
Partial Vectorisation of Haskell Programs

Manuel M. T. Chakravarty1, Roman Leshchinskiy1, Simon Peyton Jones2, and
Gabriele Keller1

1 Programming Languages and Systems, School of Computer Science and
Engineering, University of New South Wales, {chak,rl,keller}@cse.unsw.edu.au

2 Microsoft Research Ltd, Cambridge, England, simonpj@microsoft.com

Abstract. Vectorisation for functional programs, also called the flat-
tening transformation, relies on drastically reordering computations and
restructuring the representation of data types. As a result, it only applies
to the purely functional core of a fully-fledged functional language, such
as Haskell or ML. A concrete implementation needs to apply vectorisa-
tion selectively and integrate vectorised with unvectorised code. This is
challenging, as vectorisation alters the data representation, which must
be suitably converted between vectorised and unvectorised code. In this
paper, we present an approach to partial vectorisation that selectively
vectorises sub-expressions and data types, and also, enables linking vec-
torised with unvectorised modules.

Keywords: Vectorisation; flattening; program transformation; Haskell

1 Introduction

The idea of implementing nested data parallelism [1] in functional programs by a
vectorising program transformation is at least as old as Blelloch & Sabot’s sem-
inal work [2, 3] on the flattening transformation. We have since generalised the
basic idea to cover the central features of modern functional languages, such as
algebraic data types, parametric polymorphism, and higher-order functions [4–
6]. However, apart from a prototype that compiled a subset of Paralation Lisp,
the only complete implementation of vectorisation by flattening was, to the best
of our knowledge, the experimental NESL system [7]. Due to its experimental
nature, NESL was a rather limited functional language; for example, it did not
admit user-defined algebraic data types and higher-order functions, had only
rudimentary I/O, and did not have a module system or support separate com-
pilation. In fact, NESL was implemented as a whole program compiler that
vectorised the entire program.

In our implementation of vectorisation in the Glasgow Haskell Compiler
(GHC) as part of the Data Parallel Haskell project [8], we cannot follow NESL’s
approach. We expect that a real application will consist of a computationally-
intensive core that must be vectorised, embedded in a larger program that parses
its command line, reads configuration files, drives a GUI, outputs Postscript, and
so on. None of this surrounding code can or should be vectorised.

Consequently, we need a form of selective vectorisation that vectorises as
much as possible, but leaves sub-expressions that depend on impure features, or
unvectorised external code as is. Moreover, we must integrate vectorised with
unvectorised code, which is challenging because vectorisation alters the represen-
tation of data structures and functional values; hence, values need to be suitably
converted when passed between vectorised and unvectorised code.

This paper makes the following technical contributions:

– We give the first presentation of a selective vectorisation transformation that
only vectorises sub-expressions that do not rely on impure or otherwise non-
vectorisable features and in particular on external, unvectorised data struc-
tures and code (Section 3).

– We describe the integration of vectorised and unvectorised modules and the
additional information that vectorisation requires to be maintained across
separately compiled modules (Section 4).

Before we dive into these technical details, Section 2 summarises the main ideas
of vectorisation and introduces our approach by example. We cover related work
in Section 5.

2 Vectorisation in a nutshell

The various aspects of vectorising purely functional programs including algebraic
data types, parametric polymorphism, and higher-order functions were described
in detail in previous work [4–6, 8]. In the following, we summarise the core ideas
with a concrete example. Afterwards, we motivate and informally illustrate the
main ideas of the present paper by extending our example to include I/O.

2.1 Data Parallel Haskell

Data Parallel Haskell (DPH) introduces a type of parallel arrays, denoted [:e:]
for arrays of type e, together with a large number of parallel collective operations.
As far as possible, these operations have the same names as Haskell’s standard
list functions, but with a P suffix added—i.e., mapP, filterP, unzipP, and so
forth. The language also includes parallel array comprehensions which are similar
to list comprehensions but operate on parallel arrays. Details of the language
extension and examples are in [9].

The crucial difference between Haskell lists and parallel arrays is that the
latter have a parallel evaluation semantics. More precisely, demand for any ele-
ment of a parallel array results in the evaluation of all elements—in particular,
on a parallel machine, we expect the evaluation of these elements to happen in
parallel. Figure 1 gives an excerpt from a two-dimensional Barnes-Hut n-body
simulator, an example that we chose because it is both computationally intensive
and very hard to express using flat data parallelism. The parallelism happens
inside oneStep, where all particles are processed in a single parallel step and
where the main workhorses buildTree and accelerate (which, in turn, contain

type Vector = (Float, Float)

type Area = (Vector, Vector)

data MassPnt = MassPnt { mass :: Float, location :: Vector }
data Particle = Particle { center :: MassPnt, velocity :: Vector }

data Tree = Node MassPnt [:Tree:] — Rose tree for spatial decomposition

— Perform spatial decomposition and build the quadtree
buildTree :: [:MassPnt:] -> Tree

— Change velocity of each particle in ps according to force affected by masses in tree
accelerate :: Tree -> [:Particle:] -> [:Particle:]

— Move a mass center according to the given velocity
movePnt :: MassPnt -> Vector -> MassPnt

— Move a particle according to its velocity
moveParticle :: Particle -> Particle

moveParticle p = let v = velocity p

in Particle (movePnt (center p) v) v

— Compute one step of the n-body simulation
oneStep :: Float -> [:Particle:] -> [:Particle:]

oneStep ps

= [: moveParticle p | p <- accelerate tree ps :]

where

mps = [:mp | Particle mp v <- ps:]

tree = buildTree mps

Fig. 1. Excerpt of 2-D Barnes-Hut n-body code

parallel computations) are invoked. The function buildTree constructs a quad-
tree and accelerate uses it to compute the acceleration of a set of particles in
O(n log n) work complexity. All this needs to be vectorised for parallel execution.
More precisely, we need to ensure that we call the fully vectorised variants of the
functions buildTreeV, accelerateV, and moveParticleV, to achieve O(log2 n)
parallel step complexity; details are in [10, 4, 9].

2.2 Full vectorisation and why it may fail

Consider a top-level function definition f ::t = e, where t is the (monomorphic)
type of f . The full vectorisation transformation generates a new variant of f ,
thus:

f V :: T JtK = VJeK — If e is vectorisable

oneStepIO :: [:Particle:] -> IO [:Particle:]

oneStepIO ps

= do { print qs; return qs } — Side effecting I/O computation
where

mps = [:mp | Particle mp v <- ps:] — purely functional code. . .
tree = buildTree mps — . . . that must be. . .
qs = [: moveParticle p — . . . vectorised and. . .

| p <- accelerate tree ps:] — . . . run in parallel

Fig. 2. Parallel code mixed with I/O

Here, f V is the fully vectorised variant of f , whose right-hand side is generated
by the full vectorisation transform VJ·K. Full vectorisation returns an expression
of a different type to the input, so the type of f V is obtained by vectorising the
type t , thus T JtK. In general, if e::t then VJeK::T JtK.

Full vectorisation is the flattening transformation of Blelloch and Sabot, sub-
sequently elaborated by ourselves to handle polymorphism, user-defined alge-
braic data types, and higher-order functions [4–6]. It is, however, not the subject
of this paper, so we will keep details of full vectorisation to a minimum.

In real programs, however, full vectorisation of the entire program may be
neither possible, nor even desirable. Haskell1 supports a significant number of im-
pure features, including monadic I/O and mutable variables, exceptions, thread-
based concurrency, and calls to external C code. Code using these impure features
resists vectorisation due to such code’s dependence on a particular evaluation
order.

As an example, consider the code in Figure 2 which extends the original
oneStep with a call to the I/O function

print :: Show a => a -> IO ()

which prints values to the standard output. Its purpose here is to output the
state of simulated particles after each time step, for example, to drive an ani-
mation. We cannot vectorise the entire body of oneStepIO because we do not
have a vectorised version of print. In all likelihood, the module System.IO,
which exports print, will not have been compiled with vectorisation in the first
place, since vectorising it would be pointless. But even if we tried to vectorise
System.IO, we would still not get printV because of this function’s dependence
on sequential C procedures. In short, the full vectorisation transform VJeK may
fail. It may fail because it encounters some impure feature in e that prevents
vectorisation; or because e mentions some imported function f that was com-
piled without vectorisation, or for which vectorisation failed. In the latter case,
no binding for f V would have been created.

1 Here we mean the extension of Haskell 98 implemented by GHC, which has many
additional features that will be in the next standard. Nevertheless, already Haskell
98 supports a range of I/O operations.

2.3 Selective vectorisation

We cannot vectorise the whole of oneStep, but we still want to selectively vec-
torise as much of it as possible, so that the code computing the new particles is
evaluated in parallel (the where clause in Figure 2). In general, for each top-level
binding f ::t = e we apply the selective vectorisation transform SJ·K to e, thus:

f :: t = SJeK

In contrast to full vectorisation, selective vectorisation keeps the result type the
same—if necessary by introducing suitable conversions. This is exactly what
happens with oneStepIO, for example.

In fact, even if we are able to fully vectorise f , we must still retain a binding
of name and type f ::t . After all, f might be exported and used by a module
not compiled with vectorisation or used in a context that we cannot vectorise.
To keep matters simple and predictable, we therefore generate the binding f ::t
= SJeK regardless of whether or not full vectorisation succeeds.

Conversions. The selective vectorisation transform should vectorise the pure,
performance-critical part of oneStepIO and get qsV :: T J[:Particle:]K. This
means that although we cannot vectorise print qs, we still want to use qsV

as the argument to print. But the types do not match! So we must convert
from T J[:Particle:]K to [:Particle:] using the (overloaded) function fromV.
Thus, selective vectorisation of oneStepIO should turn print qs into print
(fromV qsV).

The functions fromV and toV marshal arguments and results “across the
border” between un-vectorised and vectorised code. The selective vectorisation
transform generates suitable fromV and toV functions, based on the types to
be marshaled. However, this is neither possible nor desirable for all types—
for complicated types it is simply too expensive. Hence, selective vectorisation
decides which sub-expressions to vectorise, using both

– the presence or absence of vectorised versions fV of the free variables f of
the expression, and

– the presence or absence of conversion functions fromV and toV at the required
types (i.e., the types of the free variables and result).

We formalise this idea in Section 3.2.

Optimality. In general, there is more than one way to selectively vectorise a
given expression. This raise the question of which of multiple translations to
choose, and especially, whether one translation is “better” than the others. Un-
fortunately, these questions are not easy to answer as we have two potentially
opposing requirements. On one hand, we want to vectorise as much code as
possible—after all, only vectorised code will make good use of parallelism. On
the other hand, the use of the conversion functions fromV and toV can be expen-
sive if large data structures are converted, especially if that happens repeatedly

Binding 3 bnd → x :: t = e
Type 3 t → T | t1 t2
Expr 3 e → v

| \v -> e
| e1 e2

| let bnd in e
...

f, x, v → 〈variable〉
T → (->) | [::] — built in

| 〈type constructor〉 — defined

Fig. 3. Fragment of GHC’s Core intermediate language

in a recursive function. We leave a detailed analysis of this trade off and the
development of a cost model or a heuristic approach to decide on which sub-
expression to vectorise for future work. The transformation formalised in the
next section simply attempts to vectorise as many sub-expression as possible.
However, some guidance by the programmer is possible as the transformation
does not assume that conversions are available for all types; i.e., by not having
conversions for types inhabited by values that may be costly to convert (e.g.,
complex tree structures), programmers can indirectly guide selective vectorisa-
tion.

3 Selective vectorisation precisely

Our description of selective vectorisation has been entirely informal thus far. In
the rest of the paper we give a more precise description. The presentation is
based on our earlier work [11, 6], where we introduced vectorisation as a total
transformation on a source language that included only vectorisable constructs,
types, and primitive functions. In what follows we show how to extend this work
to a source language that does not have this convenient property. We do this by
specifying a partial transformation that may fail for some expressions, and by
precisely characterising which parts of an expression are vectorised, and which
are not. Our implementation uses a particular source language — namely, GHC’s
Core language [12] – but our method will work for any language.

In the following, we use double square brackets J·K not only to denote source
code fragments that are transformed by one of our transformation functions (i.e.,
to denote source code “arguments”), but also for the source code “results” of
these transformation functions. In other words, we use J·K much like quasi-quotes
in meta-programming systems, such as Template Haskell.

We will consider only monomorphic programs. Our system is quite capable
of handling polymorphism (and must do so for Haskell), but polymorphism adds
complications that distract from the main point of this paper, which is partial
vectorisation.

Figure 3 displays the fragment of Core that is relevant for the present paper.
The left-hand side column gives the names for the syntactic categories that we
use in the following to give type signatures to translation schemes.

3.1 Vectorising types

In general, if e::t then VJeK::T JtK. In such situations it is usually illuminating
to look at the type transform first. There is one case for each form of type in
Figure 32:

T J·K :: Type -> Type
T J(->)K = (:->)
T J[::]K = PA
T JTK | 〈TV exists〉 = TV

T Jt tK = T JtK T JtK

The type transform simply replaces functions (->) with vectorised functions
(:->), and arrays ([::]) with vectorised arrays (PA), and other data types T
with a vectorised version of that type, TV.

In general, like the term transform, the type transform is partial : given a type
constructor T, T JTK fails if TV does not exist. There are two cases to consider:
either T is a primitve type, or it is an algebraic data type, which we consider next
in turn.

Primitive types. For some primitive types, such as Int, the vectorised version is
the same as the ordinary version; that is, IntV = Int. But for other primitive
types, there might be no vectorised version; for example T JIOK fails, because
there is no vectorised version IOV of Haskell’s IO monad.

User-defined algebraic data types. Suppose T is a user-defined algebraic data
type T. In order to vectorise code involving T we need its vectorised version TV.
We can generate TV from T by by vectorising its component types in the obvious
way. Thus, for example,

data T = C t1 t2 | D

generates the new data type declaration:

data TV = CV T Jt1K T Jt2K | DV

If any of the argument types cannot be vectorised, then neither can T. In the
special (but very common) case where T Jt1K = t1 and T Jt2K = t2, we can
avoid creating a fresh data type, instead simply setting TV = T, just as we do for
Int. So, returning to Figure 1, we have MassPntV = MassPnt and ParticleV

= Particle. In contrast, for Tree we get

data TreeV = NodeV MassPnt (PA TreeV)

2 We use Haskell’s guard notation here. The guard “| 〈TV exists〉” means “this equa-
tion applies only if TV exists”.

Functions. The vectorised version of function arrow (->) is the type of vectorised
functions (:->), but how is (:->) defined? Consider the following (contrived)
example:

app :: (Int -> Int) -> (Int, [:Int:])
app f = (f 1, [:f x | x <- [:1, 2, 3:]:])

Here we apply f outside and inside an array comprehension; in the former case
we must run f sequentially, but in the latter it should be evaluated in parallel. To
support parallel application of f, vectorisation generates a data-parallel, or lifted
version of f, denoted by f↑, such that if f :: t -> u, then f↑ :: PA T JtK ->
PA T JuK (for full details of lifting, see [11]). In the fully-vectorised version of
app, we therefore need f’s regular as well as its lifted variant, so we must pass
both versions of f to appV. To a first approximation, therefore, the type (:->)
is defined thus:

data a :-> b = MkFun (a -> b) (PA a -> PA b)

That is, vectorisation replaces a function of type t -> u by a pair of functions, of
type (T JtK -> T JuK, PA T JtK -> PA T JuK). This definition is not quite right,
because of nested functions and partial applications [6], but the details are not
important for this paper. All that we need is the existence of the vectorised
function constructor (:->), and its apply operator

($:) :: (a :-> b) -> a -> b

Vectorised arrays. Under selective vectorisation, the non-vectorised (and hence
sequential) part of the program may still manipulate “parallel” arrays. For ex-
ample, we might read a file to create a parallel array of type [:Int:], that is
then passed to a vectorised computation. Conversely, in the function oneStepIO
in Figure 2, we consume a parallel array produced by a vectorised computation
in sequential I/O code.

While the type of parallel arrays [:a:] in the source language is parametric,
the representation of arrays and array operations after vectorisation depends
on the element type. For example, an array of pairs is represented as a pair of
arrays. The reasons for this requirement, and a sketch of how we realise this in
our implementation using type families, are provided in previous work [4, 8].

Concretely, PA is a type-indexed data type family representing vectorised
arrays. In GHC’s type-family notation [13] we write

data family PA (a::*)

Then we give a data instance declaration for each type that we want to store
in a vectorised array. For example:

data instance PA (a,b) = PAPair (PA a) (PA b)

Hence, for each user-defined algebraic data type, we must generate a data
instance declaration that describes how a vectorised array of such values is
represented. For example, the Tree type in Figure 1 generates the following
declaration:

data instance PA Tree = NodePA (PA MassPnt) (Segd, PA Tree)

Segd is a segment descriptor encoding the structure of nested arrays; c.f., for
example [8] for more details of our use of type-indexed data types.

3.2 Vectorising expressions

Now we are ready to consider the selective vectorisation of expressions. Our
approach relies on three mutually recursive transformation schemes defined in
Figure 4:

VJ·K :: Expr t -> Env -> Maybe (Expr T JtK)
SJ·K :: Expr t -> Env -> Expr t
SVJ·K :: Expr t -> Env -> (Maybe (Expr T JtK), Expr t)

Full vectorisation VJ·K, and selective vectorisation SJ·K, have already been intro-
duced, although here we give them types that (a) express partiality by returning
a Maybe, and (b) express the type transformation by parameterising Expr.

The definitions of VJ·K and SJ·K do not directly depend on each other. In-
stead, the recursive knot is tied by SVJ·K which uses both transformations to
transform sub-expressions. SVJ·K acts as a mediator between selective and par-
tial vectorisation. Its main task is to intertwine vectorised and unvectorised code
by introducing appropriate conversions.

The transformations are parametrised with an environment which maps vari-
ables to their vectorised versions if available. This information is required by
partial vectorisation to transform variables, as apparent in the corresponding
rule taken from Figure 4:

VJxK env
| (x 7→ xV) ∈ env = Just JxVK
| otherwise = Nothing

In the following, we look at the transformations in more detail and explain what
happens at the interfaces between vectorised and unvectorised code.

3.3 Embedding unvectorised sub-expressions

To see how the transformations defined in Figure 4 allow for mixing vectorised
and unvectorised code, let us consider an example that demonstrates how vec-
torised code may depend on unvectorised code. Assume a variable M.constTable
:: [:Int:] defined in a module M that was not compiled with vectorisation; i.e.,
M.constTableV does not exist. In a naive implementation, we might abandon
the vectorisation of an expression such as sumP M.constTable altogether and
evaluate it sequentially. However, this is clearly suboptimal; instead, we would
like to convert M.constTable to a vectorised representation (this is easily pos-
sible for arrays of primitive types) and pass it to the vectorised, i.e., parallel
implementation of sumP. Ultimately, we would like to have

SJ·K :: Expr t -> Env -> Expr t
SJxK env = JxK
SJe eK env = JeS eSK
where

(, eS) = SVJeK env

(, eS) = SVJeK env

...〈similar for other cases of SJ·K〉...

SJlet x :: t = e in eK env

= Jlet bs in eSK
where

(bs, env’) = SVBJx :: t = eK env

eS = SJeK env’

VJ·K :: Expr t -> Env -> Maybe (Expr T JtK)
VJxK env

| (x 7→ xV) ∈ env = Just JxVK
| otherwise = Nothing

VJe eK env

| (Just eV,) <- SVJeK env

, (Just eV,) <- SVJeK env = Just JeV $: eVK
| otherwise = Nothing

VJlet x :: t = e in eK env

| (Just eV,) <- SVJeK env’ = Just Jlet bs in eK
| otherwise = Nothing

where

(bs, env’) = SVBJx :: t = eK env

...〈similar for other cases of VJ·K〉...

SVJ·K :: Expr t -> Env -> (Maybe (Expr T JtK), Expr t)
SVJeK env = case VJeK env of

Just eV

| 〈fromV eV exists〉 -> (Just eV, JfromV eVK)
| otherwise -> (Just eV, eS)

Nothing

| 〈toV eS exists〉 -> (Just JtoV eSK, eS)

| otherwise -> (Nothing, eS)

where

eS = SJeK env

SVBJ·K :: Binding -> Env -> ([Binding], Env)

SVBJx :: t = eK env

| 〈t is vectorisable〉
, (Just eV, eS) <- SVJeK env’ = ([x::t = eS, xV::tV = eV], env’)

| otherwise = ([x::t = SJeK env], env)

where

env’ = env ∪ {x 7→ xV}

Fig. 4. Selective vectorisation

VJsumP M.constTableK env = Just JsumPV $: (toV M.constTable)K

In other words, we would like vectorisation to succeed for the entire expression
even though it fails for one of the sub-expressions. That is why VJ·K uses SVJ·K
to vectorise sub-expressions as it is the latter that can introduce the necessary
conversions. For example, the rule for vectorising application given in Figure 4
passes the two sub-expressions on to SVJ·K which tries to transform them such
that they can be used in a vectorised context. In our example, vectorisation
immediately succeeds for sumP which has a vectorised version:

SVJsumPK env = (Just JsumPVK, JsumPSK)

but fails for M.constTable which has no vectorised variant. Fortunately, SVJ·K
is able to rectify this by introducing a conversion:

SVJM.constTableK env
= (Just JtoV M.constTableSK), JM.constTableSK)

This enables the application rule of VJ·K to succeed, producing the desired re-
sult. Note that the definition of VJ·K does not contain any interfacing logic—
interfacing is delegated entirely to SVJ·K. This is also the reason why we only
included three example rules in the definition of VJ·K—the complete definition
can be obtained by using SVJ·K in place of direct recursion in the definition of
vectorisation given in [11] and by accounting for partiality in the exact same
manner as we demonstrated for application.

3.4 Vectorising as much as possible

Using unvectorised in vectorised code is only half of the story, however. Arguably
much more important is the ability to pass results of parallel computations to
inherently unvectorisable tasks such as I/O. In fact, we have already seen an
example where this is absolutely essential: the statement print qs in Figure 2
outputs the result of a computation which we expect to be executed in paral-
lel and which, therefore, must be vectorised. Again, it is the task of SVJ·K to
introduce the necessary conversion before passing the computed value to the
unvectorisable print.

The mechanism employed here is quite similar to the one discussed in the
previous section. Since we cannot vectorise print, we have:

SVJprintK env = (Nothing, JprintSK)

The situation is quite different for qs, however. Not only can it be fully vec-
torised to qsV, the latter can also be converted to an unvectorised representa-
tion. In such a case, SVJ·K will throw away the result of selectively vectorising
the sub-expression and simply suitably convert the fully vectorised version. In
our example, this amounts to:

SVJqsK env = (Just JqsVK, JfromV qsVK)

For the overall expression, the transformation rule for selectively vectorising
applications then generates

SJprint qsK env = JprintS (fromV qsV)K

This is optimal in the sense that we evaluate as much as possible in parallel
(namely all of qs) before passing the result to the inherently sequential code. The
definitions of SJ·K and SVJ·K ensure that the transformation always prefers fully
vectorised expression to using selectively vectorised ones, thereby preserving the
maximum degree of parallelism while still allowing for partiality of vectorisation.

3.5 Vectorising let

During selective vectorisation, let bindings are handled in just the same way
as that described in Sections 2.2 and 2.3. Given a single3 binding x::t = e, we
always produce the selectively vectorised binding x::t = SJeK. Additionally, if
e can be fully vectorised, we generate the fully vectorised binding xV::T JtK
= VJeK. In this case, we also extend the environment to account for the newly
introduced vectorised version of x such that it is visible during the vectorisa-
tion of the body. This is described by the let cases of VJ·K and SJ·K, which
invoke the transformation scheme SVBJ·K to deal with the binding. The same
transformation is used to handle top-level bindings.

As an example, the body of moveParticle from Figure 1 is vectorised as
follows:

VJlet v = velocity p in Particle (movePnt (center p) v) vK env
= Just Jlet vV = velocityV $: pV

v = fromV (velocityV $: pV)
in ParticleV $:

(movePntV $: (centerV $: pV) $: vV) $: vVK

Obviously, there is ample room for optimisation here. For example, when SVBJ·K
generates two bindings in a local let, only one of them may be used in the let
body, but simple dead-code elimination will excise the unused binding.

What about recursion?4 Whether the right-hand side of a recursive bind-
ing such as r :: t = f r can be vectorised depends, among other things, on
whether a fully vectorised version of r is available. Of course, we cannot know
if rV is available until we have tried to vectorise the right-hand side. Obviously,
this is a classical case of circular dependency which our transformation must
resolve.

Our solution to this problem is somewhat simple-minded, but effective. First,
we attempt to vectorise the right-hand side assuming that rV exists. If it can be
3 Both in the definition of the transformation and in the subsequent discussion, we

restrict ourselves to a single, possibly recursive binding of the form let x :: t =

e in e. Our method easily generalises to multiple mutually-recursive bindings.
4 NB: Haskell does not distinguish between value and function bindings. Any let

binding can be recusive.

fully vectorised, we generate two bindings as described above using the two ex-
pressions produced by SVJ·K. If partial vectorisation fails, however, we are faced
with an additional complication. We cannot use the selectively vectorised ex-
pression that was produced by SVJ·K under the assumption that xV exists; after
all, it may contain references to the latter. The following example demonstrates
this. Suppose we have the following functions:

f :: Int -> T
g :: T -> Int
gV :: TV :-> Int

Here, g has a vectorised version but f does not. Moreover, we assume that the
type T is vectorisable but does not support conversion to and from TV. Then,
for the binding x :: T = f (g x) partial vectorisation would fail but selective
vectorisation, if performed under the assumption that xV exists, would yield x
:: T = f (toV (gV $: xV)). This definition is unusable, however, as we have
no binding for xV after all. We have to selectively vectorise the binding once
more, this time omitting xV from the environment. In our example, this would
leave the original binding unchanged which is, indeed, the only possible solution.

4 Selective vectorisation of modules

Between all the modules forming a program, some modules will be compiled
with vectorisation and some will not. In the following, we discuss how these two
types of modules fit together and what extra information vectorisation requires
to be communicated between separately compiled modules.

4.1 Modules compiled without vectorisation

The scheme for vectorising expressions, and in particular bindings, presented
before is designed such that modules compiled without vectorisation

1. do not have to be aware of vectorisation at all and
2. are just a special case of those compiled with vectorisation.

Concerning Point (1), vectorised modules still contain all the original type defini-
tions of the source and, although bindings of the form v::t = e are transformed
into v::t = eS, their interface remains the same. Concerning Point (2), even if
a module is compiled with vectorisation, it is conceivable that none of its func-
tions or type declarations is actually vectorisable under partial vectorisation.
In this case, the interface of the module remains as if it hadn’t been compiled
with vectorisation at all. (Nevertheless, some expression bodies may have been
selectively vectorised.)

4.2 Interface files

GHC uses interface files to communicate exported type declarations and func-
tion signatures between separately compiled modules. Whenever a module A is
compiled, an interface file A.hi is generated from its type information. When-
ever a module B imports A, the compiler reads A.hi to obtain type information
for all imported entities.

If optimisation is enabled (and vectorisation is a form of optimisation), GHC
emits further information into interface files. This additional information in-
cludes information computed by code analysis (such as strictness information)
as well as the right-hand sides of function definitions that are considered for
cross-module inlining.

When a module is compiled with vectorisation, GHC includes the following
additional information in the interface file:

– For each value or function binding x, GHC indicates whether xV exists.
– For each type constructor T, GHC indicates whether TV exists, and if so,

whether T itself serves as TV. If TV exists, we may also have the type-specific
conversion functions toV and fromV.

– For each type constructor T, we have a type family instance defining the
representation of the non-parametric array representation described in Sec-
tion 3.1. This always exists as we use parametric, boxed arrays as a fallback
for types where we cannot derive an optimised representation.

5 Related work

There is a long list of work concerning vectorisation, some of which we have men-
tioned throughout this paper. We have discussed much of this previous work in [8]
and will refrain from repeating this discussion. To the best of our knowledge,
none of this previous work has mentioned partial vectorisation. In particular,
NESL [3, 7] was implemented as a whole program compiler performing whole-
sale vectorisation.

The Proteus system [14] promised a combination of data and control paral-
lelism, but Proteus had a particular focus on manual refinement of algorithms
and where data parallel components were automatically vectorised, this again
was a complete whole-program transformation. Moreover, the system was never
fully implemented.

Manticore [15] supports a range of forms of parallelism including nested data
parallelism. Manticore employs some of the same techniques as we do, but it does
not seem to use vectorisation in the same form. The Manticore implementation
is, at the time of writing, work in progress.

6 Conclusion

We argued that vectorisation for a fully fledged functional language needs to be
partial; i.e., only part of a program is vectorised. We presented and in part for-
malised a partial vectorisation transformation that vectorises sub-expressions

selectively and uses conversions where necessary to integrate vectorised and
unvectorised code. At the time of writing, we are working on completing a
first version of vectorisation for GHC, which includes our partial vectorisation
strategy. All code is publicly accessible from the GHC HEAD repository at
http://darcs.haskell.org/ghc/.

References

1. Blelloch, G.E.: Programming parallel algorithms. Communications of the ACM
39(3) (1996) 85–97

2. Blelloch, G.E., Sabot, G.W.: Compiling collection-oriented languages onto mas-
sively parallel computers. Journal of Parallel and Distributed Computing 8 (1990)
119–134

3. Blelloch, G.E.: Vector Models for Data-Parallel Computing. The MIT Press (1990)
4. Keller, G., Chakravarty, M.M.T.: Flattening trees. In Pritchard, D., Reeve, J.,

eds.: Euro-Par’98, Parallel Processing. Number 1470 in Lecture Notes in Computer
Science, Berlin, Springer-Verlag (1998) 709–719

5. Chakravarty, M.M.T., Keller, G.: More types for nested data parallel program-
ming. In Wadler, P., ed.: Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming (ICFP’00), ACM Press (2000) 94–105

6. Leshchinskiy, R., Chakravarty, M.M.T., Keller, G.: Higher order flattening. In:
Third International Workshop on Practical Aspects of High-level Parallel Pro-
gramming (PAPP 2006). Number 3992 in LNCS, Springer-Verlag (2006)

7. Blelloch, G.E., Chatterjee, S., Hardwick, J.C., Sipelstein, J., Zagha, M.: Imple-
mentation of a portable nested data-parallel language. Journal of Parallel and
Distributed Computing 21(1) (April 1994) 4–14

8. Chakravarty, M.M.T., Leshchinskiy, R., Peyton Jones, S., Keller, G., Marlow, S.:
Data Parallel Haskell: a status report. In: DAMP 2007: Workshop on Declarative
Aspects of Multicore Programming, ACM Press (2007)

9. Chakravarty, M.M.T., Keller, G., Lechtchinsky, R., Pfannenstiel, W.: Nepal—
nested data parallelism in Haskell. In Sakellariou, R., Keane, J., Gurd, J.R.,
Freeman, L., eds.: Euro-Par 2001: Parallel Processing, 7th International Euro-Par
Conference. Number 2150 in Lecture Notes in Computer Science, Berlin, Germany,
Springer-Verlag (2001) 524–534

10. Barnes, J., Hut, P.: A hierarchical O(n log n) force calculation algorithm. Nature
324 (December 1986)

11. Leshchinskiy, R.: Higher-Order Nested Data Parallelism: Semantics and Imple-
mentation. PhD thesis, Technische Universität Berlin (2005)

12. Peyton Jones, S., Santos, A.: A transformation-based optimiser for Haskell. Science
of Computer Programming 32(1–3) (1998) 3–47

13. GHC Team: Type families. http://haskell.org/haskellwiki/GHC/Type_

families (2007)
14. Mills, P., Nyland, L., Prins, J., Reif, J.: Software issues in high-performance com-

puting and a framework for the development of hpc applications. In: Computer
Science Agendas for High Perfromance Computing, ACM Press (1994)

15. Fluet, M., Ford, N., Rainey, M., Reppy, J., Shaw, A., Xiao, Y.: Status report: The
manticore project. In: 2007 ACM SIGPLAN Workshop on ML, ACM Press (2007)

