Draft version - Final version to be published at ISCA 2008

Enhancing the Performance and Fairness of Shared DRAM Sysias with
Parallelism-Aware Batch Scheduling

Onur Mutlu Thomas Moscibroda
Microsoft Research

Abstract

In a chip-multiprocessor (CMP) system, the DRAM systemaseshamong cores. In a shared DRAM system, requests from
a thread can not only delay requests from other threads bgiogubank/bus/row-buffer conflicts but they can also dgstiher
threads’ DRAM-bank-level parallelism. Requests whosenleies would otherwise have been overlapped could efééctiecome
serialized. As a result both fairness and system througtegtade, and some threads can starve for long time periods.

This paper proposes a fundamentally new approach to desiganishared DRAM controller that provides quality of service
threads, while also improving system throughput. Our galsim-aware batch scheduler (PAR-BS) design is based orkéay
ideas. First, PAR-BS processes DRAM requests in batchasvap fairness and to avoid starvation of requests. Sectmndpti-
mize system throughput, PAR-BS employs a parallelismel@BAM scheduling policy that aims to process requests frthmead
in parallel in the DRAM banks, thereby reducing the memetgted stall-time experienced by the thread. PAR-BS saaiyilan-
corporates support for system-level thread priorities aad provide different service levels, including purely ogipnistic service,
to threads with different priorities.

We evaluate the design trade-offs involved in PAR-BS angamnit to four previously proposed DRAM scheduler designs o
4-, 8-, and 16-core systems. Our evaluations show that.ageer over 100 4-core workloads, PAR-BS improves fairnedsliiyx
and system throughput by 8.3% compared to the best prevahesisling technique, Stall-Time Fair Memory (STFM) scliedu
Based on simple request prioritization rules, PAR-BS is almpler to implement than STFM.

1. Introduction

The DRAM memory system is a major shared resource amongptaufirocessing cores in a chip multiprocessor
(CMP) system. When accessing this shared resource, différeeads running on different cores can delay each other
because accesses from one thread can cause additional DRAbNflicts, row-buffer conflicts, and data/address bus
conflicts to accesses from another thread. In addition, asheer in this paper, inter-thread interference can destroy
the bank-level access parallelism of individual threadeniry requests whose latencies would otherwise have been
largely overlapped effectively become serialized, whiah significantly degrade a thread’s performance. Moreover,
some threads can be unfairly prioritized, while other —ppehmore important— threads can be starved for long time
periods.

Such negative effects of uncontrolled inter-thread ietenfice in the DRAM memory system are crucial impediments
to building viable, scalable, and controllable CMP systasmshey can result in 1) low system performance and signif-
icant productivity loss, 2) unpredictable program perfanme, which renders performance analysis, optimizatiod, a
isolation extremely difficult [27, 22, 40, 25], 3) signifidagiscomfort to the end user who naturally expects threads
with higher (equal) priorities to get higher (equal) shasktthe system performance. As the number of cores on a chip
increases, the pressure on the DRAM system will also ineraad both the performance and fairness provided by the
DRAM system will become critical determinants of the penfiance of future CMP platforms. Therefore, to enable
viable, scalable, and predictable CMP systems, fair and-p&yformance memory access scheduling techniques that
control and minimize inter-thread interference are nearg97, 22, 25].

In this paper, we propose a new approach to providing fairtrégia-performance DRAM scheduling. Our scheduling
algorithm, calledparallelism-aware batch scheduling (PAR-BB)based on two new key ideaquest batchingnd
parallelism-aware DRAM scheduling-irst, PAR-BS operates by grouping a limited number of DRA#duests into

Draft version - Final version to be published at ISCA 2008

batchedased on their arrival time and requesting threads. Thesstgfrom the oldest batch are prioritized and therefore
guaranteed to be serviced before other requests. As suBhBBAsfair and starvation-freeit prevents any thread from
being starved in the DRAM system due to interference fronephotentially aggressive threads. Second, within a batch
of requests, PAR-BS pgarallelism-aware it strives to preserve bank-level access parallelism ¢he degree to which a
thread’s DRAM requests are serviced in parallel in diff¢i2RAM banks) of each thread in the presence of interference
from other threads’ DRAM requestdt does so by trying to group requests from a thread and setii@m concurrently
(as long as they access different banks) using heuristeebarioritization rules. As such, our approach reduces the
serialization of a thread’s requests that would otherwasestbeen serviced in parallel had the thread been running alo
in the memory system.

We show that theequest batchingomponent of PAR-BS is a general framework that provideadais and starvation
freedom in the presence of inter-thread interference. Wahbatch of DRAM requests, any existing and future DRAM
access scheduling algorithm (e.qg., those proposed in [32,73 25]) can be implemented. However, our results shotv tha
using our proposeparallelism-aware schedulinglgorithm provides the best fairness as well as system ¢fmout. We
describe how PAR-BS operates within a batch and analyzeotimplex trade-offs involved in batching and parallelism-
aware scheduling in terms of fairness, DRAM throughput,-tmfer locality exploitation, and individual threads’fia
level access parallelism. We also describe how the systémiase can control PAR-BS to enforce thread priorities and
change the level of desired fairness in the DRAM system.

Our experiments compare PAR-BS qualitatively and quaivéty to four previously proposed DRAM schedul-
ing techniques, including the recently-proposed QoS-awamtwork Fair Queueing based [27] (NFQ) and Stall-Time
Fair [25] (STFM) memory access schedulers, as well as Rxaemmonly used first-ready first-come-first-serve (FR-
FCFS) scheduler [31]. None of these schedulers try to presedividual threads’ bank-level parallelism or strictly
guarantee short-term starvation-freedom in the preseioées-thread interference. Our results on a very wideetstri
of workloads and CMP configurations show that PAR-BS pravithe best fairness and system throughput.
Contributions: We make the following contributions in this paper:

e We show that inter-thread interference can destroy bavi{-[garallelism of individual threads, thereby leading to
significant degradation in system throughput. We introcunevel parallelism-aware DRAM scheduling policy that
maintains the bank-level parallelism of individual threachile also respecting row-buffer locality.

e We introduce the concept eéquest batchingn shared DRAM schedulers as a general framework to prowdite f
ness/QoS across threads and starvation freedom to DRAMs&xjuWe show that request batching is orthogonal
to and can be employed with existing DRAM access schedulggyighms, but it is most beneficial when applied
with parallelism-aware scheduling. We describe how théesysoftware can control the flexible fairness substrate
provided by request batching to enforce thread prioritiebsta control the unfairness in the DRAM system.

e We qualitatively and quantitatively compare our schedtdefour previously proposed fairness- or throughput-
oriented schedulers and show that PAR-BS provides both ésefhirness and the best system throughput. Our
proposal is also simpler to implement than the best prelygu®posed memory access scheduler, Stall-Time Fair

LIn this paper, we refer to the bank-level parallelism of @#ut asntra-thread bank-level parallelismie use the terms bank-level parallelism
and bank-parallelism interchangeably. A quantifiable dkédim of bank-parallelism is provided in Section 7.

Draft version - Final version to be published at ISCA 2008

Memory Scheduler [25], in that it does not require compldrwdations, such as division.

2. Motivation

DRAM requests are very long latency operations that greatpact the performance of modern processors. When
a load instruction misses in the last-level on-chip cachikerageds to access DRAM, the processor cannot commit that
(and any subsequent) instruction because instructioranenitted in program order to support precise exceptiosp [3
The processor’s instruction window becomes full a few cy@éer a last-level cache miss [13, 24] and the processor
stalls until the miss is serviced by DRAM. Current processoy to reduce the performance loss due to a DRAM
access by servicing other DRAM accesses in parallel wiffeithniques like out-of-order execution [39], non-blogkin
caches [15], and runahead execution [5, 23] strive to opdha latency of future DRAM accesses with the current
access so that the processor does not need to stall (lonf))tfwe DRAM accesses. Instead, at an abstract level, the
processor stalls once for all overlapped accesses ratiesthlling once for each access in a serialized fashion [2¥g
concept of generating and servicing multiple DRAM accesgsesrallel is calledMemory Level ParallelisiMLP) [9].

The effectiveness of the aforementioned latency tolerdackniques depends on whether or not the concurrent
DRAM accesses are actually serviced in parallel by diffeBfRAM banks (i.e., whether or not intra-thread bank-level
parallelism is maintained). In a single-core systeaithread has exclusive access to the DRAM banks, so its aamtur
DRAM accesses are serviced in parallel as long as they artortbe same bank. This is illustrated in the simple,
conceptual example in Figure®1Requestl’s (Reql) latency is hidden by the latency of Requ&q0), effectively
exposing only a single bank access latency to the threaokepsing core. Once Req0 is serviced, the core can commit
Load 0 and thus enable the decode/execution of future etgins. When Load 1 becomes the oldest instruction in the
window, its miss has already been serviced and therefongrdeessor can continue computation without stalling.

Instruction window DRAM Controller Execution Timeline
(in Core) (service order) (in Core)

i causes
Oldest —=| Load Miss 0 Raqg Reql

q
G
T (R coneute)

ReqO

BANK 0 || BANK 1 Time.

Figure 1. Example showing how latencies of two DRAM requests are apged in a single-core system

Unfortunately, if multiple threads are generating memaguests concurrently (e.g. in a CMP system), modern

Service order

Load Miss 1| GUSES

DRAM controllers schedule the outstanding requests in ativaiycompletely ignores the inherent memory-level par-
allelism of threads. Instead, current DRAM controllerslasvely seek to maximize the DRAM data throughput, i.e.,
the number of DRAM requests serviced per second [32, 31]. &shlow in this paper, blindly maximizing the DRAM
data throughput does not minimize a thread’s stall-timadgtvdirectly correlates with system throughput). Even tjiou
DRAM throughput may be maximized, some threads can be dtallerly long if the DRAM controller destroys their
bank-level parallelism and serializes their memory ace®ssstead of servicing them in parallel.

The example in Figure 2 illustrates how parallelism-unamass can result in suboptimal CMP system throughput
and increased stall-times. We assume two cores, each guarsimgle thread, Thread 0 (TO) and Thread 1 (T1). Each

2\We assume, for simplicity and without loss of generalitgth core can execute one thread, and use the threedandcoreinterchangeably.
However, the ensuing discussion and our techniques areabld to cores that can execute multiple threads as well.

3This and subsequent figures abstract away many details BV system, such as the DRAM bus and timing constraints. él@s; these
are second order effects as bank access latency usuallyd@sithe latency of DRAM requests [3, 4], especially withidedDRAM data bus.

Draft version - Final version to be published at ISCA 2008

thread has two concurrent DRAM requests caused by congedntiependent load misses (Load 0 and Load 1), and the
requests go to two different DRAM banks. The figure showsdp)(how a current DRAM scheduler may destroy intra-
thread bank-parallelism, thereby increasing a threadlktitne, and 2) (bottom) how a parallelism-aware schedcda

H DRAM Controller Execution Timeline Stall Time

schedule the requests maore efficiently. (Service orden 1 (i Cores) 1 1
—_ 1, !

) Core OWWCOMPUTE] 2 Bank Latencies
o | |
CONVENTIONAL 3 | TO-Req0 TO- Reql‘ !
DRAM SCHEDULER g ,11-Reql !

2] 2 Bank Latencies

Core 1@ COMPUTE
Instruction window Instruction window BANK O || BANK 1 /_i//ﬁf/yo j’(
€q

(in Core 0) (in Core 1)

°y

Tim
i causes : causes
Load Miss 0 T0-ReqO) Load Miss 0 T1-Req0

Execution Timeline Stall Time

(in Cores)
T0-Reql

Saved
Core OW COMPUTE <oy des =

Load Miss 1| Sauses DRAM Controller

Load Miss 1| %%Li?'«(’eesql T1-Reql (service order)

1 Bank Latency

PARALLELISM-AWARE,

Service order
4,

I
| TO-Req0 .
DRAM SCHEDULER ! T1-Req1 |
BANK 0 || BANK 1 Core 1@ ST ComPUTE | 2 Bank Latencies
| T1-Req0 | |

>
-

Figure 2. Conceptual example showing the importance of includinglpelism-awareness in DRAM scheduTIiirr?a decisions

With a conventional parallelism-unaware DRAM schedulguch as any previously proposed scheduler [32, 31, 27,
25]), the requests can be serviced in their arrival ordewsha Figure 2(top). First, TO's request to Bank 0 is serviced
in parallel with T1’s request to Bank 1. Later, T1's requesBank 0 is serviced in parallel with TO's request to Bank 1.
This service order serializes each thread’s concurrentastq and therefore exposes two bank access latenciedito eac
core. As shown in the execution timeline (top right), insted stalling once (i.e. for one bank access latency) for the
two requests, both cores stall twice. Core O first stalls fuad 0, and shortly thereafter also for Load 1. Core 1 statls fo
its Load O for two bank access latencies.

In contrast, gparallelism-aware scheduleservices each thread’s concurrent requests in paralslltieg in the
service order and execution timeline shown in Figure 2@mjt The scheduler preserves bank-parallelism by first
scheduling both requests from TO in parallel, and then Tdcgiests. This enables Core 0 to execute faster (shown as
“Saved cycles” in the figure) as it stalls for only one bankessdatency. Core 1's stall time remains unchanged: althoug
its second request (T1-Reql) is serviced later than witaerdional scheduler, T1-ReqO still hides T1-Reql’s leyen

The crucial observation is thgiarallelism-aware request scheduling improves overaditem throughput because
one core now executes much fastire average core stall time is 1.5 bank access latenciésthgtparallelism-aware
scheduler (bottom) whereas it is 2 with the conventionagdaker (top)* While this example shows only two cores for
simplicity, the destruction of intra-thread bank-pandim becomes worse as more cores share the DRAM system.

Our goal: Our goal in this paper is to design a fair, QoS-aware memdrgduler that provides high system through-
put. Based on the observation that inter-thread interferelestroys the bank-level parallelism of the threads ngni
concurrently on a CMP and therefore degrades system thpotigie incorporate parallelism-awareness into the design
of our fair and high-performance memory access schedubathi$ end, we develop the key notionsrefluest batching

“Notice that the system throughput improvement would be #meesif the DRAM scheduler first serviced Core 1's requestsaimlfel, then
Core 0’s requests. In that case, Core 1 would only stall fangles bank access latency while Core 0’s stall time wouldaienthe same as with a
conventional scheduler. Similarly, system throughputl@iso improve if T1-Reg0 was to Bank 1 and T1-Reql was to Bank

Draft version - Final version to be published at ISCA 2008

andparallelism-aware request prioritizatignvhich we describe in detail in Section 4.

3. Background on DRAM Memory Controllers

This section gives a brief description of how modern SDRAMtens and controllers operate. The DRAM system is
presented at a level of abstraction that is sufficient to tstdad the terminology and key concepts of this paper. For a
detailed description, we refer the reader to [32, 4, 25].

A modern SDRAM chip consists of multiple DRAM banks to allowltiple outstanding memory accesses to proceed
in parallel if they require data from different banks. EadRAM bank is a two-dimensional array, consisting of columns
and rows. Rows typically store data in consecutive memargtions and are of 1-2KB in size. The data in a bank can
be accessed only from thlew-buffer, which can contain at most one row. A bank contains a singkelnaffer. The
amount of time it takes to service a DRAM request depends®stttus of the row buffer and falls into three categories:

e Row hit: The request is to the row that is currently open in the rowdsuiffhe DRAM controller needs to issue only
areador write command to the DRAM bank, resulting in a bank access latehty o(See Table 2).

e Row closed:There is no open row in the row buffer. The DRAM controller deo first issue aactivatecommand
to open the required row, therread/writecommand, resulting in a bank access latencyzefp + tcr..

e Row conflict: The request is to a row different from the one currently in v buffer. The DRAM controller
needs to first close the row by issuing@chargecommand, then open the required raetfvate, and then issue a
read/writecommand. These accesses incur the highest bank accesylafépp + trep + tor -

A DRAM controller consists of anemory request bufféhat buffers the memory requests (and their data) while they
are waiting to be serviced and a (possibly two-level) scledhat selects the next request to be serviced [32, 27, 25].
When selecting the next request to be serviced, the schrezhrgiders the state of the DRAM banks and the DRAM
buses as well as the state of the request. A DRAM command fegaest can be scheduled only if its scheduling
does not cause any resource (bank and address/data/corbosgnecbnflicts and does not violate any DRAM timing
constraints. Such a DRAM command is said tadady

Because of the large disparity in the latency incurred byvahia access and a row-conflict/closed access, state-of-
the-art DRAM controllers employ scheduling techniqued préoritize row-hit requests over other requests, inahgdi
younger ones. A modern memory controller employs the FRE-Qifst-ready first-come-first-serve) scheduling pol-
icy [32, 31], which prioritizeseadyDRAM commands from 1) row-hit requests over others and 2}hdwstatus being
equal, older requests over younger ones. Such a schedulimy pims to minimize the average service latency of
DRAM requests and thus maximize the data throughput olddireen the DRAM. For single-threaded systems, the
FR-FCFS policy was shown to provide the best average pediocen[32, 31], significantly better than the simpler FCFS
policy, which simply schedules all requests according &irtarrival order, regardless of the row-buffer state.

When multiple threads share the DRAM system, the FR-FCF8dadimg policy tends to unfairly prioritize threads
with high row-buffer locality(i.e. row-buffer hit rate) over those with relatively laaw-buffer localitydue to the row-
hit-first prioritization rule. It also tends to unfairly jritize memory-intensiveéhreads ovenon-intensivenes due to the
oldest-first prioritization rul€. As a result, even though FR-FCFS achieves high DRAM dataigfimput, it may starve

5A thread is more memory-intensive than another if it spendeeraycles per instruction waiting for DRAM requests. SeetiBa 7 for more.

Draft version - Final version to be published at ISCA 2008

requests/threads for long time periods, causing unfasraad relatively low overall system throughput [27, 22, 25].

Previous research [27, 22, 25] experimentally demonstthie unfairness of FR-FCFS and proposed new scheduling
policies that are fairer and that provide QoS to differeredals. Nesbit et al. [27] applied Network Fair-Queueing@)F
techniques to DRAM controllers in order to divide the DRAMnbavidth among multiple threads sharing the DRAM
system. Mutlu and Moscibroda [25] proposed a stall-timerfa@mory scheduler (STFM) that equalizes the slowdowns
experienced by threads as compared to when each one is mm d\wne of these previous scheduling policies take
into account intra-thread bank-parallelism, which—as1sa§ion 2—can significantly degrade system performance
when requests of different threads interfere in the DRAMeys

4. Parallelism-Aware Batch Scheduling Algorithm

Overview: Our proposed DRAM scheduling algorithm is designed to mtevi) a configurable substrate for fairness
and QoS and 2) high CMP system throughput by incorporatimglleism-awareness into scheduling decisions. To
achieve these goalParallelism-Aware Batch ScheduliffAR-BS) consists of two components. The first component
is arequest batching (BShr simplybatching component that groups a number of outstanding DRAM reguegi a
batch and ensures that all requests belonging to the curaéett are serviced before the next batch is formed. Batching
not only ensures fairness but also provides a convenienutgaty (i.e., a batch) within which possibly thread-unfa
but high-performance DRAM command scheduling optimizaican be performed. The second component of our
proposal,parallelism-aware within-batch scheduling (PAR)Ms to reduce the average stall time of threads within a
batch (and hence increase CMP throughput) by trying to seea@ch thread’s requests in parallel in DRAM banks.

After describing the two components separately, we disadsantages/disadvantages of our proposal compared to
existing DRAM schedulers and present possible alterndtggn choices in Sections 4.3 and 4.4, respectively.
4.1. Request Batching

The idea of batching is to consecutively group outstandatgiests in the memory request buffer into larger units
calledbatches The DRAM scheduler avoids request re-ordering acrosshbatby prioritizing requests belonging to
the current batch over other requests. Once all requestbatich are serviced (i.e., when the batch is finished), a new
batch is formed consisting of outstanding requests in thmong request buffer that were not included in the last batch.
By thus grouping requests into larger units according t@ #eival time, batching—in contrast to FR-FCFS and other
existing schemes—prevents request starvation at a vergfamilarity and enforces steady and fair progress acrbss al
threads. At the same time, the formation of batches allowthiflexibility to re-order requests within a batch in order
to maximally exploit row-buffer locality and bank-parditen without significantly disturbing thread-fairness.

The batching component (BS) of PAR-BS works as follows. Eaafuest in the memory request buffer has an
associated bit indicating whether the request belongsetodirent batch. If the request belongs to the current btiish,

bit is set, and we call the requestirked BS forms batches using the following rules:
Rule 1 PAR-BS Scheduler: Batch Formation
1: Forming a new batch: A new batch is formed when there are no marked requests lgfeimemory request buffer,
i.e., when all requests from the previous batch have beepletety serviced.
2: Marking: When forming a new batch, BS marks upNar ki ng- Cap outstanding requests per bank for each
thread; these requests form the new batch.

Draft version - Final version to be published at ISCA 2008

Mar ki ng- Cap is a system parameter that limits how many requests issuadirgad for a certain bank can be part
of a batch. For instance, Mar ki ng- Cap is 5 and a thread has 7 outstanding requests for a bank, PARaBI& only
the 5 oldest among them. If idar ki ng- Cap is set, all outstanding requests are marked when a new lsafoied.

PAR-BS always prioritizes marked requests (i.e., requaslisnging to the current batch) over non-marked requests
in a given bank. On the other hand, PAR-BS neither wastesviidtidnor unnecessarily delays requests: if there are
no marked requests to a given bank, outstanding non-magguests are scheduled to that bank. To select among
two marked or two non-marked requests, any existing or nevAldRcheduling algorithm (e.g., FR-FCFS) can be
employed. In PAR-BS, this “within-batch” scheduling comat is PAR, which we describe next.

4.2. Parallelism-Aware Within-Batch Scheduling (PAR)

Batching naturally provides a convenient granularity. (itee batch) within which PAR can optimize scheduling
decisions to obtain high performance. There are two maiaablps that this optimization should strive for. It should
simultaneously maximize ¥pw-buffer localityand 2) intra-threatbank-parallelismwithin a batch. The first objective
is important because if a high row-hit rate is maintainedhinit. batch, bank accesses incur smaller latencies on ayerag
which increases the throughput of the DRAM system. The sgtobijective is similarly important because scheduling
multiple requests from a thread to different banks in pafaffectively reduces that thread’s experienced staikti
Unfortunately, it is generally difficult to simultaneousdghieve these objectives—e.g. FR-FCFS sacrifices pasatlel
in lieu of row-buffer locality®

Our scheduling algorithm uses the request prioritizatides shown in Rule 2 to exploit both row-buffer locality and
bank parallelism. Within a batch, row-hit requests arenairzed. This increases row buffer locality and ensures$ aimg
rows that were left open by the previous batch’s requestsnaige the best possible use of in the next batch. Second,
requests from threads with highemk are prioritized over those from threads with lower rank toréase bank-level
parallelism, as explained in detail below. Finally, alleeleing equal, an older request is prioritized over a youager

Rule 2 PAR-BS Scheduler: Request Prioritization
1. BS—Marked-requests-first: Marked ready requests are prioritized over requests tkeat@rmarked.
2: RH—Row-hit-first: Row-hit requests are prioritized over row-conflict/closequests.
3: RANK—Higher-rank-first: Requests from threads with higher-rank are prioritizedr seguests from lower-
ranked threads.
4. FCFS—Oldest-first: Older requests are prioritized over younger requests.

Thread Ranking: PAR-BS uses aank-based thread prioritizatioscheme within a batch to maximize the intra-
thread bank-parallelism while maintaining row-buffer dtity. When a new batch is formed, the DRAM scheduler
computes a ranking among all threads that have requesteibatch. While the batch is processed, the computed
ranking remains the same and requests from higher-rankealdb are prioritized over those from lower-ranked threads
The effect of ranking-based scheduling is that differenédlds are prioritized in the same ordeross all banksand
thus, each thread’s requests are more likely to be serwcpdrallel by all banks.

How to Rank Threads Within a Batch: Although conceptually any ranking-based scheme enhanitemyatch
intra-thread bank-parallelism, the specific ranking pdore has a significant impact on CMP throughput and fairness.

8In fact, several combinatorial formalizations of this opiation problem can be shown to be NP-complete and hencEiciert algorithmic
solutions are expected to exist.

Draft version - Final version to be published at ISCA 2008

A good ranking scheme must effectively differentiate bewenemory-intensive and non-intensive threads (and
threads with high bank-parallelism). If a non-intensiveettd with few requests is ranked lower than an intensive
thread, its requests may be overly delayed within a batclexfsfained in [25], a fair DRAM scheduler should equalize
theDRAM-related slowdownf each thread compared to when the thread is running alotieessame memory system.
As a non-intensive thread or a thread with high bank-pdrsitieinherently has a low DRAM-related stall-time when
running alone, delaying its requests within a batch resnles much higher slowdown than it would for an intensive
thread, whose DRAM-related stall-time is already high ewden running alone. To avoid this unfairness (and loss of
system throughput as explained below), our ranking schernased on thshortest job firsprinciple [35]: it ranks the
non-intensive threads higher than the intensive ones.

Besides fairness, the key rationale behindghertest job firsprinciple is that it tends to reduce thwerage batch-
completion timeof threads within a batch.A thread’s batch-completion time is the time between theriréng of a
batch and the time the thread’s last marked request fromadtehhbs serviced. It directly corresponds to the thread’s
memory-related stall-time within a batch. By reducing thierage batch-completion timehortest job firsscheduling
improves overall system throughput as the threads stalfl@sDRAM requests, on average, thereby making faster
progress in the execution of their instruction streams.

Concretely, PAR-BS uses the followitdax-Total ranking scheméo compute each thread’s rank within a batch:

Rule 3PAR-BS Scheduler: Thread Ranking
1: Max rule: For each thread, the scheduler finds the maximum number d&emhaequests to any given bank, called
max-bank-load. A thread with a lower max-bank-load is rahkigher than a thread with a higher max-bank-load.
2. Tie-breaker Total rule: For each thread, the scheduler keeps track of the total nuofilmearked requests, called
total-load. If threads are ranked the same based on the Mexathread with a lower total-load is ranked higher
than a thread with a higher total-load.

The maximum number of outstanding requests to any banklatesewith the “shortness of the job,” i.e., with the
minimal memory latency that is required to serve all requfsin a thread if they were processed completely in parallel
A highly-ranked thread has few marked requests going todheesank and hence can be finished fast. By prioritizing
requests from such high-ranked threads within a batch, BE&Rnsures that non-intensive threads or threads with high
bank-parallelism make fast progress and are not delayeecessarily long.

Example: Figure 3 shows an example that provides insight into why oop@sed within-batch prioritization scheme
preserves intra-thread bank-parallelism and improvetesyshroughput. The figure abstracts away many details of
DRAM scheduling but provides a framework for understanding the paralleism locality trade-offs. We assume a
latency unit of 1 for row-conflict requests and 0.5 for row+eiquests. Figure 3(a) depicts the arrival order of reguest
in each bank, which is equivalent to their service order withFCFS scheduler. FCFS neither exploits locality nor
preserves intra-thread bank-parallelism and therefanaltisein the largest average completion time of the fouratise
(5 latency units). FR-FCFS maximizes row-buffer hit ratgsdordering row-hit requests over others, but as shown in
Figure 3(b), it does not preserve intra-thread bank-paisth. For example, although Thread 1 has only three reguest
that are all intended for different banks, FR-FCFS servadethree requests sequentially. Depending on the histbry o

"In the classic single-machine job-scheduling problem aadyrof its generalizations, shortest-job-first scheduingptimal in that it mini-
mizes the average job completion time [35].
8Such as DRAM data/address/command bus contention and epimpéractions between timing constraints.

Draft version - Final version to be published at ISCA 2008

Il Thread 1 [Z77] Thread 3

e S QI Thread2 [Thread 4 e

-
| 7 1] @]
-) — w2 U o
7 &% om o A 2% &

] | / /]
. 5 O = Z 7,
722 &] A, @ § 5 § |
Bank1 Bank2 Bank3 Bank4 Bank1 Bank2 Bank3 Bank4 Bank1 Bank2 Bank3 Bank4
(a) Arrival order (and FCFS schedule) (b) FR-FCFS schedule (c) PAR-BS schedule

[FCFS schedule batch-completion (stall) tiffje&R-FCFS schedule batch-completion (stall) tifje&R-BS schedule batch-completion (stall) tihes

Thread 1Thread 2Thread 3Thread 4 AVG ||[Thread 1Thread 2Thread 3Thread 4 AVG Thread 1Thread ZThread 3Thread 4 AVG
4 4 5 7 5 5.5 3 45 45 4.375 1 2 4 5.5 3.125

Figure 3. A simplified abstraction of scheduling within a batch contag requests from 4 threads. Rectangles represent maekeests from
different threads; bottom-most requests are the oldesiestg for the bank. Those requests that affect or resulwirhits are marked with the
row humber they access; if two requests to the same row ariesdrconsecutively, the second request is a row-hit withlEnaccess latency.

memory requests, the schedule shown in Figure 3(b) for FRS-E also a possible execution scenario when using the
QoS-aware NFQ [27] or STFM [25] schedulers since those sdbeslare unaware of intra-thread bank-parallelism.
Figure 3(c) shows how PAR operates within a batch. Threadslahanost one request per bank (resulting in the
lowest max-bank-load of 1) and is therefore ranked highretttis batch. Both Threads 2 and 3 have a max-bank-load of
two, but since Thread 2 has fewer total number of requestsréinked above Thread 3. Thread 4 is ranked the lowest
because it has 5 requests to Bank 4. As Thread 1 is rankedshjdiisehree requests are scheduled perfectly in parallel,
before other requests. Similarly, Thread 2's requests @redsiled as much in parallel as possible. As a result, PAR
maximizes the bank-parallelism of non-intensive threadkfaishes their requests as quickly as possible, allowieg t
corresponding cores to make fast progress. Compared todHSBr FCFS, PAR significantly speeds up Threads 1, 2,
and 3 while not substantially slowing down Thread 4. The agercompletion time is reduced to 3.125 latency units.
Notice that in addition to good bank-parallelism, our pregloachieves as good a row-buffer locality as FR-FCFS
within a batch, because within a batch PAR-BS always praarit marked row-hit requests over row-conflict requésts.
4.3. Advantages, Disadvantages, Trade-offs
Request Batchingcomponent of our proposal has the following major advargage
e Fairness and Starvation Avoidance:Batching guarantees the absence of short-term or longgtvation: every
thread can make progress in every batch, regardless of thmjeccess patterns of other thred8She number
of requests from a thread scheduled before requests ofamthitead is strictly bounded with the size of a batch.
Apart from FCFS, no existing scheduler provides a similaramoof starvation avoidance. In FR-FCFS, a memory-
intensive thread with excellent row-buffer locality carpttae a bank for a very long time, if it can issue a large
number of row-hit requests to the same bank in successioperiging on the history of access patterns, short-term
starvation is also possible in NFQ and STFM, especially dubdidleness and bank access balance probl§b$
associated with NFQ and inaccurate slowdown estimates FvVHP5]. In PAR-BS, memory-intensive threads are
unable to delay requests from non-intensive threads fon@ tione.

®However, this might not be the case across batches. PAR-B&dace locality at batch boundaries because marked tscaresprioritized
over row-hit requests. This locality reduction depends @ fargeMar ki ng- Cap is. Section 8.3 evaluates the trade-off$vaf ki ng- Cap.
Ostarvation freedom of “batched (or grouped) schedulings waven formally within the context of disk scheduling [7].

Draft version - Final version to be published at ISCA 2008

e Substrate for Exploiting Bank Parallelism: Batching enables the use of highly efficient within-batchestuling
policies (such as PAR). Without batches (or any similarartif groups of requests in time), devising a parallelism-
aware scheduler is difficult as it is unclear within what exitbank-parallelism should be optimized.

e Flexibility and Simple Implementation: While most beneficial in combination with PAR, the idea ofdbarig can
be used in combination with any existing or future DRAM conmah@cheduling policy. Batching thus constitutes a
simple and flexible framewaork that can be used to enhanceaiimets of existing scheduling algorithms. We explore
the performance and fairness of using FCFS and FR-FCF3gmiiéthin a batch in Section 8.3.3.

A possible disadvantage of our scheme is that it requirefdatetermination okar ki ng- Cap. If Mar ki ng- Cap
is large, PAR-BS could suffer from similar unfairness peshs as FR-FCFS, although not to the same extent. If a non-
memory-intensive thread issues a request that just misedsrtmation of a new batch, the request has to wait until all
requests from the current batch to the same bank are serwibéch slows down the non-intensive thread. On the other
hand, a smalMar ki ng- Cap can slow down memory-intensive threads, since at vastki ng- Cap requests per
thread and per bank are included in a batch, the remaining logi@g postponed to the next batch. There is a second
important downside to having small batch&se lower thévar ki ng- Cap, the lower the row-buffer hit rate of threads
with high inherent row-buffer localityAcross a batch boundary, a marked row-conflict request @ipried over an
unmarked row-hit request. The smaller the batches (thelembeMar ki ng- Cap), the more frequently a stream of
row-hit accesses can be broken in this way, which incredmeadcess time of requests. Section 8.3.1 analyzes in detail
the fairness and performance trade-offs of variaski ng- Cap settings.

Parallelism-Aware Within Batch Scheduling simultaneously achieves a high degree of bank-paralledisdhrow-
buffer locality, as described in the previous section. NweotDRAM scheduling scheme we know of optimizes for
intra-thread bank-parallelism. Consistent with the gaherachine scheduling theory [35], using tMex-Totalranking
scheme to prioritize threads with fewer requests reducesvkrage stall time of threads within a batch. While this
“shortest-job-first” principle may appear to unfairly péna memory-intensive threads, our experimental evabuatin
Section 8 show that this effect is not significant. There w@reasons: 1) the overlying batching scheme ensures a high
degree of fairness, 2) delaying a memory intensive threadlteein a relatively smaller slowdown since the inherent
DRAM-related stall-time of an intensive thread is higherithivi a batch, a scheduler should therefore freely optimize
for reduced stall-times by finishing threads with few andkbparallel requests as quickly as possible.

4.4. Design Alternatives

We have experimented with a variety of novel, alternativieliiag and within-batch scheduling schemes. We briefly
describe these schemes for completeness. Our evaluati@eziion 8 show that averaged over a large and varied set of
workload mixes, these alternative designs perform worae thur PAR-BS scheme.

The batching method in PAR-BS can be referred tdutishatching because it requires that a batch of requests be
completed in full before the next batch is started. Therealiegnative ways to perform batching.

Time-Based Static Batching: In this approach, outstanding requests are marked peaibdigsing a static time
interval, regardless of whether or not the previous batcbmspleted. The scheme is characterized by a system paramete
Bat ch- Dur at i on that describes at what time interval a new batch is formedh@&butset of a new batch, unmarked
requests are marked subject to tMer ki ng- Cap, while requests that are already marked from the previotshba

10

Draft version - Final version to be published at ISCA 2008

remain so. In comparison to PAR-BS, this batching approaas shot provide strict starvation-avoidance guarantees
and can lead to significant unfairness as we show in Sect®2.8.

Empty-Slot (Eslot) Batching: If in PAR-BS, a request arrives in the DRAM system slightlijeafa new batch was
formed, it may be delayed until the beginning of a new batelusing a large stall time especially for a non-intensive
thread. Empty-slot batching attempts to alleviate thibfgm by allowing requests to mdedto thecurrent batchif
less tharivar ki ng- Cap requests from that thread for the specific bank were markéatr sothe batch. In other words,
if at the time a new batch is formed, a thread does not utilizentire allotted share of marked requests (i.e. has “empty
slots”) within the batch, it is allowed to add late-cominguests to the batch until tiMar ki ng- Cap threshold is met.

Alternative Within-Batch Scheduling Policies: Within a batch, many different alternative request/comdnamori-
tization techniques can be employed. Aside fidigax-Totalranking, we have also evaluat&dtal-Max(where the order
of theMax ruleandTotal ruleis reversed)tandom andround-robinranking schemes. Furthermore, we have evaluated
using FCFS and FR-FCFS within a batch —without any rankimgisdlate the effect of parallelism-awareness in our
proposal. Section 8.3.3 describes the trade-offs involvigid alternative within-batch scheduling techniques.

5. Incorporating Thread Priorities and Software Support

We have so far described PAR-BS assuming that all threads é&awal priority and, in terms of fairness, should
experience equal DRAM-related slowdowns when run togetlibe system software (the operating system or virtual
machine monitor), however, would likely want to assign pties to threads to convey that some threads are more/less
important than others. PAR-BS seamlessly incorporatesdtien ofthread prioritiesto provide support for the system
software. The priority of each thread is conveyed to PARBt®ims ofpriority-levelsl, 2, 3, . . ., where levell indicates
the most important thread (highest priority) and a largenber indicates a lower priority. Equal-priority threadssh
be slowed down equally [25], but the lower a thread’s pryptite more tolerable its slowdown. We adjust PAR-BS in
two ways to incorporate thread priorities.

e Priority-Based Marking: Requests from a thread with priority are marked only everyth batch. For example,
requests from highest priority threads with letehre marked every batch, requests from threads with ek
marked every other batch, and so forth. The batching meshmaatherwise remains the same, i.e., a new batch is
formed whenever there are no marked requests in the buffer.

e Priority-Based Within-Batch Scheduling: An additional rule is added to the within-batch request fitization
rules shown in Rule 2. Between rulésBS- - - Mar ked-request s-first and2. RH--Row hit-first,
we add the new rul®RI ORI TY- - - Hi gher-priority-threads-first. Thatis, given the choice between
two marked or two unmarked requests, PAR-BS prioritizeselgeest from the thread with higher priority. Between
requests of equal-priority threads, other request pizatibn rules remain the same.

The effect of these two changes to PAR-BS is that highemipyithreads are naturally scheduled faster: they are naarke
more frequently and thus take part in more batches, and tegyrsritized over other requests within a batch.

Purely Opportunistic Service: In addition to the integer-based priority-levels, PAR-B@®vides one particular
priority-level, L, that indicates the lowest-priority threads. Requestsifeuch threads are never marked and they
are assigned the lowest priority among unmarked requestssdgjuently, requests from threads at Idvare scheduled

11

Draft version - Final version to be published at ISCA 2008

purely opportunistically—only scheduled if the memoryteys is free—to minimize their disturbance on other threads.
Finally, we provide the system software with the ability & 8har ki ng- Cap, which serves as a lever to determine
how much unfairness exists in the system (see Section 8.3.1)

6. Implementation and Hardware Cost

PAR-BS requires the implementation of batching (Rule 1)taedequest prioritization policy described in Section 4.2
(Rules 2 and 3). Modern FR-FCFS based controllers alreaglemment prioritization policies. Each DRAM request
is assigned a priority and the DRAM command belonging to tigadst priority request is scheduled amongraddy
commands. PAR-BS extends the priority of each DRAM requsisigutwo additional pieces of information: 1) whether
or not the request is marked, and 2) the rank of the threadetingest belongs to (usingax-Totalranking). To keep
track of this additional information, the scheduler regsithe additional state shown in Table 1. Assuming an 8-core
CMP, 128-entry request buffer and 8 DRAM banks, the extral\ware state, including request priorities, required to
implement PAR-BS (beyond FR-FCFS) is 1412 bits.

[Register [Description and Purpose | Size (additional bits) |
Per-request registers

Marked Whether or not the request is marked 1

Priority The priority of the request including marked status, rowstatus, thread rank, and requestltig, NumT hreads (3) See Figure?
Thread — ID ID of the thread that generated the request logy NumThreads (3)
Per-thread per-bank registersto compute Max rulein Max-Total ranking

ReqsInBankPerThread|Number of requests from this thread to this bank | log, RequestBuf ferSize (7)
Per-thread registersto compute Total rulein Max-Total ranking

ReqsPerThread [Number of total requests from this thread in the requesebuff | log, RequestBuf ferSize (7)
Individual registers

Total MarkedRequests |Number of marked requests in the request buffer (used tordete when to mark requests logy, RequestBuf ferSize (7)
Marking — Cap Stores the system-configuraldar ki ng- Cap value 5

Table 1. Additional state required for a possible PAR-BS implemgara

The countersikeqsInBankPerThread and ReqsPerThread are incremented/decremented when a new request
enters/leaves the memory request buffer. When a marke@ésegufully serviced, the DRAM controller decrements
Total M arkedRequests. WhenTotal M arked Requests reaches zero, the controller starts a new batch by 1) marking
the oldestvar ki ng- Cap requests per bank from each thread, 2) computing theMi@xvTotalranking of threads using
the ReqsInBankPerThread and Reqs PerThread registers. Thus, the additional logic required by PAR-B8ststs
of logic that 1) marks requests (marking logic), 2) detemsithread ranking (ranking logic), and 3) computes request
priorities based on marked-status and thread rank (pgation logic). Both marking and ranking logic are utilizedly
when a new batch is formed and implemented using prioritpders that take as input the relevant information in each
case. Prioritization logic takes as input the marked statwg hit status, thread rank, and request ID of a requestrto f
a single priority value (see FiguR®) for each request every DRAM cycle.

Notice that none of this logic is on the critical path of thegessor because an on-chip DRAM controller runs at a
higher frequency than DRAM and needs to make a schedulingideonly every DRAM cycle. Similar prioritization
policies have been implemented in instruction schedwhhgh are on the critical path. If needed, the marking/ragki
logic can take multiple cycles since marking/ranking iselonly when a new batch is formed.

PAR-BS is simpler to implement than the previous-best saleeSTFM, which requires significant logic, including
dividers, to estimate thread slowdowns [25]. In contrassTé-M, PAR-BS is based only on simple prioritization rules
that depend on request counts and therefore does not reguamgex arithmetic operations.

12

Draft version - Final version to be published at ISCA 2008

7. Experimental Methodology

based on Pin [17] and iDNA [1]. We model the memory system itaitlefaithfully capturing bandwidth limitations,

We evaluate our proposal using a cycle-accurate x86 CMPIaioru The functional front-end of the simulator is

contention, and enforcing bank/port/channel/bus cosflidable 2 shows the major DRAM and processor parameters.

We scale DRAM bandwidth with the number of cores.

Processor pipeline

4 GHz processor, 128-entry instruction window (64-entspissqueue, 64-entry store queue), 12-stage pipeline

Fetch/Exec/Commit width |3 instructions per cycle in each core; only 1 can be a memoeyation
L1 Caches 32 K-byte per-core, 4-way set associative, 64-byte blozk,2-cycle latency
L2 Caches 512 K-byte per core, 8-way set associative, 64-byte blank, gi2-cycle latency, 32 MSHRs

DRAM controller (on-chip)

FR-FCFS; 128-entry request buffer, 64-entry write datédoufeads prioritized over writes, XOR-based addressatiok mapping [6, 41]

DRAM chip parameters

Micron DDR2-800 timing parameters (see [2X}};,=15ns,t rc p=15nst g p=15ns,BL/2=10ns; 8 banks, 2K-byte row-buffer per bz

DIMM configuration

single-rank, 8 DRAM chips put together on a DIMM (dual indimemory module) to provide a 64-bit wide channel to DRAM

Round-trip L2 miss latency

For a 64-byte cache line, uncontended: row-buffer hit: 4088 cycles), closed: 60ns (240 cycles), conflict: 80ns 32{es)

Cores and DRAM bandwid

BDRAM channels scaled with cores: 1, 2, 4 parallel lock-steanmels for 4, 8, 16 cores (1 channel has 6.4 GB/s peak batigwid

We use the SPEC CPU2006 benchmarks and two Windows deskptipagions (Matlab and an xml parsing appli-
cation) for evaluatiort! Each benchmark was compiled using gcc 4.1.2 with -O3 opéitiias and run for 150 million

Table 2. Baseline CMP and memory system configuration

instructions chosen from a representative execution pl2&je

We classify the benchmarks into eight categories based @n mfiemory intensiveness (low or high), row-buffer

locality (low or high), and bank-level parallelism (low oigh). We define bank-level parallelism (BLP) as the average

number of requests being serviced in the DRAM banks wheretiseait least one request being serviced in the DRAM
banks. This definition follows the memory-level paralleli@LP) definition of Chou et al. [2]. We characterize a thread
based on thaverage stall time per DRAM request (AST/rawtric, which is computed by dividing the number of cycles
in which the thread cannot commit instructions because ldresbinstruction is a miss to DRAM by the total number of
DRAM load requests generated by the thréadable 3 shows the category and memory system charactsristibe

benchmarks when they run alone in one core of the baselimeed@MP. Note that benchmarks with high levels of BLP

also have relatively low AST/req. In all figures, benchmaates ordered based on their category in Table 3.

[# [Benchmark |

[Type]MCPI[L2 MPKI|RB hit rat§BLP]AST/redCategory|[# [Benchmark [[Typg MCPI[L2 MPKI[RB hit rat§BLP][AST/redCategory

1 |437.leslie3d FP |7.30 | 51.52 | 62.8% [1.90 139 | 7(111)|||15/453.povray |[FP [0.00 | 0.03 79.9% |1.75 123 3
2 |450.soplex FP 16.18 | 47.58 | 78.8% [1.81] 125 7 16|464.h264ref ||[INT |0.48 | 2.65 76.5% |1.29] 161 | 2(010)
3 |470.Ibm FP |3.57 | 43,59 | 61.1% (3.37] 77 7 17|445.gobmk |[INT |0.11 | 0.60 61.1% |1.46| 162 2
4 1482.sphinx3 FP |3.05 | 24.89 | 75.0% [1.89 117 7 18|447.dealll FP |0.07 | 0.41 90.3% |1.21] 133 2
5 |matlab DSK|[15.4 | 78.36 | 93.7% [1.08§ 192 | 6(110)|/|{19/444.namd |[FP [0.06 | 0.33 86.6% (1.27] 160 2
6 |462.libquantum|[INT {9.10 | 50.00 | 98.4% [1.10 181 6 20|481.wrf FP |0.05 | 0.28 83.6% (1.20| 164 2
7 1433.milc FP |4.65 | 3248 | 86.4% [1.51 139 6 21]454 calculix ||[FP [0.04 | 0.19 75.9% [1.30 157 2
8 |xml-parser DSK|2.92 | 18.23 | 95.3% |1.32 158 6 22|400.perlbencpINT |0.02 0.13 75.4% |1.69 128 2
9 |429.mcf INT [6.45 | 98.68 | 41.5% [4.75 63 |5(101)|/[23471.omnetpp||INT |1.96 | 22.15 | 26.7% |3.78) 86 | 1(001)
10/459.GemsFDTI)FP |4.08 | 29.95 | 20.4% |2.40 126 5 24{401.bzip2 INT |0.49 | 3.56 52.0% |(2.05 127 1
11]483.xalancbmk||INT [2.80 | 23.52 | 59.8% [2.27] 113 5 25|473.astar INT 1.82 9.25 50.2% (1.45 177 | 0(000)
12|436.cactusADM|FP [2.78 | 11.68 | 6.75% [1.60 219 | 4(100)||{26{456.hmmer [[INT [1.50 | 5.67 33.8% (1.26) 231 0
13|403.gcc INT [0.05 | 0.37 63.9% |1.87] 127 | 3(011)|||27|435.gromacs||FP [0.18 | 0.68 58.2% [1.04 220 0
14]465.tonto FP 0.02 | 0.13 70.7% |1.92 108 3 28|458.sjeng INT |0.10 | 0.41 16.8% [1.53 192 0

Table 3. Benchmark characteristics. MCPI: Memory Cycles Per Imsion (cycles spent waiting for memory divided by numbenftiuctions),
L2 MPKI: L2 Misses per 1000 Instructions, RB Hit Rate: Rowffbu hit rate, BLP: bank-level parallelism, AST/req: Avgmstall-time per
DRAM requestCategoriesare determined based on MCPI (1:High, O:Low), RB hit ratél{gh, O:Low), and BLP (1:High, 0:Low)

We evaluate combinations of multiprogrammed workloadsimgon 4, 8, and 16-core CMPs. For 4-core simula-

tions, we evaluated 100 different combinations, each ottwinas formed by pseudo-randomly selecting a benchmark

from each category such that different category combinatéye evaluated. For 8-core simulations, we evaluatedf416 di

13

11410.bwaves, 416.gamess, and 434.zeusmp are not includaddeewe were not able to collect representative tracebdan.t
12AST/req is similar to the average cost of an L2 cache miss;ritesi by Qureshi et al. [29], except AST/req is based ongssar stall time
rather than L2 miss latency.

Draft version - Final version to be published at ISCA 2008

ferent combinations; and for 16-core, 12 different comtiames. Space limitations prevent us from listing all evadoh
combinations, but we try to show as many results with remitagige individual combinations as possible in Sectids 8.
7.1. Evaluation Metrics

We measure fairness using tinefairness indeproposed in [25, 81# This is the ratio between the maximum memory-
related slowdown and the minimum memory-related slowdomoreg all threads sharing the DRAM system. The
memory related slowdown of a threads the memory stall time per instruction it experiences wheming together

with other threads divided by the memory stall time per indion it experiences when running alone in the same

MCPIfh“”d Un fai Ind max; MemorySlowdown,;
_—t nfairnessIndex =
MCPIglone 7

We measure system throughput usiigighted-SpeedyB6] andHmean-Speedud 8], which balances fairness and

throughput [18]: _ [PCghared 1
Weighted Speedup = 27: IPC;”O”S IPthaTEd/IPCglone
7.2. Evaluated Schemes: Parameters and Configuration
Our baseline controller uses the FR-FCFS scheduling polidl evaluated schedulers prioritize DRAM read re-

memory system:

M Slowd ; =
cmorystowdotm min; MemorySlowdown

, Hmean Speedup = NumThreads/ Z

quests over DRAM write requests because read requests itlylblock forward progress in processing cores and
are therefore more performance critical. Unless otheraiated, we use PAR-BS with a Marking-Cap of 5 in our ex-
periments. When comparing PAR-BS to other schedulers, wehesfollowing parametersSTFM: We seta = 1.10
and Interval Length = 22* as proposed by Mutlu and Moscibroda [29{FQ: We use Nesbit et al.’s best scheme
(FQ-VFTEF) [27], including its priority inversion preveoti optimization with a threshold @ 45 [27].

8. Experimental Results
8.1. Results on 4-core Systems

We first analyze the fairness and throughput of PAR-BS in @mspn to previously proposed DRAM scheduling
techniques using three case studies on 4-core systemsighght the typical behavior of different scheduling algo
rithms. Aggregate results over 100 workloads are providegkiction 8.1.4.
8.1.1. Case Study I: Memory-intensive workloadThis workload includes four memory-intensive benchmacdks
with very high bank-level parallelism (mcf). Figure 5()efthows the memory slowdown of each benchmark with

different memory schedulers. Figure 5(right) compareditieedifferent schedulers in terms of system throughput.
Unfairness5.26 1.72 1.71 1.42 1.07 2.0

g2 == |ibquantum I

== mcf

= GemsFDTD

== xalanchmk

= FR-FCF$
= FCFS
= NFQ
=STFM
=PAR-BS

rT 1Tt

TTTTITTTTTT
Speedup

cooopRrRRE

NHEPRODHP®

Memory Slowdown
OO ENNWWA RGO
ouIoUIOUTIOUIOUTIOUT

FR-FCFS — FCFS NFQ STFM PARBS %9 Weighted ~ Hmean _
Figure 5. A memory intensive 4-core workload: memory slowdowns anfdiamess (left), system throughput (right)

e FR-FCFS and FCFS: The commonly-used FR-FCFS schedulingypsivery unfair, slowing down the three less-
intensive benchmarks significantly more than libquanturcabee of libquantum’s very high row-buffer hit rate
(98.4%) and memory intensiveness. Such unfairness raautte lowest system throughput as cores running the
three less-intensive programs make very slow progress Sh@proves fairness over FR-FCFS because it prevents
libquantum’s row-buffer hit requests from being continsiywprioritized over other threads’ requests. Nonetheless

18Should the paper get accepted, we will post the evaluatedio@tions on a website that will be referenced in the paper.
14Gabor et al.’s fairness metric [8] is essentially the ineessMutlu and Moscibroda’s unfairness index [25].

14

Draft version - Final version to be published at ISCA 2008

FCFS still unfairly prioritizes memory-intensive libguam and mcf as their requests are more likely to be older than
other threads’ requests. Since the fairness and throughpuacteristics of both FR-FCFS and FCFS were analyzed
in detail in previous research [25], we concentrate ounaigprimarily on the other scheduling algorithms.

NFQ slightly improves fairness over FCFS, although it oyesliows down mcf (by 3.15X). Mcf has very high
bank-parallelism when run alone. NFQ’s scheduling pol&ctoibalance the requests from different threads in each
bank, without any coordination among banks. As the othexaiths have bursty access patterns in some banks, NFQ
prioritizes their requests over mcf’s requests in thos&bauring bursts (this is due to tieleness problermherent

in NFQ's design, as described in [25, 30]). Therefore, NF&mbys mcf’s bank-parallelism: in some banks mcf’s
requests are unhindered by requests from other threadie imhother banks, requests from the bursty threads are
prioritized. Mcf’s requests in these banks are delayetipaljh they could have been serviced in parallel with its
other requests. We found that mcf's BLP of 4.75 when run aledkeices to only 2.05 with NFQ and its average
stall-time per DRAM access (AST/req) increases from 64 & gi@cessor cycles.

STFM results in better fairness and throughput than alliptespolicies. However, it also penalizes (slows down)
mcf significantly, by 2.77X. This is due to two reasons. FiSTFM tries to provide fairness by estimating the
memory-slowdown of each thread and prioritizing requesisifthe threads that are slowed down the most. STFM
penalizes mcf because its heuristics to estimate mcf'sramtidoank-parallelism are not always accurate [25] and
hence, it underestimates mcf’s slowdown. Second, like NETEM is not parallelism-aware: it does not try to
service requests from a thread in parallel. Instead, itrpzes requests from threads that it estimates to have in-
curred the highest memory-slowdowns—in this case, libtirarand GemsFDTD. These threads’ requests often
take precedence over mcf’s requests in the banks they atessasing mcf's AST/req from 64 to 174 cycles.
PAR-BS provides both the best fairness and system throughpaduces unfairness from 1.42 (STFM) to 1.07, and
improves weighted-speedup by 4.4% and hmean-speedup%yddr STFM. TheRequest batchingomponent of
PAR-BS fairly distributes memory-slowdowns by effectiwebntaining libquantum’s impact on other threads. We
found that request batching is more effective and robustawiging fairness than both NFQ’'s and STFM's tech-
niques because it is not vulnerable to 1) itlenessandbank access balangaroblems of the NFQ approach [25],

2) incorrect estimation of thread slowdowns in the STFM apph. Parallelism-aware scheduling within a batch
allows PAR-BS to better exploit mcf’'s bank-parallelism, keepitgyAST/req at 146 cycles, lower than NFQ and
STFM. Consequently, PAR-BS slows down mcf (by 2.17X) lessitNFQ (3.15X) and STFM (2.77X).

8.1.2. Case Study II: Non-intensive workloadFigure 6 shows unfairness and throughput on a workload diirau

three non-intensive benchmarks and a single intensive ©né. one application (omnetpp) has high bank-parallelism

(3.78), which results in an average stall-time per DRAM asagf 86 cycles when omnetpp is run alone.

U

=3

cmonounonong

irmess:3.90 1.47 1.87 1.30 1.19 287
== matlab 8
== h264ref

== Omnetpp
== hmmer

TT T
Speedup
OOOOORHNN

¢
TTTTTTTT

Memory Slowdown
CORPRENMNNWWARMN
CRPOEOVRPEOR

F
Figure 6. A non-me

PAR-BS is the only scheduler that does not significantly peadhe thread with high bank-parallelism (omnetpp).

R-FCFS FCFS NFQ STFM PAR-BS — Weighte mean)
mory-intensive 4-core workload: memory slowdowand unfairness (left), system throughput (right)

NFQ and STFM reduce unfairness compared to FR-FCFS bedagpgasuccessfully mitigate the problems caused by

15

Draft version - Final version to be published at ISCA 2008

FR-FCFS’ rigid row-hit-first policy. However, neither NFQ@NSTFM can recover omnetpp’s loss in bank-parallelism
and both slow down this thread the most. In fact, NFQ is everenomfair than FCFS because its earliest-virtual-
deadline-first scheme prioritizes h264ref’s (and to a ledsgree also hmmer’s) bursty requests over omnetpp’s s¢gjue
in the banks they concurrently access [25]. This causes fpBeccesses that would otherwise proceed in parallel to
get out-of-sync and become serialized, which degrades fumpsg@erformance. The processor stalls for the bank access
latency of each access rather than amortizing this latepoyerlapping the latencies of multiple outstanding acegss
The result is an AST/req of 256 cycles for omnetpp. While STiieduces this measure to 182 cycles, it still overly
slows down omnetpp as it fails to optimize omnetpp’s baniaibelism and underestimates this thread’s slowdown. In
contrast, parallelism-aware PAR-BS reduces omnetpp’'s/&&Ess down to 150 cycles.

PAR-BS outperforms all existing schemes, achieving the taémess while also improving weighted-speedup and
hmean-speedup by 3.1% and 5.2% over STFM, respectivelyoritrast to the other schemes, it is the least memory-
intensive thread (h264ref) that is slowed down the most bRBS, but this thread’s slowdown is nonetheless smaller
than with the other schedulers. Some of h264ref’s lesasfrryrequests are likely to miss the formation of a batch, in
which case they are not serviced until the batch completesveder, this does not result in a large slowdown because
1) batches are quick to process due to the sillki ng- Cap of 5; we found that the average batch is completed in
1269 cycles, 2) even if h264ref’s requests are not markeyy, dine still serviced if there is no marked request for the
required bank, 3) because h264ref’s requests are infréqiey are prioritized within a batch due to ouilax-Total
thread ranking scheme; thus even if a request misses a batithbe serviced first in the next batch.

8.1.3. Case Study IIl: Memory-intensive benchmark with high bank-parallelism running with copies of itself
Our last case study is intended to explicitly demonstragepidwrallelism behavior of the PAR-BS scheduler. For this,
we minimize the variance among threads and run four iddntiggies of lom together on a CMP. As expected, all
schedulers are perfectly fair in this case (Figure 7(lefiyit they differ significantly in their memory-slowdown and
hence system throughput. FCFS drastically slows down eagh af lbm compared to FR-FCFS because it does not
exploit row-buffer locality. NFQ'’s performance is even werbecause it not only limits the row-buffer locality thahca
be exploited by the memory controller (using the priorityarsion optimization in [27]) but also frequently intexles
requests from different copies of Ibm to a bank to keep the@irdeadline of each Ibm copy in balance. This destroys
the row-buffer hit rate of each Ibm copy, reducing it from 618%0nly 31%, and therefore reduces system throughput
by 29.7%. STFM provides the same throughput as FR-FCFS bedtnever switches to a fairness-oriented scheduling
policy as it correctly estimates the unfairness in the sygtebe 1.

gUlz:ifg;irness:il_.OO 1.00 1.00 1.00 1.00 1:37 —FRFCFS.
S 301 — L
& 25 _uﬁ -

n 2.0]

g‘ 1.5

£ 1.0]

[

2 o5
0.0

== [bm
== [bm

FR-FCFS FCFS ~ NFQ STFM PAR-BS " Weighte;
Figure 7. A 4-core workload where unfairness is not a problem: memlmydowns and unfairness (left

r)1rjesa)r/]stem throughput (right)
PAR-BS achieves the best system throughput by servicinky kae's concurrent requests in parallel, reducing the

average stall-time a DRAM access inflicts upon a thread (f2@2 (FR-FCFS and STFM) and 322 (NFQ) to 199 cy-

cles). Therefore, PAR-BS improves both weighted- and hrspaedup by 8.6%. Hence, making the DRAM scheduler

parallelism-aware improves system throughput even iroamifapplication mixes where unfairness is not a problem.

16

Draft version - Final version to be published at ISCA 2008

8.1.4. 4-Core Experiments: Average Results-igure 8(left) compares the unfairness of the five schedwaeross 10
other diverse workloads as well as averaged over all the $@thimed workloads. Figure 8(right) shows the average
system throughput across 100 workloads. PAR-BS provid#sthe best fairness and the best throughput. Unfairness is
reduced from 1.36 (STFM) to 1.22. At the same time, systewutiinput is improved by 4.4% (weighted-speedup) and
by 8.3% (hmean- speedup) compared to the best previousfyeped schedullng scheme (STFM).

=FR-FCFS
=FCFS
=NFQ
=STFM
=PAR-BS

—FR-FCF3
= FCFS
= NFQ

= STFM
= PAR-BS

Speedup

N e

T T T T

Unfairness

: |bc£uamum \bm GemsFDTle uantum mallab

mietpp X arseromnetpp
chmne%_pp Gemd astal
omnetpp hmmer hmmer bzlp

es|
s

&

ie |x3lwbqua?lum I Ibm GMEAN

n.
Ly
|e§§ el alanchmk astar h%ﬂe!

ie3d omnetpp”gromacs hmmer gromacs

Weighted Hmean
Figure 8. Unfairness (left) and system throughput (right) averagesihgg geometric mean) over all 100 workloads run in the & sgstem

8.2. PAR-BS on 8-Core and 16-Core Systems
The DRAM system will become a bigger QoS and performancédmeitk as the number of cores sharing it increases.

We briefly examine the scalability of PAR-BS on 8-core andcbfe systems. Figure 9 shows an 8-core workload
consisting of 3 memory-intensive and 5 non-intensive apgibns. Mcf is the only program with very high inherent
bank-parallelism. All previous schedulers consistentiysdown mcf (by at least 3.5X) because they fail to contrel th
serialization of mcf’s concurrent DRAM accesses due tarfatence from the other seven applicatidh€On the other
hand, PAR-BS increases mcf’'s bank-level parallelism, cadpits slowdown to 2.8X (and its AST/access from 330

(NFQ) and 221 (STFM) to only 173 cycles). As a result, PAR-B&/mes both the best fairness and system throughput.
F}f@lrness4 78 4.54 3.21 1.66 1.39 51
6.07 —

= mcf
= xml :
= cactusADM3 S 25
= astar $ 2.
= hmmer 2 15
= h264ref
= gromacs
=bzip2

F|gure 9. A mixed 8-core workload memory slowdowns and unfairnest)(Isystem throughput (right)

Figure 10 provides unfairness and throughput results orl@ieore system for five sample workloads as well as

il
oy
f |
(@)
Q
(da)
T T T4

Memory Slowdown
OOREINNUS U
‘?‘P‘?‘P‘?‘P?‘P?‘F‘?‘P

averaged over all 12 workloads. PAR-BS reduces unfairness 1.81 (STFM) to 1.63, while improving weighted-
speedup by 3.2% and hmean-speedup by 5.1% compared to STFM.

=FR-FCFS

FCFS
= NFQ
= STFM
= PAR-BS

Unfairness
[EpE
ORNWAUID~NOOORN

15,69 9,13-22,24-28 intensivel6 middlel6 non-intensivelé GMEAN
13-22,27,28

eight
Figure 10. Unfairness (left) and system throughput (right) averagesihg geometric mean) over all 12 Workloads run in the 1@ sgstem

Summary: Table 4 summarizes our evaluation by comparing the georaetgian of unfairness and system-throughput
of PAR-BS to the previous schemes. PAR-BS provides the lbagesage stall time per request, which indicates that
it effectively reduces the average cost of a DRAM requesterfopmance. Also, PAR-BS provides significantly lower
worst-case request latency than other QoS-aware techmigle found that both NFQ and STFM can delay requests
from particular threads for a very long time in order to enéofairness® In contrast, the batching component of PAR-BS

The likelihood that mcf's concurrent requests are segdlincreases when 7 other threads are running togethertingtéad of 3.
%For example, STFM delays requests from threads that areatstil to be slowed down much less than others. Similarly, NEl@ys requests
of a thread to a bank, if the thread had used that bank vergsively for a long time and accumulated a large virtual dead|

17

Draft version - Final version to be published at ISCA 2008

achieves fairness while bounding the amount of time a tfseaduests can be delayed. PAR-BS consistently provides
better fairness and throughput than the best previous igpobr{STFM) for all examined system&Ve conclude that
PAR-BS is very effective in providing the best fairness agldst system performance in 4-, 8-, and 16-core systems.

4-core system 8-core system 16-core system

Unf. |WeighteqHmean-spAST/reqWC lat|| Unf. [Weighted-spHmean-spAST/reqWC lat|| Unf. |Weighted-spHmean-spAST/reqWC lat|
FR-FCFS 3.12| 1.70 0.43 374 |18481]| 4.10 1.99 0.29 605 | 34655]| 4.99 3.62 2.93 968 | 35117
FCFS 1.64| 1.53 0.45 364 | 13728|| 2.23 1.77 0.28 633 | 20114|| 3.06 3.23 2.69 964 | 36549
NFQ 156 1.73 0.47 346 | 19801|| 2.45 2.04 0.31 525 |59117(| 3.74 3.75 2.93 774 | 88732
STFM 1.36| 1.79 0.52 301 | 20305|| 1.41 2.11 0.34 484 | 57764 1.81 3.85 3.33 712 | 86577
PAR-BS 1.22| 1.87 0.57 281 |13866(| 1.31 2.20 0.37 457 | 25614|| 1.63 3.97 3.50 676 | 41115
Avs. STFM|[|1.11X 4.4% 8.3% 7.1% | 1.46X(|1.08X] 4.3% 6.1% 5.9% | 2.26X||1.11X] 3.2% 5.1% 5.3% | 2.11X

Table 4. STFM vs. others: unfairness (Unf.), throughput (weightet#an-speedup), AST/req, and worst-case request latéfCydt.) over all workloads
8.3. Analysis
8.3.1. Effect of Marking-Cap Mar ki ng- Cap determines the duration of a batch by changing the numbeuiasts

that are marked when a new batch is formed. Varying this parenaffects PAR-BS’s fairness and throughput properties
because it changes 1) the amount of row-buffer locality@igd, 2) the amount of delay unmarked requests experience,
and 3) the degree of bank-level parallelism that can be é@eplo

Figure 11(left) shows the effect of varyiddar ki ng- Cap from 1 to 20 and not usinlyar ki ng- Cap at all (no-c)
on unfairness and throughput averaged over the 100 workloathe 4-core system. Whehr ki ng- Cap is smallest,
system throughput is at its lowest because the resultirdhbatare too small. For example, with a cap of 1, a thread can
have at most 1 request per bank in a batch. Such a small bagsighificantly reduces our scheduler’s ability to 1)
exploit row-buffer locality and 2) find concurrent accessem threads with high bank-parallelism. If, in a bank, Tduate
A has 5 outstanding requests to one row, and Thread B has &3sgo another row, a cap of 1 results in the interleaving
of Thread A and B’s requests because only 1 request to thedzemfinish from each thread in a batch. This interleaving
results in a row-conflict for each access and therefore fgignily increases the latency experienced by each thread. |
contrast, with avar ki ng- Cap of 5, PAR-BS would service A's 5 requests first and B’s 5 retgiaext with all accesses
except for the first from each thread being row-hits. A smafl also results in poor fairness because it penalizes thread
with high row-buffer locality (e.g. Iibquanturn and matlabRigure 11(middle) and (left)).
[| =T CASE STUDY | e CASESTLEX e

=c=7
=c=8

kil
©
o

=c=3
=c=4
=c=5
=c=6
=c=7
=c=8
=c=9 =c=9

=c=10 =c=10
=c=20 =¢=20 0.5 =¢=20
=n0-C =no-c =no-C

C
[N
|

~

°

0

o

1

1S

o

Value of Metri
s o N
s & &
&
5 &
o
o
11
(=]

H
5

Memory Slowdown
S

Memory Slowdown

°

=
N
°

o
@

o o
o

0.0
Unfairness Weighted-Speedup Hmean-Speedup libquantum mcf GemsFDTD xalancbmk matlab h264ref omnetpp

Figure 11. Effect of Marking-Cap on unfairness and throughput (leftdywdowns for Case Study I (middle) and Case Study 11 (right)
As Mar ki ng- Cap increases, unfairness decreases and system throughpesisas, until a certain point beyond

which unfairness increases due to two reasons. First, @ tag allows memory-intensive threads to insert more reégues
into a batch and thus delays non-intensive threads thas"rtis formation of a batch. As such, a large cap penalizas les
memory-intensive threads as shown in memory slowdowns &m&DTD and xalancbmk in Figure 11(middle) and
for omnetpp and hmmer in Figure 11(right). Second, becaAseBS prioritizes threads with high row buffer locality
within a batch, a large cap exacerbates the delay of reqinesighreads with low row-buffer locality within a batch.

According to Figure 11(left) a/ar ki ng- Cap of 5 provides the best average system throughput (both vesigh
speedup and hmean-speedup) while providing very goodefsstn Therefore, we useMar ki ng- Cap of 5 in our
experiments. Note that it is possible to improve our medrarily making thévar ki ng- Cap adaptive.

18

Draft version - Final version to be published at ISCA 2008

8.3.2. Effect of Batching ChoiceFigure 12(left) compares the unfairness and throughpataiifc batchingwith var-
ious choices foBat chDur at i on (varied from 400 to 25600 cyclesgslot batching and full-batchingas used in
PAR-BS, which were described in Section 4.4. Figure 12(e)dand (right) show the effect of the batching choice on
the threads’ memory-slowdowns in two case studies. On geefall batching provides the best fairness and throughput

Static batching is unfair iBat chDur at i on is too small (e.g. 400 or 800 cycles). Because most requeskei
request buffer become marked with a snigdk chDur at i on, the scheme prioritizes memory-intensive threads with
high row-buffer hit rates. Therefore, a smB#Ht chDur at i on effectively eliminates request batching and degenerates
to a row-hit-first, rank-first, oldest-first prioritizatigrolicy, which (similar to FR-FCFS) penalizes less-intgaghreads
with low row-buffer locality, as shown in Figure 12(middk@d (right)). Conversely, Bat chDur at i on is too large,
most requests in the buffer are unmarked. This also effagtigliminates request batching and behaves similarly to
FR-FCFS. The sweet-spot in static batching is witBad chDur at i on of 3200 cycles but this does not provide as
good performance or fairness as full batching since it islfignadaptive and prone to starvation.

Eslot batching reduces the probability of penalizing natemsive threads. Unfortunately, as shown in Figure 12gha)d
and (right), it penalizes memory-intensive threads toomucallowing requests from less intensive ones into a ctirren
batch, which reduces the row-buffer hit rate of intensivealds. While this can result in system throughput improveme
in some cases (e.g. for Case Study Il in Figure 12(right) -shotvn in the figure), full batching provides better average
fairness and system throughput. We conclude that full liagdls the most effective batching policy for PAR-BS.

= St-400 us =st-400
6.0-H=st-800 - =5t-800

AVG =st400 |- 65]/=st-1600 || CASE STUDY | CASE STUDY II =5t-1600
=5st-800 | 5.01/=st-3200 .
=st-16001- S 45l
=st-3200 S 4ol
=5t-6400 |-
=5t-12800-
=5t-25600-
=eslot
=full = o]

=st-3200
=5t-6400
=st-12800

=5t-25600
=eslot
=full

L N S B

[l
°

S
©
>
Memory Slowdown

0+ 0.04 0.0
Unfairness Weighted-Speedup Hmean-Speedup libquantum mcf GemsFDTD xalancbmk matlab h264ref omnetpp

Figure 12. Effect of batching choice on unfairness and throughputygtawns for Case Study I (middle) and Case Study II (right)

8.3.3. Effect of Parallelism Awareness and Different Withi-Batch Scheduling Schemeg-igure 13(left) explores
the effect of changing the within-batch ranking scheme oranéng it altogether and simply using FR-FCFS or FCFS to
prioritize among commands within a batch. We study thresrdttive within-batch ranking schemes, two of which do
not adhere to the shortest-job-first principle: thedomranking scheme assigns random ranks to threads when a batch
is formed; theaound-robinscheme alternates the rank of each thread in a round-radfiiofain consecutive batches.

Figure 13(left) shows these alternative non-shortesffijgbwithin-batch scheduling techniques significantlgdele
both fairness and system throughput because they incrieased¢rage completion time of threads. Specifically, chang-
ing the ranking scheme fromiax-Total or Total-Max (which perform similarly) to a random or round-robin randin
scheme reduces weighted-speedup/hmean-speedup bytredpéc7% and 9.8%. Using no ranking (i.e., FR-FCFS or
FCFS) within a batch completely eliminatearallelism-awarenesom our proposal while keeping thhequest batch-
ing component intact. The result is a decrease in both fairnegsraoughput. Using the FR-FCFS policy within a
batch results in a weighted-speedup/hmean-speedup ldsg%fand 10.7% compared to PAR-BS. As expected, FCFS
provides better fairness than FR-FCFS but significantlysednroughput.

We conclude that parallelism-awareness is a key comporfemtrgoroposal. However, even without parallelism-

19

Draft version - Final version to be published at ISCA 2008

awareness, the concept of request-batching itself rasulissigns that are almost competitive with the best presheu
proposed scheduler, STFM. As Figure 13(left) shows, rowtiih ranking within a batch achieves slightly worse fagse
and only 2.1%/1.5% smaller weighted-speedup/hmean-spaédn STFM.

Figure 13(middle and right) shows that the throughput irapreent due to parallelism-aware prioritization is signif-
icant when threads have high inherent bank-level parsite(@ copies of Ibm), but negligible when threads have low
parallelism (4 copies of matlab). We conclude that the pelisin-awareness component of our proposal is independent
of the fairness component and it can be used to improve ssyshem throughput even when fairness is not a problem.

1.

LBM

== max-total(PAR-BS) 3.57
== total-max MATLAB
3.01

AVG

== max-total(PAR-BS)) 1.6
[| = total-max

H ==random
==round-robin

[| == no-rank(FR-FCFS]|
|| == no-rank(FCFS)
== STFM

167 |[== max-tot(PAR-BS)
=tot-max

H == random
==round-robin

|l == no-rank(FR-FCFS]
==no-rank(FCFS)

H e=STFM

| ==random
==round-robin

r == no-rank(FR-FCFS]
==ano-rank(FCFS)

[| =STFM

1.4

C
eoe
[S
b
N
o

=

il
"
il

o
®

o
®
N
o

Value of Metric
Value of Metric
o
S

Value of Metri
°

=4

>
"
o

o
=
°
=
o
o

0.2+

0.2

0.04 0.0
Unfairness Weighted- Speedup Hmean-Speedup Unfairness Weighted-Speedup Hmean-Speedup Unfairness Weighted- Speedup Hmean-Speedup

Figure 13. Effect of within-batch scheduling policy on unfairness @mughput; slowdowns for 4 copies of lom (middle) and rrta(laght)

8.4. Evaluation of Support for Thread Priorities
We evaluated PAR-BS’s support for thread priorities in aetgirof scenarios and present two representative case stud-

ies to highlight its effectiveness. Figure 14(left) shohs memory slowdowns of 4 lbm programs with different weights
(for NFQ and STFM) and corresponding priorities (for PAR)BEvo programs have a priority of 1 (corresponding to a
weight of 8 in NFQ/STFM) and two have priorities of 2 and 8. Wlall three schedulers respect the relative priorities
of threads, PAR-BS is much more efficient: it results in thedst slowdown for the highest-priority programs because
it preserves their bank-parallelism. Lbm with priority Jpexiences a slowdown of 2.09 and 2.15 with NFQ and STFM,
but only 1.88 with PAR-BS. In addition, we found that PAR-B®vides higher system throughput even for low-priority
programs (e.g. the lowest- prlorlty Ibm has a much smallawdbwn with PAR-BS than with other schemes).

- 100 0.4 — _ 45 7.3
H g-g = |bm-pril E 4'8
3 70 === |bm-pril g g'o,
8 6.0 === |bm-pri2 8 551 L
0; ig —— Ibm-pri8 "; 2.0 == libquantum-lo
S 301 S 1.5 41— ==milc-low
GE) 2.04 g 1.0 —fj=== omnetpp-high
S 10§ s 059 :lastar low
0.07 FR-FCFS NFQ-shares-8-8-4-1 STFM-weights-8-8-4-1 PAR-BS-pri-1-1-2-8 0.0- TFM-1-1-8K-1 PAR-BS-L-L-0-L

Figure 14. Evaluation of PAR-BS vs. STFM and NFQ W|th dlfferent threanbptleslwelghts
Figure 14(right) presents a scenario in which omnetpp isrtbst important thread to the user whereas the other three

co-scheduled threads are not important. Therefore, thersysoftware designates the other threads as “opportriisti
i.e. they should be serviced only when there is availablelwaith. As explained in Section 5, PAR-BS easily ac-
commodates this notion of “opportunistic service” by newmetuding these threads’ requests in a batch. For NFQ and
STFM, there is no notion of “opportunistic service,” so weeagximated it by assigning a very large weight (8192) to the
high-priority omnetpp and very small weights (1) to lowepity threads:’” PAR-BS provides much higher throughput
to the high-priority thread. Omnetpp’s slowdown is only4with PAR-BS whereas itis 1.14 with STFM and 1.19 with
NFQ. Hence, from both examples, we conclude that PAR-BSstrigigher-priority applications better than alternate
approaches for enforcing thread priorities/weights inDRAM controller.

"Note that such a large range of weights might be difficult tplement in NFQ or STFM hardware, whereas PAR-BS’s abilithamdle
opportunistic threads is very easy to implement: it simplgsists of not marking the requests of opportunistic trsead

20

Draft version - Final version to be published at ISCA 2008

8.5. Sensitivity to System Parameters

Finally, Table 5 shows the effect of key system parameteth®fairness and system throughput provided by PAR-BS
as compared to FR-FCFS and STFM (averaged over 100 worktoatise 4-core system). The results show that PAR-
BS consistently outperforms the best previous schedutalifierent numbers of DRAM banks, memory latencies, row-
buffer/L2/instruction-window sizes. We conclude that PBR is effective in a wide variety of system configurations.

[1 DRAM banks 1 Row-buffer Size 1 Instruction Window Size |
4 8 16 2KB 4 KB 8 KB 32 128 512

Unf. [Hmean-sp| Unf. [Hmean-sp| Unf. [Hmean-sp|| Unf. [Hmean-sp| Unf. [Hmean-sp| Unf. [Hmean-sp|| Unf. [Hmean-sp| Unf. [Hmean-sp| Unf. [Hmean-s
FR-FCFS 3.23] 0.35 3.12] 043 272 0.49 3.12] 043 3.93] 0.34 501 0.28 2.69] 0.48 3.12] 0.43 3.36] 041
STFM 1.33 0.44 1.36 0.52 1.32 0.61 1.36 0.52 1.35 0.51 1.34 0.50 1.33 0.59 1.36 0.52 1.29 0.47
PAR-BS 1.22 0.47 1.22 0.57 1.24 0.65 1.22 0.57 1.23 0.55 1.23 0.54 1.23 0.63 1.22 0.57 1.24 0.50
Improvemenf{[1.09X] 7.1% [[1.11X] 83% [[1.07X] 6.2% [[[1.11X] 8.3% [[1.10X] 7.6% [[1.09X] 7.8% |[[[1.08X] 65% [[1.11X] 8.3% [[1.04X] 6.4%

[il Minimum DRAM Latency 1 L2 Size |
80 cycles 160 cycles 240 cycles Private 512 KB|| Private 1 MB Private 2 MB Shared 4MB Shared 8MB

Unf. [Hmean-sfj Unf. [Hmean-sp| Unf. [Hmean-sp|| Unf. [Hmean-sp| Unf. [Hmean-sp| Unf. |Hmean-sp[Unf. |[Hmean-sp[Unf. |Hmean-s|
FR-FCFS 2.81| 045 3.12| 043 3.20| 041 3.12| 043 3.23| 043 291 049 592| 0.33 3.63| 041
STFM 1.29| 0.55 1.36| 0.52 1.30| 0.51 1.36| 052 1.31| 0.53 1.32| 0.60 2.02| 049 157 0.55
PAR-BS 1.21 0.60 1.22 0.57 1.20 0.55 1.22 0.57 1.23 0.57 1.23 0.64 1.90 0.53 1.47 0.59
Improvemen}|[1.06X] 8.4% [[1.11X] 8.3% [[1.08X] 7.8% 1.11X] 83% [[1.07X] 7.6% [[1.07X] 7.0% [[1.06X] 7.7% [[1.07X] 7.3%

Table 5. Sensitivity of gmean unfairness (Unf.) and system througipmean-speedup) of PAR-BS to various system parameters
9. Related Work

Fair DRAM Controllers: Fair and QoS-aware DRAM controller design in shared memgsyesns has received in-

creasing attention in the last two years. We already praveddgensive qualitative and guantitative comparisons to tw
very recently proposed DRAM controllers that aim to provigeS, Nesbit et al.'s network-fair-queueing (NFQ) based
scheduler [27] and Mutlu and Moscibroda’s stall-time fagmory (STFM) scheduler [25]. Rafique et al. [30] proposed
an improvement to the NFQ scheme by employing start-tinregia¢éueing, which provides better fairness than virtual
finish-time fair queueing. As explained in [25], while fameueing is a good fairness abstractiondtatelessetwork
wires without anyparallelism (i.e., banks)t is not directly applicable to DRAM systems because itslpet take into
account row-buffer state and bank-parallelism, two altdeterminants of DRAM performance. In comparison, our
design provides not only fairness, QoS, and starvatiordémeebut also significantly improves system throughput via
better intra-thread overlapping of DRAM accesses.

lyer et al. [11] sketch a design that allows requests frony dvidher priority threads to bypass other requests in
the memory controller. However, their solution does notvjate fairness to equal-priority threads. Several DRAM
controllers [19, 16] achieve hard real-time guaranteehatcost of a reduction in throughput and flexibility that is
unacceptable in high-performance general-purpose sgstem
Batching: The general concept of “batching” has been used in disk sdimgd[7, 38, 12] to prevent starvation of
I/0 requests. We apply a similar conceggtguest batchingn our PAR-BS design and evaluate the trade-offs assakiate
with batching in DRAM controllers. However, the localityamdwidth, parallelism trade-offs in DRAM memory are very
different from those in sequential-access disk drivesssitisk drives do not have 1) a banked structure or 2) row-taiffe
Parallelism Awareness: The concept of memory-level parallelism awareness waso#gdl in processor caches to
improve the cache replacement policy [29]. The authors rebdethat cache misses that are likely to be serviced in
parallel with other misses are less costly on processoopaence than misses that occur in isolation. They proposed
a replacement policy that tries to keep costly blocks in thehe. Our proposal is orthogonal: it proactively tries to
improve the probability that cache misses from a given thre#l be serviced in parallel and can 1) be used together
with and 2) improve the effectiveness of MLP-aware caché&uosment.

21

Draft version - Final version to be published at ISCA 2008

DRAM Throughput Optimizations: A number of papers examined the effect of different memontradler policies

and DRAM throughput optimizations in multiprocessotr/ritbleaded [26, 42] and single-threaded systems [32, 20, 31,
10, 33]. These techniques do not consider fairness or thtemd bank-parallelism.

Fairness in On-Chip ResourcesProposed techniques for fair sharing of CMP caches (e.g. . 1i8]) and multithreaded
processor resources (e.g., [36, 18, 8]) are complemeraanyrtwork and can be used in conjunction with PAR-BS.

10. Conclusion

We introduced a novel, comprehensive solution to both IpiglHfermance and QoS-aware DRAM scheduler design.
Compared to existing DRAM schedulers, our parallelism+awmtch scheduler (PAR-BS) significantly improves both
fairness and system throughput in systems where DRAM is gedlrasource among multiple threads. Our technique
combines two orthogonal ideas: 1) it provides thread-&ssnand better prevents short-term and long-term stanvatio
through the use aequest batchingnd 2) within a batch, it explicitly reduces average thraaliimes via gparallelism-
aware DRAM scheduling polidjat improves intra-thread bank-level parallelism, ushreshortest job firsscheduling
principle. While effective at improving both fairness arygtem performance, PAR-BS is also configurable and simple
to implement. Our future work will focus on formally analpgi the parallelism, locality, and fairness properties of

PAR-BS to further refine the employed request prioritizati@uristics.

References
[1] S. Bhansali et al. Framework for instruction-level irggand analysis of programs. WEE, 2006.
Y. Chou, B. Fahs, and S. Abraham. Microarchitectureroations for exploiting memory-level parallelism. IRCA-31 2004.
V. Cuppu, B. Jacob, B. T. Davis, and T. Mudge. A performaoomparison of contemporary DRAM architectureslSEA-26 1999.
B. T. Davis.Modern DRAM Architecture$*hD thesis, University of Michigan, 2000.
J. Dundas and T. Mudge. Improving data cache performbagqee-executing instructions under a cache mis¢CB-11 1997.
J. M. Frailong, W. Jalby, and J. Lenfant. XOR-Schemes:eXifile data organization in parallel memories|@iPP, 1985.
H. Frank. Analysis and optimization of disk storage @& for time-sharing system¥ournal of the ACM16(4):602—620, Oct. 1969.
R. Gabor, S. Weiss, and A. Mendelson. Fairness and thmmutgn switch on event multithreading. MICRO-39 2006.
A. Glew. MLP yes! ILP no! INnASPLOS Wild and Crazy Idea Session,’@&t. 1998.
10] I. Hur and C. Lin. Adaptive history-based memory scHetsi INMICRO-37 2004.
11] R.lyer et al. QoS policies and architecture for cactetrary in cmp platforms. ISIGMETRICS2007.
12] D. M. Jacobson and J. Wilkes. Disk scheduling algorgtyased on rotational position. Technical Report HPLCSR47 HP Labs, 1991.
13] T. Karkhanis and J. E. Smith. A day in the life of a datatemmiss. InSecond Workshop on Memory Performance ISs2@32.
14] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharingd partitioning in a chip multiprocessor architectuPACT-13 2004.
15] D. Kroft. Lockup-free instruction fetch/prefetch ¢ecorganization. INSCA-8 1981.
16] T.-C. Lin et al. Quality-aware memory controller for itimedia platform SoC. IREEE Workshop on Signal Processing Syste20€3.
17] C.-K. Luk et al. Pin: Building customized program argifytools with dynamic instrumentation. RLDI, 2005.
18] K. Luo, J. Gummaraju, and M. Franklin. Balancing thrbpgt and fairness in SMT processorsI&PASS2001.
19] C. Macian et al. Beyond performance: secure and fair otfgrmanagement for multiple systems on a chip=RiT, 2003.
20] S. A. McKee et al. Dynamic access ordering for streanmdputationsIEEE Transactions on Computer9(11):1255-1271, Nov. 2000.
21] Micron.1Gb DDR2 SDRAM Component: MT47H128M8HQ{2%y 2007. http://download.micron.com/pdf/datasheessh/ddr2/1GbDDR2.pdf.
22] T. Moscibroda and O. Mutlu. Memory performance attadBsnial of memory service in multi-core systemsUBENIX Security2007.
23] O. Mutlu et al. Runahead execution: An alternative topMarge instruction windows for out-of-order processdngAPCA-9 2003.
24] O. Mutlu, H. Kim, and Y. N. Patt. Efficient runahead exgion: Power-efficient memory latency tolerantieEE Micro, 26(1):10-20, 2006.
25] O. Mutlu and T. Moscibroda. Stall-time fair memory assescheduling for chip multiprocessors NMCRO-4Q 2007.
26] C. Natarajan et al. A study of performance impact of mgnuontroller features in multi-processor server envirent In\WMPI, 2004.
27] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smithr Gaeuing memory systems. MICRO-39 2006.
28] H. Patil et al. Pinpointing representative portiongasfe Intel Itanium programs with dynamic instrumentationMICRO-37 2004.
29] M. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A case fdLP-aware cache replacement.IBCA-33 2006.
30] N. Rafigue, W.-T. Lim, and M. Thottethodi. Effective mregement of DRAM bandwidth in multicore processorsPACT, 2007.
31] S. Rixner. Memory controller optimizations for webgers. INMICRO-37 2004.
32] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and JOiens. Memory access schedulingI8CA-27 2000.
33] J. Shao and B. T. Davis. A burst scheduling access reaglmechanism. IiHPCA-13 2007.
34] J. E. Smith and A. R. Pleszkun. Implementation of preaierrupts in pipelined processors.I8CA-12 1985.
35] W. E. Smith. Various optimizers for single stage pratitut. Naval Research Logistics Quarterly.59-66, 1956.
36] A. Snavely and D. M. Tullsen. Symbiotic jobschedulirg & simultaneous multithreading processoABPLOS-1X2000.

© 00~ 0T WN

37] G.E. Suh, S. Devadas, and L. Rudolph. A new memory mangscheme for memory-aware scheduling and partitiorittRCA-8 2002.
38] T.J. Teorey and T. B. Pinkerton. A comparative analg$idisk scheduling policiesCommunications of the ACM5(3):177-184, 1972.
39] R. M. Tomasulo. An efficient algorithm for exploiting rtiple arithmetic unitsIBM Journal of Research and Developmetit:25-33, 1967.
40] D. H. Woo et al. Analyzing performance vulnerabilityelto resource denialofservice attack on chip multiproaass$oCMP-MS| 2007.
41] Z.Zhang et al. A permutation-based page interleavatgeme to reduce row-buffer conflicts and exploit data Itdgdin MICRO-33 2000.
42] Z.Zhu and Z. Zhang. A performance comparison of DRAM roeyrsystem optimizations for SMT processorsHRCA-11, 2005.

22

