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ABSTRACT

In the symbol recognition stage of online handwritten math
expression recognition, the one-pass dynamic programming
algorithm can produce high-quality symbol graphs in addition
of the best recognized hypotheses [1]. In this paper, we ex-
ploit the rich hypotheses embedded in a symbol graph to dis-
criminatively train the exponential weights of different model
likelihoods and the insertion penalty. The training is investi-
gated in two different criteria: Maximum Mutual Information
(MMI) and Minimum Symbol Error (MSE). After discrim-
inative training, trigram-based graph rescoring is performed
in a post-processing stage. Experimental results finally show
a 97% symbol accuracy on a test set of 2,574 written expres-
sions with 43,300 symbols, a significant improvement of sym-
bol accuracy obtained.

Index Terms— Handwritten math formula recognition,
symbol recognition, symbol graph, discriminative training,
graph rescoring

1. INTRODUCTION

In our previous work, a one-pass dynamic programming based
symbol decoding and graph generation algorithm for online
handwritten mathematical expression recognition was proposed
[1]. It embeds segmentation into symbol identification to
form a unified framework for symbol recognition. Besides
the accurately recognized hypotheses, it can produce high-
quality symbol graphs as well. During the decoding, there
are six knowledge sources participating in the search. Similar
to the language model scale factor and the insertion penalty
adopted in speech recognition, exponential weights of differ-
ent model likelihoods and the symbol insertion penalty should
also be considered. In the previous system, the parameters are
manually tuned. This process is very time and computation
consuming. In this paper we would like to train them in an
automatic way.

As having been proved in speech recognition, graph based
discriminative training and post-processing are very useful to
improve system performance. Along with the proposal of the
framework for graph based discriminative training [2], it be-
comes more and more popular due to its efficiency and effec-

tiveness. In this paper, we take full advantage of the symbol
graph in improving the symbol recognition engine in an on-
line handwritten math expression recognition system.

First, graph based discriminative training algorithm is pro-
posed for the exponential weights of different model likeli-
hoods and the insertion penalty, rather than for Hidden Markov
Model (HMM) parameters in speech recognition. In compar-
ison with the N-best list based discriminative training, graph
based discriminative training is much more efficient due to
the compact encoding method of alternative hypotheses. A
framework for graph based discriminative training of HMM
parameters could be found in Daniel Povey’s thesis [2]. The
Maximum Mutual Information (MMI) criterion showed its
effectiveness in improving word error rates in Large Vocab-
ulary Continuous Speech Recognition (LVCSR). Povey also
presented a new discriminative training technique called Min-
imum Phone Error (MPE). This consistently gives better re-
sults than MMI, and appears to be a promising technique for
discriminative training. In this paper, we focus on two train-
ing criteria: MMI and Minimum Symbol Error (MSE) whose
concept is similar to MPE.

After the discriminative training of decoding parameters,
symbol graph rescoring is applied in a post-processing stage.
This provides an opportunity to further improve symbol accu-
racy by using more complex information that is difficult to be
used in the one-pass decoding. In this paper, we rescore the
symbol graph by introducing trigram syntax model probabil-
ities.

2. SYMBOL DECODING ALGORITHM [1]

Under the assumptions that a user always writes a symbol
without any insertion of irrelevant strokes before he finishes
the symbol and each symbol can have at most ofL strokes,
a dynamic programming algorithm is feasible to be used in
searching of an optimal symbol sequence within an affordable
search space.

The goal of symbol decoding is to find out a symbol se-
quenceŜ that maximize a posterior probabilityP (S|O) given
a sequence of input strokesO = o1o2 · · · oN , over all possi-
ble symbol sequencesS = s1s2 · · · sK . HereK, which is un-
known, is the number of symbols in a symbol sequence, and



sk represents a symbol belonging to a limited symbol setΩ.
As proposed in [1], two hidden variables are introduced into
the search, which makes the Maximum A Posterior (MAP)
objective function become

Ŝ = arg max
B,S,R

P (B, S, R|O) = arg max
B,S,R

P (O, B, S, R) (1)

whereB = (b0 = 0) < b1 < b2 < · · · < (bK = N) denotes
a sequence of stroke indexes corresponding to symbol bound-
aries (the end stroke of a symbol), andR = r1r2 · · · rK rep-
resents a sequence of spatial relations between every two con-
secutive symbols. The second equal mark is satisfied because
of the Bayes theorem.

By taking into account the knowledge sources used in [1],
the MAP objective could be expressed as

P (O, B, S, R) = P (O|B, S, R)P (B|S, R)P (S|R)P (R)
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whereD = 6 represents the number of knowledge sources
in the search and the probabilitiespk,i for i being 1 to 6 are
defined as
pk,1 = P (o(k)

i |sk) : symbol likelihood

pk,2 = P (o(k)
g |sk) : grouping likelihood

pk,3 = P (o(k)
r |rk) : spatial relation likelihood

pk,4 = P (bk − bk−1|sk) : duration probability
pk,5 = P (sk|sk−1, rk) : syntax structure probability
pk,6 = P (rk|rk − 1) : spatial structure probability

A one-pass dynamic programming (DP) search of the op-
timal symbol sequence is then applied through the state space
defined by the knowledge sources. Afterwards, single best re-
sults could be obtained. To generate symbol graph, we only
need memorize all symbol sequence hypotheses recombined
into each symbol hypothesis for each incoming stroke, rather
than just the best surviving symbol sequence hypothesis in
the single best method. For the search algorithm, a detailed
description can be found in [1].

In speech recognition systems, there is an exponential weight
between acoustic model likelihood and language model prob-
ability so as to make the system benefit from both on a cer-
tain scale (equalize and weight acoustic and language model
likelihood contributions). In addition, an insertion penalty is
always set to balance the insertion and deletion errors in the
results. The traditional method to determine these parameters
is to tune them on a development set to minimize the recog-
nition error, since the parameters are few and manually tun-
ing is easy. Soonget al proposed a Generalized Word Poste-
rior Probability (GWPP) based method to search the optimal
weights on the word verification error surface [3]. However,
this is just feasible for low-dimensional search space.

In this paper, we assign different exponential weights to
different model likelihoods and add an insertion penalty in
symbol decoding to improve system performance. By doing
this, the MAP objective in Equation (2) becomes

Pw(O, B, S, R) =
QK

k=1

�QD
i=1 pwi

k,i × I
�

=
QK

k=1 pk (3)

wherepk is defined as a combined score of all knowledge
sources and the insertion penalty for thek’th symbol in a sym-
bol sequence

pk =
QD

i=1 pwi
k,i × I (4)

wi represents the exponential weights of thei’th model like-
lihoodpk,i andI stands for the insertion penalty. The parame-
ter vector needs to train is expressed asw = [w1, w2, · · · , wD, I]T .

In previous experiments in [1], we used a set of manu-
ally tuned parameters, while in this paper, we discriminatively
train them on a training set.

3. DISCRIMINATIVE TRAINING

Discriminative training attempts to optimize the system per-
formance by formulating an objective function that in some
way penalizes parameter sets that are liable to confuse correct
and incorrect answers. In this case, discriminative training
requires a set of competing symbol sequences for one writ-
ten expression. In order to speed up computation, the generic
symbol sequences can be represented by only those that have
a reasonably high probability. A set of possible symbol se-
quences could in principle be represented by an N-best list,
that is, a list of theN most likely symbol sequences. A much
more efficient way to represent them, however, is a symbol
graph. This stores the alternative symbol sequences in the
form of graph in which the arcs correspond to symbols and
symbol sequences are encoded by the paths through the graph.

One advantage of using graphs is that the same graph can
be used for each iteration of discriminative training. This
separates the most time-consuming aspect of discriminative
training, which is to find the most likely symbol sequences,
and makes it only necessary to do once. This approach as-
sumes that the initially generated graph covers all the symbol
sequences that will have a high probability even given the pa-
rameters generated during later iterations of training. If this
is not true, it will be helpful to regenerate graphs more than
once during the training.

In this paper, we carry out discriminative training based
on the symbol graphs generated through symbol decoding.
There is no graph regeneration during the whole training pro-
cedure, that is, symbol graphs are used repeatedly.

3.1. Algorithm

Suppose that there areM training expressions. For train-
ing file m, 1 ≤ m ≤ M , let us denote the stroke sequence



with Om, the reference symbol sequence withSm, and the
reference symbol boundaries withBm. No reference spatial
relations are used here since we only care segmentation and
symbol recognition quality. Hereafter, a symbol being correct
means both its boundaries and symbol identity being correct,
while a symbol sequence being correct indicates all symbol
boundaries and identities in the sequence being correct. As-
sumeS, B andR to be any possible symbol sequence, sym-
bol boundary sequence and spatial relation sequence, respec-
tively. Probability calculations in the training are carried out
with probabilities scaled by a factor ofκ. This is important if
discriminative training is to lead to good test-set performance
[4].

Two training criteria are adopted in this paper, they are
Maximum Mutual Information (MMI) and Minimum Sym-
bol Error (MSE). In objective optimization, the quasi-Newton
method is used to find local optimal of the functions. There-
fore, derivative of the objective with respect to each parame-
ter must be produced. All these objectives and derivatives can
be efficiently calculated via the Forward-Backward algorithm
[5] based on symbol graph.

3.1.1. MMI criterion

The MMI training was proposed as a discriminative training
criterion which would maximize the mutual information be-
tween the training symbol sequence and the observation se-
quence. Its objective function can be expressed as a difference
of joint probabilities

FMMI(w) =
PM

m=1 log
P

R Pw(Om,Bm,Sm,R)κP
B,S,R Pw(Om,B,S,R)κ (5)

ProbabilityPw(O, B, S, R) is defined as in (3). The MMI
criterion equals the posterior probability of the correct symbol
sequence, that is

FMMI(w) =
PM

m=1 log Pw(Bm, Sm|Om)κ

Substituting Equation (3) into (5), we have

FMMI(w) =
PM

m=1 log
P

R

QK
k=1 pκ

m,kP
B,S,R

QK
k=1 pκ

k

(6)

wherepm,k is the same withpk except that the former corre-
sponds to the reference symbol sequence of them’th training
data.

In the condition that all hypothesized symbol sequences
are encoded by a symbol graph, the graph based MMI crite-
rion can be formulated as

FMMI(w) =
PM

m=1 log
P

Um

Q
e∈Um

pκ
eP

U

Q
e∈U pκ

e
(7)

whereUm denotes a correct path in the graph for them’th
file, U represents any path in the graph,e ∈ U stands for

an edge belonging to pathU , andpe is the combined score
with respect to edgee. By comparing equations (6) and (7),
one can found thatpe andpk are the same thing of different
notations.

The denominator of Equation (7) is a sum of the path
scores over all hypotheses. Given a symbol graph, it can be
efficiently calculated by the Forward-Backward algorithm as
α0β0. While the nominator is a sum of the path scores over
all correct symbol sequences. It can be calculated within the
sub-graphG′ constructed just by correct paths in the original
graphG. Assume that the forward and backward probabili-
ties for the sub-graph areα′ andβ′, then the nominator can
be calculated asα′0β

′
0. Finally, the objective becomes

FMMI(w) =
PM

m=1 log
α′0β′0
α0β0

The derivatives of the MMI objective function with re-
spect to the exponential weights and the insertion penalty can
then be calculated as:
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In the derivatives,αe andβe indicate the forward and back-
ward probabilities of edgee.

3.1.2. MSE criterion

The Minimum Symbol Error (MSE) criterion is directly re-
lated to Symbol Error Rate (SER) which is the scoring crite-
rion generally used in symbol recognition. It is a smoothed
approximation to the symbol accuracy measured on the out-
put of the symbol recognition stage given the training data.
The objective function in MSE, which is to be maximized, is:

FMSE(w) =
PM

m=1

P
B,S Pw(B, S|Om)κA(BS, BmSm) (8)

wherePw(B, S|Om)κ is defined as the scaled posterior prob-
ability of a symbol sequence being the correct one given the
weighting parameters. It can be expressed as

Pw(B, S|Om)κ =
P

R Pw(Om,B,S,R)κP
B,S,R Pw(Om,B,S,R)κ (9)

A(BS,BmSm) in Equation (8) represents the row accuracy
of a symbol sequence given the reference for them’th file,
which equals the number of correct symbols



A(BS, BmSm) =
PK

k=1 ak, ak =
n 1 sk, bk−1, bk are correct

0 otherwise

The criterion is an average over all possible symbol se-
quences (weighted by their posterior probabilities) of the raw
symbol accuracy for an expression. By expandingPw(B, S|Om)κ,
Equation (8) can be expressed as:

FMSE(w) =
PM

m=1

P
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Similar to the graph based MMI training, the graph based
MSE criterion has the form

FMSE(w) =
PM

m=1

P
U

Q
e∈U pκ

e

P
e∈U,e∈C 1P

U

Q
e∈U pκ

e
(10)

whereC denotes the set of correct edges. By changing the
order of sums in the nominator, Equation (10) becomes

FMSE(w) =
PM
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P
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The second sum in the nominator indicates the sum of the
path scores over all hypotheses that passe. It can be calcu-
lated from the Forward-Backward asαep

κ
eβe. The final MSE

objective can then be formulated by the forward and back-
ward probabilities as

FMSE(w) =
PM

m=1

P
e∈C αepκ

e βe

α0β0
(12)

It equals the sum of posterior probabilities over all correct
edges.

For the quasi-Newton optimization, the derivatives of the
MSE objective function with respect to the exponential weights
and the insertion penalty can be calculated as
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Hereα(e) andβ(e) indicate the forward and backward prob-
abilities calculated within the sub-graph constructed by paths
passing through edgee, while α

(e)
e′ and β

(e)
e′ represents the

particular probabilities of edgee′.

3.2. Experimental results

In this section, we experimentally investigate the discrimina-
tive training of exponential weights and insertion penalty. The
database used in [1] is adopted here again. Symbol graphs are
generated first by using the symbol decoding engine on the
training data. Since MMI training must calculate the poste-
rior probability of the correct paths, only those graphs with
zero graph symbol error rate (GER) are randomly selected.
The final data set for discriminative training has about 2,500
formulas, a comparable size with the test set. The graphs are
then used for multiple iterations of MMI and MSE training.
All parameters are initialized to 1 before the training.

3.2.1. Convergence

Fig. 1 shows the convergence of discriminative training with
smoothing factor1/κ = 0.3. Both MMI and MSE objectives
are monotonically increased during the process.
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Fig. 1. Convergence property (1/κ = 0.3).

At each iteration of the training, the best path in the graph
is investigated given the latest parameters. Both training and
testing data are investigated. Fig. 2 shows the corresponding
results with respect to symbol accuracy. In Fig. 2, (a) and (b)
are obtained on training data, while (c) and (d) are obtained on
testing data. We can observe that the improved performance
can generalize to unseen data very well.
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Fig. 2. Symbol accuracy of best path in graph (1/κ = 0.3).



system accuracy rel. impv.
two-step system 89.12% -
bigram decoding (MMI) 93.33% 38.7%
bigram decoding (MSE) 93.41% 39.4%

Table 1. Symbol accuracy of bigram decoding.

3.2.2. Symbol accuracy

After discriminative training, we applied the obtained param-
eters in the symbol decoding engine to do a complete search.
Table 1 shows the symbol accuracy and relative improvement
obtained with different system configurations.

The first line in Table 1 illustrates the baseline results pro-
duced by the old system in which segmentation and symbol
recognition are two separated steps. When comparing results
of MMI and MSE training, we noticed that MSE training has
achieved better performance than MMI training. This is con-
sistent with Povey’s conclusion in the MPE experiments in
LVCSR. The reason is obvious. While the MMI criterion
maximizes the posterior probability of the correct paths, the
MSE criterion distinguishes all correct edges even in the in-
correct paths. The MSE criterion has a closer relationship
with the performance metric of symbol recognition, therefore,
optimization of the MSE objective function will straight im-
prove symbol accuracy.

4. GRAPH RESCORING

After discriminative training of the exponential weights and
the insertion penalty, the system can be further improved by
graph rescoring. In this paper, we introduce a trigram syntax
model to the symbol graph so as to make the correct path
more competitive. The trigram syntax model is formed by
computing a probability for each symbol-relation pair given
the preceding two symbol-relation pairs on a training set

P (skrk|sk−2rk−2, sk−1rk−1) =
c(sk−2rk−2,sk−1rk−1,skrk)

c(sk−2rk−2,sk−1rk−1)

wherec(sk−2rk−2, sk−1rk−1, skrk) represents the number of
times that triple(sk−2rk−2, sk−1rk−1, skrk) occurs in the
training data andc(sk−2rk−2, sk−1rk−1) is the number of
times that(sk−2rk−2, sk−1rk−1) is found in the training data.
For triples that do not appear in the training data, smoothing
techniques can be used to approximate the probability.

4.1. Graph expansion

From the definition of the trigram syntax model, it is required
to distinguish both the last and second last predecessors for
a given symbol-relation pair. Since the symbol-level recom-
bination in the bigram decoding distinguishs partial symbol
sequence hypothesessk

1rk
1 only by their final symbol-relation

pair skrk, the symbol graph constructed in this way would
have ambiguities of the second left context for each arc. There-
fore, the original symbol graph must be transformed to a proper
format before rescoring. Fig. 3 shows an example of the
transformation. In comparison with the original graph, the
transformed graph duplicated the central node so as to distin-
guish different paths recombined into the nodes at the right
side.

(a) original (b) transformed

Fig. 3. Graph expansion.

4.2. Rescoring

After graph expansion, the trigram probability could be used
to recalculate the score for each arc as follows

pk =
QD

i=1 pwi
k,i × I (13)

HereD = 7 rather than 6 in bigram decoding (Equation (4)),
and pk,7 = P (skrk|sk−2rk−2, sk−1rk−1) indicates the tri-
gram probability. The exponential weight of the trigram prob-
ability still can be discriminatively trained together with the
other weights and the insertion penalty based on the trans-
formed symbol graph, in the same way as described in Sec-
tion 3. Hence there are two sets of parameters in the system,
one is of 6 dimensions and for bigram decoding and the other
one is of 7 dimensions and for trigram rescoring.

4.3. Experimental results

In this section, we investigate the recognition performance
achieved by graph rescoring. The new set of exponential
weights and insertion penalty was also trained by both MMI
and MSE criteria. After graph rescoring, the path with the
highest score was extracted and compared with the reference
to calculate the symbol accuracy. Table 2 shows the average
symbol accuracy. Compared to the one-pass bigram decod-
ing, the trigram rescoring got further significant improvement
on symbol accuracy. The best result even exceeded 97%.

5. SUMMARY

The paper presented the use of discriminative criteria for train-
ing exponential weights and insertion penalty used in sym-
bol decoding for handwritten math formula recognition. This



criterion system accuracy rel. impv.
MMI 2-g decoding 93.33% -

3-g rescoring 96.94% 54.1%
MSE 2-g decoding 93.41% -

3-g rescoring 97.02% 54.8%

Table 2. Symbol accuracy of trigram rescoring.

includes the Maximum Mutual Information (MMI) and the
Minimum Symbol Error (MSE) criteria. Both implementa-
tions of MMI and MSE training are carried out based on sym-
bol graphs to represent alternative hypotheses of the training
data. The quasi-Newton method was used for the optimiza-
tion of the objective functions. Due to the Forward-Backward
algorithm, the objectives and their derivatives were efficiently
calculated through graph. Experiments showed that both cri-
teria worked very well on unseen test data and produced sig-
nificant improvement on symbol accuracy. Moreover, MSE
reliably gave better results than MMI.

After discriminative training, graph rescoring was then
performed by using a trigram syntax model. The graph was
first modified by expanding nodes so that there will be no am-
biguous path for trigram probability computation. Then arc
scores are recomputed with the new probability. To do this,
a new set of exponential weights and insertion penalty was
trained based on the expanded graph. Experimental results
showed dramatic improvement of symbol recognition through
trigram rescoring.

In summary, via both graph based discriminative training
and rescoring, the symbol recognition engine achieved a high
performance of 97% in symbol accuracy.

6. REFERENCES

[1] Y. Shi, H. Y. Li, and F. K. Soong, “A unified framework for sym-
bol segmentation and recognition of handwritten mathematical
expressions,” inICDAR2007, 2007, vol. II, pp. 854–858.

[2] D. Povey, “Discriminative training for large vocabulary speech
recognition,”Ph.D thesis, July 2004.

[3] Soong F. K., Lo W.-K., and Nakamura S., “Optimal acoustic and
langage model weights for minimizing word verification errors,”
in INTERSPEECH2004-ICSLP, 2004, vol. TuB2003p, pp. 17–
20.

[4] R. Schluter and W. Macherey, “Comparison of discriminative
training criteria,” inICASSP1998, 1998, pp. 493–496.

[5] S. Younget al, “The htk book (for htk version 3.3),” 2005.


