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Relating Reputation and Money in On-line Markets

ABSTRACT
Reputation in on-line economic systems is typically quanti-
fied using counters that specify positive and negative feed-
back from past transactions and/or some form of transaction
network analysis that aims to quantify the likelihood that a
network user will commit a fraudulent transaction. These
approaches can be deceiving to honest users from numerous
perspectives. We take a radically different approach with a
goal to guarantee to a buyer that a seller cannot disappear
from the system with profit following a set of transactions
that total a certain monetary limit. Even in the case of
stolen identity, an adversary cannot produce illegal profit
unless a buyer decides to pay over the suggested sales limit.

1. INTRODUCTION
In the recent decade C2C1 markets have flourished on the

Web via numerous economic opportunities with eBay as the
iconic example [1]. Significant amount of fraud in such mar-
kets occurs as consumers build up their reputation either via
several fabricated or small-cost transactions, to target a final
fraudulent high-cost transaction after which they disappear
from the market. Detailed statistics about the prevalence
of such transactions are not available publicly. The market
leader, eBay, claims that one in thousand listed products
ends up being a bait for a fraudulent transaction [2]. At first,
this figure seems encouraging, however, it relates to “listed”
products only, not sold. Also there is no quantifiable data
on the cost of fraud on popular on-line marketplaces such
as eBay and Amazon.com. In 2006, consumers reported to
the Internet Crime Complaint Center (IC3) approximately
US$90M of losses to auction-related fraud in the US only [3].
We speculate that the problem is vastly underreported and
important, and pursue a novel, both logistically and techni-
cally, consumer reputation system for on-line markets.

If we assume that fraud is a sudden shift in behavior by a
seemingly “honest” economic entity, then we can conclude
that by definition, fraud prediction is an ill-defined prob-
lem. To address this issue, we define seller reputation as a
monetary value that a buyer should feel comfortable pay-
ing, knowing that by committing fraud the seller still can-
not make profit from its existence in the market. The objec-
tive is to quantify reputation using a deterministic economic
value as opposed to a probabilistic predictor. Even in the
case of stolen identity, an adversary cannot produce illegal
profit unless a buyer decides to pay over the suggested sales

1Consumer-to-consumer (C2C) e-commerce involves electroni-
cally facilitated transactions between consumers via a third party.

limit. The sales limit of an individual seller is built using a
record of her transaction fees, verifiable types of transaction
costs (insurance, arbitration, shipping, etc.), and deposits.
To further strengthen buyer’s perspective, we enable each
seller to establish a reimbursement fund used as a guarantee
that defrauded buyers will get fully or partially reimbursed.
Here, we present the novel deterministic reputation system,
we outline a strategy for managing sales limits that maxi-
mizes selling power in the market, and propose a probabilis-
tic strategy for risk assessment that aims at helping buyers
estimate the risk of paying for a product or service over the
sales limit. The latter effort follows more closely the related
work in fraud-prediction.

As a simple motivational example, we remind the reader
that in off-line markets reputation of small retailers is typ-
ically gained by investments in the location and decor of
the retail store as well as with years of conducting trustwor-
thy business. Robust reputation is valuable to merchants as
it can enable them to select a desired spot on the volume
vs. pricing curve for marketed products/services. Equiva-
lently, in our system a seller must invest funds either in the
form of a deposit or transaction fees to offset her maximum
selling power at a given moment. Thus, we speculate that
the system is acceptable from seller’s perspective while it
spurs confidence with prospective buyers.

1.1 Contributions
Existing reputation systems reviewed in the Appendix,

model reputation using a probabilistic system with an objec-
tive of providing side information to help users predict mali-
cious transactions. We depart from this traditional method
for quantifying reputation, and aim at pricing reputation.
From buyer’s viewpoint, we offer three tools to strengthen
buyer’s confidence in (not) participating in an on-line trans-
action: i) a reimbursement fund, ii) a monetary limit on
pricing that guarantees that even if the seller committed
fraud on all pending transactions, she would still not walk
out of the economic ecosystem with profit, and iii) a sim-
ple user interface to a tool that presents to the user the
price vs. the probability that the seller commits a fraudulent
transaction. Clearly, proposition i) is not novel as escrows
and/or investment insurance have been part of trade mar-
kets for centuries. We build our proposal on top of such an
insurance system with propositions ii) and iii). To the best
of our knowledge this is the first reputation system tailored
to on-line markets that exhibits such features.



2. THE ECONOMIC MODEL
In this section, we formally introduce a market network

and define a two-party transaction as an economic function
in the system. Let C = {c1, . . . , cN} be a cardinality-N set
of nodes in a graph G, where each node ci models a distinct
consumer. For now we describe a transaction as an exchange
of economic value between a buyer and a seller; we define
a simple transaction model later, in Subsection 3.2. In the
case of a C2C market the buyer pays using a cash equivalent
for a product or service offered by the seller. Any node in
the graph can be a buyer or a seller in a transaction.

We formally define a committed transaction t(ci, cj)
between a buyer ci and a seller cj as a weighted directed
edge ci → cj where the weight w(ci, cj) ≡ wij is a real
non-zero scalar such that:

• wij > 0 : transaction was executed at the satisfaction
of both the seller and the buyer with wij equal to the
transaction costs.

• wij < 0 : transaction was fraudulent with −wij pro-
portional to the cash equivalent paid by the buyer.
The buyer suffered financial loss.

We denote as T and W the sets of all edges and their
weights in the market graph G.

We model pending transactions in the network as a set
P = {p1, . . . ,pN} of arrays of values available for sale at cor-
responding nodes. A transaction is pending until its buyer
and seller do not reach a closure on their satisfaction with
the transaction; then the transaction becomes committed.
An array pi = {p1, . . . , pLi} is a list of Li values that seller
ci is currently selling. We allow that products’ prices form
using an arbitrary negotiation mechanism. Each individual
price, pk, is formed as an asking price (if the seller does not
have a buyer yet) or as a winning bid (in case there exists
an arbitrary auctioning mechanism). In order for a buyer to
learn about a specific product sold by any seller, we allow
arbitrary marketing strategies in our model.

Finally, note that our model does not consider the repu-
tation of winning bidders, i.e., nodes with the highest offer
for a specific item sold by a seller. Thus, it does not link
specific nodes with products itemized in pi. As opposed to
related work where node connectivity is used to construct a
reputation model (e.g., [12]), in our system the reputation
of current bidders does not affect the reputation score of the
seller, thus, this limitation of our model is appropriate. Sys-
tems that target detection of shill bidding typically rely on
this type of data. Although this is not the goal of our paper,
we still mention that this data can be tracked by modeling
pending transactions the same way as committed transac-
tions with the necessary relinking to model outbidding.

The considered economic network model includes the di-
rected weighted graph G(C,P,T,W), where pending trans-
actions are still negotiated. Based upon this model, in this
paper we construct the proposed reputation system.

2.1 Model Accuracy
At present time, most popular online markets such as

eBay and Amazon.com have built large economic ecosys-
tems that could be used to quantify certain parameters in
the model. The first anticipation is that N tends to be
rather large for these systems. For instance, eBay recorded

around 82 million active users in 2006; this number has been
increasing by around 15% every year [4].

Linking our model to an existing marketplace network is a
difficult task from several perspectives. First, the number of
transactions on marketplaces such as eBay or Amazon.com,
is growing at a faster rate than a modest academic crawler
could possibly browse. Second, fair random sampling of ex-
ceptionally large graphs is a problem of well-known difficulty
[19]. Since we do not base our core primitives for building
user reputation on network features such as average fan-
in, fan-out, etc., we decided to constrain our marketplace
snapshot in Section 5 to address transactions with negative
feedback, not to determine our model parameters so to ac-
curately mimic a typical marketplace network.

2.2 Buyer’s Feedback
Typically both participants in a transaction provide feed-

back to each other. The feedback score, i.e., reputation,
is recorded for public viewing and typically summarized in
the form of positive and negative points. Although several
reputation scores systems have been proposed [12, 13], they
are not fool-proof – buyers can still be easily deceived by
fraudulent sellers who have a very good reputation score.
Trivial approaches to building up a positive transaction his-
tory include: fabricated transactions with friends or non-
existent consumers (e.g., established using stolen identities)
or, in the case which is the most difficult to prevent using
probabilistic recommendation systems, relatively long-term
honest sales behavior until a “major” fraudulent transaction
fetches significant profits for the adversary.

Here it is important to stress that our model does not
address the negative feedback that a buyer could receive.
Such feedback is typically posted for failure to pay an item
that the buyer won in an auction. Although the seller suffers
financial loss due to delay of sale, this type of transaction
outcome is still not considered fraudulent. For example, the
Amazon.com Marketplace does not display buyer feedback
on its system, thus lets sellers treat all buyers equally [5]. To
that extent, we note that reputation of a buyer as a reliable
payee could be handled efficiently using existing reputation
systems and we chose not to address this issue.

2.3 On-Line Dispute Resolution Systems
Our reputation system complements existing on-line dis-

pute resolution (ODR) systems such as SquareTrade [6, 7],
in the extent that it aims at preventing/handling fraudulent
transactions that SquareTrade cannot handle due to seller
non-cooperation. Needless to say, ODR and insurance sys-
tems are orthogonal with respect to reputation systems in
their effect on the marketplace as they address mostly non-
fraudulent disputes. Thus, for brevity and simplicity in this
paper we do not analyze ODR and insurance systems.

3. REPUTATION QUANTIFIERS
In addition to the IC3 report, a recent survey by the Na-

tional Fraud Information Center (NFIC) presented statistics
that in 2006, an average loss for an Internet fraud reported to
NFIC totalled US$1512 [8]. The top two types of fraud: auc-
tions and general merchandise, accounted for 34% and 33%
of all reported fraudulent activity with an average loss of
US$1331 and US$1197 per case respectively. Clearly, losses
experienced by consumers undermine the popularity of on-
line markets such as eBay or the Amazon.com Marketplace.



Existing reputation systems are in place in such markets to
predict fraudulent activity [1, 5] – however, they are not
fool-proof. To address this issue, we propose a reputation
system whose objective is not to probabilistically aid pre-
diction of fraud which is common practice – but to assure
buyers of deterministic pricing tactics that cannot profit the
seller in case of a fraudulent transaction. We model seller’s
reputation using the following two monetary values: a sales
limit and a reimbursement fund.

Definition 1. Sales limit αi for a specific user ci is
an upper bound on pricing pi such that if ci commits fraud
on each item offered in pi she can still not profit from her
existence in the market as a consumer.

By definition, αi is set such that ci could not make profit
in the system if: X

∀pj∈pi

pj ≤ αi. (1)

Definition 2. Reimbursement fund βi for a specific
user ci is a sum of money that can be used to offset losses
to buyers who participate in pending transactions with ci in
case ci commits fraud.

In our system, each seller ci chooses the value of βi ac-
cording to her required selling power. In general, consumers
feel comfortable bidding to products from ci knowing that
any fraud would get fully reimbursed if pricing is such that:X

∀pj∈pi

pj ≤ βi. (2)

If pricing on pi is over βi and fraud is committed with losses
greater than βi, FIFO is one possible fair algorithm for using
the reimbursement fund among the defrauded consumers.
A reimbursement fund could be implemented via escrow ac-
counts, transaction insurance, etc. Such funds are certainly
not a novel mechanism to protect buyers; the introduction
of a sales limit, αi ≥ βi, and subsequent techniques to con-
struct and use it, is our contribution in this work.

3.1 Risk Taking
In our system, a buyer could get defrauded if she chooses

to pay a price that sets πi =
P
∀pj∈pi

pj over βi. We con-

sider two cases. First, the buyer is unlikely to encounter a
fraudulent seller as long as she chooses to pay below seller’s
sales limit, αi ≥ βi. Although the seller could certainly
defraud such a buyer, he would still not gain any profit.
Repeating the iteration “open new user account, build rep-
utation, then defraud” would still not profit an adversary
because she would have to invest substantial funds to build
the reputation of the fabricated user in each iteration to
finally claim back these funds at the expense of innocent
buyers. In the remainder of this section, we introduce an
algorithm for constructing a sales limit as well as a tech-
nique for time-sharing sales limits, i.e., risk, among market
participants in order to boost their selling power.

Second, if the buyer decides to pay over αi, the risk of
encountering a fraudulent transaction can be quantified de-
pending upon the adversary’s profit, πi − αi. In Section 4,
we introduce a simple, yet intuitive empirical model that
aims to predict a fraudulent transaction based upon the in-
centive: πi − αi.
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Figure 1: Transaction model: entities and involved
costs.

3.2 The Transaction Model
The proposed reputation quantifier αi is computed based

upon consumer’s prior transaction record. In order to estab-
lish an algorithm for its computation, we first adopt a simple
transaction model. Fig. 1 illustrates a diagram of the basic
system model. We first review the transaction costs. The
cost of an individual transaction Ct = Cp + Cm + Ch, paid by
the buyer, is composed of three entities:

• the product price, Cp, which represents the total
amount of money after all costs received by the seller,

• the protocol manager fee, Cm, is paid to the medi-
ator in the transaction, e.g., eBay or Amazon.com,

• the miscellaneous fee, Ch, which includes other fees
such as: arbitration insurance, shipping and handling,
taxes, etc. The protocol manager (PM) may orches-
trate some of these activities. All miscellaneous fees
that can be verified by a trusted party (e.g., PM) are
used to establish participants’ sales limits.

Now we model an actual transaction between a seller,
Sam, and a buyer, Brenda. Once the negotiation has com-
pleted, Brenda pays the amount due, Ct, to Sam who now
pays the transaction fee, Cm, to the PM, both using an ar-
bitrary payment system. The PM could offer a payment
service for market participants2 to simplify payments and
reduce transaction fees. As opposed to the reimbursement
fund which could be implemented as an escrow account, the
PM does not serve as an escrow for the cash flow between the
market participants. After receiving the transaction fee, the
PM updates the accounts of all parties involved. Next, Sam
is now required to deliver the merchandise to Brenda. Here
is a list of considered outcomes upon merchandise delivery
(or failure to):

{P} positive feedback – Brenda is satisfied with the out-
come of the transaction; she compliments Sam.

{N} negative feedback – Brenda is dissatisfied with the
received product; the participants in the transaction
decide to resolve the situation as follows:

{N.1} no refund – Sam accepts negative feedback and
Brenda does not initiate the refund process. This
would be typical for a transaction with low Cp.

{N.2} refund/return – Sam refunds Brenda for pre-
viously returned merchandise. If this process is
closed at Brenda’s satisfaction, the transaction
record is deleted including Sam’s negative feed-
back.

2This would be an equivalent to handling a transaction via eBay
and PayPal.



{N.3} dispute – occurs in all other cases. This is the
most interesting case, as it involves arbitration
and resources for refunding the plaintiff.

A recent study suggests that 41% of seller-targeted dis-
putes occur because sellers do not describe their products
accurately which results in complaints by buyers once they
receive the products [9]. In about half of such cases, the
buyer chooses not to return the product; hence, we estimate
{N.1} to account for about one fifth of all {N} cases. A
survey of 225 {N.2} and {N.3} disputes on eBay in 1999
[10] points to ≈ 25% of disputes that were resolved at mu-
tual success, ≈ 25% of them at impasse, and the remainder
never entered the resolution stage although it was available
for free as part of a study. Thus, to the best of our knowledge
we conclude that detailed statistics about dispute estimates
are unavailable; however, existing data points to a solid like-
lihood that {N.3} cases are relatively common, yet due to
unavailability of inexpensive and efficient ODR systems they
remain underreported.

3.3 Computing the Reputation Quantifiers
In this subsection, we evaluate how transaction outcomes

affect buyer’s and seller’s reputation quantifiers. The global
objective for the developed algorithms is to maximize the
selling power in the system. Achieving this objective is im-
portant as it minimizes sellers’ investments to reach a spe-
cific selling power, hence boosts the market economy, which
on the side of the market organizers results in higher profit.

Case {P}. We are motivated by the fact that for a spe-
cific transaction t(cB , cS) all overhead costs, Co = Ct − Cp,
can be attributed to both the buyer and the seller. In this
section, we assume that all miscellaneous costs can be veri-
fied by PM. This assumption may not always be true – for
example, shipping costs, if not paid for via PM’s payment
system typically cannot be provably verified. The PM would
subtract expenses that cannot be verified from Co before ap-
plying them to seller’s and buyer’s reputation quantifiers.

We could take a stance that the buyer pays a fair market
price for the product that includes Co and that the seller
is the one paying for transaction costs (i.e., in an off-line
market this is certainly the case as the buyer pays the street
price and the merchant offsets all costs to retain profit).
In such a setting, after each committed transaction, seller’s
sales limit increment due to a transaction t equals:

αS(t(cB , cS)) = wBS = Co. (3)

In essence, Co is the “loss” that the seller has with respect
to fair market price. In another variant, the buyer and the
seller could negotiate a shared application of the transaction
cost during negotiation. This sets up a more general case
for computing sales limits:

αS(t(cB , cS)) = wBS = %Co, (4)

αB(t(cS , cB)) = wSB = (1− %)Co, (5)

where 0 ≤ % ≤ 1 is a parameter that scales the application
of costs to buyer’s and seller’s sales limits. Note that in this
case, an edge t(cS , cB) directed cS → cB is added to T with
an appropriate weight factor.

Case {N.1}. Only seller’s reputation is affected by this
case. Here, seller’s sales limit is reduced by:

αS(t(cB , cS)) = wBS = −Cp, (6)

if the PM can verify all miscellaneous costs. If this is not the
case, all non-verified costs are also subtracted from seller’s
sales limit.

Case {N.3}. Disputes in on-line transactions are typ-
ically resolved using PM’s or third party’s ODR systems
[7, 6]. Costs related to ODR are included in Ch as insur-
ance against this outcome. Possible outcomes for the ODR
process are:

(i) resolution in favor of one of the participants in the
transaction; then this case is resolved as {P}, {N.1},
or {N.2} with respect to the sales limit.

(ii) impasse; a bargaining impasse occurs when the two
sides negotiating an agreement are unable to reach an
agreement and become deadlocked3. This situation is
difficult to handle because possible solutions can hurt
the party who is innocent. Certainly, entities who plan
on participating in a transaction with either cS or cB

should know that they have been involved in this dis-
pute. As long as the dispute is in impasse, seller’s
sales limit is affected as defined in case {N.1}, (6)
and buyer’s record shows participation in a deadlocked
dispute.

(iii) lack of co-operation in the ODR process by the seller,
cS ; typically a consequence of fraud. Such an outcome
of a transaction would reduce the sales limit of cS as
defined in case {N.1}, (6).

Fraud (case iii) is committed by sellers in vast majority
of cases. One way for a buyer to cause a serious misconduct
is to complain about a received product, agree to a return
for refund, and then return a different, less valued product
to the seller. Such cases are exceptionally infrequent and
would result in a criminal investigation.4 Our system does
not protect sellers from such events.

The overall sales limit for a specific consumer, ci, is then
computed as follows:

αi =
X

∀t(cj ,ci)∈Ti

wji + βi, (7)

where Ti is a subset of all edges in T with ci as a destination.
Equation (7) includes the reimbursement fund, βi, that

ci establishes to insure customers from potential fraud (see
Def.2). Typically, a new seller would deposit a specific
amount βi(0) into its account with the PM to start up its
reputation, i.e., an initial sales limit of αi(0) = βi(0). Suc-
ceeding sales would establish its sales limit. Then, ci can
balance the value of its reimbursement fund (this fund can
be lowered or increased on-demand) and thus adjust its sales
limit, to achieve a desirable selling power. The reimburse-
ment fund is utilized by the PM in, for example, FIFO man-
ner when a transaction fails.

3.3.1 Bidding
When a buyer, cB , aims to bid for an item sold by cS , the

system presents several quantifiers to cB : αS , βS , and the
current pricing of all items sold by cS : πS =

P
∀pi∈pS

pi.

3c. Wikipedia.
4Tracing perpetrators in this case is easier than in fraudulent
transactions committed by sellers due to the undeniable avail-
ability of buyer’s physical address.



Based upon these quantifiers, cB can decide upon the risk
she is willing to take while bidding on an item sold by cS

that would increase the total price of his offering to πnew.
For example, if πnew > αS , cB can ask cS to increase his αS

by increasing his reimbursement fund so that she can bid
comfortably knowing that cS cannot make profits in case
he decides never to deliver the product. Similarly, cS can
eliminate any risk in her bid by asking cB to set βS = πnew.

3.4 Time-Sharing Sales Limits
On-line markets based upon reputation systems usually

consist of a few users who are predominantly sellers and the
remaining majority of users who are predominantly buyers.
Thus, we offer a supplemental algorithm for computing sales
limits with an objective to enable consumers establish higher
(up to twice as large) sales limits at a risk. Higher sales
limits in the economy translate to increased selling power,
hence higher profits for everyone involved.

Here, for a specific executed {P}-transaction t(cB , cS),
cB and cS create an agreement to distribute the costs of t,
Co(t), on-demand so that at any time:

αB(t) + αS(t) = Co(t), (8)

where αX(t) denotes a portion of the verifiable cost Co(t)
for transaction t, that is used to build up the sales limit
αX =

P
∀t∈TX

αX(t) of cX . User cX participated in t either
as a buyer or as a seller.

Under the agreement, if at a specific moment, only one
of the participants in t, say cB , is selling an item then
αB(t) = Co(t), αS(t) = 0. Note that this flexibility comes
at risk for cS . If cB commits a fraudulent transaction and
her sales limit gets affected while she was using more than
1
2
Co(t) to boost αB , the reduction in her sales limit may pro-

portionally, and possibly entirely, reduce the amount Co(t)
shared by the two parties and thus, affect αS(t) as in (8).
Consequently, when committing to t with time-shared costs,
both participants agree to take on this risk. Since the rep-
utation system offers preventive services against fraud, we
anticipate that this risk is low and typically worth the in-
creased selling power, in particular for new or infrequent
system users.

3.4.1 Sales Limit Computation
We now formally present how cB and cS time-share the

transaction cost Co(t). When a prospective buyer cD wants
to establish the sales limit of cS , the system displays:

αS = βS +
X
∀t∈TS

αS(t), (9)

where the values αS(t) are “grown” as much as possible
within each {P}-transaction t in TS with time-sharing of
sales limits. The costs of remaining transactions within TS

are accumulated as defined in Subsection 3.3. In the remain-
der of this subsection, for simplicity and brevity, we assume
that all transactions in TS are time-shared and (∀S) βS = 0.
We first define the following scalar:cαS =

X
∀t∈TS

αS(t), (10)

and establish the goal of minimizing the potential market-
wide profit from fraud:

R =
X

S

πS − cαS . (11)

Since fraud is typically not a wide-spread phenomenon, there
exists demand to address it locally within the market net-
work. Thus, we want to establish a set of rules that govern
the fairness of the cost allocations, i.e., that should encour-
age participants to use time-sharing by guaranteeing that
no participant can take a risk which is not proportional to
her committed transactions.

Definition 3. The absolute fairness rule asserts that
for every seller, cS, in the market:X

t∈TS

αS(t)−min

8<:πS ,
1

2

X
t∈TS

Co(t)

9=; ≥ 0. (12)

In other words, absolute fairness guarantees to each user
that her sales limit will be built over time on-demand and
will equal at least one half of the sum of costs for all her
committed transactions. We now show how to compute the
values αS(t) with absolute fairness while minimizing R.

Consider a flow network G(V, E) with a single source
vsource and a single sink vsink. Each market user, cS , is
assigned a node, vS , which is connected to vsource with an
edge of capacity πS . For each transaction, t(cS , cB), we con-
struct a node vS,B and add two edges of infinite capacity:
one from vS to vS,B and another from vB to vS,B . Finally,
we connect each transaction node to vsink with an edge of
capacity Co(t(cS , cB)). Figure 2 illustrates an exemplary
flow network with four participants and five transactions.

A legitimate sharing of the cost of a transaction, Co(t),
between the seller and the buyer is such that the sum of
shared sales limits obeys Equation (8).

Lemma 1. Let f be a maximum flow in G(V, E). Setting
αS(t(cS , cB)) to be the flow in f from vS through the edge
(vS,B , vsink) is a legitimate set of values that minimizes R.

Proof. First, the proposed values for αS(t) are legal val-
ues as for every transaction, t(cS , cB), the flow through the
edge (vS,B , vsink) is at most Co(t).

Now, every set of legitimate values to αS(t) is also a legal
flow in the network as αS(t(cS , cB)) can be pushed from the
source through vS and vS,B to the sink. As

P
t∈TS

αS(t) ≤
πS and αS(t) + αB(t) ≤ Co(t) the flow in each edge is less
than or equal to its capacity. Assuming by contradiction
that there is a legitimate set of values αS(t) = ζS(t) such
that

P
S

P
t∈TS

ζS(t) > f(vsource, vsink), is in contrast to f
being the maximum flow in the network.

Maximal flow algorithms in networks with a single source
and sink run in polynomial time in the network size. Com-
plexity O(|V |2 log(|V |2/|E|)) is achieved by the push-relabel
algorithm that uses dynamic trees [20]. In our application, G
is constructed so that the number of edges is of order |E| =
O(|V |). Therefore, the push-relabel and the Dinic’s block-
ing flow algorithm with dynamic trees, [21], have an overall
complexity of O(|V |2 log(|V |)). A recent result by Goldberg

and Rao reduces the complexity to O(|V |3/2 log(|V |)) [22].
According to Lemma 1, we know how to minimize R in poly-
nomial time, and we are left with the problem of making the
maximal flow obey the absolute fairness rule.

We address this problem near-optimally as follows. First,
we replicate K times each transaction node in G and as-
sign K times lower capacities to the edges going from the
replicated nodes to the sink. In this new network, we run



the classical max-flow algorithm by Edmond and Karp, [23],
in a randomized manner. Once a specific participant cS is
selected as the first node in a shortest path through the
residual network of G, we exclude its corresponding node,
vS , from the randomized round-robin until every node, vX ,
that has participated in a transaction with cS and such that
(vsource, vX) is not saturated, is visited at least once. The
structure of the network helps us reduce the time needed
to execute this algorithm as most shortest paths from the
source to the sink are of length 3, with each of them satu-
rating either an edge from source to a participant’s node, or
an edge from a transaction node to the sink.

Moreover, after solving the max-flow problem in the net-
work once, only a marginal computational effort is needed
to account for possible new events: adding an item for sale,
successful new transaction, and a fraud which results in
removing a participant and all of her previous committed
transactions from the network.
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Figure 2: An example of a flow network with four
participants and five transaction nodes.

• Adding an item for sale by cS results in the in-
crease of πS . If αS < πS before this event, then no
operation is needed. Otherwise, the algorithm then
continues pushing the additional flow through the net-
work via at least one additional iteration.

• Successful new transaction t(cS , cB) results in re-
ducing πS and adding a transaction node and its K
replicas. If αS > πS after this event, we push back
αS − πS flow from the sink through the transaction
nodes connected to vS . The algorithm then continues
to distribute the flow through the network using at
least one additional iteration.

• Fraud by participant cS results in removing the
node vS and all her transactions nodes t(cS , cX) from
the network. This can negatively affect any participant
cX and her portion of the flow in t(cS , cX) should be
pushed back.

In a typical on-line market, the continuous chain of trans-
actions would result in an application of one of the previous
three steps in an iterative manner. The absolute fairness
is positively correlated with K, however at higher overhead
to performance. Regardless of K, iteratively computing the
maximum flow in the network after the above-mentioned
events, negatively affects fairness by slowly accumulating
fairness errors. To address this problem, we propose full
computation of the maximum flow after a specific number of
events in the network. In addition, if one wishes to compro-
mise optimality for the sake of fast computation, the length

of the shortest-path from source to sink can be limited to
a constant, resulting in a linear time algorithm, which in
a lightly constrained network could prove to be an efficient
near-optimal option.

For large networks which could be potentially decentral-
ized, it is important to consider algorithms with constant
complexity or sub-linear in the size of the network. The key
to building such algorithms is approaching absolute fairness
in sub-optimal but localized manner. Here is an example of
a localized cost redistribution algorithm:

α′S(t) =

8<: 1
2
Co(t) , πS ≥ 1

2
US

1
2
Co(t)− 1

|TS |
�

1
2
US − πS

�
, else

(13)

where US =
P

t∈TS
Co(t). We locally utilize the available

costs on per-transaction basis by setting αS(t) = Co(t) −
α′B(t) for each transaction t(cS , cB) such that πS ≥ 1

2
US

or αS(t) = α′S(t) otherwise. The algorithm could be gen-
eralized so that a certain neighborhood to cS and cB is
exposed to further iterative redistribution. Localized algo-
rithms allow for fast local updates of values when an event
occurs. These updates involve only the value of a partic-
ipant cS and her neighbors with whom cS has committed
{P}-transactions with time-sharing of sales limits.

Alternative fairness rules could be used while time-sharing
sellers’ sales limits, depending on the interests of the PM
and the type of risk that it wishes to impose over market
participants. One such example is the max-min fairness,
in which the minimum cαS that a participant cS achieves
is maximized; secondly, the second lowest dαS′ that a par-
ticipant cS′ achieves is maximized, etc. Max-min fairness
allows setting cαS proportional to πS , thus encouraging high
level of transactions by some participants, while others, with
lower π take on more risk. For brevity and simplicity, we
do not propose any specific max-min fairness algorithms in
this paper. However, we do note that minimizing R un-
der this condition can be done using the already proposed
flow network, G, with an optimization goal to maximize a
multi-commodity flow, where every πS is considered a dis-
tinct commodity and every edge (vS,B , vsink) can transfer
only two commodities. The problem of maximal flow in
multi-commodity networks is notoriously hard and the best
known solution to the problem is a (1− ε)−3-approximation
which takes O(ε−2|E|2 log |E|) time [24].

3.4.2 Discussion
From the perspective of the adversary, time-sharing sales-

limits could present an opportunity. By purchasing mer-
chandise worth X monetary units, the adversary gains a
maximum sales limit equal to the sum of all transaction
fees, e.g., at eBay this amounts to X

20
, for these purchases.

As we speculate that it is unlikely for an adversary to spend
twenty units of her own wealth prior to gaining one unit
of fraudulent profit, we conclude that time-sharing is an ef-
fective mechanism to at most double the selling power of
economic entities in the market. In addition, the proposed
reputation system could enable pricing time-sharing of sales
limits, and thus reach an equilibrium for the risk vs. profit
from time-sharing sales limits in a market.

From the theoretical point of view, one could evaluate
the sensitivity of the increase in sales limits depending on
the market constraint: average current offering, π, vs. av-



erage sum of fees from previous committed transactions, α.
We assume that this analysis is of little practical impor-
tance for several reasons. First, in a well-established mar-
ket, α À π. Second, market networks are typically scale-free
with a small group of “frequent sellers” generating large por-
tion of the flow in the network. These nodes typically have
an offering that is substantially smaller than their current
sales limit. Thus, we expect that most of the demand for
increase in sales limits from smaller sellers, will be sourced
out from the “frequent sellers.” Consequently, we anticipate
that most sellers who demand an increase in their sales lim-
its will highly likely succeed to double them with no adverse
effects on the trade in the global market. To that extent,
we do not present an experimental study on the efficacy of
the proposed algorithms for time-sharing of sales limits.

3.5 Summary
In summary, the proposed algorithms for computing sales

limits in a reputation network use “transaction losses” such
as shipping and handling, insurance, protocol manager fees,
etc., not transaction totals, to build up a value that quan-
tifies user trustworthiness. Positive feedback, as it could
be easily fabricated, does not cause that the value of the
sold item affects seller’s sales limit. By proposing a suite of
algorithms that trade-off certain risk and optimized selling
power with trustworthiness, we address the market demand
for robust trades. Most importantly, our system is the first
to offer deterministic guarantees to buyers in generally
distrusted markets – as a consequence our system facilitates
trade, offers new risk-taking opportunities, and should boost
market pricing due to increased system security.

4. SELLER’S FRAUD MODEL
One disadvantage of deterministic reputation is the con-

formation towards the worst case. Since fraud is costly but
still not frequent, we speculate that risk assessment tech-
nologies are still of value, in particular when bootstrapping
the economic activity in the market. For instance, consider
the scenario when a buyer, cB , aims to bid for an item sold
by cS . In this case, the model presented in the previous
section provides guarantees to cB and as long as the price
she offers, π, satisfies π ≤ βS , cB cannot be defrauded. If
π > βS , cB can ask cS to increase his reimbursement fund.
However, if cS does not have the resources necessary to in-
crease his reimbursement fund, cB may not be willing to
place a higher bid due to an increased likelihood of fraud.
Such a system may end up in a bargaining impasse which
is, on the average, a loss for all participants in the economic
system. In order to facilitate bargaining through risk as-
sessment, we introduce a novel price-dependent probabilistic
reputation system. As a crucial component of this system,
we introduce an additional reputation quantifier which we
refer to as the seller’s fraud model.

Definition 4. Seller’s Fraud Model is defined as a
probability γS(pS) that a seller cS decides to defraud her
current buyers based upon the pricing pS of her product of-
fering. The model is quantified using a function f():

γS(pS) = Pr[cS commits fraud|pS ] (14)

= f(πS − αS) = f

24 X
pi∈pS

pi − αS

35

over the profit that cS would create if she would disappear
from the market after charging for all listed products pS.

Before bidding for a product at a certain price, the buyer
would be presented with a model that estimates the proba-
bility of a fraudulent transaction given the current offering
of the seller and its pricing. The tool would offer normal-
ized risk assessment based upon f() trained on empirical
market data. There exist numerous possibilities for creating
efficient user interfaces to deliver the resulting probability,
e.g., buyer would enter considered price into an HTML form
field to observe the probability in question using a graphical
display such as a pointer to a log γ-scale.

An example of an expected γ-model is illustrated in Fig-
ure 3. We observe that the probability is zero5 for πS ≤ βS ,
approximately zero for βS < πS ≤ αS , and increasing in
phase-transition style with the increase of seller’s profits.
The resulting probability converges towards Γ, the proba-
bility that one person commits fraud regardless of payout.
This convergence is typical for any practical range of prices
over πS − αS .
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Figure 3: An example of the seller’s fraud model.

4.1 Discussion
Interestingly, our γ-model does not consider the counts of

positive and negative responses from previous customers nor
any topology analysis of the transaction graph G – tools typ-
ical for traditional reputation systems. It does not need to.
The fact that seller’s existence in the economic ecosystem is
reduced and accurately presented with only two parameters,
α and β, renders other details about previous transactions,
such as structure of the reputation tree, irrelevant. The fact
is that a fraudulent seller has only one objective – to max-
imize profits during his existence in the on-line market. In
most realistic scenarios this objective is amended to the de-
sire to slip past detectors that would trigger criminal inves-
tigation. From that point of view, the only statistic which
is crucial is the probability that, given a specific payout, the
seller decides to fool her current buyers.

Obtaining function f() empirically could be a difficult
task. The problem lies in the fact that not all sellers are
equal and some form of seller classification could be required.
For example, sellers coming from countries with drastically
different income levels should have different financial mo-
tives to commit a fraudulent transaction. Considering these
facts, it is more realistic to expect that sellers are classified

5In the most strict sense this value is zero only approximately
due to unexpected events that could prevent the seller from com-
pleting the transaction and that cannot be considered fraud.



to fit different behavioral models. Based upon seller’s classi-
fication, the PM would select the appropriate γ-model and
present it to prospective buyers. Classification algorithms
have been researched well in several subfields of computer
science, hence we point the interested reader to review some
of the related work [11]. For brevity and simplicity, we do
not focus on this aspect of our technology.

Finally, users who chose to use time-sharing of their trans-
action costs would use the γ-model in the same fashion as
conservative sellers. Here, the risk is not only exhibited by
the buyer but by the collaborating sellers as well. To issue a
warning to a prospective buyer about the additional risk, the
reputation system could show both the conservative and the
time-shared α quantifier. Then, the buyer, fully informed,
can assess the true risk and proceed with the pricing.

5. EMPIRICAL ANALYSIS
In this section, we present results from our empirical study.

First, we describe the sampling method used to obtain a
snapshot of real-world economic activity. Then, we present
key statistics about our snapshot, followed by the main re-
sult: a seller’s “fraud” model empirically obtained from real
transactions. We built our datasets from public information
available on existing on-line marketplaces. We remind the
reader that payment channels available on existing on-line
marketplaces are typically left up to user’s free choice and
are thus unsupervised. Based on the data we reviewed, in
our empirical study we used only PM fees to build sellers’
sales limits. Other transaction fees such as shipping and
taxes, were not included in the construction of sales lim-
its as modern on-line marketplaces typically do not receive
receipts for such services.

5.1 Marketplace Sampling
We did not conduct our empirical study using a sampling

technique that would model a marketplace network as accu-
rately as possible. The primary objective of our work is to
present an estimate of the seller’s fraud model, f() – and not
to provide accurate modeling of marketplace networks. True
random sampling of a large network is difficult as random
walks, one of the most dominant techniques for this task,
do not capture graph statistics accurately as they tend to
visit well-connected nodes more often. In relatively sparse
networks, even techniques that aim at uniform graph sam-
pling are not sufficiently precise [19]. We acknowledge that
it is difficult to create a sample of a large marketplace net-
work that would precisely correspond to the true activity on
its ecosystem and conclude that accurate statistics could be
provided only by the marketplaces themselves.

Still, for the purpose of validating the ideas proposed in
this paper, we decided to sample marketplaces with an ob-
jective of covering as many as possible sellers with no partic-
ular browsing objective (i.e., a greedy max-cardinality sub-
set). Thus, we hoped that the statistics of a large subnet
would provide an insight into quantifying f(). We followed
a simple approach for extracting information from a given
marketplace Web-site. We implemented a Web-crawler that
automated the process, comprised of two stages.

In the first data collection stage, by starting with a
arbitrarily chosen user, cS , we would gather her key statis-
tics: both positive and negative fan-in and fan-out and the
current product offering, pS . Extracting πS was sped up
by recording only the first 200 products of seller’s current

product offering as reported by the marketplace. As the
total number of items for sale was known, we extrapolated
πS based upon the average price of the first 200 products.
All monetary values listed in Euro and Pound sterling, were
converted to US dollars. For simplicity, we ignored transac-
tions credited with other currencies.

In the second traversal stage, we performed a breadth-
first search of the user’s feedback pages, collecting informa-
tion about every single transaction she performed, negative
or not. For each transaction, we collected the anonymized
users’ IDs, the related transaction amounts with associated
time-stamps, and the type of feedback reported (positive,
negative or neutral). The recursive traversal was done in
breadth-first manner with no exceptions.

5.2 Snapshot Statistics
During our sampling of on-line marketplaces, we collected

data on 10,096,731 transactions worth over US$270M. Our
Web-crawler downloaded and parsed a total of 140,000 Web-
pages, collecting transaction information for a large num-
ber of anonymized user accounts. We partitioned the type
of users encompassed by our extracted subnets as complete
and incomplete. For the first class, we focused on comput-
ing/estimating the information on their πi and αi. Thus, we
extracted their full set of transactions. The cardinality of
the set of complete users was 44,830. In order to record all
their transactions we needed to include information about
the incomplete users, i.e., users who have participated in at
least one transaction with a complete user. The total num-
ber of incomplete users in our dataset was 5,274,759. Trans-
actions between two incomplete users were not included in
the subnet. Thus, the total size of the extracted subnet was
5,319,589 accounts. The statistics about the fan-in and fan-
out of nodes in the subnet are presented in Figure 4. One
can observe, as expected, that a smaller number of sellers is
generating large number of transactions in the marketplaces.
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Figure 4: Histogram of the number of transactions
nodes have achieved as buyers and sellers within the
captured subnet.

Figures 5 and 6 describe the number of accounts in our
sample that had a specific ratio and total number of trans-
actions with negative feedback respectively. We observe,
as expected, that most sellers do not initiate transactions
that result in negative feedback. However, within the mass
of users, we observe that there is a relatively large group of
users who have recently generated substantial volume of neg-
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Figure 5: Histogram of the ratio of transactions that
resulted in negative feedback within the captured
subnet.
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Figure 6: Histogram of the number of transactions
that resulted in negative feedback within the cap-
tured subnet.

ative feedback. Figure 7 illustrates the histogram of prices
for products exchanged in transactions that resulted in neg-
ative feedback within the captured subnet. This plot is in-
teresting as it points to a relatively low price of merchandise
that is sold to the dissatisfaction of buyers – it also suggests
that sellers aim at combining smaller profits from several
transactions with negative feedback. In the subsequent sub-
section we conclude that our “fraud model” is particularly
tailored to address this type of malicious activity.

Finally, we point to Figure 8 which plots the ratio of trans-
actions that involve a product of certain price. We plot
two sets of datapoints: for all transactions and for trans-
actions with negative feedback only. One can observe from
the curves that the pricing of merchandise that results in a
transaction with negative feedback typically has similar pric-
ing to positive-feedback transactions. This is reasonable as
fraudulent transactions usually have “fair” or slightly lower
pricing over the product bait in order to attract buyers.

5.3 Seller’s “Fraud” Model
From the sampled subnet with approximately 10 million

transactions we have constructed a statistical model for our
seller’s fraud model presented in Section 4. We must con-
firm that on-line marketplaces typically do not report ac-
tual fraudulent transactions on their Web-sites, rather re-
port negative feedback. Therefore, to be more precise, we
stress that our model represents accurately seller’s nega-
tive feedback data from the sample. We speculate that it
is strongly correlated to the actual fraud model – certainly,
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Figure 7: Histogram of prices for products ex-
changed in transactions that resulted in negative
feedback within the captured subnet.
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Figure 8: Ratio of transactions that result in nega-
tive and any feedback vs. the price of the product
within the captured subnet.

significant rise in the pdf of the obtained f() model occurs
at approximately the same value as the costs of fraudulent
transactions reported to NFIC and IC3.

Figure 9 presents a set of points that correspond to the
log-fraction of transactions for which πi − αi corresponded
to the abscissa, for which sellers received negative feedback.
We have also provided a 6-th degree intrapolant for the col-
lected data that outlines in a visually clear manner the prob-
ability of interest. Note that the curve is resemblant of the
geometry anticipated in Figure 3. The variance of the in-
trapolated curve is greater at higher amounts (>US$10,000)
due to lack of data. Finally, the estimated model confirms
the speculation that the probability of a fraudulent transac-
tion rises strongly at πi − αi > US$1000 and reaches more
than 10 times higher values at πi−αi ≈ US$30K compared
to transactions that executed when πi − αi < US$1000. In-
forming consumers about this trend is the least that could
be done, while the proposed remedies such as presenting a
buyer with seller’s {αi, βi} parameters would likely further
improve robustness to fraudulent activity in on-line mar-
ketplaces. Since systems that aim at preventing fraud by
pricing reputation commonly demand economic bootstrap-
ping, in Section 3.4 we have proposed a technique for sharing
reputation among sellers that boosts their selling power at
certain quantifiable risks.
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6. SUMMARY
In this paper, we propose a methodology that aims at

pricing reputation from seller’s perspective. Buyers need not
evaluate sellers’ transaction trees and seek whether previous
transactions were fabricated. We price reputation at three
levels easily accessible to a common user:

• a limit on pricing that guarantees that the buyer will
receive reimbursement in case seller commits fraud,

• a limit on pricing that states that the seller will not
generate any profits from her existence in the market-
place if she commits fraud on all her current product
offerings and disappears from the economic ecosystem,

• an user interface that can quantify for a buyer the risk
of a fraudulent transaction when placing a higher price
than the previous two limits.

In our system, even in the case of stolen identity, an adver-
sary cannot produce illegal profit unless a buyer decides to
pay over the suggested sales limits. We obtained relatively
large subnets from actual on-line marketplaces in order to
empirically quantify the key parameters in our scheme and
demonstrate how it could be efficient if placed in an existing
on-line marketplace.
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Appendix – Related Work
The open and anonymous nature of popular on-line markets
such as eBay [1] and Amazon.com [5] makes them suscepti-
ble to numerous adversarial activities. Reputation has been
widely accepted as means of establishing trust among par-
ticipants to prevent malicious use.

eBay
EBay employs a simple feedback-based trust system. After
each transaction, both the buyer and the seller can rate each
other by assigning one of three possible ratings: satisfactory,
neutral, and unsatisfactory. These ratings build up a feed-
back score (total number of positive transactions minus the
total number of negative transactions) which serves as an in-
dicator of users’ transaction histories; and, could represent
a valuable warning to new users who wish to interact with
rated users. The higher the feedback score, the higher the
reputation of the user. In addition, for each user, eBay re-
ports the number of her transactions both as a buyer and as
a seller, the percentage of positive feedback, and the actual
feedback by the users with whom the user interacted. Using
such information, users can decide whether to participate in
a transaction with a specific user and also evaluate its risk.
In [17], Dellarocas presents a survey of game theoretic and
economics models for reputation management. Dellarocas
also showed that reputation systems, which are only based
on the sum of negative and positive ratings, are vulnerable
to unfair rating attacks.

Reputation in Peer-to-Peer Systems
Several techniques have been proposed to quantify reputa-
tion in peer-to-peer systems. A survey of several existing
methods can be found in [14]. P2PRep proposed by Cornelli
et al. [18], focuses on providing a framework for reputation
management without giving an explicit definition of a trust
metric. EigenTrust [12] presents a method to minimize the
impact of malicious peers on the performance of feedback-
based reputation systems. EigenTrust associates each peer
with a global trust value calculated using the left princi-
pal eigenvector of a matrix of normalized local trust values.
Thus, EigenTrust takes into account the transaction history
of the user to get his/her reputation score, and uses such
information to identify malicious users. EigenTrust also in-
troduces the notion of transitive trust: if a peer A trusts
any peer X, it would also trust the peers trusted by X.
PeerTrust [13] computes reputation scores as a function of
five factors: the feedback obtained from other peers, total
number of transactions, credibility of the feedback source,
transaction context factor, and community context factor.
The transaction context factor helps model such transac-
tion properties as the size of the transaction, category, and
time-stamp, and the community context factor helps provide
incentives to obtain feedback.


