropX

(CdHpSpec) Ψ ::= {fÃ a}∗

(AssertImp) a⇒a′ , ∀σ, S. a S σ ⊃ a′ S σ

(StepImp) a⇒c a′ , ∀σ, S. a S σ ⊃ a′ Nextc(S) σ

Figure 5. Assertion language (abstract from approximation)

ΨG `{a}P (Well-formed Program)

ΨG ` C :ΨG ΨG `{a} I
(∀σ. (∀(f, a′)∈ΨG . cptr f a′ σ) ⊃ a S σ)

ΨG `{a} (C, S, I)
(PROG)

ΨIN ` C :Ψ (Well-formed Code Heap)

OK ai ΨIN `{ai} Ii ∀fi

ΨIN ` {f1 ÃI1, . . . , fn ÃIn} :{f1 Ãa1, . . . , fn Ãan} (CDHP)

Ψ `{a} I (Well-formed Instruction Sequence)

(λ(H,R) , σ .R(rs)≤ i ∧ a (H,R) σ) ⇒ a′

(λ(H,R) , σ .R(rs)> i ∧ a (H,R) σ) ⇒ Ψ(f)

Ψ `{a′} I f∈ dom(Ψ)

Ψ `{a} bgti rs, i , f; I
(BGTI)

a⇒ (λ(H,R) , σ .∃a′. a′ (H,R) σ ∧ cptr R(r) a′ σ)

Ψ `{a} jmp r
(JMP)

(λS , σ . cptr f Ψ(f) σ ∧ a S σ) ⇒ a′

f∈dom(Ψ) Ψ `{a′} I
Ψ `{a} I (ECP)

Figure 6. Changed inference rules (abstract from approximation)

Since thecptr predicate is packed inσ, we define the following
“dummy” cptr predicate to automate the task of unpackingσ, pick
out and applycptr, etc.,

cptr f a 〈Spec, (cptr, Ψ)〉
, cptr f (λS, Ψ′. a S 〈Spec, (cptr, Ψ′)〉) Ψ

and can easily define a relaxedcodeptr predicate similar to the one
in [16]

codeptr f a σ , ∃ a′. cptr f a′ σ ∧ a⇒ a′.

We present a set of abstract inference rules in Figure 6. Given
the similarity between our assertion logic and XCAP’s, these rules
are very similar, with all the changes highlighted. Rules(SEQ)
and (JD) are unchanged and omitted.

In rule (CDHP) we now require the following check on every
assertion

OK a , ∀σ, σ′. (∀f, a′. cptr f a′ σ ⊃ cptr f a′ σ′)

⊃ ∀S. a S σ ⊃ a S σ′

to make sure that it is monotonic over the growth of code heap
specification. It is up to the programmer to decide how to achieve
OK for certain assertiona. In general he can turn anya into one
that satisfiesOK by the following lifting:

λS. λσ. ∀σ′. (∀f, a′. cptr f a′ σ ⊃ cptr f a′ σ′) ⊃ a S σ′.

We discuss the usage ofOK in the next section.
For top-level rule (PROG), since our code heap specification is

now abstract, we do not have a concrete code heap specification to
pack and supply to assertions. We instead require the initial asser-
tions to hold on all concrete code heap specifications that contain
all the code pointers in the abstract specification. In practice, many
programs’ initial precondition is empty anyway, which makes this
trivially true. The derived rules(WEAKEN) and (LINK) in Sect. 2
still hold.

The following are the soundness and partial-correctness theo-
rems. They are proved in the next section by building “semantic”
approximation. Since our code heap specification is not specified
pointwise, the theorem below only guarantees partial-correctness
at control-flow transfer points. This is by no means a limitation of
our approach. One can easily alter the machine model and infer-
ence rules to allow the code heap specification to be more detailed
or point-wise.

THEOREM 3.1 (Soundness).
If Ψ `{a}P then for any numbern there existsP′ such thatP 7−→n

P′.

THEOREM 3.2 (Partial-Correctness).
If Ψ `{a}P then for anyn there exists(C, S, I) such thatP 7−→n

(C, S, I) and

1. if I = jd f then there existsσ such thatΨ(f) S σ;

2. if I = jmp r then there existsσ such thatΨ(S.R(r)) S σ;

3. if I = bgti rs, i , f andS.R(rs) > i then there existsσ such
thatΨ(f) S σ.

There isno restriction on how these theorems should be proved.
Other than the approximation-based approach used in the next sec-
tion, there could be different ways to do so. Indeed, our abstract
specification and inference rules are very general and truly inde-
pendent from the underlying meta-theory proof.

Our abstract language enjoys stronger expressive power than
XCAP [16, 18]. All XCAP code can be certified in our language.
The reader can refer to [16, 18] for examples of how ECP can be
used in logic-based verification.

Figure 7 shows coq code for this section, excluding target ma-
chine and auxiliary library. These are all that a programmer would
ever need to see and use.

short description of paper 5 2008/11/25

Definition X := {Spec : _ & ((Label -> (State -> Spec -> Prop) -> Spec -> Prop) * Spec) %type}.

Definition PropX := X -> Prop.

Definition Assertion := State -> PropX.

Definition CdHpSpec := Map Label Assertion.

Notation "a ==> b" := (forall s x, (a : Assertion) s x -> (b : Assertion) s x)
(at level 70, right associativity).

Definition cptr f (a : Assertion) x := match x with existT Spec (pair cptr Si) =>
cptr f (fun S Si => a S (existT _ Spec (pair cptr Si))) Si

end.

Definition codeptr f a x := exists a’, cptr f a’ x /\ a ==> a’.

Definition ok A (a : A -> PropX) :=
forall x y, (forall f a, cptr f a x -> cptr f a y) -> forall s, a s x -> a s y.

Implicit Arguments ok [A].

Inductive WFiseq : CdHpSpec -> Assertion -> InstrSeq -> Prop :=
| wfiseq : forall Si a c I a’, a ==> (fun s x => exists s’, Next c s s’ /\ a’ s’ x) ->

WFiseq Si a’ I -> WFiseq Si a (iseq c I)
| wfbgt : forall Si a rs rt f I (a’ a’’ : Assertion),

(forall s x, (_R s rs <= _R s rt /\ a s x) -> a’’ s x) ->
(forall s x, (_R s rs > _R s rt /\ a s x) -> a’ s x) ->
lookup Si f a’ -> WFiseq Si a’’ I -> WFiseq Si a (bgt rs rt f I)

| wfbgti : forall Si a rs w f I (a’ a’’ : Assertion),
(forall s x, (_R s rs <= w /\ a s x) -> a’’ s x) ->
(forall s x, (_R s rs > w /\ a s x) -> a’ s x) ->
lookup Si f a’ -> WFiseq Si a’’ I -> WFiseq Si a (bgti rs w f I)

| wfjd : forall Si a f a’, lookup Si f a’ -> a ==> a’ -> WFiseq Si a (jd f)
| wfjmp : forall Si a r, a ==> (fun s x => exists a’, cptr (_R s r) a’ x /\ a’ s x)

-> WFiseq Si a (jmp r)
| wfecp : forall Si a f a’ a’’ I, WFiseq Si a’ I -> lookup Si f a’’ ->

(fun s x => cptr f a’’ x /\ a s x) ==> a’ -> WFiseq Si a I.

Definition WFcode Si C (Si’ : CdHpSpec) :=
forall f a, lookup Si’ f a -> ok a /\ exists I, Map.lookup C f I /\ WFiseq Si a I.

Definition WFprog Si a P := match P with pair C (pair s i) =>
WFcode Si C Si /\ WFiseq Si a i /\ forall x, (forall f a, lookup Si f a -> cptr f a x) -> a s x

end.

Figure 7. The complete coq code a programmer would see and use

4. An Approximation Model and Meta-Theory
Proofs

In this section we build an approximation-based model for ECPs to
establish the soundness and partial-correctness theorems. The full
detail can be found in [15].

The basic idea of approximation is, if one wants to prove the
sequence

a1 S1 ⊃ a2 S2 ⊃ . . . ⊃ an Sn ⊃ . . .

and for some reason can not specify or prove it, one might instead
be able to add a natural number index to{ai} and prove the
following sequences

a1 m S1 ⊃ a2 (m− 1) S2 ⊃ . . . ⊃ an (m− n + 1) Sn ⊃ . . .

for everym. If that is the case, then one can easily get the following
sequence

(∀m. a1 m S1) ⊃ (∀m. a2 m S2) ⊃ . . . ⊃ (∀m. an m Sn) ⊃ . . .

and in many cases(∀m. ai m Si) is strong enough or as good as
(ai Si).

We define a “concrete” approximation-based specification lan-
guage as well as translations from the abstract specifications in the
last section in Figure 8. These constructs are “concrete” because
they all involve certain details of our approximation model. Al-
though this kind of concrete specification constructs are directly
used by some other approximation-based work as their real pro-
gram specifications, here concrete specifications and proofs are
only used for the purpose of establishing soundness and partial-
correctness guarantees, and should not be revealed to end program-
mers. As discussed in the previous section, abstract assertion and
program logics are all they need in order to carry out verifications.

The collection type of indexed code heap specification,cSpec
is similar todSpec in Section 2. The dependent pair ofcSpec and
its index forms the baseline concrete code heap specification type

short description of paper 6 2008/11/25

(cSpec 0) φ ∈ unit

(cSpec (n+1)) φ ∈ (cSpec n)

×(Label ⇀

(State→ cSpec n→Prop))

(iSpec) Φ ∈ Σn. cSpec n

(iAssertion) b ∈ State→ iSpec→Prop

(iCdHpSpec) ψ ::= {fÃ b}∗

(AssertTr) [[a]] , λS, Φ. a S 〈iSpec, (icptr, Φ)〉

(CdSpecTr) [[{fÃ a}∗]] , {fÃ [[a]]}∗

Figure 8. Concrete approximation-based specification language

iSpec. With the concrete assertion type beingState→ iSpec→Prop.
A more general concrete code heap specification isiCdHpSpec.
But the assertions in it can not directly take itself as an argu-
ment. Instead, we define the following “cap” function to construct
assertion-friendlyiSpec specifications by only keeping a finite
number of indicies in it.

bψc0 , tt

bψcn+1 , (bψcn, {f 7→ λS. λφ. ψ(f) S 〈n, φ〉})
We define the concrete monotonicity condition as follows:

iOK b , ∀S, ψ, n. b S 〈n + 1, bψcn+1〉 ⊃ b S 〈n, bψcn〉
and prove the following lemma to go from abstract to concrete
monotonicity.

LEMMA 4.1 (OK to iOK Preservation).
If OK a theniOK [[a]].

The concrete embedded code pointers predicateicptr is then
defined as

icptr f b (〈n, φ〉 : iSpec) , iOK b ∧∃ψ. ψ(f) = b ∧bψcn = φ

The abstract top-level program well-formedness rule is trans-
formed into a concrete rule with the change on the well-formedness
of state.

ΨG ` C :ΨG ΨG `{a} I (∀n. [[a]] S b[[ΨG]]cn)

ΨG `{a} (C, S, I)
(PROG’)

The following lemma shows that the abstract rule entails the con-
crete rule.

LEMMA 4.2 (Rule (PROG) to Rule (PROG’) Preservation).
If Ψ ` PROG{a} P thenΨ ` PROG′{a} P.

With the concrete approximation model defined in this section,
we are able to show that the above invariant gets preserved during
the execution, in particular,

(∀n. [[a1]] S1 b[[ΨG]]cn) ⊃ (∀n. [[a2]] S2 b[[ΨG]]cn) ⊃ . . .

and finally prove the soundness and partial-correctness theorems.

Further comparison with XCAP. By avoiding an extra layer of
syntax, we can directly reuse many of Coq’s built-in features. For
example, for program specification we automatically have full sup-
port of impredicative polymophisms (semi-supported in XCAP,

elimination disallowed) andinductive definitions (not supported
for PropX in XCAP). Many of Coq’sbuilt-in proof tactics are
much more effective now than on the syntacticPropX constructs
in XCAP.

The new approach presented in this paper effectively reduces
the implementation overhead XCAP has encountered. For example,
the old PropX meta theory, which is about 5,000 lines of Coq
code [16, 18], is replaced by less than 300 lines of code. More
importantly, unlike the old implementation, the new approachno
longer needs to use de Bruijn indices to represent impredicative
polymorphisms. Overall, we expect the simplification in program
specification and proof will reduce the lines of those code in [18]
by 60% to 80%.

Similar to previous work [16, 3], we assume the support of
impredicative polymorphisms and dependent types in the (mech-
anized) meta logic.

Monotonicity is the only additional cost, comparing to the syn-
tactic approach such as XCAP. It is easy to prove when the usage
of implication in program specifications is limited. As the next sec-
tion will show, this monotonicity will be used anyway to support
dynamic code heap generation.

5. Supporting Dynamic Code Generation
XCAP, as well as the discussion presented in the previous sec-
tions, only talks about constant code heap programs. Given the
approximation-based treatment of embedded code pointers in our
new framework, we are able to specify and reason about meta-
properties, such asOK (monotonicity over growth of code heap),
of specifications, and easily support dynamic code generation. In
this section we present one simple example of this. We expect that
the raw power of our approximation model should suffice for other
more complex and useful dynamic code generation and updating,
as well as self-modifying code in general.

The target machine in Sect. 2 does not support dynamic code
generation. We extend it with the following virtual dynamic code
generation instruction.

if I = then(C, (H,R), I) 7−→
loadcode rt[I′]; I′′ (C{f 7→ I′}, (H,R{rt Ãf}), I′′)

wheref /∈ dom(C)

Apparently,loadcode does not correspond to any single physical
instruction, as it automatically finds an available code address and
writes an instruction sequenceI′ into the code heap in one step.
Note, however, that this does not make the support of dynamic code
generation any easier.

To certify this single instruction, we add the following new ab-
stract instruction sequence rule to join those presented in Figure 6.

OK a′ Ψ `{a′} I Ψ `{a′′} I′
(λ(H,R), σ. cptr R(rt) a

′ σ ∧
∃w. a (H,R{rt Ãw}) σ) ⇒ a′′

Ψ `{a} loadcode rt[I]; I′
(LOADCODE)

To load a code block into the code heap, one has to provide a valid
precondition under which the code block is well-formed. This is
the only change to the abstract assertion and program logics.

The approximation model we build in the previous section is
already powerful enough for dynamic code generations. We only
need to change the concrete top-level invariant rule to the following

short description of paper 7 2008/11/25

ΨG ⊆ Ψ Ψ ` C :Ψ Ψ `{a} I
(∀Ψ′, n. (Ψ ⊆ Ψ′) ⊃ [[a]] S b[[Ψ′]]cn)

ΨG `{a} (C, S, I)
(PROG”)

The soundness and partial-correctness theorems still hold, ex-
cept that the latter needs some small changes as follows.

THEOREM 5.1 (Partial-Correctness (Dynamic Code Generation)).

If Ψ `{a}P then for anyn there exists(C, S, I) such thatP 7−→n

(C, S, I) and

1. if I = jd f and f ∈ dom(Ψ) then there existsσ such that
Ψ(f) S σ;

2. if I = jmp r andS.R(r) ∈ dom(Ψ)then there existsσ such
thatΨ(S.R(r)) S σ;

3. if I = bgti rs, i , f, S.R(rs) > i , andf ∈ dom(Ψ) then there
existsσ such thatΨ(f) S σ.

6. Related Work and Conclusion
GTAL [8] is a logic-based assembly verification system. Its asser-
tion logic is a mixture of higher-order logic, dependent types, linear
types, embedded code pointers, as well as recursive types. GTAL
does not support general references. Unlike XCAP, GTAL does not
lift meta logic propositions into its assertion logic. Thus it has a
much more complex assertion logic. GTAL has been used to cer-
tify garbage collector code, while the mutator code is certified by
a smaller type language defined in GTAL. Its meta theory has not
been mechanized.

Spec# [4] extends C# language’s type system with more ex-
pressive constructs, including (machine-)logical pre- and post-
conditions, verified either statically by automatic theorem prover or
dynamically by run-time checking. The potential use of machine-
logical specification and dynamic checking makes Spec# a bit dif-
ferent from other approaches mentioned in this paper.

Hoare type theory [13, 12] is a stateful dependent type system
with embedded logical assertions. Similar to XCAP, it lifts logical
assertions and proofs into the type systems. However, HTT starts
with a functional language instead of assembly languages. HTT
supports embedded code pointers that can be used to certify high-
level effectful programs. HTT currently does not support general
references and recursive types. Its meta theory has not been mech-
anized.

Cai et al. [5] shares one common goal with us: to build an
approximation-based model for embedded code pointers with
partial-correctness. After building their model, they also adapt the
XCAP set of inference rules. The model they built does not rely
on dependent types, which is an advantage over our model. How-
ever, we expect that their model will not support dynamic growth
of the code heap (and the data heap, when similar modeling is built
for general reference) with the presence of impredicative polymor-
phisms. Their approximation details, although slightly simpler, is
explicit in program specifications and proofs. They also support
recursive types with the same model.

Future work. Our approach should be applicable to other higher-
order features such as general references and recursive types. It
will also be interesting to see how these various features should
be optimally mixed in a same system, so that the abstract-concrete
separation be best preserved.

Given the simplicity of our solution, it should be much easier to
certify code that is similar to those in [18]. It is our goal to combine
the new solution for embedded code pointers with other improve-

ments on interactive theorem proving to certify more systems code,
with at least one magnitude higher productivity.

Conclusion. We present a new approach to support embed-
ded code pointers with partial-correctness in logic-based verifica-
tion. Our approach utilizes approximation technology to establish
the soundness and partial-correctness guarantee. All approxima-
tion details are abstracted out and hidden from the programmer.
Our work reaches a nice balance between existing syntactic and
approximation-based approaches and will also improve the pro-
ductivity of logic-based verification.

References
[1] A. W. Appel and A. P. Felty. A semantic model of types and machine

instructions for proof-carrying code. InProc. 27th ACM Symposium
on Principles of Programming Languages, pages 243–253, Jan. 2000.

[2] A. W. Appel and D. McAllester. An indexed model of recursive
types for foundational proof-carrying code.ACM Transactions on
Programming Languages and Systems, 23(5):657–683, Sept. 2001.

[3] A. W. Appel, P.-A. Mellies, C. D. Richards, and J. Vouillon. A very
modal model of a modern, major, general type system. InProc. 34th
ACM Symposium on Principles of Programming Languages, pages
109–122, Nice, France, Jan. 2007.

[4] M. Barnett, K. R. M. Leino, , and W. Schulte. The spec# programming
system: An overview. InCASSIS 2004, volume 3362 ofLNCS.
Springer-Verlag, 2004.

[5] H. Cai, X. Feng, Z. Shao, and G. Tan. Towards logical reasoning
about code pointers. Unpublished manuscript; Tsinghua University.

[6] J. Chen, C. Hawblitzel, F. Perry, M. Emmi, J. Condit, D. Coetzee, and
P. Pratikakis. Type-preserving compilation for large-scale optimizing
object-oriented compilers. InProc. 2008 ACM Conference on
Programming Language Design and Implementation, page to appear.
ACM Press, 2008.

[7] R. W. Floyd. Assigning meaning to programs.Communications of
the ACM, Oct. 1967.

[8] C. Hawbilitzel, H. Huang, L. Wittie, and J. Chen. A garbage-
collecting typed assembly language. InProc. 2007 ACM SIGPLAN
International Workshop on Types in Language Design and Implemen-
tation, New York, NY, USA, Jan. 2007. ACM Press.

[9] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, Oct. 1969.

[10] A. McCreight, Z. Shao, C. Lin, and L. Li. A general framework for
certifying garbage collectors and their mutators. InProc. 2007 ACM
Conference on Programming Language Design and Implementation,
pages 468–479, San Diego, CA, June 2007.

[11] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F
to typed assembly language. InProc. 25th ACM Symposium on
Principles of Programming Languages, pages 85–97. ACM Press,
Jan. 1998.

[12] A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. Abstract
predicates and mutable adts in hoare type theory. InProc. 2007
European Symposium on Programming, pages 189–204, Braga,
Portugal, Mar. 2007.

[13] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and
separation in hoare type theory. InProc. 11th ACM SIGPLAN
International Conference on Functional Programming, pages 62–73,
Portland, OR, USA, Sept. 2006. ACM Press.

[14] G. Necula. Proof-carrying code. InProc. 24th ACM Symposium on
Principles of Programming Languages, pages 106–119, New York,
Jan. 1997. ACM Press.

[15] Z. Ni. Implementation for an abstract, approximation-based
approach to embedded code pointers and partial-correctness.http:
//research.microsoft.com/∼nzz/, Feb. 2008.

short description of paper 8 2008/11/25

[16] Z. Ni and Z. Shao. Certified assembly programming with embedded
code pointers. InProc. 33rd ACM Symposium on Principles
of Programming Languages, pages 320–333, Charleston, South
Carolina, Jan. 2006.

[17] Z. Ni and Z. Shao. A translation from typed assembly languages
to certified assembly programming. Technical Reporthttp:
//flint.cs.yale.edu/flint/publications/talcap.html,
Dept. of Computer Science, Yale Univ., New Haven, CT, Nov. 2006.

[18] Z. Ni, D. Yu, and Z. Shao. Using XCAP for systems programming:
Machine context management. InProc. 20th International Confer-
ence on Theorem Proving in Higher Order Logics, pages 189–206,
Kaiserslautern, Germany, Sept. 2007.

short description of paper 9 2008/11/25

