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Abstract
In a chip-multiprocessor (CMP) system, the DRAM system is shared among cores. In a shared DRAM system, requests from

a thread can not only delay requests from other threads by causing bank/bus/row-buffer conflicts but they can also destroy other
threads’ DRAM-bank-level parallelism. Requests whose latencies would otherwise have been overlapped could effectively become
serialized. As a result both fairness and system throughputdegrade, and some threads can starve for long time periods.

This paper proposes a fundamentally new approach to designing a shared DRAM controller that provides quality of serviceto
threads, while also improving system throughput. Our parallelism-aware batch scheduler (PAR-BS) design is based on two key
ideas. First, PAR-BS processes DRAM requests in batches to provide fairness and to avoid starvation of requests. Second, to opti-
mize system throughput, PAR-BS employs a parallelism-aware DRAM scheduling policy that aims to process requests from athread
in parallel in the DRAM banks, thereby reducing the memory-related stall-time experienced by the thread. PAR-BS seamlessly in-
corporates support for system-level thread priorities andcan provide different service levels, including purely opportunistic service,
to threads with different priorities.

We evaluate the design trade-offs involved in PAR-BS and compare it to four previously proposed DRAM scheduler designs on
4-, 8-, and 16-core systems. Our evaluations show that, averaged over 100 4-core workloads, PAR-BS improves fairness by1.11X
and system throughput by 8.3% compared to the best previous scheduling technique, Stall-Time Fair Memory (STFM) scheduling.
Based on simple request prioritization rules, PAR-BS is also simpler to implement than STFM.

1. Introduction

The DRAM memory system is a major shared resource among multiple processing cores in a chip multiprocessor

(CMP) system. When accessing this shared resource, different threads running on different cores can delay each other

because accesses from one thread can cause additional DRAM bank conflicts, row-buffer conflicts, and data/address bus

conflicts to accesses from another thread. In addition, as weshow in this paper, inter-thread interference can destroy

the bank-level access parallelism of individual threads. Memory requests whose latencies would otherwise have been

largely overlapped effectively become serialized, which can significantly degrade a thread’s performance. Moreover,

some threads can be unfairly prioritized, while other –perhaps more important– threads can be starved for long time

periods.

Such negative effects of uncontrolled inter-thread interference in the DRAM memory system are crucial impediments

to building viable, scalable, and controllable CMP systemsas they can result in 1) low system performance and signif-

icant productivity loss, 2) unpredictable program performance, which renders performance analysis, optimization, and

isolation extremely difficult [27, 22, 40, 25], 3) significant discomfort to the end user who naturally expects threads

with higher (equal) priorities to get higher (equal) sharesof the system performance. As the number of cores on a chip

increases, the pressure on the DRAM system will also increase and both the performance and fairness provided by the

DRAM system will become critical determinants of the performance of future CMP platforms. Therefore, to enable

viable, scalable, and predictable CMP systems, fair and high-performance memory access scheduling techniques that

control and minimize inter-thread interference are necessary [27, 22, 25].

In this paper, we propose a new approach to providing fair andhigh-performance DRAM scheduling. Our scheduling

algorithm, calledparallelism-aware batch scheduling (PAR-BS), is based on two new key ideas:request batchingand

parallelism-aware DRAM scheduling. First, PAR-BS operates by grouping a limited number of DRAMrequests into
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batchesbased on their arrival time and requesting threads. The requests from the oldest batch are prioritized and therefore

guaranteed to be serviced before other requests. As such, PAR-BS isfair and starvation-free: it prevents any thread from

being starved in the DRAM system due to interference from other, potentially aggressive threads. Second, within a batch

of requests, PAR-BS isparallelism-aware: it strives to preserve bank-level access parallelism (i.e., the degree to which a

thread’s DRAM requests are serviced in parallel in different DRAM banks) of each thread in the presence of interference

from other threads’ DRAM requests.1 It does so by trying to group requests from a thread and service them concurrently

(as long as they access different banks) using heuristic-based prioritization rules. As such, our approach reduces the

serialization of a thread’s requests that would otherwise have been serviced in parallel had the thread been running alone

in the memory system.

We show that therequest batchingcomponent of PAR-BS is a general framework that provides fairness and starvation

freedom in the presence of inter-thread interference. Within a batch of DRAM requests, any existing and future DRAM

access scheduling algorithm (e.g., those proposed in [32, 31, 27, 25]) can be implemented. However, our results show that

using our proposedparallelism-aware schedulingalgorithm provides the best fairness as well as system throughput. We

describe how PAR-BS operates within a batch and analyze the complex trade-offs involved in batching and parallelism-

aware scheduling in terms of fairness, DRAM throughput, row-buffer locality exploitation, and individual threads’ bank-

level access parallelism. We also describe how the system software can control PAR-BS to enforce thread priorities and

change the level of desired fairness in the DRAM system.

Our experiments compare PAR-BS qualitatively and quantitatively to four previously proposed DRAM schedul-

ing techniques, including the recently-proposed QoS-aware Network Fair Queueing based [27] (NFQ) and Stall-Time

Fair [25] (STFM) memory access schedulers, as well as Rixner’s commonly used first-ready first-come-first-serve (FR-

FCFS) scheduler [31]. None of these schedulers try to preserve individual threads’ bank-level parallelism or strictly

guarantee short-term starvation-freedom in the presence of inter-thread interference. Our results on a very wide variety

of workloads and CMP configurations show that PAR-BS provides the best fairness and system throughput.

Contributions: We make the following contributions in this paper:

• We show that inter-thread interference can destroy bank-level parallelism of individual threads, thereby leading to

significant degradation in system throughput. We introducea novel parallelism-aware DRAM scheduling policy that

maintains the bank-level parallelism of individual threads while also respecting row-buffer locality.

• We introduce the concept ofrequest batchingin shared DRAM schedulers as a general framework to provide fair-

ness/QoS across threads and starvation freedom to DRAM requests. We show that request batching is orthogonal

to and can be employed with existing DRAM access scheduling algorithms, but it is most beneficial when applied

with parallelism-aware scheduling. We describe how the system software can control the flexible fairness substrate

provided by request batching to enforce thread priorities and to control the unfairness in the DRAM system.

• We qualitatively and quantitatively compare our schedulerto four previously proposed fairness- or throughput-

oriented schedulers and show that PAR-BS provides both the best fairness and the best system throughput. Our

proposal is also simpler to implement than the best previously-proposed memory access scheduler, Stall-Time Fair

1In this paper, we refer to the bank-level parallelism of a thread asintra-thread bank-level parallelism. We use the terms bank-level parallelism
and bank-parallelism interchangeably. A quantifiable definition of bank-parallelism is provided in Section 7.
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Memory Scheduler [25], in that it does not require complex calculations, such as division.

2. Motivation

DRAM requests are very long latency operations that greatlyimpact the performance of modern processors. When

a load instruction misses in the last-level on-chip cache and needs to access DRAM, the processor cannot commit that

(and any subsequent) instruction because instructions arecommitted in program order to support precise exceptions [34].

The processor’s instruction window becomes full a few cycles after a last-level cache miss [13, 24] and the processor

stalls until the miss is serviced by DRAM. Current processors try to reduce the performance loss due to a DRAM

access by servicing other DRAM accesses in parallel with it.Techniques like out-of-order execution [39], non-blocking

caches [15], and runahead execution [5, 23] strive to overlap the latency of future DRAM accesses with the current

access so that the processor does not need to stall (long) forfuture DRAM accesses. Instead, at an abstract level, the

processor stalls once for all overlapped accesses rather than stalling once for each access in a serialized fashion [24]. The

concept of generating and servicing multiple DRAM accessesin parallel is calledMemory Level Parallelism(MLP) [9].

The effectiveness of the aforementioned latency tolerancetechniques depends on whether or not the concurrent

DRAM accesses are actually serviced in parallel by different DRAM banks (i.e., whether or not intra-thread bank-level

parallelism is maintained). In a single-core system,2 a thread has exclusive access to the DRAM banks, so its concurrent

DRAM accesses are serviced in parallel as long as they are notto the same bank. This is illustrated in the simple,

conceptual example in Figure 1.3 Request1’s (Req1) latency is hidden by the latency of Request0 (Req0), effectively

exposing only a single bank access latency to the thread’s processing core. Once Req0 is serviced, the core can commit

Load 0 and thus enable the decode/execution of future instructions. When Load 1 becomes the oldest instruction in the

window, its miss has already been serviced and therefore theprocessor can continue computation without stalling.
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Figure 1. Example showing how latencies of two DRAM requests are overlapped in a single-core system

Unfortunately, if multiple threads are generating memory requests concurrently (e.g. in a CMP system), modern

DRAM controllers schedule the outstanding requests in a waythat completely ignores the inherent memory-level par-

allelism of threads. Instead, current DRAM controllers exclusively seek to maximize the DRAM data throughput, i.e.,

the number of DRAM requests serviced per second [32, 31]. As we show in this paper, blindly maximizing the DRAM

data throughput does not minimize a thread’s stall-time (which directly correlates with system throughput). Even though

DRAM throughput may be maximized, some threads can be stalled overly long if the DRAM controller destroys their

bank-level parallelism and serializes their memory accesses instead of servicing them in parallel.

The example in Figure 2 illustrates how parallelism-unawareness can result in suboptimal CMP system throughput

and increased stall-times. We assume two cores, each running a single thread, Thread 0 (T0) and Thread 1 (T1). Each

2We assume, for simplicity and without loss of generality, that a core can execute one thread, and use the termsthreadandcoreinterchangeably.
However, the ensuing discussion and our techniques are applicable to cores that can execute multiple threads as well.

3This and subsequent figures abstract away many details of theDRAM system, such as the DRAM bus and timing constraints. However, these
are second order effects as bank access latency usually dominates the latency of DRAM requests [3, 4], especially with a wide DRAM data bus.
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thread has two concurrent DRAM requests caused by consecutive independent load misses (Load 0 and Load 1), and the

requests go to two different DRAM banks. The figure shows 1) (top) how a current DRAM scheduler may destroy intra-

thread bank-parallelism, thereby increasing a thread’s stall-time, and 2) (bottom) how a parallelism-aware scheduler can

schedule the requests more efficiently.
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Figure 2. Conceptual example showing the importance of including parallelism-awareness in DRAM scheduling decisions

With a conventional parallelism-unaware DRAM scheduler(such as any previously proposed scheduler [32, 31, 27,

25]), the requests can be serviced in their arrival order shown in Figure 2(top). First, T0’s request to Bank 0 is serviced

in parallel with T1’s request to Bank 1. Later, T1’s request to Bank 0 is serviced in parallel with T0’s request to Bank 1.

This service order serializes each thread’s concurrent requests and therefore exposes two bank access latencies to each

core. As shown in the execution timeline (top right), instead of stalling once (i.e. for one bank access latency) for the

two requests, both cores stall twice. Core 0 first stalls for Load 0, and shortly thereafter also for Load 1. Core 1 stalls for

its Load 0 for two bank access latencies.

In contrast, aparallelism-aware schedulerservices each thread’s concurrent requests in parallel, resulting in the

service order and execution timeline shown in Figure 2(bottom). The scheduler preserves bank-parallelism by first

scheduling both requests from T0 in parallel, and then T1’s requests. This enables Core 0 to execute faster (shown as

“Saved cycles” in the figure) as it stalls for only one bank access latency. Core 1’s stall time remains unchanged: although

its second request (T1-Req1) is serviced later than with a conventional scheduler, T1-Req0 still hides T1-Req1’s latency.

The crucial observation is thatparallelism-aware request scheduling improves overall system throughput because

one core now executes much faster: the average core stall time is 1.5 bank access latencies with the parallelism-aware

scheduler (bottom) whereas it is 2 with the conventional scheduler (top).4 While this example shows only two cores for

simplicity, the destruction of intra-thread bank-parallelism becomes worse as more cores share the DRAM system.

Our goal: Our goal in this paper is to design a fair, QoS-aware memory scheduler that provides high system through-

put. Based on the observation that inter-thread interference destroys the bank-level parallelism of the threads running

concurrently on a CMP and therefore degrades system throughput, we incorporate parallelism-awareness into the design

of our fair and high-performance memory access scheduler. To this end, we develop the key notions ofrequest batching

4Notice that the system throughput improvement would be the same if the DRAM scheduler first serviced Core 1’s requests in parallel, then
Core 0’s requests. In that case, Core 1 would only stall for a single bank access latency while Core 0’s stall time would remain the same as with a
conventional scheduler. Similarly, system throughput would also improve if T1-Req0 was to Bank 1 and T1-Req1 was to Bank0.
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andparallelism-aware request prioritization, which we describe in detail in Section 4.

3. Background on DRAM Memory Controllers

This section gives a brief description of how modern SDRAM systems and controllers operate. The DRAM system is

presented at a level of abstraction that is sufficient to understand the terminology and key concepts of this paper. For a

detailed description, we refer the reader to [32, 4, 25].

A modern SDRAM chip consists of multiple DRAM banks to allow multiple outstanding memory accesses to proceed

in parallel if they require data from different banks. Each DRAM bank is a two-dimensional array, consisting of columns

and rows. Rows typically store data in consecutive memory locations and are of 1-2KB in size. The data in a bank can

be accessed only from therow-buffer, which can contain at most one row. A bank contains a single row-buffer. The

amount of time it takes to service a DRAM request depends on the status of the row buffer and falls into three categories:

• Row hit: The request is to the row that is currently open in the row buffer. The DRAM controller needs to issue only

a reador write command to the DRAM bank, resulting in a bank access latency of tCL (See Table 2).

• Row closed:There is no open row in the row buffer. The DRAM controller needs to first issue anactivatecommand

to open the required row, then aread/writecommand, resulting in a bank access latency oftRCD + tCL.

• Row conflict: The request is to a row different from the one currently in therow buffer. The DRAM controller

needs to first close the row by issuing aprechargecommand, then open the required row (activate), and then issue a

read/writecommand. These accesses incur the highest bank access latency of tRP + tRCD + tCL .

A DRAM controller consists of amemory request bufferthat buffers the memory requests (and their data) while they

are waiting to be serviced and a (possibly two-level) scheduler that selects the next request to be serviced [32, 27, 25].

When selecting the next request to be serviced, the scheduler considers the state of the DRAM banks and the DRAM

buses as well as the state of the request. A DRAM command for a request can be scheduled only if its scheduling

does not cause any resource (bank and address/data/commandbus) conflicts and does not violate any DRAM timing

constraints. Such a DRAM command is said to beready.

Because of the large disparity in the latency incurred by a row-hit access and a row-conflict/closed access, state-of-

the-art DRAM controllers employ scheduling techniques that prioritize row-hit requests over other requests, including

younger ones. A modern memory controller employs the FR-FCFS (first-ready first-come-first-serve) scheduling pol-

icy [32, 31], which prioritizesreadyDRAM commands from 1) row-hit requests over others and 2) row-hit status being

equal, older requests over younger ones. Such a scheduling policy aims to minimize the average service latency of

DRAM requests and thus maximize the data throughput obtained from the DRAM. For single-threaded systems, the

FR-FCFS policy was shown to provide the best average performance [32, 31], significantly better than the simpler FCFS

policy, which simply schedules all requests according to their arrival order, regardless of the row-buffer state.

When multiple threads share the DRAM system, the FR-FCFS scheduling policy tends to unfairly prioritize threads

with high row-buffer locality(i.e. row-buffer hit rate) over those with relatively lowrow-buffer localitydue to the row-

hit-first prioritization rule. It also tends to unfairly prioritizememory-intensivethreads overnon-intensiveones due to the

oldest-first prioritization rule.5 As a result, even though FR-FCFS achieves high DRAM data throughput, it may starve

5A thread is more memory-intensive than another if it spends more cycles per instruction waiting for DRAM requests. See Section 7 for more.

5



Draft version - Final version to be published at ISCA 2008

requests/threads for long time periods, causing unfairness and relatively low overall system throughput [27, 22, 25].

Previous research [27, 22, 25] experimentally demonstrated the unfairness of FR-FCFS and proposed new scheduling

policies that are fairer and that provide QoS to different threads. Nesbit et al. [27] applied Network Fair-Queueing (NFQ)

techniques to DRAM controllers in order to divide the DRAM bandwidth among multiple threads sharing the DRAM

system. Mutlu and Moscibroda [25] proposed a stall-time fair memory scheduler (STFM) that equalizes the slowdowns

experienced by threads as compared to when each one is run alone. None of these previous scheduling policies take

into account intra-thread bank-parallelism, which—as seen in Section 2—can significantly degrade system performance

when requests of different threads interfere in the DRAM system.

4. Parallelism-Aware Batch Scheduling Algorithm

Overview: Our proposed DRAM scheduling algorithm is designed to provide 1) a configurable substrate for fairness

and QoS and 2) high CMP system throughput by incorporating parallelism-awareness into scheduling decisions. To

achieve these goals,Parallelism-Aware Batch Scheduling(PAR-BS) consists of two components. The first component

is a request batching (BS), or simplybatching, component that groups a number of outstanding DRAM requests into a

batch and ensures that all requests belonging to the currentbatch are serviced before the next batch is formed. Batching

not only ensures fairness but also provides a convenient granularity (i.e., a batch) within which possibly thread-unfair

but high-performance DRAM command scheduling optimizations can be performed. The second component of our

proposal,parallelism-aware within-batch scheduling (PAR)aims to reduce the average stall time of threads within a

batch (and hence increase CMP throughput) by trying to service each thread’s requests in parallel in DRAM banks.

After describing the two components separately, we discussadvantages/disadvantages of our proposal compared to

existing DRAM schedulers and present possible alternativedesign choices in Sections 4.3 and 4.4, respectively.

4.1. Request Batching

The idea of batching is to consecutively group outstanding requests in the memory request buffer into larger units

calledbatches. The DRAM scheduler avoids request re-ordering across batches by prioritizing requests belonging to

the current batch over other requests. Once all requests of abatch are serviced (i.e., when the batch is finished), a new

batch is formed consisting of outstanding requests in the memory request buffer that were not included in the last batch.

By thus grouping requests into larger units according to their arrival time, batching—in contrast to FR-FCFS and other

existing schemes—prevents request starvation at a very finegranularity and enforces steady and fair progress across all

threads. At the same time, the formation of batches allows for the flexibility to re-order requests within a batch in order

to maximally exploit row-buffer locality and bank-parallelism without significantly disturbing thread-fairness.

The batching component (BS) of PAR-BS works as follows. Eachrequest in the memory request buffer has an

associated bit indicating whether the request belongs to the current batch. If the request belongs to the current batch,this

bit is set, and we call the requestmarked. BS forms batches using the following rules:
Rule 1PAR-BS Scheduler: Batch Formation

1: Forming a new batch: A new batch is formed when there are no marked requests left inthe memory request buffer,
i.e., when all requests from the previous batch have been completely serviced.

2: Marking: When forming a new batch, BS marks up toMarking-Cap outstanding requests per bank for each
thread; these requests form the new batch.
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Marking-Cap is a system parameter that limits how many requests issued bya thread for a certain bank can be part

of a batch. For instance, ifMarking-Cap is 5 and a thread has 7 outstanding requests for a bank, PAR-BSmarks only

the 5 oldest among them. If noMarking-Cap is set, all outstanding requests are marked when a new batch is formed.

PAR-BS always prioritizes marked requests (i.e., requestsbelonging to the current batch) over non-marked requests

in a given bank. On the other hand, PAR-BS neither wastes bandwidth nor unnecessarily delays requests: if there are

no marked requests to a given bank, outstanding non-marked requests are scheduled to that bank. To select among

two marked or two non-marked requests, any existing or new DRAM scheduling algorithm (e.g., FR-FCFS) can be

employed. In PAR-BS, this “within-batch” scheduling component is PAR, which we describe next.

4.2. Parallelism-Aware Within-Batch Scheduling (PAR)

Batching naturally provides a convenient granularity (i.e., the batch) within which PAR can optimize scheduling

decisions to obtain high performance. There are two main objectives that this optimization should strive for. It should

simultaneously maximize 1)row-buffer localityand 2) intra-threadbank-parallelismwithin a batch. The first objective

is important because if a high row-hit rate is maintained within a batch, bank accesses incur smaller latencies on average,

which increases the throughput of the DRAM system. The second objective is similarly important because scheduling

multiple requests from a thread to different banks in parallel effectively reduces that thread’s experienced stall-time.

Unfortunately, it is generally difficult to simultaneouslyachieve these objectives—e.g. FR-FCFS sacrifices parallelism

in lieu of row-buffer locality.6

Our scheduling algorithm uses the request prioritization rules shown in Rule 2 to exploit both row-buffer locality and

bank parallelism. Within a batch, row-hit requests are prioritized. This increases row buffer locality and ensures that any

rows that were left open by the previous batch’s requests aremade the best possible use of in the next batch. Second,

requests from threads with higherrank are prioritized over those from threads with lower rank to increase bank-level

parallelism, as explained in detail below. Finally, all else being equal, an older request is prioritized over a youngerone.

Rule 2PAR-BS Scheduler: Request Prioritization
1: BS—Marked-requests-first: Marked ready requests are prioritized over requests that are not marked.
2: RH—Row-hit-first: Row-hit requests are prioritized over row-conflict/closedrequests.
3: RANK—Higher-rank-first: Requests from threads with higher-rank are prioritized over requests from lower-

ranked threads.
4: FCFS—Oldest-first: Older requests are prioritized over younger requests.

Thread Ranking: PAR-BS uses arank-based thread prioritizationscheme within a batch to maximize the intra-

thread bank-parallelism while maintaining row-buffer locality. When a new batch is formed, the DRAM scheduler

computes a ranking among all threads that have requests in the batch. While the batch is processed, the computed

ranking remains the same and requests from higher-ranked threads are prioritized over those from lower-ranked threads.

The effect of ranking-based scheduling is that different threads are prioritized in the same orderacross all banksand

thus, each thread’s requests are more likely to be serviced in parallel by all banks.

How to Rank Threads Within a Batch: Although conceptually any ranking-based scheme enhances within-batch

intra-thread bank-parallelism, the specific ranking procedure has a significant impact on CMP throughput and fairness.

6In fact, several combinatorial formalizations of this optimization problem can be shown to be NP-complete and hence no efficient algorithmic
solutions are expected to exist.
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A good ranking scheme must effectively differentiate between memory-intensive and non-intensive threads (and

threads with high bank-parallelism). If a non-intensive thread with few requests is ranked lower than an intensive

thread, its requests may be overly delayed within a batch. Asexplained in [25], a fair DRAM scheduler should equalize

theDRAM-related slowdownof each thread compared to when the thread is running alone onthe same memory system.

As a non-intensive thread or a thread with high bank-parallelism inherently has a low DRAM-related stall-time when

running alone, delaying its requests within a batch resultsin a much higher slowdown than it would for an intensive

thread, whose DRAM-related stall-time is already high evenwhen running alone. To avoid this unfairness (and loss of

system throughput as explained below), our ranking scheme is based on theshortest job firstprinciple [35]: it ranks the

non-intensive threads higher than the intensive ones.

Besides fairness, the key rationale behind theshortest job firstprinciple is that it tends to reduce theaverage batch-

completion timeof threads within a batch.7 A thread’s batch-completion time is the time between the beginning of a

batch and the time the thread’s last marked request from the batch is serviced. It directly corresponds to the thread’s

memory-related stall-time within a batch. By reducing the average batch-completion time,shortest job firstscheduling

improves overall system throughput as the threads stall less for DRAM requests, on average, thereby making faster

progress in the execution of their instruction streams.

Concretely, PAR-BS uses the followingMax-Total ranking scheme, to compute each thread’s rank within a batch:

Rule 3PAR-BS Scheduler: Thread Ranking
1: Max rule: For each thread, the scheduler finds the maximum number of marked requests to any given bank, called

max-bank-load. A thread with a lower max-bank-load is ranked higher than a thread with a higher max-bank-load.
2: Tie-breaker Total rule: For each thread, the scheduler keeps track of the total number of marked requests, called

total-load. If threads are ranked the same based on the Max rule, a thread with a lower total-load is ranked higher
than a thread with a higher total-load.

The maximum number of outstanding requests to any bank correlates with the “shortness of the job,” i.e., with the

minimal memory latency that is required to serve all requests from a thread if they were processed completely in parallel.

A highly-ranked thread has few marked requests going to the same bank and hence can be finished fast. By prioritizing

requests from such high-ranked threads within a batch, PAR-BS ensures that non-intensive threads or threads with high

bank-parallelism make fast progress and are not delayed unnecessarily long.

Example: Figure 3 shows an example that provides insight into why our proposed within-batch prioritization scheme

preserves intra-thread bank-parallelism and improves system throughput. The figure abstracts away many details of

DRAM scheduling8 but provides a framework for understanding the parallelismand locality trade-offs. We assume a

latency unit of 1 for row-conflict requests and 0.5 for row-hit requests. Figure 3(a) depicts the arrival order of requests

in each bank, which is equivalent to their service order withan FCFS scheduler. FCFS neither exploits locality nor

preserves intra-thread bank-parallelism and therefore results in the largest average completion time of the four threads

(5 latency units). FR-FCFS maximizes row-buffer hit rates by reordering row-hit requests over others, but as shown in

Figure 3(b), it does not preserve intra-thread bank-parallelism. For example, although Thread 1 has only three requests

that are all intended for different banks, FR-FCFS servicesall three requests sequentially. Depending on the history of

7In the classic single-machine job-scheduling problem and many of its generalizations, shortest-job-first schedulingis optimal in that it mini-
mizes the average job completion time [35].

8Such as DRAM data/address/command bus contention and complex interactions between timing constraints.
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(a) Arrival order (and FCFS schedule) (b) FR-FCFS schedule (c) PAR-BS schedule
FCFS schedule batch-completion (stall) timesFR-FCFS schedule batch-completion (stall) timesPAR-BS schedule batch-completion (stall) times

Thread 1Thread 2Thread 3Thread 4 AVG Thread 1Thread 2Thread 3Thread 4 AVG Thread 1Thread 2Thread 3Thread 4 AVG
4 4 5 7 5 5.5 3 4.5 4.5 4.375 1 2 4 5.5 3.125

Figure 3. A simplified abstraction of scheduling within a batch containing requests from 4 threads. Rectangles represent marked requests from
different threads; bottom-most requests are the oldest requests for the bank. Those requests that affect or result in row-hits are marked with the
row number they access; if two requests to the same row are serviced consecutively, the second request is a row-hit with smaller access latency.

memory requests, the schedule shown in Figure 3(b) for FR-FCFS is also a possible execution scenario when using the

QoS-aware NFQ [27] or STFM [25] schedulers since those schedulers are unaware of intra-thread bank-parallelism.

Figure 3(c) shows how PAR operates within a batch. Thread 1 has at most one request per bank (resulting in the

lowest max-bank-load of 1) and is therefore ranked highest in this batch. Both Threads 2 and 3 have a max-bank-load of

two, but since Thread 2 has fewer total number of requests, itis ranked above Thread 3. Thread 4 is ranked the lowest

because it has 5 requests to Bank 4. As Thread 1 is ranked highest, its three requests are scheduled perfectly in parallel,

before other requests. Similarly, Thread 2’s requests are scheduled as much in parallel as possible. As a result, PAR

maximizes the bank-parallelism of non-intensive threads and finishes their requests as quickly as possible, allowing the

corresponding cores to make fast progress. Compared to FR-FCFS or FCFS, PAR significantly speeds up Threads 1, 2,

and 3 while not substantially slowing down Thread 4. The average completion time is reduced to 3.125 latency units.

Notice that in addition to good bank-parallelism, our proposal achieves as good a row-buffer locality as FR-FCFS

within a batch, because within a batch PAR-BS always prioritizes marked row-hit requests over row-conflict requests.9

4.3. Advantages, Disadvantages, Trade-offs

Request Batchingcomponent of our proposal has the following major advantages:

• Fairness and Starvation Avoidance:Batching guarantees the absence of short-term or long-termstarvation: every

thread can make progress in every batch, regardless of the memory access patterns of other threads.10 The number

of requests from a thread scheduled before requests of another thread is strictly bounded with the size of a batch.

Apart from FCFS, no existing scheduler provides a similar notion of starvation avoidance. In FR-FCFS, a memory-

intensive thread with excellent row-buffer locality can capture a bank for a very long time, if it can issue a large

number of row-hit requests to the same bank in succession. Depending on the history of access patterns, short-term

starvation is also possible in NFQ and STFM, especially due to theidleness and bank access balance problems[25]

associated with NFQ and inaccurate slowdown estimates in STFM [25]. In PAR-BS, memory-intensive threads are

unable to delay requests from non-intensive threads for a long time.

9However, this might not be the case across batches. PAR-BS can reduce locality at batch boundaries because marked requests are prioritized
over row-hit requests. This locality reduction depends on how largeMarking-Cap is. Section 8.3 evaluates the trade-offs ofMarking-Cap.

10Starvation freedom of “batched (or grouped) scheduling” was proven formally within the context of disk scheduling [7].
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• Substrate for Exploiting Bank Parallelism: Batching enables the use of highly efficient within-batch scheduling

policies (such as PAR). Without batches (or any similar notion of groups of requests in time), devising a parallelism-

aware scheduler is difficult as it is unclear within what context bank-parallelism should be optimized.

• Flexibility and Simple Implementation: While most beneficial in combination with PAR, the idea of batching can

be used in combination with any existing or future DRAM command scheduling policy. Batching thus constitutes a

simple and flexible framework that can be used to enhance the fairness of existing scheduling algorithms. We explore

the performance and fairness of using FCFS and FR-FCFS policies within a batch in Section 8.3.3.

A possible disadvantage of our scheme is that it requires careful determination ofMarking-Cap. If Marking-Cap

is large, PAR-BS could suffer from similar unfairness problems as FR-FCFS, although not to the same extent. If a non-

memory-intensive thread issues a request that just misses the formation of a new batch, the request has to wait until all

requests from the current batch to the same bank are serviced, which slows down the non-intensive thread. On the other

hand, a smallMarking-Cap can slow down memory-intensive threads, since at mostMarking-Cap requests per

thread and per bank are included in a batch, the remaining ones being postponed to the next batch. There is a second

important downside to having small batches:The lower theMarking-Cap, the lower the row-buffer hit rate of threads

with high inherent row-buffer locality.Across a batch boundary, a marked row-conflict request is prioritized over an

unmarked row-hit request. The smaller the batches (the smaller theMarking-Cap), the more frequently a stream of

row-hit accesses can be broken in this way, which increases the access time of requests. Section 8.3.1 analyzes in detail

the fairness and performance trade-offs of variousMarking-Cap settings.

Parallelism-Aware Within Batch Scheduling simultaneously achieves a high degree of bank-parallelismand row-

buffer locality, as described in the previous section. No other DRAM scheduling scheme we know of optimizes for

intra-thread bank-parallelism. Consistent with the general machine scheduling theory [35], using theMax-Totalranking

scheme to prioritize threads with fewer requests reduces the average stall time of threads within a batch. While this

“shortest-job-first” principle may appear to unfairly penalize memory-intensive threads, our experimental evaluations in

Section 8 show that this effect is not significant. There are two reasons: 1) the overlying batching scheme ensures a high

degree of fairness, 2) delaying a memory intensive thread results in a relatively smaller slowdown since the inherent

DRAM-related stall-time of an intensive thread is higher. Within a batch, a scheduler should therefore freely optimize

for reduced stall-times by finishing threads with few and bank-parallel requests as quickly as possible.

4.4. Design Alternatives

We have experimented with a variety of novel, alternative batching and within-batch scheduling schemes. We briefly

describe these schemes for completeness. Our evaluations in Section 8 show that averaged over a large and varied set of

workload mixes, these alternative designs perform worse than our PAR-BS scheme.

The batching method in PAR-BS can be referred to asfull batchingbecause it requires that a batch of requests be

completed in full before the next batch is started. There arealternative ways to perform batching.

Time-Based Static Batching: In this approach, outstanding requests are marked periodically using a static time

interval, regardless of whether or not the previous batch iscompleted. The scheme is characterized by a system parameter

Batch-Duration that describes at what time interval a new batch is formed. Atthe outset of a new batch, unmarked

requests are marked subject to theMarking-Cap, while requests that are already marked from the previous batch

10



Draft version - Final version to be published at ISCA 2008

remain so. In comparison to PAR-BS, this batching approach does not provide strict starvation-avoidance guarantees

and can lead to significant unfairness as we show in Section 8.3.2.

Empty-Slot (Eslot) Batching: If in PAR-BS, a request arrives in the DRAM system slightly after a new batch was

formed, it may be delayed until the beginning of a new batch, causing a large stall time especially for a non-intensive

thread. Empty-slot batching attempts to alleviate this problem by allowing requests to beaddedto thecurrent batchif

less thanMarking-Cap requests from that thread for the specific bank were marked sofar in the batch. In other words,

if at the time a new batch is formed, a thread does not utilize its entire allotted share of marked requests (i.e. has “empty

slots”) within the batch, it is allowed to add late-coming requests to the batch until theMarking-Cap threshold is met.

Alternative Within-Batch Scheduling Policies: Within a batch, many different alternative request/command priori-

tization techniques can be employed. Aside fromMax-Totalranking, we have also evaluatedTotal-Max(where the order

of theMax ruleandTotal rule is reversed),random, andround-robinranking schemes. Furthermore, we have evaluated

using FCFS and FR-FCFS within a batch –without any ranking– to isolate the effect of parallelism-awareness in our

proposal. Section 8.3.3 describes the trade-offs involvedwith alternative within-batch scheduling techniques.

5. Incorporating Thread Priorities and Software Support

We have so far described PAR-BS assuming that all threads have equal priority and, in terms of fairness, should

experience equal DRAM-related slowdowns when run together. The system software (the operating system or virtual

machine monitor), however, would likely want to assign priorities to threads to convey that some threads are more/less

important than others. PAR-BS seamlessly incorporates thenotion ofthread prioritiesto provide support for the system

software. The priority of each thread is conveyed to PAR-BS in terms ofpriority-levels1, 2, 3, . . ., where level1 indicates

the most important thread (highest priority) and a larger number indicates a lower priority. Equal-priority threads should

be slowed down equally [25], but the lower a thread’s priority, the more tolerable its slowdown. We adjust PAR-BS in

two ways to incorporate thread priorities.

• Priority-Based Marking: Requests from a thread with priorityX are marked only everyXth batch. For example,

requests from highest priority threads with level1 are marked every batch, requests from threads with level2 are

marked every other batch, and so forth. The batching mechanism otherwise remains the same, i.e., a new batch is

formed whenever there are no marked requests in the buffer.

• Priority-Based Within-Batch Scheduling: An additional rule is added to the within-batch request prioritization

rules shown in Rule 2. Between rules1.BS---Marked-requests-first and2.RH---Row-hit-first,

we add the new rulePRIORITY---Higher-priority-threads-first. That is, given the choice between

two marked or two unmarked requests, PAR-BS prioritizes therequest from the thread with higher priority. Between

requests of equal-priority threads, other request prioritization rules remain the same.

The effect of these two changes to PAR-BS is that higher-priority threads are naturally scheduled faster: they are marked

more frequently and thus take part in more batches, and they are prioritized over other requests within a batch.

Purely Opportunistic Service: In addition to the integer-based priority-levels, PAR-BS provides one particular

priority-level, L, that indicates the lowest-priority threads. Requests from such threads are never marked and they

are assigned the lowest priority among unmarked requests. Consequently, requests from threads at levelL are scheduled
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purely opportunistically—only scheduled if the memory system is free—to minimize their disturbance on other threads.

Finally, we provide the system software with the ability to setMarking-Cap, which serves as a lever to determine

how much unfairness exists in the system (see Section 8.3.1).

6. Implementation and Hardware Cost

PAR-BS requires the implementation of batching (Rule 1) andthe request prioritization policy described in Section 4.2

(Rules 2 and 3). Modern FR-FCFS based controllers already implement prioritization policies. Each DRAM request

is assigned a priority and the DRAM command belonging to the highest priority request is scheduled among allready

commands. PAR-BS extends the priority of each DRAM request using two additional pieces of information: 1) whether

or not the request is marked, and 2) the rank of the thread the request belongs to (usingMax-Totalranking). To keep

track of this additional information, the scheduler requires the additional state shown in Table 1. Assuming an 8-core

CMP, 128-entry request buffer and 8 DRAM banks, the extra hardware state, including request priorities, required to

implement PAR-BS (beyond FR-FCFS) is 1412 bits.
Register Description and Purpose Size (additional bits)

Per-request registers
Marked Whether or not the request is marked 1

Priority The priority of the request including marked status, row-hit status, thread rank, and request IDlog
2

NumThreads (3) See Figure??
Thread− ID ID of the thread that generated the request log

2
NumThreads (3)

Per-thread per-bank registers to compute Max rule in Max-Total ranking
ReqsInBankPerThread Number of requests from this thread to this bank log

2
RequestBufferSize (7)

Per-thread registers to compute Total rule in Max-Total ranking
ReqsPerThread Number of total requests from this thread in the request buffer log

2
RequestBufferSize (7)

Individual registers
TotalMarkedRequests Number of marked requests in the request buffer (used to determine when to mark requests) log

2
RequestBufferSize (7)

Marking − Cap Stores the system-configurableMarking-Cap value 5
Table 1. Additional state required for a possible PAR-BS implementation

The countersReqsInBankPerThread andReqsPerThread are incremented/decremented when a new request

enters/leaves the memory request buffer. When a marked request is fully serviced, the DRAM controller decrements

TotalMarkedRequests. WhenTotalMarkedRequests reaches zero, the controller starts a new batch by 1) marking

the oldestMarking-Cap requests per bank from each thread, 2) computing the newMax-Totalranking of threads using

theReqsInBankPerThread andReqsPerThread registers. Thus, the additional logic required by PAR-BS consists

of logic that 1) marks requests (marking logic), 2) determines thread ranking (ranking logic), and 3) computes request

priorities based on marked-status and thread rank (prioritization logic). Both marking and ranking logic are utilizedonly

when a new batch is formed and implemented using priority encoders that take as input the relevant information in each

case. Prioritization logic takes as input the marked status, row-hit status, thread rank, and request ID of a request to form

a single priority value (see Figure??) for each request every DRAM cycle.

Notice that none of this logic is on the critical path of the processor because an on-chip DRAM controller runs at a

higher frequency than DRAM and needs to make a scheduling decision only every DRAM cycle. Similar prioritization

policies have been implemented in instruction schedulers,which are on the critical path. If needed, the marking/ranking

logic can take multiple cycles since marking/ranking is done only when a new batch is formed.

PAR-BS is simpler to implement than the previous-best scheduler STFM, which requires significant logic, including

dividers, to estimate thread slowdowns [25]. In contrast toSTFM, PAR-BS is based only on simple prioritization rules

that depend on request counts and therefore does not requirecomplex arithmetic operations.
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7. Experimental Methodology
We evaluate our proposal using a cycle-accurate x86 CMP simulator. The functional front-end of the simulator is

based on Pin [17] and iDNA [1]. We model the memory system in detail, faithfully capturing bandwidth limitations,

contention, and enforcing bank/port/channel/bus conflicts. Table 2 shows the major DRAM and processor parameters.

We scale DRAM bandwidth with the number of cores.
Processor pipeline 4 GHz processor, 128-entry instruction window (64-entry issue queue, 64-entry store queue), 12-stage pipeline
Fetch/Exec/Commit width 3 instructions per cycle in each core; only 1 can be a memory operation
L1 Caches 32 K-byte per-core, 4-way set associative, 64-byte block size, 2-cycle latency
L2 Caches 512 K-byte per core, 8-way set associative, 64-byte block size, 12-cycle latency, 32 MSHRs
DRAM controller (on-chip) FR-FCFS; 128-entry request buffer, 64-entry write data buffer, reads prioritized over writes, XOR-based address-to-bank mapping [6, 41]
DRAM chip parameters Micron DDR2-800 timing parameters (see [21]),tCL=15ns,tRCD=15ns,tRP =15ns,BL/2=10ns; 8 banks, 2K-byte row-buffer per bank
DIMM configuration single-rank, 8 DRAM chips put together on a DIMM (dual in-line memory module) to provide a 64-bit wide channel to DRAM
Round-trip L2 miss latency For a 64-byte cache line, uncontended: row-buffer hit: 40ns(160 cycles), closed: 60ns (240 cycles), conflict: 80ns (320cycles)
Cores and DRAM bandwidthDRAM channels scaled with cores: 1, 2, 4 parallel lock-step channels for 4, 8, 16 cores (1 channel has 6.4 GB/s peak bandwidth)

Table 2. Baseline CMP and memory system configuration

We use the SPEC CPU2006 benchmarks and two Windows desktop applications (Matlab and an xml parsing appli-

cation) for evaluation.11 Each benchmark was compiled using gcc 4.1.2 with -O3 optimizations and run for 150 million

instructions chosen from a representative execution phase[28].

We classify the benchmarks into eight categories based on their memory intensiveness (low or high), row-buffer

locality (low or high), and bank-level parallelism (low or high). We define bank-level parallelism (BLP) as the average

number of requests being serviced in the DRAM banks when there is at least one request being serviced in the DRAM

banks. This definition follows the memory-level parallelism (MLP) definition of Chou et al. [2]. We characterize a thread

based on theaverage stall time per DRAM request (AST/req)metric, which is computed by dividing the number of cycles

in which the thread cannot commit instructions because the oldest instruction is a miss to DRAM by the total number of

DRAM load requests generated by the thread.12 Table 3 shows the category and memory system characteristics of the

benchmarks when they run alone in one core of the baseline 4-core CMP. Note that benchmarks with high levels of BLP

also have relatively low AST/req. In all figures, benchmarksare ordered based on their category in Table 3.
# Benchmark Type MCPI L2 MPKI RB hit rateBLP AST/reqCategory # Benchmark TypeMCPI L2 MPKI RB hit rateBLP AST/reqCategory

1 437.leslie3d FP 7.30 51.52 62.8% 1.90 139 7 (111) 15 453.povray FP 0.00 0.03 79.9% 1.75 123 3
2 450.soplex FP 6.18 47.58 78.8% 1.81 125 7 16 464.h264ref INT 0.48 2.65 76.5% 1.29 161 2 (010)
3 470.lbm FP 3.57 43.59 61.1% 3.37 77 7 17 445.gobmk INT 0.11 0.60 61.1% 1.46 162 2
4 482.sphinx3 FP 3.05 24.89 75.0% 1.89 117 7 18 447.dealII FP 0.07 0.41 90.3% 1.21 133 2
5 matlab DSK 15.4 78.36 93.7% 1.08 192 6 (110) 19 444.namd FP 0.06 0.33 86.6% 1.27 160 2
6 462.libquantum INT 9.10 50.00 98.4% 1.10 181 6 20 481.wrf FP 0.05 0.28 83.6% 1.20 164 2
7 433.milc FP 4.65 32.48 86.4% 1.51 139 6 21 454.calculix FP 0.04 0.19 75.9% 1.30 157 2
8 xml-parser DSK 2.92 18.23 95.3% 1.32 158 6 22 400.perlbenchINT 0.02 0.13 75.4% 1.69 128 2
9 429.mcf INT 6.45 98.68 41.5% 4.75 63 5 (101) 23 471.omnetpp INT 1.96 22.15 26.7% 3.78 86 1 (001)
10 459.GemsFDTDFP 4.08 29.95 20.4% 2.40 126 5 24 401.bzip2 INT 0.49 3.56 52.0% 2.05 127 1
11 483.xalancbmk INT 2.80 23.52 59.8% 2.27 113 5 25 473.astar INT 1.82 9.25 50.2% 1.45 177 0 (000)
12 436.cactusADM FP 2.78 11.68 6.75% 1.60 219 4 (100) 26 456.hmmer INT 1.50 5.67 33.8% 1.26 231 0
13 403.gcc INT 0.05 0.37 63.9% 1.87 127 3 (011) 27 435.gromacs FP 0.18 0.68 58.2% 1.04 220 0
14 465.tonto FP 0.02 0.13 70.7% 1.92 108 3 28 458.sjeng INT 0.10 0.41 16.8% 1.53 192 0

Table 3. Benchmark characteristics. MCPI: Memory Cycles Per Instruction (cycles spent waiting for memory divided by number of instructions),
L2 MPKI: L2 Misses per 1000 Instructions, RB Hit Rate: Row-buffer hit rate, BLP: bank-level parallelism, AST/req: Average stall-time per
DRAM request,Categoriesare determined based on MCPI (1:High, 0:Low), RB hit rate (1:High, 0:Low), and BLP (1:High, 0:Low)

We evaluate combinations of multiprogrammed workloads running on 4, 8, and 16-core CMPs. For 4-core simula-

tions, we evaluated 100 different combinations, each of which was formed by pseudo-randomly selecting a benchmark

from each category such that different category combinations are evaluated. For 8-core simulations, we evaluated 16 dif-

11410.bwaves, 416.gamess, and 434.zeusmp are not included because we were not able to collect representative traces for them.
12AST/req is similar to the average cost of an L2 cache miss, described by Qureshi et al. [29], except AST/req is based on processor stall time

rather than L2 miss latency.
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ferent combinations; and for 16-core, 12 different combinations. Space limitations prevent us from listing all evaluated

combinations, but we try to show as many results with representative individual combinations as possible in Section 8.13

7.1. Evaluation Metrics

We measure fairness using theunfairness indexproposed in [25, 8].14 This is the ratio between the maximum memory-

related slowdown and the minimum memory-related slowdown among all threads sharing the DRAM system. The

memory related slowdown of a threadi is the memory stall time per instruction it experiences whenrunning together

with other threads divided by the memory stall time per instruction it experiences when running alone in the same

memory system: MemorySlowdowni =
MCPIshared

i

MCPIalone
i

, UnfairnessIndex =
maxi MemorySlowdowni

minj MemorySlowdownj

We measure system throughput usingWeighted-Speedup[36] andHmean-Speedup[18], which balances fairness and

throughput [18]:
Weighted Speedup =

∑

i

IPCshared
i

IPCalone
i

, Hmean Speedup = NumThreads/
∑

i

1

IPCshared
i /IPCalone

i

7.2. Evaluated Schemes: Parameters and Configuration

Our baseline controller uses the FR-FCFS scheduling policy. All evaluated schedulers prioritize DRAM read re-

quests over DRAM write requests because read requests can directly block forward progress in processing cores and

are therefore more performance critical. Unless otherwisestated, we use PAR-BS with a Marking-Cap of 5 in our ex-

periments. When comparing PAR-BS to other schedulers, we use the following parameters.STFM: We setα = 1.10

andIntervalLength = 224 as proposed by Mutlu and Moscibroda [25].NFQ: We use Nesbit et al.’s best scheme

(FQ-VFTF) [27], including its priority inversion prevention optimization with a threshold oftRAS [27].

8. Experimental Results
8.1. Results on 4-core Systems

We first analyze the fairness and throughput of PAR-BS in comparison to previously proposed DRAM scheduling

techniques using three case studies on 4-core systems that highlight the typical behavior of different scheduling algo-

rithms. Aggregate results over 100 workloads are provided in Section 8.1.4.

8.1.1. Case Study I: Memory-intensive workloadThis workload includes four memory-intensive benchmarks,one

with very high bank-level parallelism (mcf). Figure 5(left) shows the memory slowdown of each benchmark with

different memory schedulers. Figure 5(right) compares thefive different schedulers in terms of system throughput.
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Figure 5. A memory intensive 4-core workload: memory slowdowns and unfairness (left), system throughput (right)

• FR-FCFS and FCFS: The commonly-used FR-FCFS scheduling policy is very unfair, slowing down the three less-

intensive benchmarks significantly more than libquantum because of libquantum’s very high row-buffer hit rate

(98.4%) and memory intensiveness. Such unfairness resultsin the lowest system throughput as cores running the

three less-intensive programs make very slow progress. FCFS improves fairness over FR-FCFS because it prevents

libquantum’s row-buffer hit requests from being continuously prioritized over other threads’ requests. Nonetheless,

13Should the paper get accepted, we will post the evaluated combinations on a website that will be referenced in the paper.
14Gabor et al.’s fairness metric [8] is essentially the inverse of Mutlu and Moscibroda’s unfairness index [25].
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FCFS still unfairly prioritizes memory-intensive libquantum and mcf as their requests are more likely to be older than

other threads’ requests. Since the fairness and throughputcharacteristics of both FR-FCFS and FCFS were analyzed

in detail in previous research [25], we concentrate our analysis primarily on the other scheduling algorithms.

• NFQ slightly improves fairness over FCFS, although it overly slows down mcf (by 3.15X). Mcf has very high

bank-parallelism when run alone. NFQ’s scheduling policy is to balance the requests from different threads in each

bank, without any coordination among banks. As the other threads have bursty access patterns in some banks, NFQ

prioritizes their requests over mcf’s requests in those banks during bursts (this is due to theidleness probleminherent

in NFQ’s design, as described in [25, 30]). Therefore, NFQ destroys mcf’s bank-parallelism: in some banks mcf’s

requests are unhindered by requests from other threads, while in other banks, requests from the bursty threads are

prioritized. Mcf’s requests in these banks are delayed, although they could have been serviced in parallel with its

other requests. We found that mcf’s BLP of 4.75 when run alonereduces to only 2.05 with NFQ and its average

stall-time per DRAM access (AST/req) increases from 64 to 193 processor cycles.

• STFM results in better fairness and throughput than all previous policies. However, it also penalizes (slows down)

mcf significantly, by 2.77X. This is due to two reasons. First, STFM tries to provide fairness by estimating the

memory-slowdown of each thread and prioritizing requests from the threads that are slowed down the most. STFM

penalizes mcf because its heuristics to estimate mcf’s inherent bank-parallelism are not always accurate [25] and

hence, it underestimates mcf’s slowdown. Second, like NFQ,STFM is not parallelism-aware: it does not try to

service requests from a thread in parallel. Instead, it prioritizes requests from threads that it estimates to have in-

curred the highest memory-slowdowns—in this case, libquantum and GemsFDTD. These threads’ requests often

take precedence over mcf’s requests in the banks they access, increasing mcf’s AST/req from 64 to 174 cycles.

• PAR-BS provides both the best fairness and system throughput. It reduces unfairness from 1.42 (STFM) to 1.07, and

improves weighted-speedup by 4.4% and hmean-speedup by 8.4% over STFM. TheRequest batchingcomponent of

PAR-BS fairly distributes memory-slowdowns by effectively containing libquantum’s impact on other threads. We

found that request batching is more effective and robust in providing fairness than both NFQ’s and STFM’s tech-

niques because it is not vulnerable to 1) theidlenessandbank access balanceproblems of the NFQ approach [25],

2) incorrect estimation of thread slowdowns in the STFM approach. Parallelism-aware scheduling within a batch

allows PAR-BS to better exploit mcf’s bank-parallelism, keeping its AST/req at 146 cycles, lower than NFQ and

STFM. Consequently, PAR-BS slows down mcf (by 2.17X) less than NFQ (3.15X) and STFM (2.77X).

8.1.2. Case Study II: Non-intensive workloadFigure 6 shows unfairness and throughput on a workload including

three non-intensive benchmarks and a single intensive one.Only one application (omnetpp) has high bank-parallelism

(3.78), which results in an average stall-time per DRAM access of 86 cycles when omnetpp is run alone.
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Figure 6. A non-memory-intensive 4-core workload: memory slowdownsand unfairness (left), system throughput (right)

PAR-BS is the only scheduler that does not significantly penalize the thread with high bank-parallelism (omnetpp).

NFQ and STFM reduce unfairness compared to FR-FCFS because they successfully mitigate the problems caused by
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FR-FCFS’ rigid row-hit-first policy. However, neither NFQ nor STFM can recover omnetpp’s loss in bank-parallelism

and both slow down this thread the most. In fact, NFQ is even more unfair than FCFS because its earliest-virtual-

deadline-first scheme prioritizes h264ref’s (and to a lesser degree also hmmer’s) bursty requests over omnetpp’s requests

in the banks they concurrently access [25]. This causes omnetpp’s accesses that would otherwise proceed in parallel to

get out-of-sync and become serialized, which degrades omnetpp’s performance. The processor stalls for the bank access

latency of each access rather than amortizing this latency by overlapping the latencies of multiple outstanding accesses.

The result is an AST/req of 256 cycles for omnetpp. While STFMreduces this measure to 182 cycles, it still overly

slows down omnetpp as it fails to optimize omnetpp’s bank-parallelism and underestimates this thread’s slowdown. In

contrast, parallelism-aware PAR-BS reduces omnetpp’s AST/access down to 150 cycles.

PAR-BS outperforms all existing schemes, achieving the best fairness while also improving weighted-speedup and

hmean-speedup by 3.1% and 5.2% over STFM, respectively. In contrast to the other schemes, it is the least memory-

intensive thread (h264ref) that is slowed down the most by PAR-BS, but this thread’s slowdown is nonetheless smaller

than with the other schedulers. Some of h264ref’s less-frequent requests are likely to miss the formation of a batch, in

which case they are not serviced until the batch completes. However, this does not result in a large slowdown because

1) batches are quick to process due to the smallMarking-Cap of 5; we found that the average batch is completed in

1269 cycles, 2) even if h264ref’s requests are not marked, they are still serviced if there is no marked request for the

required bank, 3) because h264ref’s requests are infrequent, they are prioritized within a batch due to ourMax-Total

thread ranking scheme; thus even if a request misses a batch it will be serviced first in the next batch.

8.1.3. Case Study III: Memory-intensive benchmark with high bank-parallelism running with copies of itself

Our last case study is intended to explicitly demonstrate the parallelism behavior of the PAR-BS scheduler. For this,

we minimize the variance among threads and run four identical copies of lbm together on a CMP. As expected, all

schedulers are perfectly fair in this case (Figure 7(left)), but they differ significantly in their memory-slowdown and

hence system throughput. FCFS drastically slows down each copy of lbm compared to FR-FCFS because it does not

exploit row-buffer locality. NFQ’s performance is even worse because it not only limits the row-buffer locality that can

be exploited by the memory controller (using the priority-inversion optimization in [27]) but also frequently interleaves

requests from different copies of lbm to a bank to keep the virtual deadline of each lbm copy in balance. This destroys

the row-buffer hit rate of each lbm copy, reducing it from 61%to only 31%, and therefore reduces system throughput

by 29.7%. STFM provides the same throughput as FR-FCFS because it never switches to a fairness-oriented scheduling

policy as it correctly estimates the unfairness in the system to be 1.
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Figure 7. A 4-core workload where unfairness is not a problem: memory slowdowns and unfairness (left), system throughput (right)

PAR-BS achieves the best system throughput by servicing each lbm’s concurrent requests in parallel, reducing the

average stall-time a DRAM access inflicts upon a thread (from222 (FR-FCFS and STFM) and 322 (NFQ) to 199 cy-

cles). Therefore, PAR-BS improves both weighted- and hmean-speedup by 8.6%. Hence, making the DRAM scheduler

parallelism-aware improves system throughput even in uniform application mixes where unfairness is not a problem.
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8.1.4. 4-Core Experiments: Average ResultsFigure 8(left) compares the unfairness of the five schedulers across 10

other diverse workloads as well as averaged over all the 100 examined workloads. Figure 8(right) shows the average

system throughput across 100 workloads. PAR-BS provides both the best fairness and the best throughput. Unfairness is

reduced from 1.36 (STFM) to 1.22. At the same time, system throughput is improved by 4.4% (weighted-speedup) and

by 8.3% (hmean-speedup) compared to the best previously-proposed scheduling scheme (STFM).
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Figure 8. Unfairness (left) and system throughput (right) averaged (using geometric mean) over all 100 workloads run in the 4-core system

8.2. PAR-BS on 8-Core and 16-Core Systems

The DRAM system will become a bigger QoS and performance bottleneck as the number of cores sharing it increases.

We briefly examine the scalability of PAR-BS on 8-core and 16-core systems. Figure 9 shows an 8-core workload

consisting of 3 memory-intensive and 5 non-intensive applications. Mcf is the only program with very high inherent

bank-parallelism. All previous schedulers consistently slow down mcf (by at least 3.5X) because they fail to control the

serialization of mcf’s concurrent DRAM accesses due to interference from the other seven applications.15 On the other

hand, PAR-BS increases mcf’s bank-level parallelism, reducing its slowdown to 2.8X (and its AST/access from 330

(NFQ) and 221 (STFM) to only 173 cycles). As a result, PAR-BS provides both the best fairness and system throughput.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

M
em

or
y 

S
lo

w
do

w
n mcf

xml
cactusADM
astar
hmmer
h264ref
gromacs
bzip2

Unfairness: 4.78 4.54 3.21 1.66 1.39

FR-FCFS FCFS NFQ STFM PAR-BS 0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

S
pe

ed
up

FR-FCFS
FCFS
NFQ
STFM
PAR-BS

Weighted Hmean
Figure 9. A mixed 8-core workload: memory slowdowns and unfairness (left), system throughput (right)

Figure 10 provides unfairness and throughput results on the16-core system for five sample workloads as well as

averaged over all 12 workloads. PAR-BS reduces unfairness from 1.81 (STFM) to 1.63, while improving weighted-

speedup by 3.2% and hmean-speedup by 5.1% compared to STFM.
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Figure 10. Unfairness (left) and system throughput (right) averaged (using geometric mean) over all 12 workloads run in the 16-core system

Summary: Table 4 summarizes our evaluation by comparing the geometric-mean of unfairness and system-throughput

of PAR-BS to the previous schemes. PAR-BS provides the lowest average stall time per request, which indicates that

it effectively reduces the average cost of a DRAM request on performance. Also, PAR-BS provides significantly lower

worst-case request latency than other QoS-aware techniques. We found that both NFQ and STFM can delay requests

from particular threads for a very long time in order to enforce fairness.16 In contrast, the batching component of PAR-BS

15The likelihood that mcf’s concurrent requests are serialized increases when 7 other threads are running together with it instead of 3.
16For example, STFM delays requests from threads that are estimated to be slowed down much less than others. Similarly, NFQdelays requests

of a thread to a bank, if the thread had used that bank very intensively for a long time and accumulated a large virtual deadline.
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achieves fairness while bounding the amount of time a thread’s requests can be delayed. PAR-BS consistently provides

better fairness and throughput than the best previous technique (STFM) for all examined systems.We conclude that

PAR-BS is very effective in providing the best fairness and highest system performance in 4-, 8-, and 16-core systems.
4-core system 8-core system 16-core system

Unf. WeightedHmean-spAST/reqWC lat. Unf. Weighted-spHmean-spAST/reqWC lat. Unf. Weighted-spHmean-spAST/reqWC lat.
FR-FCFS 3.12 1.70 0.43 374 18481 4.10 1.99 0.29 605 34655 4.99 3.62 2.93 968 35117
FCFS 1.64 1.53 0.45 364 13728 2.23 1.77 0.28 633 20114 3.06 3.23 2.69 964 36549
NFQ 1.56 1.73 0.47 346 19801 2.45 2.04 0.31 525 59117 3.74 3.75 2.93 774 88732
STFM 1.36 1.79 0.52 301 20305 1.41 2.11 0.34 484 57764 1.81 3.85 3.33 712 86577
PAR-BS 1.22 1.87 0.57 281 13866 1.31 2.20 0.37 457 25614 1.63 3.97 3.50 676 41115
∆ vs. STFM 1.11X 4.4% 8.3% 7.1% 1.46X 1.08X 4.3% 6.1% 5.9% 2.26X 1.11X 3.2% 5.1% 5.3% 2.11X

Table 4. STFM vs. others: unfairness (Unf.), throughput (weighted/hmean-speedup), AST/req, and worst-case request latency (WC lat.) over all workloads

8.3. Analysis
8.3.1. Effect of Marking-Cap Marking-Cap determines the duration of a batch by changing the number of requests

that are marked when a new batch is formed. Varying this parameter affects PAR-BS’s fairness and throughput properties

because it changes 1) the amount of row-buffer locality exploited, 2) the amount of delay unmarked requests experience,

and 3) the degree of bank-level parallelism that can be exploited.

Figure 11(left) shows the effect of varyingMarking-Cap from 1 to 20 and not usingMarking-Cap at all (no-c)

on unfairness and throughput averaged over the 100 workloads on the 4-core system. WhenMarking-Cap is smallest,

system throughput is at its lowest because the resulting batches are too small. For example, with a cap of 1, a thread can

have at most 1 request per bank in a batch. Such a small batch size significantly reduces our scheduler’s ability to 1)

exploit row-buffer locality and 2) find concurrent accessesfrom threads with high bank-parallelism. If, in a bank, Thread

A has 5 outstanding requests to one row, and Thread B has 5 requests to another row, a cap of 1 results in the interleaving

of Thread A and B’s requests because only 1 request to the bankcan finish from each thread in a batch. This interleaving

results in a row-conflict for each access and therefore significantly increases the latency experienced by each thread. In

contrast, with aMarking-Cap of 5, PAR-BS would service A’s 5 requests first and B’s 5 requests next with all accesses

except for the first from each thread being row-hits. A small cap also results in poor fairness because it penalizes threads

with high row-buffer locality (e.g. libquantum and matlab in Figure 11(middle) and (left)).
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Figure 11. Effect of Marking-Cap on unfairness and throughput (left);slowdowns for Case Study I (middle) and Case Study II (right)

As Marking-Cap increases, unfairness decreases and system throughput increases, until a certain point beyond

which unfairness increases due to two reasons. First, a large cap allows memory-intensive threads to insert more requests

into a batch and thus delays non-intensive threads that “miss” the formation of a batch. As such, a large cap penalizes less

memory-intensive threads as shown in memory slowdowns for GemsFDTD and xalancbmk in Figure 11(middle) and

for omnetpp and hmmer in Figure 11(right). Second, because PAR-BS prioritizes threads with high row buffer locality

within a batch, a large cap exacerbates the delay of requestsfrom threads with low row-buffer locality within a batch.

According to Figure 11(left) aMarking-Cap of 5 provides the best average system throughput (both weighted-

speedup and hmean-speedup) while providing very good fairness. Therefore, we use aMarking-Cap of 5 in our

experiments. Note that it is possible to improve our mechanism by making theMarking-Cap adaptive.
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8.3.2. Effect of Batching ChoiceFigure 12(left) compares the unfairness and throughput ofstatic batchingwith var-

ious choices forBatchDuration (varied from 400 to 25600 cycles),eslot batching, and full-batching as used in

PAR-BS, which were described in Section 4.4. Figure 12(middle) and (right) show the effect of the batching choice on

the threads’ memory-slowdowns in two case studies. On average, full batching provides the best fairness and throughput.

Static batching is unfair ifBatchDuration is too small (e.g. 400 or 800 cycles). Because most requests in the

request buffer become marked with a smallBatchDuration, the scheme prioritizes memory-intensive threads with

high row-buffer hit rates. Therefore, a smallBatchDuration effectively eliminates request batching and degenerates

to a row-hit-first, rank-first, oldest-first prioritizationpolicy, which (similar to FR-FCFS) penalizes less-intensive threads

with low row-buffer locality, as shown in Figure 12(middle)and (right)). Conversely, ifBatchDuration is too large,

most requests in the buffer are unmarked. This also effectively eliminates request batching and behaves similarly to

FR-FCFS. The sweet-spot in static batching is with aBatchDuration of 3200 cycles but this does not provide as

good performance or fairness as full batching since it is rigid/unadaptive and prone to starvation.

Eslot batching reduces the probability of penalizing non-intensive threads. Unfortunately, as shown in Figure 12(middle)

and (right), it penalizes memory-intensive threads too much by allowing requests from less intensive ones into a current

batch, which reduces the row-buffer hit rate of intensive threads. While this can result in system throughput improvement

in some cases (e.g. for Case Study II in Figure 12(right) – notshown in the figure), full batching provides better average

fairness and system throughput. We conclude that full batching is the most effective batching policy for PAR-BS.
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Figure 12. Effect of batching choice on unfairness and throughput; slowdowns for Case Study I (middle) and Case Study II (right)

8.3.3. Effect of Parallelism Awareness and Different Within-Batch Scheduling SchemesFigure 13(left) explores

the effect of changing the within-batch ranking scheme or removing it altogether and simply using FR-FCFS or FCFS to

prioritize among commands within a batch. We study three alternative within-batch ranking schemes, two of which do

not adhere to the shortest-job-first principle: therandomranking scheme assigns random ranks to threads when a batch

is formed; theround-robinscheme alternates the rank of each thread in a round-robin fashion in consecutive batches.

Figure 13(left) shows these alternative non-shortest-job-first within-batch scheduling techniques significantly degrade

both fairness and system throughput because they increase the average completion time of threads. Specifically, chang-

ing the ranking scheme fromMax-Totalor Total-Max (which perform similarly) to a random or round-robin ranking

scheme reduces weighted-speedup/hmean-speedup by respectively 5.7% and 9.8%. Using no ranking (i.e., FR-FCFS or

FCFS) within a batch completely eliminatesparallelism-awarenessfrom our proposal while keeping therequest batch-

ing component intact. The result is a decrease in both fairness and throughput. Using the FR-FCFS policy within a

batch results in a weighted-speedup/hmean-speedup loss of4.7% and 10.7% compared to PAR-BS. As expected, FCFS

provides better fairness than FR-FCFS but significantly worse throughput.

We conclude that parallelism-awareness is a key component of our proposal. However, even without parallelism-
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awareness, the concept of request-batching itself resultsin designs that are almost competitive with the best previously-

proposed scheduler, STFM. As Figure 13(left) shows, round-robin ranking within a batch achieves slightly worse fairness

and only 2.1%/1.5% smaller weighted-speedup/hmean-speedup than STFM.

Figure 13(middle and right) shows that the throughput improvement due to parallelism-aware prioritization is signif-

icant when threads have high inherent bank-level parallelism (4 copies of lbm), but negligible when threads have low

parallelism (4 copies of matlab). We conclude that the parallelism-awareness component of our proposal is independent

of the fairness component and it can be used to improve solelysystem throughput even when fairness is not a problem.
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Figure 13. Effect of within-batch scheduling policy on unfairness andthroughput; slowdowns for 4 copies of lbm (middle) and matlab (right)

8.4. Evaluation of Support for Thread Priorities

We evaluated PAR-BS’s support for thread priorities in a variety of scenarios and present two representative case stud-

ies to highlight its effectiveness. Figure 14(left) shows the memory slowdowns of 4 lbm programs with different weights

(for NFQ and STFM) and corresponding priorities (for PAR-BS). Two programs have a priority of 1 (corresponding to a

weight of 8 in NFQ/STFM) and two have priorities of 2 and 8. While all three schedulers respect the relative priorities

of threads, PAR-BS is much more efficient: it results in the lowest slowdown for the highest-priority programs because

it preserves their bank-parallelism. Lbm with priority 1 experiences a slowdown of 2.09 and 2.15 with NFQ and STFM,

but only 1.88 with PAR-BS. In addition, we found that PAR-BS provides higher system throughput even for low-priority

programs (e.g. the lowest-priority lbm has a much smaller slowdown with PAR-BS than with other schemes).
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Figure 14. Evaluation of PAR-BS vs. STFM and NFQ with different thread priorities/weights

Figure 14(right) presents a scenario in which omnetpp is themost important thread to the user whereas the other three

co-scheduled threads are not important. Therefore, the system software designates the other threads as “opportunistic,”

i.e. they should be serviced only when there is available bandwidth. As explained in Section 5, PAR-BS easily ac-

commodates this notion of “opportunistic service” by neverincluding these threads’ requests in a batch. For NFQ and

STFM, there is no notion of “opportunistic service,” so we approximated it by assigning a very large weight (8192) to the

high-priority omnetpp and very small weights (1) to low-priority threads.17 PAR-BS provides much higher throughput

to the high-priority thread. Omnetpp’s slowdown is only 1.04 with PAR-BS whereas it is 1.14 with STFM and 1.19 with

NFQ. Hence, from both examples, we conclude that PAR-BS treats higher-priority applications better than alternate

approaches for enforcing thread priorities/weights in theDRAM controller.

17Note that such a large range of weights might be difficult to implement in NFQ or STFM hardware, whereas PAR-BS’s ability tohandle
opportunistic threads is very easy to implement: it simply consists of not marking the requests of opportunistic threads.
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8.5. Sensitivity to System Parameters

Finally, Table 5 shows the effect of key system parameters onthe fairness and system throughput provided by PAR-BS

as compared to FR-FCFS and STFM (averaged over 100 workloadson the 4-core system). The results show that PAR-

BS consistently outperforms the best previous scheduler for different numbers of DRAM banks, memory latencies, row-

buffer/L2/instruction-window sizes. We conclude that PAR-BS is effective in a wide variety of system configurations.
DRAM banks Row-buffer Size Instruction Window Size

4 8 16 2 KB 4 KB 8 KB 32 128 512
Unf. Hmean-sp Unf. Hmean-sp Unf. Hmean-sp Unf. Hmean-sp Unf. Hmean-sp Unf. Hmean-sp Unf. Hmean-sp Unf. Hmean-sp Unf. Hmean-sp

FR-FCFS 3.23 0.35 3.12 0.43 2.72 0.49 3.12 0.43 3.93 0.34 5.01 0.28 2.69 0.48 3.12 0.43 3.36 0.41
STFM 1.33 0.44 1.36 0.52 1.32 0.61 1.36 0.52 1.35 0.51 1.34 0.50 1.33 0.59 1.36 0.52 1.29 0.47
PAR-BS 1.22 0.47 1.22 0.57 1.24 0.65 1.22 0.57 1.23 0.55 1.23 0.54 1.23 0.63 1.22 0.57 1.24 0.50
Improvement 1.09X 7.1% 1.11X 8.3% 1.07X 6.2% 1.11X 8.3% 1.10X 7.6% 1.09X 7.8% 1.08X 6.5% 1.11X 8.3% 1.04X 6.4%

Minimum DRAM Latency L2 Size

80 cycles 160 cycles 240 cycles Private 512 KB Private 1 MB Private 2 MB Shared 4MB Shared 8MB
Unf. Hmean-sp Unf. Hmean-sp Unf. Hmean-sp Unf. Hmean-sp Unf. Hmean-sp Unf. Hmean-sp Unf. Hmean-sp Unf. Hmean-sp

FR-FCFS 2.81 0.45 3.12 0.43 3.20 0.41 3.12 0.43 3.23 0.43 2.91 0.49 5.92 0.33 3.63 0.41
STFM 1.29 0.55 1.36 0.52 1.30 0.51 1.36 0.52 1.31 0.53 1.32 0.60 2.02 0.49 1.57 0.55
PAR-BS 1.21 0.60 1.22 0.57 1.20 0.55 1.22 0.57 1.23 0.57 1.23 0.64 1.90 0.53 1.47 0.59
Improvement 1.06X 8.4% 1.11X 8.3% 1.08X 7.8% 1.11X 8.3% 1.07X 7.6% 1.07X 7.0% 1.06X 7.7% 1.07X 7.3%

Table 5. Sensitivity of gmean unfairness (Unf.) and system throughput (hmean-speedup) of PAR-BS to various system parameters

9. Related Work

Fair DRAM Controllers: Fair and QoS-aware DRAM controller design in shared memory systems has received in-

creasing attention in the last two years. We already provided extensive qualitative and quantitative comparisons to two

very recently proposed DRAM controllers that aim to provideQoS, Nesbit et al.’s network-fair-queueing (NFQ) based

scheduler [27] and Mutlu and Moscibroda’s stall-time fair memory (STFM) scheduler [25]. Rafique et al. [30] proposed

an improvement to the NFQ scheme by employing start-time fair queueing, which provides better fairness than virtual

finish-time fair queueing. As explained in [25], while fair queueing is a good fairness abstraction forstatelessnetwork

wires without anyparallelism (i.e., banks), it is not directly applicable to DRAM systems because it does not take into

account row-buffer state and bank-parallelism, two critical determinants of DRAM performance. In comparison, our

design provides not only fairness, QoS, and starvation freedom but also significantly improves system throughput via

better intra-thread overlapping of DRAM accesses.

Iyer et al. [11] sketch a design that allows requests from only higher priority threads to bypass other requests in

the memory controller. However, their solution does not provide fairness to equal-priority threads. Several DRAM

controllers [19, 16] achieve hard real-time guarantees at the cost of a reduction in throughput and flexibility that is

unacceptable in high-performance general-purpose systems.

Batching: The general concept of “batching” has been used in disk scheduling [7, 38, 12] to prevent starvation of

I/O requests. We apply a similar concept,request batching, in our PAR-BS design and evaluate the trade-offs associated

with batching in DRAM controllers. However, the locality, bandwidth, parallelism trade-offs in DRAM memory are very

different from those in sequential-access disk drives since disk drives do not have 1) a banked structure or 2) row-buffers.

Parallelism Awareness: The concept of memory-level parallelism awareness was exploited in processor caches to

improve the cache replacement policy [29]. The authors observed that cache misses that are likely to be serviced in

parallel with other misses are less costly on processor performance than misses that occur in isolation. They proposed

a replacement policy that tries to keep costly blocks in the cache. Our proposal is orthogonal: it proactively tries to

improve the probability that cache misses from a given thread will be serviced in parallel and can 1) be used together

with and 2) improve the effectiveness of MLP-aware cache replacement.
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DRAM Throughput Optimizations: A number of papers examined the effect of different memory controller policies

and DRAM throughput optimizations in multiprocessor/multithreaded [26, 42] and single-threaded systems [32, 20, 31,

10, 33]. These techniques do not consider fairness or intra-thread bank-parallelism.

Fairness in On-Chip Resources:Proposed techniques for fair sharing of CMP caches (e.g., [37, 14]) and multithreaded

processor resources (e.g., [36, 18, 8]) are complementary to our work and can be used in conjunction with PAR-BS.

10. Conclusion
We introduced a novel, comprehensive solution to both high-performance and QoS-aware DRAM scheduler design.

Compared to existing DRAM schedulers, our parallelism-aware batch scheduler (PAR-BS) significantly improves both

fairness and system throughput in systems where DRAM is a shared resource among multiple threads. Our technique

combines two orthogonal ideas: 1) it provides thread-fairness and better prevents short-term and long-term starvation

through the use ofrequest batchingand 2) within a batch, it explicitly reduces average thread stall times via aparallelism-

aware DRAM scheduling policythat improves intra-thread bank-level parallelism, usingtheshortest job firstscheduling

principle. While effective at improving both fairness and system performance, PAR-BS is also configurable and simple

to implement. Our future work will focus on formally analyzing the parallelism, locality, and fairness properties of

PAR-BS to further refine the employed request prioritization heuristics.
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