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Abstract

Full revelation of private values is impractical in many
large-scale markets, where posted price mechanisms are
a simpler alternative. In this work, we compare the
asymptotic behavior of full revelation auctions to posted
price auctions in a Bayesian model. We show that
posted-price auctions that use discriminatory (i.e., per-
sonalized) prices can be asymptotically equivalent to op-
timal full revelation auctions with the right choice of
prices. On the other hand, posted price auctions with
one symmetric price are asymptotically inferior to opti-
mal full revelation auctions. Our results are given for
general independent distribution functions under stan-
dard weak conditions (called the von Mises conditions)
that correspond to inherent properties of the distribution
functions (e.g., if the support is bounded or unbounded,
the shape of the distribution tail, etc). Our results ap-
ply to other settings like online algorithms and secretary
problems.

1 Introduction

A substantial part of the literature on auctions explored
the design of optimal auctions, and focused on ways to
negotiate with the bidders for eliciting the relevant infor-
mation that they hold. Sometimes, however, decisions
should be taken very quickly, and the auctioneer cannot
allow an iterative procedure of bidding or waiting for bid-
ders to determine their exact valuation. One prominent
example are electricity markets (see, e.g., [34]); when a
sudden drop in the electricity supply takes place, the
allocation of the remaining electricity should be deter-
mined immediately. One solution that have been used
in practice is to post prices for the bidders, and ask for
their immediate take-it-or-leave-it response. Another ex-
ample where full negotiation is not necessarily the right
thing to do, is in large-scale e-commerce markets. Selling
items by a full negotiation process (like eBay auctions)
clearly provides the seller with sufficient information for
determining the bidders with the highest values (and it
can thus use optimal mechanisms like Vickrey’s [32] and
Myerson’s [23]). However, such mechanisms incur other
costs, like the need to maintain more complex software.
With the presence of numerous bidders, it may be rea-
sonable not to negotiate with the bidders at all, but sim-
ply post high-enough prices and with high probability at
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least some of the bidders will be willing to pay these high
prices. Moreover, it is shown in several works that bid-
ders prefer simple mechanisms with simple rules (see,
e.g., the behavioral research in [15]); in simple mecha-
nisms they tend to act more rationally and they are more
likely to participate.

The obvious questions now are understanding how
posted price auctions compare with full-revelation auc-
tions, and what are the optimal prices to use. These are
indeed the main questions this paper aims to address.

Our paper compares the expected revenue in full-
revelation auctions to that in optimal posted-price auc-
tions. We focus on single-item auctions in a Bayesian
model where the values that the bidders are willing to
pay for the item are independently distributed accord-
ing to a distribution function that is known to the seller;
this distribution is identical for all bidders. We study
two natural families of posted-price auctions. Auctions
where the seller posts a single price for all the bidders,
referred to as symmetric posted-price auctions, and auc-
tions with personalized prices which we call discrimina-
tory posted-price auctions. Note that although the dis-
tributions are ex-ante identical, the seller still may gain
more power by publishing discriminatory prices. We
stress that in both families of posted-price auctions the
seller does not collect any information from the bidders,
and just uses the ex-ante commonly known distributions
on their values to determine take-it-or-leave-it offers.

Therefore, we compare the following three auctions:

1. Full-revelation auctions. Auctions where each
bidder reveals his exact private value to the seller.
An optimal full-revelation auction maximizes the
expected revenue in equilibrium; Myerson’s auction
that allocates the item to the bidder with the high-
est virtual valuation vi− 1−F (vi)

f(vi)
is an optimal full-

revelation auction.

2. Posted-price auction. The seller publishes a
price p, and the item is sold to any one of the bid-
ders that is willing to buy the item at the price p.
In an optimal posted-price auction, the seller deter-
mines the price p such that his expected revenue is
maximized.

3. Discriminatory posted-price auctions. Auc-
tions where the seller publishes an individual price
pi for each bidder, and the item is sold to the bidder
with the highest price among those who accepted
their offer. In an optimal discriminatory posted-
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price auction, the seller publishes prices that opti-
mize the expected revenue.

Note that the 3 auctions admit dominant-strategy
equilibrium. In the full-revelation case, the dominant-
strategy equilibrium is achieved under Myerson’s regu-
larity condition (i.e., that the virtual-valuation function
is monotone non-decreasing). In the posted-price auc-
tions it is clearly a dominant strategy do accept only
offers smaller than one’s value. We note that our results
directly apply for the goal of social-welfare maximiza-
tion in addition to revenue maximization, via the classic
reduction of Myerson [23].1

1.1 Our Results

This paper provides an exact asymptotic characteriza-
tion of the optimal expected revenue achieved by each
one of the above auctions. Since single-item auction
is the most fundamental problem in mechanism design,
and also two exactly quantify the differences between the
auctions, we present the exact constants when express-
ing the optimal revenue. For the posted price auctions,
we also present the exact prices that achieve the optimal
results. Our results are given for general distribution
functions, under weak standard conditions on the shape
of the distribution at the right extreme of its support.
Our results are given up to terms with lower asymptotic
order, that is, up to factor of 1 − o(1). We provide two
sets of results; one set of results for distribution on a sup-
port that is bounded from above, and a second set for
distributions on unbounded supports. In the first case
we require a mild assumption on the way the distribu-
tion function approaches the end of the support, called
the first von Mises condition; the latter case requires a
similar mild condition on the shape of the tail of the
distribution which is called the second von Mises condi-
tion. These conditions are taken from works in statis-
tics on extreme-value theory and highest-order statis-
tics and, intuitively, guarantee that the distribution of
the highest order statistics behaves in a non-degenerate
manner when the number of samples is large. The con-
ditions are very weak, and it seems hard to come up
with natural distributions for which they do not hold.
Among others, they include all distributions with a dif-
ferentiable density function and always positive support
(on bounded intervals) and power-law distributions or
log-normal distributions (unbounded support). We will
formally present these conditions in Section 2. More de-
tails can be found in the tomes [7, 8].

Our result derive stark conclusions on how the above
auctions compare, and we have different conclusion for
the bounded support and the unbounded support cases.

1Myerson [23] showed that maximizing the revenue is actu-
ally equivalent to maximizing the social welfare after perform-
ing a transformation on the valuations (i.e., when considering
the virtual valuations. This reduction actually requires an addi-
tional regularity condition on the distributions, that is, that the
transformed valuation (the ”virtual” valuations) will be a non-
decreasing function of the original valuation.

Bounded supports.

Theorem: (informal) Discriminatory posted-price auc-
tions with the right choice of prices can be almost equiv-
alent in terms of revenue to optimal full-revelation auc-
tions. On the other hand, symmetric posted-price auc-
tions incur an asymptotically greater loss by a logarith-
mic factor in the number of bidders.

For example, in the case where the values of the bid-
ders are distributed uniformly on [0, 1], the optimal ex-
pected revenue in the full revelation auction (i.e., the
Myerson auction) is around 1 − 2

n
. The optimal rev-

enue with a symmetric posted price is around 1− logn
n

.
With discriminatory prices, however, although they do
not collect any information from the bidders, the ex-
pected revenue becomes very close to the full-revelation
result, i.e., 1 − 4

n
. (All the above expressions of the ex-

pected revenue are given up to lower order asymptotic
terms.)

Unbounded supports.

Theorem: (informal) Optimal full revelation auc-
tions, symmetric posted-price auctions and discrimina-
tory posted-price auctions do not converge to the same
revenue when the number of bidders grow. (We present
an exact characterization of the ratio between the ex-
pected revenue in these auctions.)

For example, consider power-law distributions on the
open interval [1,∞), i.e., where the cumulative distri-
bution function is F (x) = 1 − 1

xk
(k > 1). For ex-

ample, if k = 2, the expected revenue on the optimal
full-revelation auction turns out to be 0.88

√
n, while the

optimal expected revenue in symmetric posted-price auc-
tions is 0.64

√
n and in discriminatory posted-price auc-

tions it is 0.7
√
n (always omitting lower order terms).

Note that the ratio between those revenues is not con-
verging to 1.

1.2 Related work

Asymptotic comparison of symmetric and discrimina-
tory posted-price auctions for the uniform distribution
was briefly given in the context of auctions with bounded
communication in [3, 5]. Subsequent papers also studied
simple nearly-optimal economic mechanisms that collect
minimal information from the bidders, e.g., [4, 27, 20].

Our model also provides solutions to other well-
studied models. One closely related problem is the sec-
retary problem. In secretary problems, a sequence of
agents that hold values is presented to the algorithm,
and the algorithm can stop and choose a value any time.
The goal of the algorithm is to maximize the expected
value he stopped at (other goals have been also stud-
ied for this model over the years). The algorithm has
no knowledge on the future values and he cannot return
to values he passed in the past. We consider the ”full-
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information” version of the secretary problem, where the
samples are drawn independently from the same distri-
bution function.

The optimal posted-price auctions is algorithmically
similar to the secretary problem, and our solutions ac-
tually provide an optimal algorithm for maximizing the
expected value gained in full-information secretary prob-
lems.2 Some of the classic solutions for the secretary
problems (e.g., [12]) presented results in the same spirit
as ours, but did not handle the asymptotic analysis and
the generality of the distribution functions in our pa-
per. Variants of the secretary problem were studied,
in auction settings or general settings, for example, in
[1, 19, 14]. More relevant literature studied statistical
stopping rules (or ”prophet inequalities”) in similar set-
tings [31, 17], and more recently in [18].

Analogously, posted-price auctions are associated with
the study of online auctions and online algorithms.
It was observed (e.g., in [3, 5]) that optimal posted-
price auctions can be implemented in an online manner.
Along these lines, an easy observation is that in opti-
mal Bayesian online auctions (or secretary problems),
each agent is presented a single take-it-or-leave-it thresh-
old, and thus these are actually posted-price implemen-
tations. See the survey [24] and the references within for
more information on online auctions.

Asymptotic analysis of the revenue in single-item auc-
tions appeared in [9, 6], with the emphasis on the asymp-
totic strategies of the bidders in first-price auctions.
None of these works studied posted-price auctions, nei-
ther symmetric nor discriminatory. More information
on extreme-value theory and the theory of highest-order
statistics can be found in [8, 7]. A related line of research
is by [30, 26, 28, 29] and others, who studied the loss in
double auctions as the number of bidders grow. More re-
lated recent work is by [16] who studied discriminatory
prices when the number of items is some non-trivial frac-
tion of the number of bidders.

2 The von Mises-Conditions

Consider a seller that wishes to sell one item to a set of
n bidders. Each bidder has a private value vi that she
is willing to pay for this item. Each vi is drawn from a
distribution function F . The density function (if exists)
is denoted by f .

Our analysis requires some weak assumptions on the
distribution functions. These assumptions describe how
the distribution function behaves in the extreme part of
the support; since our analysis closely relates to highest-
order statistics analysis, the behavior on the lower parts
of the support will not matter when the number of bid-
ders is large. We will consider different assumptions for
distributions with bounded and unbounded support.

2In many classic paper on secretary problems the goal is to
maximize the probability that the secretary with the highest
value will be chosen, rather than maximizing the expected value,
see, e.g., [12, 1].

Historically, the conditions were introduced by von
Mises in 1936 [33]. Together with a third, they are a
slight relaxation of the necessary and sufficient condi-
tions of Gnedenko [13] under which the maximal value
of n distribution approaches a single distribution af-
ter renormalization. While the von Mises conditions
are slightly stronger than Gnedenko’s condition (they
require, for example, that the density exists), every
function which satisfies Gnedenko’s condition is tail-
equivalent to one which satisfies the von Mises condition
[2].

2.1 The first von Mises-Condition (Un-
bounded Support)

We will first consider the unbounded support case, and
we will denote the following condition as the first von
Mises condition (or VM1).

Definition 1. We say that F satisfies the VM1 prop-
erty with parameter α if F has unbounded support, is
eventually differentiable3, and satisfies, for some α > 0,

lim
x→∞

xf(x)

1− F (x)
= α. (1)

Remark: If α ≤ 1, then the expectation E[X] may not
exist. We will therefore only consider VM1 with α > 1.

One example that we will use throughout the paper for
a VM1 distribution function is the family of power-law
distributions. That is, when F (x) = 1− 1

xk
for some k >

1. It is easy to see that power-law distributions admits
the VM1 property with the parameter k (the parameter
that defines the power-law distribution). (One can check

this by observing that f(x) = k
xk+1 and thus xf(x)

1−F (x)
is

exactly the constant k.)

VM1 holds for distributions with a ”heavy tail”, for
example, log-normal, Pareto, Burr, log-Gamma, and, as
mentioned, power-law distributions (for any k).

2.2 The second von Mises-Condition
(Bounded Support)

We now present the second von Mises condition for dis-
tribution functions on bounded supports. That is, F (x)
is defined for x’s smaller than some upper bound b.

Definition 2 (VM2). We say that F has the VM2 prop-
erty with parameter α if the support of F has an upper
bound b < ∞, if F is eventually differentiable, and sat-
isfies, for some α > 0,

lim
x→b

(b− x)f(x)

1− F (x)
= α. (2)

3That is, the density function exists for all the points in the
support that are greater than some x0.
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We will use the uniform distribution on the support
[0, 1] as the leading example for the VM2 property. It
is easy to verify that this distribution indeed has the
VM2 property with the parameter α = 1 (clearly, b = 1,
f(x) = 1 and F (x) = x for every x).

VM2 is a weak property for distributions on bounded
supports. It is a weaker assumption than, for example,
distributions with differentiable always-positive density
functions. It is also weaker than the demand that a
distribution function has a Taylor expansion around the
upper bound of the support b.4

We would like to note that there also exists a third
von Mises condition, for ”light-tailed” distributions like
the exponential distribution. Results for this condition
are out of the scope of this conference version. See [8]
for more details on the von Mises conditions.

3 Exposition of our Results

In this section, we will present our formal results with-
out the proofs, which will be given later, and demon-
strate these results using simple distribution functions.
Section 3.1 will discuss our results for distributions
with unbounded supports (under VM1) and section 3.2
will present our results for bounded supports (under
VM2). For each family of distributions we will actually
present three theorems, characterizing optimal results
for (1) full-revelation auctions, (2) symmetric posted-
price auctions, and (3) discriminatory posted-price auc-
tions. Note that each of these two theorems actually
contains two results, a lower bound and an upper bound.
For example, for the results about posted prices, we show
that using certain prices generates a certain amount
of expected revenue, but also that no other scheme of
posted prices can achieve a better expected result.

We will first explain two standard notations that we
use in the statements of the theorems:

• We denote by F−1(t) the value x for which F (x) = t.

• Let Γ(·) denote the Gamma function which is the
extension of the factorial function to real numbers.5

The results we have for the full-information case actu-
ally describe the expected social-welfare in the auction,
that is, the expectation of the highest value (the highest-
order statistic). It is easy to conclude the expected rev-
enue from this result using one of the following ways:

1. Reduction via virtual valuations. Namely, optimal
revenue is equal to the optimal social-welfare when
we perform the following transformation on the val-
ues (and consider an additional bidder in the new
model, the seller, with a zero value): ṽi(vi) =

vi − 1−F (vi)
f(vi)

. ṽi is often called the virtual valuation
of player i.

4We would like to emphasize that VM2 is strictly weaker than
the above examples. For example, the function 1− (1−x)k · log x
has no Taylor expansion around 1 but the VM2 still holds.

5Γ(x) =
∫∞
0 tz−1e−tdt, and for integer x it holds that Γ(x) =

(x− 1)!.

2. Order statistics properties. Since under stan-
dard conditions (non-decreasing virtual valuations)
second-price auctions achieves optimal revenue, we
should actually calculate the expectation of the
second-highest order statistic. Denote the i’th or-
der statistic from a sample of n bidders by Y

(n)
i .

The following property enables us to compute the
expectation of the second-order statistics from the
first-order statistics (see, e.g., [21]):6

E
[
Y

(n)
2

]
= nE

[
Y

(n−1)
1

]
− (n− 1)E

[
Y

(n)
1

]
3.1 Distributions with Unbounded Support

We now present our results for models where the values
of the players are drawn from a cumulative distribution
function (cdf) F which satisfies the first von Mises prop-
erty.

3.1.1 Full-revelation auctions

We will first present the expression for the optimal ex-
pected social welfare. Note that Γ(α−1

α
) is a constant

that only depends on the parameter of the VM1 func-
tion, and therefore the optimal result is proportional to
F−1(1− 1

n
). It is well known that a social welfare that ex-

actly equals the expectation of the highest-order statis-
tic can be achieved, even in dominant strategies, using
second-price auctions.

Theorem 1. Let F be a cdf satisfying VM1 for α > 1.
Then, the expectation of the maximum is of n random
variables chosen according to F is

Γ(α−1
α

)F−1

(
1− 1

n

)
(1 + o(1))

For example, recall that the power-law distribution
F (x) = 1 − 1

xk
is VM1 with parameter k. It is easy to

see that F−1(1− 1
n

) for this distribution equals k
√
n (by

solving 1− 1
xk

= 1− 1
n

). Therefore, the expected social

welfare equals Γ( k−1
k

) k
√
n(1 − o(1)). When k = 2, it

follows that the expected-social welfare is approximately
1.77
√
n.

We will now show how this result can easily derive
the optimal expected revenue. The virtual valuation of
player i is ṽi(vi) = vi − 1−F (vi)

f(vi)
= vi(1− 1

k
). Therefore,

the corresponding cdf in the virtual-valuation domain is

F̃ (x) = F ( x

1− 1
k

) = 1− (1− 1
k

)k

xk
, and it is easy to see that

the von Mises parameter for F̃ remains k. Since F̃−1(1−
1
n

) = (1 − 1
k

) k
√
n, it follows that the expectation of the

virtual valuation is Γ( k−1
k

)(1− 1
k

) k
√
n, which is different

than the optimal expected social welfare by a factor of
1− 1

k
. For k = 2 the expected revenue is therefore about

0.88
√
n.

6Note that the second-price auction is not exactly the optimal
auction, but a second-price auction with a reserve price. How-
ever, since the optimal reserve price is independent of the number
of players (e.g., [10, 21]) with numerous players this becomes neg-
ligible.
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3.1.2 Symmetric posted-price auctions

We now move to explore symmetric posted-price auc-
tions. We will first define a new notation. For k > 1,
the equation exp(x) = 1 + kx has a unique positive so-
lution.7 We will denote this solution by η(k) (and thus,
exp(η(k)) = 1+kη(k)). The theorem shows that the op-

timal expected revenue is proportional to F−1(1− η(α)
n

),
and shows a family of prices that achieve this optimal
revenue. Note that η(α) depends only on the von Mises
parameter α and is independent of the number of bid-
ders.

Theorem 2. Let F be a cdf satisfying VM1 for α > 1.
Then, in a symmetric posted-price auction the optimal
expected revenue satisfies,

rn =
αη(α)

1 + αη(α)
F−1

(
1− η(α)

n

)
(1 + o(1)) . (3)

Furthermore, the optimal prices satisfy

pn = F−1

(
1− η(α)

n

)
(1 + o(1)) . (4)

Finally, all prices of the form (4) achieve a revenue of
the form (3).

Note that the second statement on the theorem claims
that the optimal price belongs to the family described
in Equation (4), and the final statement shows that
actually any price of this form achieve asymptotically
optimal results. Therefore, we can use prices pn =
F−1(1− η(α)

n
) if we want to run such an auction in prac-

tice, and there is no need to find the optimal price for
achieving the revenue in Equation 3.

Lets consider again the example of the power-law dis-
tributions. It is easy to see that F−1(1 − η(α)

n
) =

k√n
k
√
η(k)

, and therefore the expected revenue is about

kη(k)
1+kη(k)

k√n
k
√
η(k)

. When k = 2, η(2) ∼= 1.26 and the op-

timal revenue is about 0.64
√
n.

3.1.3 Discriminatory posted-price auctions

We finally present the expression for the optimal ex-
pected revenue in discriminatory posted-price auctions.

Theorem 3. Let F be a cdf satisfying VM1 for α > 1.
Then, the optimal expected revenue in a discriminatory
posted-price auction satisfies

rn =
α− 1

α
F−1

(
1− α− 1

αn

)
(1 + o(1)) .

Consider again power-law distributions of the form
F (x) = 1 − 1

xk
. We know that the VM1 parameter

is k, and F−1(1 − α−1
αn

) in this case equals k

√
k
k−1

k
√
n,

7To see this, it is sufficient to note that the C∞ func-
tion g(x) = exp(x) − 1 − kx is zero at x = 0 and
has negative derivative, it’s derivative has exactly one zero,
and limx→∞ g(x) =∞.

and therefore the optimal expected revenue here is
k−1
k

k

√
k
k−1

k
√
n. When k = 2, the optimal revenue is

therefore about 0.7
√
n.

To conclude the discussion on distributions with un-
bounded support, we consider the power-law distribution
example. It is shown that as expected, the expected
revenue from the discriminatory posted-price auctions
(0.7
√
n) is somewhere between the full revelation op-

timum (0.88
√
n) and the symmetric posted-price auc-

tion (0.64
√
n)). One interesting conclusion is that while

the asymptotic behavior of all these functions is similar
(ignoring constants), they do not converge to the same
value as n grows. In other words, the ratio between the
revenue obtained by any two of these auctions converges
to some constant other than 1.

3.2 Distributions with Bounded Support

We now describe the results for distributions on the
bounded support that satisfy the second von Mises con-
ditions. In these results, both the constants and the
1−o(1) term apply on the gap between the highest point
in the support b and the actual revenue (see results be-
low). We will use the uniform distribution on [0, 1] as a
leading example for the results below. For such distri-
butions, the upper bound on the support is b = 1 and
the von Mises parameter is α = 1. Also, F−1(x) = x for
every x ∈ [0, 1].

3.2.1 Full-revelation auctions

Again we start with an upper bound on the expected
revenue - the maximal expected social welfare.

Theorem 4. Let F be a cdf satisfying VM2 for α > 0
with b := F−1(1) < ∞. Then, the expectation of the
maximum is

b− Γ(
α+ 1

α
)
(
b− F−1(1− 1

n
)
)

(1 + o(1))

For example, for the uniform distribution we have
Γ(α+1

α
) = Γ(2) = 1, and F−1(1 − 1

n
) = 1 − 1

n
and

it follows that the expected social welfare is about
1− (1− (1− 1

n
)) = 1− 1

n
(this, of course, is a well known

fact). The optimal expected revenue can be shown by
the methods mentioned above (see also [9]) to be about
1− 2

n
.

3.2.2 Posted-price auctions

Using a single posted price, the expected revenue that
an auction can obtain decreases. We show that the loss
(the term that depends on n) increases by a factor of
logn.

Theorem 5. Let F be a cdf satisfying VM2 for α > 0
with b := F−1(1) < ∞. Then, the maximal expected
revenue achievable in a symmetric posted price auction
with n bidders is

rn = b−
(
b− F−1

(
1− log(αn)

αn

))
(1 + o(1)).
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Again, for the uniform distribution the optimal ex-
pected revenue from the optimal symmetric posted-price
auction is about 1− log(n)

n
.

3.2.3 Discriminatory posted-price auctions

It turns out that with discriminatory prices, the ex-
pected revenue returns to be very close to the one in
the full information case, up to a constant factor. This
comes in contrast to the case of a single posted price.
Note that in discriminatory auctions the seller deter-
mines the prices based only on the ex-ante distribution
and do not elicit any information from the bidders.

Theorem 6. Let F be a cdf satisfying VM2 for α > 0
with b := F−1(1) <∞. Then, the expected revenue in a
discriminatory auction satisfies

rn = b− α+ 1

α

(
b− F−1

(
1− α+ 1

αn

))
(1 + o(1)) .

For example, for the uniform distribution where α = 1
we have that rn = 1− 1

4n
.

3.3 Techniques used

In order to prove our results, we heavily borrow tools
from Karamata’s theory of regularly varying functions.
This theory is heavily used by statisticians in extremal
value theory (i.e., the theory where one is concerned
about the maximal or minimal outcome in a sequence
of random variables, see, e.g. [8]). Karamata’s theory
parametrizes distribution functions roughly one parame-
ter α, which roughly describes how the distribution “be-
haves around F−1(1)”.

4 Proofs

4.1 Regularly Varying Functions

In our proofs, we will use the theory of regularly varying
functions. An excellent introduction to this subject can
be found in Appendix B of [8] (which has been taken in
large parts from [11]).

Definition 3. The set RVα consists of the Lebesgue
measurable functions f : R → R which are eventually
positive and satisfy

lim
t→∞

f(tx)

f(t)
= xα.

We say that f is regularly varying with index α.

We will use the folowing representation theorem for
functions from RVα. A proof can be found in [8] (The-
orem B.1.6).

Proposition 4 (Representation theorem). If g ∈ RVα,
there exists t0 and measurable functions a : R≥0 → R
and c : R≥0 → R such that limt→∞ c(t) exists and is

positive and finite, and limt→∞ a(t) = α, and such that
for t > t0

g(t) = c(t) exp

(∫ t

t0

a(s)

s
ds

)
.

We will further use the following theorem due to Pot-
ter [25]. A proof can be found in [8] (Proposition B.1.9,
Part 5).

Proposition 5. If g ∈ RVα, ε > 0, then there exists tε
such that, if t ≥ tε, tx ≥ tε:

(1− ε)xα min(xε, x−ε) <
g(tx)

g(t)
< (1 + ε)xα max(xε, x−ε).

4.2 Basics Properties

Let F : R → [0, 1] be a cdf. The function U maps n
to F−1(1 − 1

n
), formally U(n) := sup{x ∈ R : 1

1−F (x)
≤

n}. The function U plays a key role in extremal value
theory (consider, e.g., [8]). It’s relevance to our results
is clear (just note that we could replace F−1(1 − 1

n
)

with U(n) in all our theorems).

We further define the function, Ũ , which maps n
to F−1(e−1/n), formally Ũ(n) := sup{x ∈ R :

1
− ln(F (x))

≤ n}. Since for n large enough e−1/n ≈
1 − 1/n, the functions U and Ũ behave roughly the
same for large n (as we show in Claim 6). The advan-

tage of Ũ is that the probability that the maximal ele-
ment of n random variables chosen according to F is at
most Ũ(n/t) is e−t, as one checks using the simple calcu-

lation: Pr[max(X1, . . . , Xn) ≤ Ũ(n
t
)] = (F (Ũ(n

t
)))n =

exp(n ln(F (Ũ(n
t
)))) = exp(−t).

Claim 6. If F is VM1 with index α then U ∈ RV1/α,

Ũ ∈ RV1/α. If F is VM2 with upper bound b = 0 for

index α, then U ∈ RV−1/α and Ũ ∈ RV−1/α. Further-

more, in both cases limx→∞ U(x)/Ũ(x) = 1.

Proof. The proof of the statement if F is VM1 can be
found in [8], Theorem 1.1.11 and Corollary 1.2.10. If F

is VM2, we have limx→0
f(x)x

1−F (x)
= g(y)y

1−G(y)
where G(y) =

F (1/x), which implies the claim.

Furthermore, we get

lim
n→∞

U(n)

Ũ(n)
= lim
x→F−1(1)

U( 1
1−F (x)

)

Ũ( 1
1−F (x)

)

= lim
x→F−1(1)

x

Ũ( 1
1−F (x)

)

= lim
x→F−1(1)

1− F (x)

− ln(F (x))
= F (F−1(1)) = 1.
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4.3 Theorems 1 and 4

Theorems 1 and 4 can be proven together. For this,
we assume without loss of generality that F−1(1) = 0
in case of Theorem 4 (otherwise apply the argument on
F (x+ F−1(1))). Then, we can write

lim
x→F−1(1)

xf(x)

1− F (x)
= α,

where α changed the sign compared to Theorem 4.
As described above, we let Ũ be the inverse of the

function x → 1
− ln(F (x))

. We recall from Claim 6 that

Ũ ∈ RV1/α and limn→∞
Ũ(n)

F−1(1− 1
n

)
= 1. Therefore, it is

sufficient to show that for n→∞:∫ F−1(1)

F−1(0)

(
Fn(x)

)′
xdx = Γ(α−1

α
)Ũ(n)(1 + o(1)),

or, equivalently

∆(n) :=

(∫ F−1(1)

F−1(0)

(
Fn(x)

)′
x

Ũ(n)
− Γ(

α− 1

α
)

)
∈ o(1) (5)

We substitute x = Ũ(n/y) in the above integral∫ F−1(1)

F−1(0)

(Fn(x))′xdx (6)

=

∫ Ũ(∞)

Ũ(0)

(
exp(n ln(F (Ũ(n/y))))

)′
xdx (7)

=

∫ Ũ(∞)

Ũ(0)

d

dx

(
exp(−y)

)
Ũ(n

y
)dx (8)

=

∫ ∞
0

exp(−y)Ũ(n
y

)dy. (9)

Fix now ε > 0, and apply Proposition 5. In this case,
we see that there exists t(ε) such that for nx ≥ t(ε)

(1− ε)x1/α min(xε, x−ε) <
Ũ(nx)

Ũ(n)
(10)

< (1 + ε)x1/α max(xε, x−ε).
(11)

We assume n > t(ε), and with Γ(α−1
α

) =
∫∞

0
y−1/αe−y

in mind we express ∆(n) as

∆(n) =

∫ ∞
0

e−y
Ũ(n

y
)

Ũ(n)
dy − Γ

(α− 1

α

)
(12)

=

∫ 1

0

e−y
( Ũ(n

y
)

Ũ(n)
− y−1/α

)
dy (13)

+

∫ n
t(ε)

1

e−y
( Ũ(n

y
)

Ũ(n)
− y−1/α

)
dy (14)

+

∫ ∞
n
t(ε)

e−y
( Ũ(n

y
)

Ũ(n)
− y−1/α

)
dy. (15)

First, using (10)∣∣∣∣∫ 1

0

exp(−y)
( Ũ(n

y
)

Ũ(n)
− y−1/α

)
dy

∣∣∣∣
≤
∣∣∣∣∫ 1

0

exp(−y)
(

(1 + ε)(y−1/αy−ε)− y−1/α
)
dy

∣∣∣∣
≤
∣∣∣∣∫ 1

0

exp(−y)
(
y−1/α−ε − y−1/α

)
dy

∣∣∣∣︸ ︷︷ ︸
≤

∫ 1
0 y
−1/α−ε−y−1/αdy= 1

1− 1
α
−ε
− 1

1− 1
α

+

∣∣∣∣∫ 1

0

exp(−y)
(
ε(y1/α−ε)

)
dy

∣∣∣∣︸ ︷︷ ︸
≤εΓ(α−1

α
−ε)

≤ ∆1(ε)

with ∆1(ε)→ 0 as ε→ 0.
Second, again with (10)∣∣∣∣∫ n

t0

1

exp(−y)
( Ũ(n

y
)

Ũ(n)
− y−1/α

)
dy

∣∣∣∣
≤
∣∣∣∣∫ n

t0

1

exp(−y)
(

(1 + ε)y−1/α+ε − y−1/α
)
dy

∣∣∣∣
=

∣∣∣∣∫ ∞
1

exp(−y)
(
y−1/α+ε − y−1/α

)
dy

∣∣∣∣︸ ︷︷ ︸
=Γ(α−1

α
+ε)−Γ(α−1

α
)−

∫ 1
0 e
−y(y1/α−y1/α−ε)dy

+

∣∣∣∣∫ n
t0

1

exp(−y)
(
εy−1/α+ε

)
dy

∣∣∣∣︸ ︷︷ ︸
≤εΓ(α−1

α
+ε)

= ∆2(ε),

and again ∆2(ε)→ 0 as ε→ 0, since the
∫ 1

0
e−y(y1/α −

y1/α−ε) can be bounded as in the previous case.
Finally, consider the last term∣∣∣∣∫ ∞

n
t(ε)

exp(−y)
( Ũ(n

y
)

Ũ(n)
− y−1/α

)
dy

∣∣∣∣
≤
∣∣∣∣∫ ∞

n
t(ε)

exp(−y)
Ũ(n

y
)

Ũ(n)
dy

∣∣∣∣
+

∣∣∣∣∫ ∞
n
t(ε)

exp(−y)y−1/αdy

∣∣∣∣
Since Ũ is monotone, we get∣∣∣∣∫ ∞

n
t(ε)

exp(−y)
Ũ(n

y
)

Ũ(n)
dy

∣∣∣∣
≤ max(|Ũ(0)|, |Ũ(t(ε))|)

|Ũ(n)|

∫ ∞
n
t(ε)

exp(−y)dy

=
max(|Ũ(0)|, |Ũ(t(ε))|)

|Ũ(n)|
exp(− n

t(ε)
).
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Furthermore, if n is big enough
∫∞
n
t(ε)

exp(−y)y−1/α <

e
− n

2t(ε) .
Collecting, these bounds we get that there are func-

tions ∆3, γ1, γ2

|∆(n)| ≤ ∆3(ε) +
γ1(ε)

Ũ(n)
exp(−nγ3(ε))

where ∆3 ∈ o(1).
In order to see that ∆(n) ∈ o(1), let now δ > 0 and

fix ε small enough such that ∆3(ε) < δ
2
.

Using the representation theorem, the last term can
then be bounded as

∆3(ε)

Ũ(n)
exp(−n/t0(ε)) =

∆3(ε) exp(−n/t0 −
∫ n
t1

a(s)
s
ds)

c(t)

which goes to zero as n→∞.
This proves Theorems 1 and 4.

4.4 Theorems 3 and 6

Again, Theorems 3 and 6 can be proven simultaneously.
We use the following claim:

Claim 7. Let b ∈ {0,∞}, g > 0 differentiable and as-
sume that

lim
x→b

xg′(x)

g(x)
= α.

Consider sequences xi → b, δi ∈ o(1). Then,

g(xi(1 + δi)) = g(xi) · (1 + αδi(1 + o(1))).

Proof. The claim follows straightforward from Proposi-
tion 5 in case b =∞. In case b = 0 it follows by consid-
ering the function g(1/x).

Lemma 8. Let F be a cdf with upper bound b ∈ {0,∞},
and let

lim
x→b

xf(x)

1− F (x)
= α. (16)

(Here, α > 0 if b =∞ and α < 0 if b = 0). Assume that
the seller obtains a constant value v < b if he does not
sell the item. Then, the expected revenue in a discrimi-
natory auction satisfies

ri =
α− 1

α
F−1(1− α− 1

αi
)(1 + o(1)).

Proof. Let ri+1 be the revenue achieved with i bidders,
and let pi be the highest price offered to the first of those
bidders. We have the recursion

ri+1 = F (pi)ri + (1− F (pi))pi, (17)

and we obtain

0 =
dri+1

dpi
= f(pi)ri + 1− F (pi)− f(pi+1)pi.

We let αi := pif(pi)
1−F (pi)

, and observe for later use that

the von-Mises condition (16) implies αi → α as i → ∞
(since the prizes must approach the upper limit F−1(1)
if it exists, or diverge otherwise). We get

0 = f(pi)ri +
pif(pi)

αi
− f(pi)pi,

and thus pi = ri
αi
αi−1

. We insert this in (17) and for-

mulate everything with the notation pi = U(mi) (i.e.,
F (pi) = 1− 1

mi
). We get

ri+1 =
(

1− 1

mi

)
ri +

1

mi
ri

αi+1

αi+1 − 1

= ri(1 +
1

(αi − 1)mi
),

we can write this as

α

α− 1
ri+1 =

α

α− 1
ri(1−

1

(αi − 1)mi
), (18)

Let εi be such that α
α−1

= (1 + εi)
αi
αi−1

. Then, (18) can
be written as

pi+1(1 + εi+1) = pi(1 + εi)(1−
1

(αi − 1)mi
)

Let m̃i := U−1(pi(1 + εi)). We apply U−1 on both sides
and use Claim 7 to get

m̃i+1 = m̃i

(
1− α

(αi − 1)mi
(1 + o(1))

)
= m̃i −

m̃i

mi

α

αi − 1
(1 + o(1))

= m̃i −
α

α− 1
(1 + o(1)).

Since m̃0 is some constant, we get

m̃i = i
α

α− 1
(1 + o(1)).

Unrolling everything finishes the proof.

4.5 Theorem 2

We first show that any price of the form (4) achieves an
expected revenue of the form (3). Fix a constant δ ∈
[−1, 1] and let p = Ũ( n

η(α)
)(1 + δ). We can see that this

implies p = Ũ( n
η(α)

(1 + αδ(1 + o(1)))).
Thus, the revenue is at least, for n > nδ:

r =
(

1− exp(− η(α)

1 + αδ(1 + o(1))
)
)
p

=
(

1− e−η(α)e−η(α)δ(1+o(1))
)
p

≥
(

1− e−η(α)(1− 2η(α)δ)
)
p =

( kη(k)

1 + kη(k)

)
p(1−O(δ)).

Since δ can be chosen arbitarily small, this proves this
part of the theorem.
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We now show that no higher revenue can be achieved.
For this, define px := Ũ(n

x
). We get for the revenue

rx = (1− e−x)px, and thus

ρx :=
rx
r1

=
1− e−x

1− e
px
p1

=
1− e−x

1− e
Ũ(n

x
)

Ũ(n)
.

We fix δ > 0, apply Proposition 5. for n > tδ, tδn > x
we get the upper bound

ρx ≤ (1 + δ)
1− e−x

1− e x−1/α max(xδ, x−δ).

We first consider the case x ≤ 1. Then,

ρx ≤ (1 + δ)
1− e−x

1− e xγ .

where γ = − 1
α
− δ. The derivative of this upper bound

is

(1 + δ)xγ−1 γ(e−x − 1)− e−xx
e− 1

This is zero if and only if 1− x
γ

= ex, which has unique

positive solution x = η(− 1
γ

) = η(α− δ). Thus, x in this

case, the revenue can not exceed r1(1 + δ) 1−e−x
1−e xγ .

If x > 1 we get the bound

ρx ≤ (1 + δ)
1− e−x

1− e xγ

where now γ = − 1
α

+ δ. Again, the zero is good.
Furthermore, we need to show that x < tδn is not a

restriction. Thus, assume x ≥ tδn, i.e., the auctioneer
selects a price smaller than Ũ( 1

tδ
). In this case, how-

ever,the revenue can be at most this constant.

4.6 Theorem 5

We now prove Theorem 5. For this, we first assume that
the upper bound of the distribution function is 1.

A proof of the following claim can be found, for ex-
ample, in [22].

Claim 9. If limx→1
f(x)(1−x)

1−F (x)
= α, then for any δ > 0,

for any ε < εδ,

1− ε
1−δ
α ≤ F−1(1− ε) ≤ 1− ε

1+δ
α

Lemma 10. Let F be a cdf with F−1(1) = 1 such that

lim
x→1

f(x)(1− x)

1− F (x)
= α ∈ (0,∞).

For any δ > 0 there exists an nδ such that the expected
revenue achieved by posting the symmetric price

pn = F−1(1− (1 + δ) log(αn)
αn

)
(19)

is at least

1− (1− pn)(1 + δ) = pn − δ + pnδ

for n > nδ.

Proof. The expected revenue is for a price p as in (19)

r = (1− Fn(p))p

= (1−
(

1− (1 + δ)
log(αn)

αn

)n
)p

≥ (1− exp(−(1 + 2δ)
log(αn)

α
))p

≥ p− (αn)−
1+2δ
α

It remains to be shown that (αn)
1+2δ
α ≤ δ(1− p), for n

large enough, which is equivalent to 1 − p ≥ (αn)
1+2δ
α

δ
,

which follows from Claim 9.

Lemma 11. Let F be a cdf with F−1(1) = 1 such that

lim
x→1

f(x)(1− x)

1− F (x)
= α ∈ (0,∞).

For any δ > 0 there exists an nδ such that the expected
revenue in a posted price auction is at most

1−
(

1− F−1(1− log(αn)
αn

))
(1− δ)

for any n > nδ.

Proof. Consider a price pδ of

pδ := p = F−1(1− (1− δ) log(αn)
αn

)
.

If p ≤ pδ, we have for the revenue r

r ≤ pδ = F−1(1− (1− δ) log(αn)
αn

)
<
(
1− log(αn)

αn

)
(1− 2αδ).

If p > pδ the revenue is at most the probability that
someone accepts. Thus,

r < 1− Fn(pδ) = 1−
(
1− (1− δ) log(αn)

αn

)n
= 1− exp(−(1− δ) log(αn)

α
) = 1− (αn)−

1−δ
α

≤ F−n(
1

αn
).

This is way smaller than what we want in the lemma.

Together, we can now prove Theorem 5.

Proof (of Theorem 5). Let F be a function as in the

Theorem, b = F−1(1). Define the function F̃ (x) :=
F (bx). Assume the bidders valuation is chosen accord-
ing to F . The expected revenue in a posted-price auction
with price p is (1 − Fn(p))p = b · (1 − F̃ (p/b)) p

b
, which

is b times the expected revenue in a posted-price auc-
tion for distribution function F̃ . Note that F̃−1(1) = 1,

and bF̃−1(y) = F−1(y). Furthermore

lim
x→1

(1− x)f̃(x)

1− F̃ (x)
= lim
x→1

(1− x)bf(bx)

1− F (bx)

= lim
x→b

(b− x)f(x)

1− F (x)

= α.

Thus, the optimal revenue is b · (1 − (1 − F̃−1(1 −
( log(αn)

n
))))(1 + o(1)) = b− (b− bF̃−1(1− ( log(αn)

n
)))(1 +

o(1)) = b− (b− F−1(1− ( log(αn)
n

)))(1 + o(1)).

9



References

[1] Miklos Ajtai, Nimrod Megiddo, and Orli Waarts. Im-
proved algorithms and analysis for secretary problems
and generalizations. SIAM J. Discret. Math., 14(1):1–
27, 2001.

[2] A.A. Balkema and L. de Haan. On r. von mises’ con-
dition for the domain of attraction of exp(e−x). Ann.
Math. Statist., 43:1352–1354, 1972.

[3] Liad Blumrosen and Noam Nisan. Auctions with severely
bounded communications. 43th Annual Symposium on
Foundations of Computer Science (FOCS 2002), 2002.

[4] Liad Blumrosen and Noam Nisan. Informational lim-
itations of ascending combinatorial auctions. Working
paper, The Hebrew University., 2006.

[5] Liad Blumrosen, Noam Nisan, and Ilya Segal. Auctions
with severely bounded communications. Journal of Ar-
tificial Intelligence Research, 28:233–266, 2006.

[6] Silvia Caserta and Casper G. de Vries. Auctions with
numerous bidders. Working paper, Tinbergen Institute.

[7] Herbert A. David and H. N. Nagaraja. Order Statistics.
Wiley-Interscience, 2003.

[8] Laurens de Haan and Ana Ferreira. Extreme Value The-
ory - An Introduction. Springer, 2006.

[9] Gadi Fibich, Arieh Gavious, and Aner Sela. Asymptotic
analysis of large auctions. Working paper.

[10] Riley J. G. and Samuelson W. F. Optimal auctions.
American Economic Review, 71(3):381–392, 1981.

[11] J.L. Geluk and L. de Haan. Regular variation, extensions
and Tauberian theorems, volume 40. CWI Tract, 1987.

[12] J. P. Gilbert and F. Mosteller. Recognizing the maxi-
mum of a sequence. J. Amer. Statist. Assoc., 61:35–73,
1966.

[13] B. Gnedenko. Sur la distribution limite du terme maxi-
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