
Evaluating Distributed Systems: Does Background Traffic Matter?

Kashi Venkatesh Vishwanath and Amin Vahdat
University of California, San Diego
{kvishwanath,vahdat}@cs.ucsd.edu

Abstract
Evaluating novel networked protocols and services re-

quires subjecting the target system to realistic Internet
conditions. However, there is no common understand-
ing of what is required to capture such realism. Conven-
tional wisdom suggests that competing background traf-
fic will influence service and protocol behavior. Once
again however, there is no understanding of what as-
pects of background traffic are important and the extent
to which services are sensitive to these characteristics.

Earlier work shows that Internet traffic demonstrates
significant burstiness at a range of time scales. Unfor-
tunately, existing systems evaluations either do not con-
sider background traffic or employ simple synthetic mod-
els, e.g., based on Poisson arrivals, that do not capture
these burstiness properties. In this paper, we show that
realistic background traffic, has qualitatively different
impact on application and protocol behavior than sim-
ple traffic models. One conclusion from our work is
that applications should be evaluated under a range of
background traffic characteristics to determine the rela-
tive merits of applications and to understand behavior in
corner cases of live deployment.

1 Introduction
There has been significant interest in understanding the
characteristics of network services and protocols under
realistic deployment conditions [2, 3, 4, 13]. Application
developers typically have two high-level options when
evaluating their prototype: live deployment or emula-
tion/simulation. Live deployment on a testbed such as
PlanetLab allows developers to subject their system to re-
alistic network conditions and failures. However, exper-
iment management/control and reproducibility become
more difficult. Further, while the deployment environ-
ment is realistic, there is no guarantee that it is represen-
tative or that any series of experiments will experience a
range of desired potential network conditions.

Emulation and simulation on the other hand simplify
experiment management and make it relatively easy to
obtain reproducible results. However, while recent em-
ulation environments [15, 20] allow unmodified applica-
tions, they must still simulate some target network condi-
tions, including topology, failure characteristics, routing,
and background traffic. Practitioners are left with the un-

enviable task of developing appropriate models for each
of these important network characteristics. Thus, while
emulation offers the promise of evaluating applications
under a range of conditions, the huge space of potential
conditions makes it difficult, if not impossible, for most
developers to take advantage of this flexibility.

One long term goal of our work is to enable develop-
ers to use emulation to evaluate their applications under a
range of scenarios with realistic models of traffic, topol-
ogy, routing, and host characteristics. We leave a study
of the relative sensitivity of applications to different as-
pects of the network, e.g., routing protocols versus traffic
characteristics [21, 19] versus topology [7, 11], to future
work. Our goal in this paper is to understand applica-
tion sensitivity to background traffic. It is clear that ap-
plications behave differently when competing with other
traffic. Thus, it is not surprising that researchers have
begun to include background traffic models in their eval-
uations (see Section 2 for a summary). However, it is
also well-known that Internet traffic has rich and com-
plex properties not captured by models for background
traffic, e.g., self-similarity and burstiness at a range of
timescales [8, 22]) not captured by the simple models
employed by practitioners. A natural question to answer
then, is whether these complex but realistic models, war-
rant attention as candidates for background traffic.

In this paper, we quantify application sensitivity to a
range of background traffic characteristics. That is, are
simple models of background traffic, such as constant bit
rate, Poisson arrivals, or deterministic link loss rates, suf-
ficient to capture the effects of background traffic? Or
do we require more complex background traffic mod-
els that capture the burstiness on a particular network
link? We begin with a literature survey to understand
the common techniques for modeling background traf-
fic. We also leverage recent work [19, 21] on modeling
and recreating background traffic characteristics for ex-
isting Internet links. Using accurate, real-time network
emulation, we subject a number of applications to a spec-
trum of background traffic models and report variations
in end-to-end application behavior.

We find qualitative differences in application behav-
ior when employing simple synthetic models of back-
ground traffic rather than realistic traffic models. We
investigate the cause of this difference and present our

initial findings. Specifically, we find that differences in
burstiness between two background traffic models at a
range of timescales significantly impacts overall appli-
cation behavior, even when network links are not con-
gested.Existing synthetic models for background traffic
do not demonstrate the rich variances in the packet arrival
process for competing traffic present in live network traf-
fic. Thus, studies employing these synthetic models may
mischaracterize the impact of background traffic.Fur-
ther, we find that even seemingly small differences in the
burstiness of background traffic for realistic traffic mod-
els can lead to important differences in application be-
havior. Hence, one conclusion of this work is that studies
of network application behavior should include experi-
ments with a range of realistic background traffic mod-
els. Ideally, the research community would evolve a suite
of background traffic models representative of a range of
network conditions and locations. We hope that our find-
ings in the paper will serve as a means to spur sufficient
interest in the community to collectively develop such an
appropriate benchmark suite in the future.

In summary, this paper makes the following contribu-
tions. This work is the first to quantify the impact of
a range of background traffic characteristics on a num-
ber of applications. Prior to this work, it was not pos-
sible to deterministically subject application traffic to a
range of realistic network conditions while accounting
for the complexity of real network traffic, e.g., as deter-
mined by TCP. We present a methodology for doing so
and use this methodology to carry out a systematic sen-
sitivity study of applications to a range of network char-
acteristics. We show that techniques such as replaying a
pre-existing trace packet-by-packet do not exhibit the re-
sponsiveness of real Internet traffic. Similarly, we show
that common models for generating background traffic,
such as transmitting traffic at a constant bit rate, traffic
with a Poisson arrival process, or deterministically set-
ting loss rates to network links has significantly less im-
pact on application traffic than realistic Internet traffic.

Investigating the cause of these observations, our de-
tailed performance evaluation shows that the properties
of Internet traffic, in particular its burstiness across a
range of time scales, can have unpredictable impact on
a range of applications relative to simpler traffic models.
We establish that it is not enough to simply use “some”
bursty source as a background traffic model. As another
example, we reproduce the results of an earlier study that
employed synthetic traffic models to compare bandwidth
estimation tools. After validating the original results, we
found that some of the conclusions of the earlier study
may have been reversed when employing realistic traffic
models.

2 Motivation and Related Work

Consider the problem of determining the sensitivity of a
given application to a range of background traffic char-
acteristics. One approach would simply be to run the
application across the Internet on a testbed such as Plan-
etLab. Unfortunately, the difficulty to measure the char-
acteristics of background traffic at any point in time is
compounded by the fact that one cannot guarantee re-
producing a particular set of background traffic charac-
teristics. Finally, experiments would be restricted to the
type of background traffic experienced in a particular de-
ployment scenario, making it difficult to extrapolate to
sensitivity in other settings.

Hence, a careful study of application sensitivity to
background traffic must run in an emulation or simula-
tion environment prior to live deployment. This begs the
question as to what kind of background traffic to employ.
One approach is to take a trace of background traffic at
a particular point in the Internet and to replay that traf-
fic packet-by-packet in an emulation environment. As
we quantify later, such background traffic will not bere-
sponsiveto the application traffic. It will blindly trans-
mit data in a preconfigured sequence; real Internet traf-
fic responds and adapts to prevailing traffic conditions as
a result of end-to-end congestion control. Other simple
approaches involve playing back traffic at a constant bit
rate, according to a Poisson arrival process, or using de-
terministic loss rates. Unfortunately, these simple tech-
niques are known not to reproduce the characteristics of
Internet traffic and, as we quantify later, will result in
incorrectly estimating the impact of background traffic.

In this paper, we present a methodology for quantify-
ing the impact of realistic Internet traffic on a range of ap-
plications. We build on our earlier work [21] that shows
how to create traffic that is bothrealistic andresponsive.
By realistic, we mean that the traffic matches the com-
plex characteristics of traffic across some original link,
including traffic burstiness at a range of timescales. By
responsive, we mean that the background traffic adapts
to application traffic in the same manner that they would
in the wild. That is, the flows in aggregate ramp up and
recover from loss in a similar manner that they would
across the Internet, e.g., as determined by TCP’s re-
sponse to round trip times, bottleneck bandwidths, etc.

Critical to our methodology are techniques to repro-
duce the application- and user-level characteristics of the
flows in some original trace, e.g., session initiation ac-
cording to user behavior, packet sizes according to proto-
col behavior, etc. We also recreate the bandwidths, laten-
cies, and loss rates observed in the original trace. Repro-
ducing these network conditions is important to enabling
responsiveness of our generated background traffic to the
characteristics of the foreground/application traffic.

Explanation (%) Project/Paper Title and the Conference Name
No Background Traffic 25.6 SIGCOMM ’06 - Churn in distributed systems, SpeakUp,

SIGCOMM ’04 - Modeling P2P, Mercury, OSDI ’04 - FUSE, NSDI ’05- Quorum, Low
bandwidth DHT routing, NSDI ’04 - Macedon, Thor-SS,
SIGCOMM ’07 - Structured streams, NSDI ’07 - SET

Constant Bit Rate Traffic 2.33 SIGCOMM ’04 - CapProbe
Fixed Loss Rate 2.33 OSDI ’04-FUSE
Lowered Link Capacity 2.33 NSDI ’06 - DOT
Only Latencies 2.33 NSDI ’06-Colyseus
“Some” Background Flows 2.33 NSDI ’05 - Trickles
“Some” TCP source 2.33 SIGCOMM ’04 - CapProbe
Custom Built Simulator 4.65 NSDI ’05 - Myths about structured/unstructured overlays,Glacier
Pareto Flow Arrival 4.65 SIGCOMM ’05 - VCP, NSDI ’06 - PCP
Fixed Length Flows 2.33 NSDI ’06 - PCP
Long Lived flows 4.65 SIGCOMM ’05 - TFRC, SIGCOMM ’07 - PERT
LRD Traffic 2.33 SIGCOMM ’04 - CapProbe
Pareto Length Flows 2.33 NSDI ’06 - PCP
SpecWeb 6.98 OSDI ’06 - TCP offload, NSDI ’06 - Connection conditioning, NaKika.
Run on PlanetLab 18.6 NSDI ’06 - CoBlitz, OASIS, NaKika. NSDI ’05 - Shark, Botz4Sale,

NSDI ’04 - Saxons, NSDI ’07 - BitTyrant, SET
Real World Deployment 9.3 NSDI ’06 - Overcite, NSDI ’04 - BAD-FS, TotalRecall, NSDI ’07- BitTyrant
Harpoon 2.33 SIGCOMM ’05 - End-to-end loss rate measurement
RON Testbed 2.33 NSDI ’05 - MONET

Table 1: Literature survey of SIGCOMM, SOSP/OSDI and NSDI from 2004-2007.

Background. To motivate the importance of back-
ground traffic for a range of studies, we conducted a lit-
erature survey of SIGCOMM, SOSP/OSDI and NSDI
from 2004-2007. We determined whether each paper
contained a performance evaluation of a distributed sys-
tem and, if so, what types of background traffic were em-
ployed in the evaluation. Overall, we found35 papers
that conducted a total of43 such experiments. Table 1
summarizes a subset of these experiments, along with a
descriptive project name and the publication venue. We
divide the set of techniques into four main categories.

Our study is vulnerable to sampling bias, however
we make the following high-level observations. More
than 25% (11/43) of the experiments use no background
traffic (NBG). The application to be evaluated is typi-
cally run on a cluster of machines with high-speed in-
terconnect. Another 14% of the experiments account
for congestion using simple models such as constant
bit rate (CBR) traffic or simply constraining link laten-
cies/capacities in a synthetic topology.

At the other extreme (bottom of Table 1), approxi-
mately 30% of the experiments employ live deployment
on testbeds such as PlanetLab, RON, and Harpoon. Fi-
nally, in the middle of the table we have 25% of exper-
iments that are done with some sophisticated models to
account for background traffic, for instance, Caprobe ex-
periments use Long Range Dependent (LRD) traffic.

Based on this study, we observe significant confusion
in the community regarding whether background traf-
fic is an important consideration in carrying out exper-
imental evaluations. Further, there is no consensus as

to what type of background traffic should be employed.
Finally, in virtually all (29/35) papers justonemodel of
background traffic is used with no analysis of application
sensitivity to different background traffic conditions; this
can partially be attributed to the large space of possible
models of traffic.

A goal of our work is to enable the community to
make informed decisions about whether background traf-
fic should be considered in a particular scenario, and
if so, the particular characteristics of background traf-
fic that are important to consider. Thus, we consider the
interaction of a variety of applications with a range of
competing background traffic. Ideally, we would con-
sider all of the background traffic models summarized in
Table 1 against all of the43 experiments that we found
in those papers. In this paper, we take a few steps to-
ward this goal. For instance, we show that CBR and
Poisson traffic have very similar impact on the applica-
tions we consider and that setting probabilistic loss rates
does not capture the complexity of real interactions with
background traffic. We also study the impact of realistic
background traffic models on application performance.

Related Work. WASP [14] is perhaps most closely re-
lated to our work in spirit. It shows that HTTP perfor-
mance can be significantly impacted by setting realis-
tic delays and loss rates for the flows. The work con-
cludes that web services cannot be evaluated on high
speed LANs, but must instead consider wide-area net-
working effects. Relative to this effort, we consider
a number of application classes and background traffic

conditions. We show that simple models of wide-area
conditions (such as higher round trip times and non-zero
loss rates) are insufficient to capture the effects of realis-
tic Internet background traffic either.

Our work will benefit from ongoing work in produc-
ing realistic Internet traffic, including Tmix [9], Har-
poon [19], Surge [6], and Swing [21]. We chose to gen-
erate realistic background traffic using Swing, but we ex-
pect qualitatively similar results had we employed alter-
native tools. We make no claims, positive or negative,
about whether the traffic we generate is realistic or not.
Rather, we consider a range of qualitatively and quanti-
tativelydifferenttraffic conditions and show the resulting
effect on application performance. However, we do like
to add that before the advent of Swing, it was not possi-
ble to create realistic and responsive network traffic in a
testbed environment [21]. This partially explains why re-
searchers have been using ad-hoc traffic models in their
experiments to date.

3 Methodology
We begin by describing the architecture used for carrying
out the experiments followed by the list of applications
we used. We then describe the background traffic models
used followed by the experiments we conducted.

3.1 Architecture

Multimedia
ClientApache Webserver

Streaming
Media Server

Web Browser

Dumb−bell Link

Background TrafficBackground Traffic
Sources/Sinks Sources/SinksSwing/Harpoon/

SURGE/Poisson

Figure 1: Evaluation architecture.

Figure 1 depicts our approach to quantifying and un-
derstanding the impact of background traffic on individ-
ual applications. We place traffic sources and sinks on
either side of a constrained/dumb-bell link such that all
traffic in both directions crosses the common link. Two
classes of sources and sinks generate the traffic cross-
ing the link. In the first class depicted at the bottom,
nodes generate application traffic, for instance, Apache
Web server and httperf clients. Then on top, we have
sources and sinks responsible for generatingbackground
traffic for the target link, for instance using Swing [21],
Harpoon [19], SURGE [6] or simpler traffic sources such
as Poisson or Constant Bit Rate (CBR). Because appli-

cation traffic and background traffic share the common
link, we can quantify the impact on the application as a
function of a range of background traffic characteristics.

In a real network environment, applications must com-
pete with background traffic at multiple links between
the source and destination. However, there are no known
techniques to model desired background traffic charac-
teristics at multiple successive links in some larger topol-
ogy. For instance, there may be strong correlations be-
tween the background traffic characteristics of links in
the topology. For the purposes of this study, we feel
it reasonable to quantify and understand the impact of
background traffic at a single link before attempting to
extrapolate to more complex scenarios. In all likelihood,
the effect of background traffic at multiple links will be
even more pronounced than our findings. Hence, our re-
sults should be interpreted as a conservative estimate of
the effects of background traffic, while still demonstrat-
ing application sensitivity to varying background traffic
characteristics.

3.2 Applications
Of course, the impact of background traffic heavily de-
pends upon the characteristics of the particular applica-
tion under consideration. For this study, we chose three
applications with diverse communication patterns and re-
quirements: Web traffic, multimedia streaming, and end-
to-end bandwidth estimation. Note that each of these ap-
plications exercise one end-to-end path, and hence, we
explicitly omit more distributed applications such as Bit-
Torrent that simultaneously exercise multiple indepen-
dent Internet paths. While this class of application is im-
portant, considering complex topologies is beyond the
scope of this paper (see above). We did run experi-
ments (not discussed further here) for the case where all
BitTorrent clients were subject to a dumbbell topology;
these results were qualitatively similar to our findings for
HTTP.

Web Traffic For Web applications, we set out to de-
termine the effect of background traffic on the response
times perceived by end clients. We placed a single
Apache Web server on one side of the dumbbell (e.g.,
the bottom left in Figure 1). We programmed httperf
clients to fetch objects of various sizes from the server
and placed them on the other side of the dumbbell. The
links connecting the clients and server to the dumbbell
have large capacity and low latency, such that the dumb-
bell is the constrained link for all client-server commu-
nication (we vary the capacity of the dumbbell link in
various experiments described below).

To generate background traffic, we place sources and
sinks of the appropriate traffic generator on either sides
of the target link (top left/right in Figure 1). We set the
bandwidths, latencies, and loss rates of the links connect-

Trace Secs Trace BW Trace Collection Number Dominant Unique
↓ Aggregate Dir0 Date of flows applications IPs

(Mbps) (Mbps) (1000s)
Auck 600 5.5 3.3 June 11, 2001 155 K HTTP, SQUID 3
Mawi 900 17.8 7.8 September 23, 2004 476 K HTTP, RSYNC 15
Mawi2 900 11.9 10.8 December 30, 2003 160 K HTTP, NNTP 8

Table 2: Trace characteristics for three different links.

ing background traffic sources and sinks based on the
traffic generation model. For instance, we simply play
back CBR traffic over unconstrained links; whereas for
Swing, we assign assign latencies, bandwidths and loss
rates based on observed path characteristics in some orig-
inal packet trace [21].

Multimedia Traffic The second application class we
consider is video streaming. Video clients are sensi-
tive to the arrival times of individual packets, whereas
web clients are typically sensitive to end-to-end transfer
times. Overall, we wish to quantify the impact of vari-
ous types of background traffic on client-perceived video
quality. For streaming audio/video we use the free ver-
sion of Helix on the server side and Real Player on the
client side. We generate background traffic across the
dumbbell topology as with Web traffic.

Bandwidth Estimation Tool We chose bandwidth es-
timation for our third application. While not an end
application, it displays fundamentally different charac-
teristics than our first two applications and is a build-
ing block for many higher-level services. We employ
Pathload [10], and pathChirp [17] tools for our study.
We place bandwidth senders and receivers along with
competing traffic generators across the dumbbell topol-
ogy identically to our configuration for Web and video
streaming.

3.3 Traffic Generation
We consider four techniques for generating competing
background traffic, in increasing order of complexity and
realism. First, for constant bit rate (CBR) traffic, we
wrote simple sources to generate packets at a specified
rate to sinks on the opposite side of the dumbbell link.
In aggregate, the sources generate a target overall rate
of background traffic. Second, for Poisson traffic, we
modify the sources to generate traffic with byte arrival
per unit time governed by a Poisson process with a given
mean. We evaluated variants of CBR and Poisson using
both UDP and TCP transports.

While CBR and Poisson processes do not capture the
complexities of real Internet traffic [16], we wish to
quantify the resulting differences in end-to-end applica-
tion behavior relative to more realistic, but complex traf-
fic generation techniques. Hence, for our third technique,
we modify the sources and sinks to play back packets in

the exact pattern specified by an available tcpdump of
traffic across an existing Internet link (Table 2). One
drawback of this approach is that the generated back-
ground traffic is not congestion responsive. That is, the
traffic will be played back in exactly the same pattern as
the original trace irrespective of the behavior of the ap-
plication traffic. Another drawback is that it is difficult
to extrapolate to alternative, but similar, scenarios when
playing back a fixed trace (e.g., changing the available
bandwidth across the constrained link, the distribution of
round trip times between sources and sinks, etc.).

Thus, for our fourth technique, we use Swing [21] to
generate responsive and realistic network traffic. Swing
is a closed-loop, network responsive traffic generator that
qualitatively captures the packet interactions of a range
of applications using a simple structural model. Starting
from a packet trace, Swing automatically extracts distri-
butions for user, application, and network behavior. It
then generates live packet traffic corresponding to the
underlying models in a network emulation [15, 20] en-
vironment running commodity network protocol stacks.
Because Swing generates the traffic using real TCP/UDP
stacks, the resulting traffic is responsive both to fore-
ground traffic and varying characteristics of the con-
strained link and end-to-end loss rates/round trip times.

Swing extracts a range of distributions from an orig-
inal trace to model user behavior, e.g., think time be-
tween requests, application behavior, e.g., distributionof
request and response sizes, and network characteristics.
One particularly important aspect of network traffic that
Swing is able to reproduce is burstiness in the packet ar-
rival process at a range of time scales [21]. Doing so
requires Swing to assign latencies, bandwidths, and loss
rates to the links leading to and from the shared link in
our evaluation architecture based on the observed distri-
bution of round trip times, link capacities, and loss rates
in some original trace. This way, TCP flows ramping up
to their fair share bandwidth or recovering from loss will
do so with statistically similar patterns (including bursti-
ness in aggregate) as in the original trace conditions.

An additional benefit of employing high-level mod-
els of user, application, and network characteristics for
background traffic is that it becomes possible to mod-
ify certain model parameters to extrapolate to alternative
scenarios [21]. For instance, when reducing the round

5 10 15

10

15

20

25

30

Time Scale j

lo
g 2(E

ne
rg

y(
j))

Smallest time scale = 1 msec [BG traffic] (Bytes)

HighBurst [3.4173 Mbps]
Auck [3.4435 Mbps]
Poisson [3.3470 Mbps]
CBR [3.3610 Mbps]

Figure 2: Auck-based background traffic (Energy plot).

0 100 200 300 400 500 600
0

5

10

15
HighBurst

0 100 200 300 400 500 600
0

5

10

15

B
an

dw
id

th
 in

 1
 s

ec
 b

in
 (

M
bp

s)

Auck

0 100 200 300 400 500 600
0

5

10

15
Poisson

Figure 3: Auck-based background traffic (Time Series).

trip times for flows, overall burstiness tends to increase
because flows tend to increase their transmission rates
more quickly. We refer to alternate background traffic
generated by perturbing distributions of various parame-
ters in Swing asvariantsof the original trace.

We run all our experiments, including the sources
and sinks for both foreground (Web, multimedia, band-
width estimation) and background traffic (CBR, Poisson,
Playback, Swing) in the ModelNet emulation environ-
ment [20]. For our experiments, we configure all sources
and sinks of both foreground and background traffic to
route all of their packets through ModelNet. Briefly,
ModelNet subjects each packet to the per hop bandwidth,
delay, queueing, and loss characteristics of the target
topology by inspecting both the source and destination of
the packet and routing it through the emulated topology.
ModelNet operates in real time, meaning that it moves
packet from queue to queue in the target topology before
forwarding it on to the destination machine assuming that
the packet was not dropped. Earlier work [20] validates
ModelNet’s accuracy using a single traffic shaper at traf-
fic rates up to 1Gbps (we can operate at higher speeds by
employing multiple traffic shapers in parallel).

3.4 Topology and Experiments

We run our experiments on a cluster of commodity work-
stations, multiplexing multiple instances on each work-
station depending on the requirements. For the exper-
iments in this paper, we use eight 2.8 Ghz Xeon pro-
cessors running Linux 2.6.10 (Fedora Core 2) with 1GB
memory and integrated Gigabit NICs. We generate back-
ground traffic using1000 nodes in the emulated topology
(meaning that we multiplex hundreds of emulated nodes
onto each physical machine).

For example, for a 200Mbps trace, assuming an even
split between generators and listeners (four machines
each), each generator would be responsible for accu-
rately initiating flows corresponding to 50Mbps on av-
erage. Each machine can comfortably handle the aver-
age case, though there are significant bursts that make
it important to “over-provision” the experimental infras-

tructure. To avoid contention between physical resources
with the traffic generator we use a separate set of ma-
chines to host the target application; for instance, httperf
clients. In this fashion, any performance impact and vari-
ations that we measure results purely from network be-
havior.

We first describe the traces we use to generate realis-
tic background traffic for the experiments in this paper.
We use traces from Mawi [12], a trans-Pacific line, as
well as an OC3c ATM link traces from the University of
Auckland, New Zealand [5]. These traces come from
different geographical locations (New Zealand, Japan)
and demonstrate variation in application mix, average
throughput, number of users etc. (see Table 2). All traces
were taken on 100Mbps links. The Mawi traces were
constrained to 18Mbps over long time periods (though it
could burst higher).

While all original and the corresponding Swing-
generated traces are bidirectional, we focus on the im-
pact of competing traffic in one direction of traffic (Dir0
in Table 2) for simplicity in our plotted results. In other
words, we design all experiments such that the dominant
direction of application traffic (HTTP responses, video,
bandwidth estimation packet train) matches Dir0 of the
generated background traffic.

We use wavelet-scaling plots [1, 8, 22] to character-
ize traffic burstiness. Intuitively, these plots allow visual
inspection of burstiness for a range of timescales. The x-
axis of these plots shows the time scale on a log scale
and the y-axis shows the corresponding energy value.
Higher levels of energy correspond to more burstiness.
Figure 2 plots burstiness corresponding to five variants
of the Auck trace for a 20Mbps link (along with the av-
erage bandwidth for each variant in square brackets). We
configured Swing to generate constant-bitrate (CBR) and
Poisson traffic with the same average bandwidth as the
Auckland (Auck) trace. In addition to reproducing the
Auck trace using Swing, we also created a very bursty
traffic variant, calledHighBurst (HB), by setting the
round trip times artificially to4ms while generating traf-
fic using Swing. The lower round trip times (relative to

CT CU PT PU TPB UPB M2 HB
0

100

200

300

400

500

Varying Burstiness/Responsiveness

re
sp

. t
im

e
(%

 in
c

in
 m

ea
n

vs
. N

B
G

)

Congestion Responsiveness

CBR Poisson

Traffic
Playback

Figure 4: “Simple” models are inaccurate.

600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

Time to finish one download (msecs)

C
um

ul
at

iv
e

fr
ac

tio
n

LossRate 1%
LossRate 2%
LossRate 3%
Mawi2

Figure 5: Deterministic loss rates never suffice.

the distribution in the original trace) means that TCP traf-
fic ramps up more quickly, recovers more quickly from
losses, etc. For an alternate visualization of the relative
difference in burstiness, consider the time series plots for
the same traffic models shown in Figure 3. The Poisson
variant generates a relatively fixed bandwidth whereas
HighBurst variant peaks to 15Mbps at times, compared
to Auck. Note that while the average bandwidth con-
sumption for all traces are comparable, finer-grained be-
havior varies significantly. Further, none of the variants
come close to congesting a 20 Mbps link.

4 Results

We subject each of our three target application classes to
the various types of background traffic described above
with the goal of answering the following questions:
i) What aspects of “realism” should we reproduce? Is it
sufficient to simply “replay” individual packets in some
measured trace or does the generated background traffic
need to be TCP responsive and react appropriately based
on the end-to-end network characteristics of the traffic
sources and sinks? (§ 4.1)
ii) Can probabilistic packet drops susbstitute for real
competing background traffic? (§ 4.2)
iii) Does burstiness of background traffic matter or is it
sufficient to reproduce average bandwidth? (§ 4.2, 4.4)
iv) Are some applications more sensitive to background
traffic than others? (§ 4.3)
v) Is application behavior sensitive to slight variations in
the background traffic characteristics? (§ 4.4)

4.1 Background Traffic Responsiveness

The first question we consider is the importance of re-
alistically playing back background traffic characteris-
tics. We consider three techniques for doing so: i)
scheduling per-packet transmissions using UDP connec-
tions to match the exact timings (at 1 ms granularity) and
packet arrival processes found in some original trace; ii)
scheduling per-packet transmissions using a single TCP
connection to attempt to match the packet arrival process
found in the original trace; and iii) extracting user, ap-
plication, and network characteristics from the original

trace and playing back TCP flows whose communica-
tion patterns are statistically similar to the original with-
out making an attempt to match the patterns found in the
original trace.

The first technique (UDP) is not responsive to the
characteristics of foreground traffic. Thus, it will not
back off in the face of congestion. The second technique
(TCP) is responsive, but, unfortunately it becomes im-
possible to perform precise packet scheduling for TCP
connections. Further, because we have no knowledge of
the end-to-end network characteristics for the TCP flows
we play back, it is not possible to verify that the response
to congestion would match the behavior of flows from
the original trace (e.g., because of variations in round
trip times or losses elsewhere in the network). Finally,
because it employs a single connection to multiplex the
behavior of a much larger number of flows, its behav-
ior is unpredictable. The third technique, corresponding
to Swing-based [21] playback, promises to be the most
faithful but is also the most complex and requires more
resources (i.e., logic to source and sink traffic from indi-
vidual hosts) for trace playback.

To establish the accuracy for each of these techniques,
we run httperf clients requesting 1 MB files from an
Apache Web server sharing the bottleneck link with the
Mawi2 trace. We set the shared link (the point of con-
tention between httperf and background traffic) to 15
Mbps. We choose 15 Mbps to ensure that the background
traffic attempts to consume a significant portion of avail-
able resources (§ 4.2 onwards relaxes this assumption).
We are interested in understanding the response time for
HTTP as a function of the characteristics of the back-
ground traffic. As described earlier, the links connecting
the httperf/Apache nodes to the shared link are uncon-
strained (large capacity and low latency), so that traffic
shaping takes place only at the target link. During each
experiment we fetch files back-to-back, using a single
client-server pair for10 minutes.

Figure 4 shows the results for different classes of back-
ground traffic. For each scenario, we plot the mean and
standard deviation of response time increase relative to
the NBG (No Background Traffic) case. Background

400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Time to finish one download (msecs)

C
um

ul
at

iv
e

fr
ac

tio
n

Auck, Poisson, Largefile, 20Mbps Link

NBG [0 Mbps]
Poisson [3.3 Mbps]
Poisson2 [6.6 Mbps]
Poisson4 [13.2 Mbps]

Figure 6: Poisson background traffic.

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time to finish one download (msecs)

C
um

ul
at

iv
e

fr
ac

tio
n

Auck, Swing, Largefile, 20Mbps Link

NBG [0 Mbps]
Swing [3.3 Mbps]
SwingRSP2 [6.6 Mbps]
SwingRSP4 [13.2 Mbps]

Figure 7: Swing background traffic.

traffic consumes 66% of the shared link’s capacity in all
cases. The first two bars plot slowdown for CBR traffic
with both TCP and UDP playback (CT and CU) con-
figured to consume as much average bandwidth as the
Mawi2 trace. The next two bars show slowdown for TCP
and UDP variants of Poisson (PT and PU). For both of
the models (CBR and Poisson) UDP variants impacted
responses time much more (200% increase vs 100%
increase) than TCP variants exposing the limitation of
UDP based traffic generators. Because UDP sources are
not congestion responsive, they have a much larger im-
pact on HTTP. The next two bars show the slowdown for
TCP- and UDP-based playback (TPB/UPB) of Mawi2.
TPB has much less impact than Swing-based playback
of Mawi2 (M2), likely because its use of a single TCP
connection means that the generated background traffic
is less bursty. Finally, UPB results in larger slowdown
than Swing-based playback because it is not congestion
responsive.

Given the above results, we conclude thatsimple tech-
niques for “playing back” background traffic, such as
UBP and TBP, may result in significant inaccuracy as
the aggregate traffic across a link approaches the link’s
capacity. Thus, for the remainder of this paper, we em-
ploy Swing to play background traffic corresponding to
some original network condition and compare it to other
variants such as CBR/Poisson.

Another popular technique in the literature for captur-
ing the complexity of real background traffic is to set
loss rates for particular links, with the goal of captur-
ing the effects of losses caused by competing traffic. To
determine whether this technique could capture the ef-
fects of more complex traffic scenarios, we next mea-
sure the performance of httperf when setting various loss
rates for the shared link. In all other respects, this ex-
periment is identical to the case where we run with no
background traffic. Figure 5 shows that httperf’s behav-
ior when crossing a link with a range of loss rates differs
from its behavior when competing with realistic Mawi2
traffic, again, across a 15Mbps bottleneck link. For in-
stance, with losses of1% the CDF of retrieval times is
too far to the left of Mawi2. On the other hand, higher

loss rate settings, while shifting the CDF to the right, in-
crease the size of the tail too. We hypothesize that the
difference in behavior results from the independent na-
ture of losses when setting any fixed loss rate (relative to
the bursty losses common for Internet links) and the fact
that setting loss rate alone does not capture any of the
effects of increased queueing delay (and hence increased
round trip times) leading up to the point of loss.

4.2 Httperf/Apache

Having established the appropriate technique for trans-
mitting background traffic, we now turn our attention to
understanding the impact of background traffic on HTTP
transfers. In order to arrive at a conservative estimate
of the impact of background traffic we first experiment
with the Auck trace (lowest bandwidth and least bursty).
We begin by examining the impact of varying band-
widths of background traffic (based on Auck) on httperf
performance. We fetch 1 MB files across a 20Mbps
link and vary the load placed by background traffic by
generating traffic for three different average throughputs
(3.3, 6.6, and13.2 Mbps) corresponding to variants of
the Auck trace. In the baseline (3.3 Mbps) case, we
employ Swing parameterized by the original Auck trace.
In the alternative cases, we modify the distribution of
response sizes such that the average bandwidth increases
by a factor of 2 and 4 (traces SwingRSP2/SwingRSP4),
resulting in average bandwidths of 6.6 Mbps and 13.2
Mbps respectively. We compare the impact of Swing-
generated traffic to those of TCP-generated CBR and
Poisson traffic of the same average bandwidth.

Figures 6 and 7 show the CDFs of download times
corresponding to various bandwidth/burstiness combina-
tions for background traffic. Along with the legend name
we show in square brackets the average bandwidth of the
background traffic for reference. The effects of CBR and
Poisson traffic are similar, so we only plot the results for
Poisson (relative to Poisson, the CBR curves are virtu-
ally vertical with the same median value). As shown in
Figure 6, the impact of Poisson (and hence CBR) traffic
is almost entirely predicted by the average level of back-

0 20 40 60 80 100
0

50

100

150

200

250

300

350

Link Capacity (Mbps)

 %
 in

cr
ea

se
 in

 d
ow

nl
oa

d
tim

e
fr

om
 N

B
G

Auck Variants, Largefile

Auck 90th percentile
Auck median
Poisson 90th percentile
Poisson median

Figure 8: Varying link capacities.

5 %ile median 95 %ile
0

0.5

1

1.5

R
es

po
ns

e
T

im
e

(s
ec

)

Different Traces (20Mbps)

3.8 secs

Auck
AuckHB
Mawi
MawiHB
Mawi2
Mawi2HB

Figure 9: Simply generating “bursty” traffic is not enough.

ground traffic bandwidth. The distribution of download
times shifts to the right, but with little variation in re-
sponse times as the average level of background traffic
increases. The Swing-generated Auck trace has a more
varied impact on application performance (Figure 7).
With low levels of competing traffic (3.3 Mbps), the dis-
tribution of download times is similar to Poisson. Also
of interest is the fact that the performance for the 5th-
percentile of retrievals is actually faster for Auck than
for Poisson traffic for both the 6.6 Mbps (SwingRSP2
vs. Poisson2) and the 13.2 Mbps (SwingRSP4 vs. Pois-
son4) bandwidths. In these cases, the flows were lucky
to be subject to less competing traffic than their counter-
parts in the Poisson trace. Bursty traffic means that peri-
ods of high activity coexist with periods of lower activity.
Moving to higher levels of average utilization, the curves
become significantly skewed. For instance, the 90th per-
centile of download time for the Auck (AuckRSP4) trace
at 13.2 Mbps is 1484 ms compared to 759 ms for Poisson
(Poisson4) traffic.

Thus, less bursty background traffic means that per-
formance is governed by the average amount of avail-
able bandwidth and, expectedly, there is relatively small
variation in download times across individual object re-
trievals. When background traffic is steady, HTTP per-
formance is predictable. As burstiness increases, the
mean download time increases, as does the variation in
performance. Some flows can get lucky, behaving almost
as if there is no background traffic; while others may be
unlucky with significantly worse performance than the
mean.

Next, we consider the sensitivity of HTTP perfor-
mance to background traffic characteristics as a function
of the fraction of shared link capacity occupied by the
background traffic. That is, it could be the case that
background traffic characteristics (e.g., burstiness) are
only important when consuming a significant fraction of
link capacity. Figure 8 shows the impact on download
times for varying levels of background traffic with av-
erage bandwidths of 3.3Mbps (same as the Auck trace).
The y-axis shows the slowdown (median as well as 90th-
percetile) of HTTP transfers of large 1 MB files relative

to the NBG case as a function of the capacity (5-100
Mbps) of the shared link on the x-axis. On the left side
of the graph we have cases corresponding to a highly uti-
lized link; while on the right side, the background traf-
fic consumes a small fraction of overall capacity. For
large files and low levels of link utilization, the graphs
show that burstiness of background traffic does not mat-
ter. For instance, for a 50Mbps link the impact on me-
dian response time is independent of the burstiness; the
slowdown largely corresponds to the fraction of the link
consumed by the background traffic.

When background traffic consumes a significant por-
tion of link capacity however, it is sufficient to cause sig-
nificant losses for the HTTP transfers. Thus, at the 90th
percentile of slowdown, we find that transfers competing
with bursty traffic completed significantly more slowly,
around a factor of 1.5 for Auck, than with a less bursty
traffic source, i.e., Poisson. However, unlike median re-
sponse times, this relative ordering is present even when
overall capacity is high (e.g., 100 Mbps).Thus, for large
files, burstiness of traffic matters at all levels of link uti-
lization, but more so at high levels of utilization.

The impact on transfer times for different file sizes as
a function of different levels of burstiness of background
traffic is futher explored in§ 5.2. Overall we conclude
that impact on download time for web transfers is a func-
tion of the size of the download and the average bandwith
of background traffic as well as its burstiness.

Finally, we consider whether it is sufficient to sim-
ply playback a “bursty” traffic source or whether traf-
fic sources with different burstiness characteristics will
have different impacts on HTTP performance. Thus, we
considered the impact of six different bursty background
traffic characteristics competing for a shared 20 Mbps
link. We considered background traffic corresponding to
Auck, Mawi, and Mawi2. We further modified each of
these sources to be high burst variants (“HB”) by setting
the round trip times for all flows to4msec while generat-
ing traffic using Swing. We plot the slowdown of HTTP
transfers (1MB file) relative to the NBG case at the 5th,
median, and 95th percentile in Figure 9.

There are a number of interesting results here. First,

10
−1

10
0

10
1

10
20

0.2

0.4

0.6

0.8

1

Packet jitter in milliseconds

C
um

ul
at

iv
e

fr
ac

tio
n

NBG 6Mbps
Auck 6Mbps
Auck 4Mbps
Auck 3.5Mbps

Figure 10: Varying capacity.

10
−1

10
0

10
1

10
20

0.2

0.4

0.6

0.8

1

Packet jitter in milliseconds

C
um

ul
at

iv
e

fr
ac

tio
n

NBG 4Mbps
Auck 4Mbps
Nobuff 4Mbps
Auck 4Mbps HB

Figure 11: Varying burstiness and client-buffering.

the Mawi2 trace appears to have a larger impact on HTTP
than Mawi, even though it consumes significantly less
aggregate bandwidth (see§ 5 for explanation). Further,
the HB-variant of Mawi2 has significantly less impact
on HTTP performance at the 5th and 50th percentile,
but more than a factor of 5 more impact at the 95th per-
centile. Its highly bursty nature means that a significant
number of flows are lucky and suffer comparable slow-
down to the less bursty cases. However, a number of
flows are extremely unlucky and suffer large slowdowns.
The tail for the Mawi2HB case is significantly longer as
well, an undesirable character for HTTP transfers where
the humans in the loop typically value predictable be-
havior. This experiment shows that although burstiness
of traffic is important to consider, simply reproducing
“some” bursty traffic is not enough.

4.3 Multimedia

We next consider the impact of background traffic on
multimedia traffic. We aim to understand the impact
as a function of the capacity of the link, the burstiness
of the generated traffic as well as the amount of client-
buffering. We run the publicly available Helix Server to
serve real media content to RealPlayer. As with all our
experiments, the application traffic competes with vari-
ous types of background traffic at the shared link. Like
httperf, we consider1 client-server pair. We tested with
various streaming rates but the results in this paper are for
a450Kbps CBR stream encoded using RealVideo codec
at30 frames per second that runs for62 seconds.

One important question for multimedia traffic is the
“metric of goodness” for a multimedia stream, which
should correspond to the quality of the video played
back. However, developing such a metric based on the
data stream received at clients is challenging. Thus, as a
proxy for such a quality metric we use a range of statis-
tics based on the stream delivered to the client and cor-
roborate it with visual inspections. For a 450 kbps video
stream, we can roughly assume that receiving more than
450 kbps of instantaneous bandwidth results in accept-
able video quality at that particular point in time.

Another important metric of interest isjitter, the time

between successive packets received by the client. Lower
levels of jitter will correspond to higher video quality.
For our first experiment, we run with Auck background
traffic (3.3 Mbps average) and compare its impact on jit-
ter for shared links with 3.5 Mbps, 4 Mbps, and 6 Mbps
capacity(Realplayer was insensitive to background traf-
fic at higher levels of link capacity). Figure 10 shows the
distribution of inter-packet timing (jitter) for this experi-
ment. We also perform an experiment in the absence of
any background traffic (NBG) for baseline. For a6 Mbps
target link, background traffic does not change the qual-
ity of video (inspected by viewing the video) whereas
for a 4 Mbps link the degradation is moderate. It is
only when we constrain the link capacity to 3.5 Mbps
that video quality suffers significantly.One conclusion is
that unless we are operating in extreme scenarios (avail-
able bandwidth approximately equal to the bandwidth of
the stream), RealPlayer is relatively insensitive to bursty
background traffic.

To test this hypothesis, we next attempt to stress the
limits of RealPlayer. We modify the client-side imple-
mentation to reduce the amount of buffering from a de-
fault of 10 seconds to 0 seconds. Figure 11 plots the
distribution of jitter with and without buffering for the
4Mbps link. With 10 seconds of buffering, background
traffic had no impact on jitter (Auck 4Mbps). However,
there is significant impact (verified by visual inspection)
when we remove the buffering. Without buffering, the
real server attempts to retransmit lost packets more ag-
gressively in order to meet real time deadlines, consum-
ing more network resources and negatively impacting
overall jitter. With sufficient buffering, the server can af-
ford to be more relaxed about retransmissions, resulting
in an overall smoother transmission rate.

Finally, we consider the highburst background traffic
source by setting RTTs in Swing to 4msec. In this case,
flows ramp up and down very quickly causing bursty traf-
fic on the shared link. Figure 11 also plots the distribu-
tion of jitter corresponding to this experiment. The result
shows that even for tight links and bursty background
traffic the performance degradation in realplayer is mod-
erate (again verified by visual inspection).

0

20

40

60

80

100

B
an

dw
id

th
 E

st
im

at
e

(M
bp

s)

BG 30Mbps
BG 50Mbps

BG 70Mbps

CBR
Pois

s
M

aw
i

HB
CBR

Pois
s

M
aw

i
HB

CBR
Pois

s
M

aw
i

HB

Actual pChirp Pload − low Pload − high

Figure 12: Augmenting to and validating pathload vs. pathchirp experiments from [17].

Overall, we conclude that for RealPlayer, unless we
are operating in regimes of low buffering, low avail-
able bandwidth or very high burstiness, any reasonable
background traffic model should suffice in performance
evaluations for systems similar to RealPlayer; in most
cases, RealPlayer’s default buffering will likely result in
acceptable quality of service for a range of background
traffic characteristics, as long as sufficient average band-
width levels are available. Interestingly, RealPlayer’s
(successful) buffering and retransmission scheme is in-
formed by significant experience with live Internet de-
ployments subject to a range of bursty competing cross
traffic.

4.4 Bandwidth Estimation

For our final experiments, we consider the sensitivity of
bandwidth estimation tools to background traffic charac-
teristics. We use Pathload [10] and pathChirp [17] for our
study because they are publicly available and because re-
cent studies indicate that they are among the most accu-
rate for bandwidth estimation [18]. To determine the sen-
sitivity of existing tools to a range of background traffic
characteristics, we repeat experiments from earlier pub-
lished work comparing the relative merits of Pathload to
pathChirp [17]. In these experiments, the authors em-
ployed Poisson and CBR models for background traffic.
Below, we show that at least the conclusions from this
earlier work may be reversed if the experiments had con-
sidered more realistic background traffic characteristics.

For our experiments, we overprovision all links such
that the available bandwidth measured for the path is de-
termined by the bandwidth available on the shared link
in our model topology. We set Pathload’s timeout to five
minutes, and we report the average and standard devi-
ation for thelow andhigh estimates of available band-
width across 25 runs. In practice, a small spread between
the low and high estimates of available bandwidth and a
low standard deviations for multiple reported values re-
flects likely accurate bandwidth estimates. PathChirp, on
the other hand, periodically outputs an estimate of the

available bandwidth and does not distinguish between a
low and a high value.

Given our exact knowledge of the generated back-
ground traffic, we also calculate the true values of the
available bandwidth for one second bins. In the graphs
that follow, we plot the percentage error reported by each
bandwidth estimation tool relative to our calculated val-
ues for available bandwidth.

The experiments from [17] compare available band-
width across a 100Mbps link as measured by pathload
and pathchirp against various flavors of background traf-
fic. They employ CBR UDP traffic and UDP Poisson
traffic to create three different scenarios with available
bandwidths of 30, 50 and 70 Mbps. Figure 12 shows
these results. Additionally, we also playback Mawi, and
a HighBurst variant of Mawi (labeled HB) for the three
levels of available bandwidth. In each case, we increase
the number of user-sessions (in Swing) by an appropri-
ate value to match the levels of bandwidth consumed by
CBR and Poisson traffic. For instance, to get the avail-
able bandwidth of 70mbps, we multiplied the number of
sessions for Mawi by 3.3 times.

We initially discuss the results for Poisson and CBR
models, reproducing the earlier experiments [17]. First,
we confirm the earlier result [17] that when background
traffic is low (BG 30Mbps) or moderate (BG 50Mbps)
the estimates of pathload as well as pathchirp are close to
the actual values. We also observe that indeed pathchirp
takes 10-20% the amount of bytes consumed by pathload
to arrive at similar estimates (not shown here). However,
we note that a couple of results differed. For instance,
pathchirp overestimated the bandwidth for a heavily uti-
lized link, ie. when background traffic was around 70
Mbps. Similarly, for low link utilization (BG 30Mbps),
pathchirp is slightly less accurate than pathload.

We next move to the effects of bursty background traf-
fic, not considered by the earlier work, the bars corre-
sponding to Mawi and HB in Figure 12. We make a num-
ber of new interesting observations here. First, the results
for both tools degrade when competing with more bursty

170 180 190 200 210
0

0.2

0.4

0.6

0.8

1

Time to finish one download (msecs)

C
um

ul
at

iv
e

fr
ac

tio
n

100mbps, Large file

NBG
Mawi
Mawi2

(a) 100Mbps Link

400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Time to finish one download (msecs)

C
um

ul
at

iv
e

fr
ac

tio
n

20mbps, Large file

NBG
Mawi
Mawi2

(b) 20Mbps Link

Figure 13: Significance of traffic in the reverse direction.

traffic sources, indicated by either an inaccuracy in the
mean or large standard deviation. PathChirp appears to
be a bit less sensitive to burstiness of background traf-
fic. We also no longer see that pathchirp is always con-
servative in its estimates. In fact, when the background
traffic occupies a significant portion of the link we see
that pathchirp overestimates available bandwidth, e.g.,
Mawi/HB traffic with 70 Mbps background traffic. The
authors [17] saw that both pathchirp and pathload esti-
mates are close to each other, however, we see that there
are times when the estimates are very different from each
other; for instance, Mawi for 50 Mbps.

The conclusion from these results is that it is difficult
to predict a priori which bandwidth estimation tool gives
better results and that realistic network traffic charac-
teristics can impact study results.System behavior is a
function of the average amount of background traffic as
well as burstiness. For instance, if we hypothesize that
only background traffic’s average throughput is impor-
tant, then we can disprove it by observing the case for 30
Mbps BG traffic. For CBR background traffic, pathload
is the more accurate tool, whereas for HB, pathchirp is
more accurate in its estimate. Similarly if we hypothe-
size that only burstiness matters, then we can disprove
that by looking at HB traffic. At 30Mbps we would pre-
fer pathchirp for HB traffic whereas at 70Mbps pathload
shows superior accuracy. We leave the task of attributing
the sensitivity of these tools to the underlying algorithms
to orthogonal future work.

5 Case Studies

Considering our evaluation to this point, sensitivity to
background traffic characteristics is application specific.
Certain applications, such as bandwidth estimation are
highly sensitive to background traffic while others, such
as RealPlayer, are relatively insensitive except in extreme
cases. We now turn our attention to some additional im-
portant characteristics of background traffic and their im-
pact on end-to-end applications.

5.1 Bi-directional Traffic Characteristics

To this point, we have largely focused on traffic charac-
teristics in one direction of a link (though in all cases,
we played back bi-directional traces). We now consider
a case where traffic characteristics in the reverse direc-
tion can impact application performance depending on
the deployment setting. In the first experiment, we re-
peat retrievals of 1MB files using httperf/Apache (as Sec-
tion 4.2) across a shared 100 Mbps target link. We use
the background traffic models corresponding to the two
Mawi traces in Table 2. The traces are in increasing order
of bandwidth in the direction of flow of HTTP responses
(Dir 0). One would expect that the response time dis-
tribution would correspond to the relative bandwidth of
each of these traces.

Figure 13a) plots the CDFs of retrieval times for this
experiment. Mawi2 is of higher bandwidth than Mawi
(Table 2) but the CDF is to the left of Mawi as a result
of background traffic in the reverse path. This effect is
more pronounced for Mawi as it has 10 Mbps of traffic
in the reverse direction versus 1 Mbps for Mawi2. This
relative ordering, however, is not present when we repeat
the experiments with a 20 Mbps shared link as shown
in Figure 13b). At 20 Mbps, the forward direction traf-
fic dominates for both Mawi and Mawi2 so the effects
of congestion on the reverse path is less pronounced.
Thus, one simple conclusion is that thatbackground traf-
fic in the reverse direction can impact application perfor-
mance though the dominant direction is difficult to pre-
dict a priori.

5.2 Burstiness at Various Timescales

We have shown that background traffic with the same av-
erage bandwidth, but differing burstiness characteristics
will have varying impact on application behavior. We
now consider the question of whether burstiness at par-
ticular timescales (for instance, burstiness at millisecond
versus second granularity) has differing impact on appli-
cation performance. Generating traffic that selectively
and precisely varies burstiness at arbitrary timescales is
an open problem. However, we can alter burstiness in

0 5 10 15

18

20

22

24

26

28

30

Time Scale j

lo
g 2(E

ne
rg

y(
j))

Traffic 1; Think times = 0
Auck
Traffic 2; Link Capacites = 2Mbps

(a) Burstiness of background traffic models

1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

Time to finish one download (msecs)

C
um

ul
at

iv
e

fr
ac

tio
n

Large file

Traffic 1
Auck
Traffic 2

(b) Large files affected by large timescales

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Time to finish one download (msecs)

C
um

ul
at

iv
e

fr
ac

tio
n

Small file

Traffic 1
Auck
Traffic 2

(c) Small files affected by small timescales

Figure 14: Varying burstiness at small and large timescalesto understand impact on file download times.

a coarse manner at relatively small and large timescales.
To vary burstiness at large timescales, we set Swing’s
user think time distribution to 0 for all requests; mean-
ing, for instance, that for each user session, requests
for subsequent objects will be initiated immediately af-
ter the previous request completes. Figure 14a) shows
the resulting energy plot. Note that traffic becomes more
bursty at timescales11−14 (corresponding to the 1-8 sec
range) relative to the default Auck trace. To vary bursti-
ness at timescales3− 6 (4-32 ms), we restrict all links in
the emulated topology for Swing sources to 2 Mbps. Fig-
ure 14a) also shows the energy plot for this case. Let us
call these two new tracesTraffic1 andTraffic2. We
will next try to understand if these seemingly small dif-
ferences in burstiness impacts application performance.

We run HTTP experiments across a shared 10 Mbps
link. The results in Figure 14b) shows the effect of vary-
ing burstiness on a relatively relatively large 1 MB file
transfer. We see that varying burstiness at small time
scales (Traffic2) has relatively little impact on the dis-
tribution of response times. Burstiness at larger time
scales (Traffic1) skews the CDF around the median.
Few flows finish early and few take longer compared to
Auck/Traffic2. We hypothesize that over a long transfer,
burstiness at small time scales (milliseconds) averages
out over the lifetime of the connection. Burstiness over
multiple seconds however will more significantly impact
transfers that complete in just over one second by default.

The situation reverses itself when we consider the dis-
tribution of download times for the same experiment but
with 4 KB objects as shown in Figure 14c). In this
case, increased burstiness at large timescales (Traffic1)
has no impact on the distribution of performance rela-
tive to the baseline. However, the decreased burstiness at
small timescales for Traffic2 relative to Auck results in
improved download times, especially above the 80th per-
centile. Note that Traffic2 displays reduced burstiness in
the 4-32 ms timescales (Figure 14a), and that retrieving
a 4 KB takes 29 ms in the median case for Auck. From
this initial experiment, we hypothesize thatfor a given

level of background traffic, its burstiness characteristics
at timescales corresponding to the duration of individ-
ual application operations will have the most significant
impact on overall application behavior.

6 Discussion

While this paper shows the importance of subjecting net-
work services to a range of background traffic conditions,
there are a number of remaining open questions. First
is the need for a suite of background traffic that capture
the range of conditions likely to be experienced during
live deployment. We have shown that the bursty traffic
present on the Internet can dramatically affect applica-
tion behavior relative to synthetic traffic models. How-
ever, we cannot yet characterize the full range of network
conditions likely to be present on the Internet.

Next, we have not yet shown the best way to gener-
ate the background traffic. We have shown one plausible
technique employing the Swing traffic generator. How-
ever, Swing requires multiple machines to generate the
traffic and a network emulator to appropriately shape in-
dividual flows. And yet, our current understanding indi-
cates that recreating Internet traffic burstiness critically
depends on recreating appropriate network characteris-
tics and closed-loop responsive traffic sources and sinks
that, for example, obey the dynamics of TCP [21].

Finally, our analysis considers the effects of back-
ground traffic on a single link between sources and des-
tinations. Under realistic deployment scenarios, appli-
cation traffic must interact with background traffic at
multiple links across the network. Our initial experi-
ments, not shown for brevity, indicate that the impact of
bursty background traffic is even more pronounced and
unpredictable when considering more complex network
topologies. We believe that capturing this full complex-
ity will be challenging in the short term, but it would be
valuable to determine whether relatively simple models
can account for most of the additional impact that comes
from more complex topologies.

7 Conclusion

We set out to answer a simple question: When run-
ning simulation or emulation experiments, what kind of
background traffic models should be employed? Ad-
ditional motivation comes from recent interest in accu-
rately recreating realistic background traffic characteris-
tics. While there have been significant advancements in
this space, there is relatively little understanding of what
aspects of background traffic actually impact application
behavior. To fill this gap, we quantified the interaction
of applications with a variety of background traffic mod-
els. We found that, for instance, HTTP is sensitive to the
burstiness of background traffic depending on the domi-
nant size of transferred objects; multimedia applications
have been engineered to be relatively insensitive to traf-
fic burstiness; and bandwidth estimation tools are highly
sensitive to bursty traffic because unstable link character-
istics make convergence to stable estimates difficult. We
also observed that characteristics of background traffic in
both directions of a link can impact application perfor-
mance. Finally, we hypothesize that each application is
sensitive to burstiness of traffic at particular application-
dependent timescales.

Acknowledgements

We would like to thank the reviewers for their insight-
ful and detailed comments that helped improve both the
quality and presentation of this paper. Ryan Braud, Chris
Edwards and Marvin McNett helped set up the infras-
tructure behind our experiments.

References
[1] A BRY, P.,AND VEITCH, D. Wavelet Analysis of Long-

range-dependent Traffic.IEEE Transactions on Informa-
tion Theory(1998).

[2] A LAN SHIEH AND ANDREW C. MYERS AND EMIN

GUN SIRER. Trickles: A Stateless Network Stack for Im-
proved Scalability, Resilience, and Flexibility. InNSDI
(2005).

[3] A NDERSON, T., COLLINS, A., KRISHNAMURTHY, A.,
AND ZAHORJAN, J. PCP: Efficient Endpoint Congestion
Control. InNSDI (2006).

[4] A NNAPUREDDY, S., FREEDMAN, M. J., AND

MAZIERES, D. Shark: Scaling File Servers via
Cooperative Caching. InNSDI (2005).

[5] Auckland-VII Trace Archive, University of Auckland,
New Zealand.http://pma.nlanr.net/Traces/
long/auck7.html.

[6] BARFORD, P., AND CROVELLA , M. Generating Repre-
sentative Web Workloads for Network and Server Perfor-
mance Evaluation. InMMCS(1998).

[7] CHEN, J., GUPTA, D., VISHWANATH , K. V., SNOEREN,
A. C., AND VAHDAT, A. Routing in an Internet-Scale

Network Emulator. InProceedings of the IEEE/ACM In-
ternational Symposium on Modeling, Analysis, and Sim-
ulation of Computer and Telecommunication Systems
(MASCOTS ’04)(October 2004).

[8] FELDMANN , A., GILBERT, A. C., HUANG, P., AND

WILLINGER , W. Dynamics of IP Traffic: A Study of the
Role of Variability and the Impact of Control. InACM
SIGCOMM(1999).

[9] HERNANDEZ-CAMPOS, F., SMITH , F. D.,AND JEFFAY,
K. Generating Realistic TCP Workloads. InCMG2004
Conference(2004).

[10] JAIN , M., AND DOVROLIS, C. Pathload: A Measure-
ment Tool for End-to-end Available Bandwidth. InPAM
(2002).

[11] MAHADEVAN , P., HUBBLE, C., HUFFAKER, B., KRI-
OUKOV, D., AND VAHDAT, A. Orbis: Rescaling Degree
Correlations to Generate Annotated Internet Topologies.
In ACM SIGCOMM(August 2007).

[12] MAWI Working Group Traffic Archive. http://
tracer.csl.sony.co.jp/mawi/.

[13] NAGARAJA, K., OLIVEIRA , F., BIANCHINI , R., MAR-
TIN , R. P., AND NGUYEN, T. D. Understanding and
Dealing with Operator Mistakes in Internet Services. In
OSDI (2004).

[14] NAHUM , E. M., ROSU, M.-C., SESHAN, S., AND

ALMEIDA , J. The Effects of Wide-area Condi-
tions on WWW Server Performance. InSIGMET-
RICS/Performance(2001).

[15] OF UTAH , U. Emulab.Net: The Utah Network Testbed.
http://www.emulab.net.

[16] PAXSON, V., AND FLOYD , S. Wide-Area Traffic: The
Failure of Poisson Modeling. InIEEE/ACM Transactions
on Networking(1995).

[17] RIBEIRO, V., RIEDI , R., BARANIUK , R., NAVRATIL , J.,
AND COTTRELL, L. pathChirp: Efficient Available Band-
width Estimation for Network Paths. InPAM (2003).

[18] SHRIRAM , A., MURRAY, M., , HYUN , Y., BROWNLEE,
N., BROIDO, A., FOMENKOV, M., AND KC CLAFFY.
Comparison of Public End-to-End Bandwidth Estimation
Tools on High-Speed Links. InPAM 2005.

[19] SOMMERS, J.,AND BARFORD, P. Self-Configuring Net-
work Traffic Generation. InIMC (2004).

[20] VAHDAT, A., YOCUM, K., WALSH, K., MAHADEVAN ,
P., KOSTIC, D., CHASE, J.,AND BECKER, D. Scalabil-
ity and Accuracy in a Large-Scale Network Emulator. In
OSDI (2002).

[21] V ISHWANATH , K. V., AND VAHDAT, A. Realistic and
Responsive Network Traffic Generation. InACM SIG-
COMM (2006).

[22] WILLINGER , W., PAXSON, V., AND TAQQU, M. S. Self-
similarity and Heavy Tails: Structural Modeling of Net-
work Traffic. InA Practical Guide to Heavy Tails: Statis-
tical Techniques and Applications(1998).

http://pma.nlanr.net/Traces/long/auck7.html
http://pma.nlanr.net/Traces/long/auck7.html
http://tracer.csl.sony.co.jp/mawi/
http://tracer.csl.sony.co.jp/mawi/
http://www.emulab.net

	Introduction
	Motivation and Related Work
	Methodology
	Architecture
	Applications
	Traffic Generation
	Topology and Experiments

	Results
	Background Traffic Responsiveness
	Httperf/Apache
	Multimedia
	Bandwidth Estimation

	Case Studies
	Bi-directional Traffic Characteristics
	Burstiness at Various Timescales

	Discussion
	Conclusion

