
Temporal Analysis for Adapting Concurrent Applications to Embedded Systems
Sibin Mohan Johannes Helander

Dept. of Computer Science, North Carolina Microsoft Research
State University, Raleigh, NC 27695-7534, USA One Microsoft Way, Redmond, WA 98052, USA

smohan@cs.ncsu.edu jvh@microsoft.com

Abstract

Embedded services and applications that interact with the
real world often, over time, need to run on different kinds of
hardware (low-cost microcontrollers to powerful multicore pro-
cessors). It is difficult to write one program that would workre-
liably on such a wide range of devices. This is especially true
when the application must be temporally predictable and robust
which should usually be the case since the physical world works
in real-time. Thus, any application interacting with such asys-
tem, must also work in real-time.

In this paper we introduce a representation of the tempo-
ral behavior of distributed real-time applications as a colored
graphs that capture the timing of temporally continuous sections
of execution and dependencies between them, creating a par-
tial order. We then introduce a method of extracting the graph
from existing applications using a combination of analysistech-
niques. Once the graph has been created we introduce a num-
ber of graph transformations that extract “meaning” from the
graph. The knowledge gained can be utilized for scheduling and
for adjusting the level of parallelism suitable to the specific hard-
ware, for identifying hot spots, false parallelism, or evencandi-
dates for additional concurrency. The importance of these con-
tributions is evident when we see that these graphs can be serial-
ized to our partiture model that can then be used as input for of-
fline, online, or even distributed real-time scheduling. Finally we
present results from analysis of a complete TCP/IP stack in addi-
tion to smaller test applications which show that our use of dif-
ferent analysis models result in a reduction of the complexities
of graphs. An important outcome is that increasing the expres-
sion of concurrency can reduce the level of parallelism required,
saving memory on deeply embedded platforms, while keeping
the program parallelizable whenever complete serializability is
not required. We also show that applications which were previ-
ously considered to be too complex for characterization of their
worst-case behavior are now analyzable due to the combination
of analysis techniques that we utilize.

1. Introduction
Software applications that interact with the real world andde-

vices or computers on the Internet are at the center of the next
generation of consumer electronics. We are increasingly depend-
ing on such systems in our everyday lives in health care, robotics,
infrastructure, entertainment and even clothing. Such applica-
tions and other cyber-physical systems run on different kinds of
embedded hardware ranging from 8-bit microcontrollers to so-
phisticated multicores. Since we depend on these devices they
must be robust and as they interact with the real world they must
work in real time. Their temporal behavior must also be robust
and predictable. Unfortunately it is quite difficult to write one

program that would work reliably on such a wide range of de-
vices. This is particularly difficult if timing depends not only on
the application but also on hardware details and other applica-
tions on the device. This makes application development slow
and expensive.

It is also important to pay attention to the hardware capabil-
ities of a given target platform, such as the number of proces-
sors and amount of memory available. In a low-cost microcon-
troller the scarcest resource is often memory, particularly RAM.
Our early experience with service-oriented cyber-physical sys-
tems [12] shows that the one of biggest RAM users tend to be
thread stacks which require a reduction in the number of threads.
This implies that the parallelism needs to be reduced –i.e. the ap-
plication needs to be executed serially. In contrast on a high-end
multicore processor the bottleneck is not memory but the amount
of parallelism available in the application. It often makessense
to execute the same service application on both ends of the em-
bedded spectrum with only the throughput and the number of
services being varied. Thus the applications need to be tuned in
such a way as to address the bottlenecks on each platform – the
application needs to be unparallelized (or even serialized) for the
low-end platform but parallelized for the high-end platform.

Having a model that would first(a) enable analysis of the
program’s temporal behavior and(b) match it to a given hard-
ware would be most helpful. In previous work [14] we showed
how new programs could be written with such models in mind.
In practice though, a large number of pre-existing applications
do not follow such development models, but it is still desirable
to adapt them to new platforms. We propose an automated pro-
cess whereby we could first transform them into our models that
use partitures and futures [14]. This would reduce the tedious
and error prone methods for transforming applications by hand
when they need to be deployed on new platforms. Such a trans-
formation, where we extract temporal models from existing ap-
plications, is introduced in this paper. The knowledge gained can
help designers of such systems to optimize the program for vari-
ous platforms, used for distributed orchestration, adaptation and
scheduling [14, 23] or even executed on modeling engines [16]
to check for correctness.

1.1. Static and Dynamic Analysis
Knowledge of the temporal behavior of an application is hid-

den inside the application logic, where it is extremely diffi-
cult to analyze and model for any given hardware. While static
[4, 18, 21] and dynamic [24] timing analyses are used to obtain
the worst-case execution times (WCETs) for real-time applica-
tions, they may not able to to provide a complete picture of a pro-
gram. This is particularly true in the case of larger, more com-
plex programs. Programs that contain function pointers aretypi-
cally out of the reach of static analyzers. Dynamic analyzers are



unable to gauge the true nature of the program and have shown
to be unsafe [24] –i.e., they may underestimate the WCET of
the program, which could lead to dangerous effects. If the appli-
cation uses concurrency constructs such as signals, locks or mu-
texes, then neither of these techniques can fully analyze the ap-
plication. In this paper we study the use of techniques whichuse
a variety of techniques to form the complete picture of the struc-
ture and execution characteristics of the application. Theresults
obtained are collected to createtiming graphs. The timing graph
and thepartiture are two representations of the same informa-
tion. A bar corresponds to the node in the graph and triggers and
sequences between the bars correspond to edges. This means that
the graph can simply be converted to a partiture and then be used
for purposes such as inputs for offline, online, or distributed real-
time scheduling or even converted to a model program [14].

Note that multiple graphs can be merged allowing analysis of
several applications at the same time. Multiple applications can
also be analyzed separately and properties of their compound
behavior, such as minimum number of threads or schedulabil-
ity, can be examined together. Hand-written partiture fragments
can also be merged with automatically generated information, ei-
ther in the graph form or as XML, thus providing a mechanism
for inserting domain knowledge into the graph.

1.2. Contributions

The main contributions of this paper are:
(a) Extend the scope of static timing analysis to more complex
applications by combining it with other techniques, in particu-
lar run-time traces and type inference. Applications whichwere
previously considered to be “un-analyzable” due to their inher-
ent complexity, are now analyzed using our graph capture and
transformation techniques so that their worst-case behavior can
be characterized.
(b) Define a colored graph representation of a program’s tempo-
ral behavior, including invariants and transformations. The graph
corresponds to apartiture , a programmatic expression and tran-
sitively, to a model program that can be executed on a model-
ing tool.
(c) Derive information from the topology of graphs, allowing
an engineer to optimize an application such as to make it more
scalable and amenable to being transformed into our applica-
tion model (partitures,futures,etc.). Some of the knowledge that
can be gleaned is the minimum number of threads required for
an application to correctly execute, graph sections with poten-
tial false parallelism, and dependencies that prevent paralleliza-
tion.
(d) Observe that adding concurrency can save memory and
present a method for pinpointing to an engineer on where to in-
crease the concurrency.
(e) Due to the incremental nature of the analysis even an in-
completely understood application can be explored, allowing an
engineer to learn something about the application behaviorand
augment the automatically generated model with manually pro-
vided domain knowledge. This is a critical step forward as em-
bedded designers now have more choice in the type of applica-
tions that they can develop, especially for time-constrained sys-
tems.
(f) Demonstrate that creating the timing graph and performing
subsequent transformations is feasible by means of presenting an
implementation that was applied to actual embedded software –

the TCP/IP stack of an embedded operating system
We believe that the use of the combination of analysis tech-

niques presented in this paper to enable the process of extract-
ing temporal behavior of existing applications which ultimately
leads to ease of development of distributed embedded applica-
tions on varied platforms is, to the best of our knowledge, a first
of its kind.

The rest of this paper is organized as follows: we discuss the
use offuturesin embedded software in section 2. The colored
graph representing a program’s temporal behavior is introduced
in section 3, together with invariants that define a valid graph.
The algorithm for creating temporal graphs is introduced insec-
tion 4. Transformations that can be used to simplify and/or reveal
interesting topological properties of the graph are definedin sec-
tion 5. Section 6 explains the insights obtained from the graph
transformations. Section 7 details the experimental framework
and methods to collect the raw data required for graph genera-
tion. Section 8 shows results, followed by related work and con-
clusion in sections 9 and 10 respectively.

2. Saving Memory through Serial Execution
In low-end microcontrollers a multi-threaded applicationuses

one stack for each thread. Since microcontrollers do not usually
have a memory management unit, each thread stack must be al-
located from physical memory. The maximum size of the stack
is limited by the available memory. Clearly threads are problem-
atic on low-end embedded systems. The most common alterna-
tive is an event loop. Instead of creating a thread to handle asen-
sor reading, for instance, an event is posted. A loop in the pro-
gram then picks up an event and examines it. The disadvantages
to this are –(1) all applications turn into state machines with
complex interactions – the code becomes hard to understand and
the development process becomes error prone with skyrocketing
maintenance costs; and(2) the event loop cannot be parallelized.
Also, messy interactions between the state machines prevents
multiple loops from being used. Thus, event-based constructs or
related message passing systems are less desirable in such situa-
tions.

One approach is to transform an application written with
threads to use so-called split-phase operation [1, 8] wherethe
temporal phases of a thread are split into separate functions.
No automated transformation from existing programs has been
available however, meaning significant engineering effortis re-
quired for such a transformation.

Futures[5] were originally proposed in the Lisp community
as a way of deferring evaluation and increasing performance[7].
They were used as a primary construct for concurrency and syn-
chronization in MultiLisp [10]. Futures have also been imple-
mented in mid-level languages, such as Java [3] or C#. Futures
have been natively implemented in C, on a microcontroller, in
our earlier work [14]. When C programs are written in an object-
oriented fashion, it is easy to turn any method call into a future
with very little modification to the program. Threads can also be
converted to futures. Instead of being implied or encoded inthe
program, timing parameters and any required concurrent execu-
tion is expressed in a partiture, where each future is associated
with one or more bars. The advantage of futures over threads is
that futures can be inserted anywhere (there is no implied paral-
lelism, only concurrency), stack allocation can be deferred un-
til the future is ready to run and the cost of creating a futureis



low. Control loops can be moved into the partiture leaving just
the worker function in the future. Thus a typical construct where
a thread waits for an event, then processes it and then waits again
can, with little effort, be changed to give up its stack during the
wait.

When a thread blocks waiting for another thread to complete,
it cannot give up its stack requiring multiple stacks. If theop-
eration that happens after the block is turned into a future,it
achieves the same effect that the stack is recycled during the
wait. One significant difference compared to split-phase oper-
ations is that the transformation can be done incrementallyand
not on the whole program at once. Also, depending on the pro-
gram design there is a minimum number of threads required so
that it can be executed correctly. With well targeted uses offu-
tures that number can be reduced but does not have to be exactly
one as in an event model. As we will see in section 6 the num-
ber of threads required as well the best candidates for transform-
ing the program to reduce the number of stacks can be extracted
from the application,.

The real strength of futures is, however, in parallelizing the
program. On a multicore processor futures can be executed in
parallel. The parallelism is only limited by the dependencies be-
tween futures, which are conveyed to the scheduler in the parti-
ture. The future, combined withpartitures[14] and the “tempo-
ral timing analyzer” presented in this paper allows for an aided
and incremental program transformation that has all the positive
features of split-phase operation while being more flexible. This
allows programs to execute in parallel when parallelism is avail-
able on the hardware and in serial mode when not. The future is
an explicit expression of concurrency. Adding concurrencythus
does not only addspotentialparallelism but also reduces there-
quiredconcurrency, saving memory.

3. The Timing Graph
At the core of our analysis is thetiming graph, which is a

graph that enumerates the timing and execution characteristics
of a program (including concurrent programs).

3.1. Representation of the Timing Graph
To reason about and distinguish between the various con-

structs in the timing graph in a precise manner, we allocatedcol-

(a) Red/black edges – interactions
between threads

(b) Green nodes and blue edges of the
timing graph

(c) Yellow edges – possi-
ble blues

Figure 1. Edges and Nodes in the Timing graph

condition wait(x) = wait for condition ‘x’ to be signalled
condition signal(y) = signal condition ‘x’. Basically
wake up the next thread waiting for this condition.

Figure 2. Synchronization constructs used in our
framework

ors to the nodes as well as for each type of edge. The various
colors used are depicted in Figure 6.

Code that runs within a single thread without external in-
teractions is represented bygreen, circularnodes (Figure 1(b).
These nodes represent straight line code, possibly entire func-
tions between temporal program phases. A temporal phase is de-
limited by potential sleeping, waiting, signaling, message pass-
ing, or other points of interaction (with other threads). Green
nodes correspond tobars in the partiture. Timing analysis is
performed to obtain the WCET of this block of code. Transi-
tions between nodes within the same thread of execution is rep-
resented usingblue, solidarrows. Figure 1(c) showsyellow, dot-
tededges, which are “possible” blue edges, where it is unknown
whether the program could ever make the transition but it is also
unknown whether it could not.

Applications consisting of multiple threads that communicate
by use of various concurrency constructs are illustrated inFig-
ure 1(a). Blue edges are restricted to their own threads. Calls
to communication constructs are depicted by use ofred, hol-
low edges, where an incoming edge represents await and an
outgoing edge awakeup/signalon a shared synchronization ob-
ject. Further analysis reveals other possible synchronization ob-
jects that could be called/waited upon leading to more edgesin
the graph. These edges are coloreddotted black and hollow, rep-
resenting “possible” reds. The black edges represent the signal-
ing of an unknown object, such that the wait and the signal are
the same object. If it turns out the wait and signal are for differ-
ent synchronization objects then the edge is eliminated. For our
analysis we assume that all concurrency constructs are one of
the two defined in Figure 2. All other basic synchronization con-
structs face situations where one process waits while the other
signals – similar to a condition.

3.2. Graph Invariants
The timing graph has certain invariants that must never be vi-

olated, either during the creation process or while performing
one of the transformations:(a) the final schedule that is created
will retain all dependencies among the various threads and(b) a
transformation must not, inadvertently, make the program incor-
rect. This second invariant is important –i.e., if a transformation
will result in the creation of a deadlock, then that transforma-
tion is not performed. In the case of the timing graph, a “dead-
lock” is defined as a directed cycle formed by one of the follow-
ing:
(a) red edges only
(b) red edges with one or more black edges
(c) one or more blue edges with one or more red and/or black
edges.

In Figure 3(a) edges “1”, “”2 and “3” form a cycle, while in
Figure 3(b) edges “4”, “5” and “6” form a cycle – hence, these
two graphs have deadlocks. Deadlocks formed by black edges
only though (Figure 3(c)) are acceptable because black edges
represent alternate schedules – the deadlocking black edges can-
not exist in the same graph/schedule, since it is assumed thepro-



gram is valid unless proven otherwise. This means that in an
actual schedule we do not know ahead of time which condition
variables will be used, but can guarantee that it will be onlythose
that do not form a deadlock. Hence, our analysis can proceed in
the presence of “false deadlocks” formed by black edges based
on the premise that the program is, and will remain, valid.

For real-time programs, timing issues will also be a factor.A
full real-time schedulability analysis will take these additional
factors into account and perform constraint solving. However,
the invariants mentioned above will still be true and the graph
transformations that we present in this paper are just as valid
for real-time schedulability. In such cases, the graph is evaluated
with the above topological invariants in the first pass. Schedu-
lability analysis can then be performed in the second pass, with
an extended set of invariants, but we will not delve into the de-
tails as this is beyond the scope of this paper.

4. Information Sources for Graph Creation
In this section we shall enumerate the process of creating such

a graph –i.e., show how the information is gathered from a va-
riety of sources and then put together to create the actual graph.
Section 4.1 enumerates the various sources of information while
section 4.2 shows how all of it fits together to form the graph.

4.1. Information Gathering Techniques
We use a variety of sources to gather the information that is

used to create the timing graph. They are a mixture of static and
dynamic data as well as higher level information.We usefour
such techniques, combined together, to obtain the completepic-
ture of the control flow and dependency behavior of the applica-
tion. The sample application in Figure 4 is used to the explain
each step, while Figure 5 shows the final results obtained af-
ter applying these techniques.
(1) Static Analysis: The control flow graph (CFG) of the applica-
tion is created and analyzed at compile time to obtain the static
function call graph of the application. Static analysis shows us
that function “foo” calls “func1” (Figure 4), represented by the
horizontal blue arrow between the two nodes (Figure 5).
(2) Dynamic Tracing: We execute the program with sample in-
puts and trace the functions calls during execution. We are able
to findsomeof the dynamic calls that were made in the program,
represented by calling “func2” using the function pointer “fptr”
(Figure 4). This gives us a better picture of the control flow in
the program and results in the addition of the vertical blue ar-
row in Figure 5.
(3) Type Information: Once step (2) is complete, we compare
the type information of all other functions in the application to
see which ones have thepotentialto be called. If the signature
of a (dynamically) called function matches that of another,un-
called function, then there is a possibility that the lattermay be
called at thesame call site. Functions “func2” and “func3” (Fig-
ure 4) have identical signatures. Since “func2” was called there

(a) Reds/Blue (b)
Red/Black/Blue

(c) Not a deadlock

Figure 3. Deadlocks in Timing Graphs

is a possibility that the same function pointer could have called
“func3” as represented by the yellow arrow (Figure 5). Type in-
formation can also be used to reduce the universe of possibilities
for dynamic function calls. For instance, between the static anal-
ysis and dynamic tracing phases, there was a possibility that any
one of the functions in the program (func1, func2, func3, func4,
or even foo) could have potentially been called using the function
pointer. Once dynamic analysis tells us that “func2” was called,
we can immediately eliminate “foo”, “func1” and “func4” from
the list of possibilities because its type is different fromthat of
“func2”. The true value of type information comes when try-
ing to gather information about concurrency constructs. If, dur-
ing runtime tracing, we are able to gather the information that a
particular concurrency call was made, we can limit the possibil-
ities of other concurrency constructs that call site can invoke by
use of the type information of the first callee.
(4) Incremental development with inputs from domain ex-
pert/programmer. We can further prune outgoing edges by in-
puts based on domain knowledge. For instance, we were able to
gather that ‘func3” is a potential callee because its type matches
that of “func2”. A domain expert might be able to point out
that based on the application design there isnevera possibil-
ity that both “func2” and “func3” are called during the same ex-
ecution instance of the application. This could be the case in a
typical network stack, where “tcpsend” and “udpsend” proba-
bly have the same function signatures, but can never be called
from the same call site. Hence an incremental development pro-
cess which combines inputs from the automated techniques and
the programmer can improve the understanding of the applica-
tion.

Further known techniques, such as abstract execution, flow
analysis,etc.as well as techniques that will be developed in the
future, can be used to gather more information and make the
graph more complete. Our analysis can remain the same and take
advantage of a graph which has more information – this will re-
duce the time for the analysis and provide more accurate results.

4.2. Graph Creation
The graph is actually created in stages. The green nodes in the

graph which represent straight line execution within the same
thread could be basic blocks in the CFG or even single func-
tions (at a higher level). Traditional static timing analysis is per-
formed to obtain the worst-case execution time (WCET) for this
block of code. Edges obtained from static analysis as well as
those obtained from the dynamic traces form the blue arrows,

void func1( int i ) ;

int func2( int i, double d ) ;
int func3( int i, double d ) ;

double func4( char c1, char c2, int i ) ;

void foo()
{

void (*fptr)( int, double ) ;
func1( 10 ) ; //static call
fptr = func2 ; (*fptr)( 10, 5.0 ) ; //dynamic call

}
Figure 4. Sample code to illustrate creation of the
Timing Graph



which are added next. Yellow edges are gleaned from the type
information and are then added to the graph. Red edges are a re-
sult of dynamic tracing where calls to concurrency constructs
are also traced. Further type analysis reveals other possible con-
ditions that could be called/waited upon, based on the type sig-
nature of the previous callee, leading to black edges being in-
serted into the graph.

Before we start the analysis, the number of “possible” edges
in the function call graph is large – any function can call any
other function or signal/wait on any condition variable. With
static analysis, some of the yellow edges are turned into blue
edges, while some of the black edges are turned into reds. Also,
since static analysis fixes one outgoing edge per call site, it also
eliminates other yellow/red edges from the same call site, thus
reducing the universe of possibilities. Further analysis (runtime
tracing) turns some more of the yellows into blues and blacks
into reds. Note though that this step doesn’t reduce any edges,
as there is no guarantee that each call site has only one outgo-
ing edge – in fact, as we have seen in the case of function point-
ers, each call site could call many potential callees. Type infor-
mation analysis, on the other hand, can prune some edges – it re-
stricts the possible outgoing edges based on the type signature of
the blue and red edges that have been discovered during the run-
time analysis. Hence, some yellow and black edges are removed
from the graph. Finally, domain knowledge can prune the graph
further by removing impossible yellow and black edges from the
graph. This multi-colored, pruned graph is used for our analy-
sis which follows in the next section.

5. Timing Graph Transformations
In this section we shall enumerate certain fixed graph trans-

formations which will help reduce the complexity of these tim-
ing graphs. The transformations will also help the programmer
find interesting topological and programmatic properties.As ex-
plained in the introduction, embedded systems have severe re-
source constraints and executing parallel code could lead to a
high number of context switches and a large number of threads,
which ultimately lead to a high demand for stack space. Hence,
reducing the program to obtain theleastnumber of threads re-
quired for correct execution of the program aids in reducing
stack pressure. We are also able to find the limits of serializ-
ability of the program. The transformation described in there-
maining part of this section will help us achieve both goals.The
larger goals for performing these transformations are:
(a) Find theminimumnumber of threads required for the appli-
cation to function correctly.
(b) Aid in understanding the program behavior/structure and
help system designers to optimize it. Specifically, this could find
candidate spots for additional concurrency in the program,which
makes the program more scalable. We could also find false par-
allelism in the program, where multiple threads must execute in
a serial fashion for forward progress of the application.

Figure 5. Timing graph created by application of
various information gathering techniques

(c) The ability to generate partitures, and from them the sched-
ules of execution on a particular system,automatically

The timing graph and subsequent transformations could also
be used, in the future, to achieve the following goals:
(i) Help in visualizing the program, so that system designers
could gain an understanding of the true nature of the program.
(ii) Aid in increasing the parallelism of the program by finding
spots that are synchronization bottlenecks –i.e., many edges in
the same spot.
(iii) Provide inputs for real-time schedulability analyzers and
constraint solvers.
(iv) Aid in model-based testing of the application.

5.1. Assumptions
The assumptions (or rather the pre-conditions) for this work:

• A strict partial order is always maintained for the graph.

• The graph cannot have any deadlocks or race conditions
(i.e., no unguarded resources). This condition basically
means that the program must becorrect. Of course, benign
races (such as atomic adds) are fine.

If the timing graph represents a real-time application, then
certain additional constraints apply:(a) Loop bounds must ei-
ther be statically known, or at least known prior to loop entry.
(b) No code can be dynamically loaded -i.e., all modules in the
application must be statically known. We could relax this rule to
state that we need to know all applications that could possibly
be loaded – the system could then be treated as if everything had
been preloaded (this would introduce some pessimism into the
analysis).(c) The program must use afiniteset of condition vari-
ables.(d) Either there must be no branches or forks around con-
dition waits/signals, or all possible paths must becorrect(dead-
lock and race free).

Note: our analyzer will not check for the correctness of pro-
grams but will axiomatically assume that validity of programs
and try to apply valid transformations.

5.2. Graph Pruning and Reduction
This section examines techniques used to reduce and simplify

the graph. First, let us examinegraph pruningtechniques, which
will help in reducing the “maybe” edges, either by transforming
them to actual, known edges (blue or red) or getting rid of them
entirely. Section 3 already introduced some methods of perform-
ing this pruning – for instance, dynamic traces prune some yel-
low edges to blues,etc.Other techniques used are:
(a) Black edges that result in “potential” deadlocks (with red or
blue edges) are removed. The program is assumed valid unless
proven otherwise.
(b) In the case of alternate yellow edges, then pick theworstone
of all – hence, we pick the yellow edge with the largest WCET
of all.
(c) If alternate paths exist and each one waits on different con-
dition variables (or none), then the longest path must wait on a
unionof those condition variables – hence execution waits on all
of the condition variables to be signaled, to proceed.
(d) If, in the face of alternate paths, the application signals dif-
ferent condition variables (or none) on each one of the alternate
paths, then execution must wait for anintersectionof those con-
dition variables to be signal-led.



(a) Assimilate nodes with only blue
nodes into each other

(b) Merge consecu-
tive nodes with only single
red edges

Figure 6. Two Point-of-View Simplifications

Remarks: Techniques(c) and(d) follow from a desire to pre-
serve the worst-case behavior and strict partial ordering respec-
tively. The former insures that all resources must be acquired
before execution proceeds, while the latter guarantees that all
branches must be valid and not result in deadlocks.

Graph reductionoperations are broadly classified into two
groups –(I) point-of-viewsimplifications and(II) simplifications
that restrict the partial order. Of course, the transformations
must nor violate the invariants for the graph (section 3.2).Note:
the examples in the figures indicate artificially created graphs to
illustrate the transformation being performed; while these graphs
are not extracted from actual code, it is entirely feasible that such
situations could occur in real programs.

5.2.1. Point-of-View Simplification
(a) Merge consecutive nodes connected by a blue edge, where ei-
ther the blue node’s source has no outgoing red edges or its des-
tination has no incoming edges, or perhaps both. This is a sim-
ple concatenation of sequential code.
(b) Two consecutive nodes which have single incoming and out-
going red edges can be fused into a single node. Nodes “B” and
“C” were combined into node “B+C”. This transformation corre-
sponds to inlining the code from one thread into the other thread.
(c) Remove a direct red edge if a longer, indirect path consisting
entirely of red edges exists between the source and destination
nodes.

Remarks: Application of one or more of these simplifications
does not result in a reduction of the nodes or edges in a graph –
they are just dropped from the visualization. Hence while they
may exist in the graph, for all practical purposes they may beig-
nored. Transformation(a) is shown in Figure 6(a), where node
“A” has only one outgoing edge, which is blue, and node“B”
has only one incoming edge (“4”) which is also blue. Hence,
they are merged into a single node (“A+B”). This transforma-
tion is equivalent to merging consecutive basic blocks (or func-
tion callee into caller) where no other dependencies exist for the
caller or the callee. The WCETs of “A” and “B” can now be com-
bined to form the WCET of the new block as follows:

WCETA+B = WCETA + WCETB − pipeline interactions

where “pipelineinteractions” refer to the reduction in execu-
tion time due to the concatenation of the trailing edge of A and
the leading edge of B [11]. Note: edge “4” is missing from the

Figure 7. Remove direct red edges

new graph, because it is actually included within the new node,
“A+B”.

Figure 6(b) shows that the WCET of the combined node, is
the sum of the two nodes, with pipeline effects considered (as
in transformation (a)). We are able to perform this transforma-
tion because the real dependency between “A” and “D” is not
changed by the merging of the intermediate dependency (edge
“4”).

We can remove edge “8” between “A” and “D” (Figure 7) as
an alternate path (A→B→D composed of edges “2” and “7”) ex-
ists. This follows from the intrinsic transitive nature of apartial
order. Of course, in a real-time system, we could interpret this
as retaining the sequence of edges that exhibit worst-case behav-
ior – two or more dependencies is worse than one, direct depen-
dency.

5.2.2. Restricting the Partial Order
(i) Move all outgoing red edges of a node to its successor. A
“successor” is defined as a node which is destination of a blue
outgoing edge from the current node.
(ii) Move all incoming red edges of a node to its predecessor. A
“predecessor” is defined as a node which is the source of a blue
incoming edge.

Remarks: These transformations aim to restrict the partial
ordering for the graph. They actually change the edges in the
graph – either by moving their source or their destination nodes,
and sometimes both (though this will be done one at a time).
These transformations are applied to every possible node, and
their edges are transformed except of course in cases where they
violate the graph invariants. Figure 8 shows transformation (i),
where nodes “B”, “D” and “E” are successors to nodes “A”. “C”
and “D” respectively. From the figure we see that outgoing edges
“2” and “4” (for node “C”) are transformed to point to node D.
Hence, the outgoing nodes for “C” are moved to C’s succes-
sor “D”. Note: we did not transform edge “5” because doing so
would have created a deadlock with edge “7”.

In Figure 9, nodes “A”, “C” and “D” are predecessors to nodes
“B”, “D” and “E” respectively. After transformation(ii) , we see
that incoming edges “2” and “7” now point to node “C”. We did
not transform edge “5” because it would have created a dead-
lock with edge “4”, thus violating an invariant condition.

The above graph transformations are valid. They are analo-
gous to known deadlock avoidance techniques. Transformation
(i) is the same as releasing all locks held by the process at the
same time,i.e., at the end of the execution of the critical section.
Hence. we move all condition signals to the successor. The sec-
ond transformation is the same as delaying execution of the criti-
cal section untilall locks requested by the process have been ac-
quired –i.e., move all condition waits to the predecessor. These
transformations can be performed recursively, thus ensuring that
the critical section execution starts only after all locks have been
acquired and will release all locks at the same time – at the
end of execution. These two transformations could be further re-
stricted with more invariants, in hard real-time systems, such as
the deadline, startup time, period, phase,etc. Note: if we com-

Figure 8. Move outgoing red edges to successor



Figure 9. Move incoming red edges to predeces-
sor

bine transformations (i) and (ii), we get the priority ceiling pro-
tocol (PCP) [9].

6. Outcome of Timing Graph Transformations
After iteratively applying the graph transformations (section

5), we obtain one of the following situations –(a) the graph is en-
tirely serializable. In this case we can execute the entire program
using a single thread.(b) The graph is non-serializable where, at
the simplest level, it resembles the graph shown in 10(a). This
is a graphical representation of a producer-consumer relation-
ship, (Figure 10(b)) where “x” and “y” are condition variables.
“W” signifies a condition wait while “S” represents a condition
signal. Hence, Figure 10 represents the case where one thread
(Thread 1, the producer) waits for another thread (Thread 2,the
consumer) to send in a request which it then responds to. Note
that the consumer is not able to make much progress, as it must
wait for results from the producer to be sent back. Hence we can
deduce that this simple program can make progress only if they
execute ontwo separate threads.

The graph shown in Figure 10(a) is the basic building block
for larger, complicated, non-serializable graphs. Each ofthe
green nodes could themselves be more complicated nodes which
are constructed using the basic building block. Some examples
are shown in Figure 11 (Note: the details of applying the graph
reductions to obtain the above result are omitted here due to
space considerations.) We are also able to calculate the mini-
mum number of threads required for the application, from the
reduced graph, using the following equation:

Nt = Ng − Nb (1)

whereNt is the minimum number of threads;Ng is the num-
ber of green nodes andNb is the number of blue edges in the
graph. The reasoning for this equation is simple – each green
node indicates a separate point of execution, and possibly asep-
arate thread. Each blue arrow ties green nodes to one another,
thus indicating that both must execute in the same thread. Once
the effects of the blue edges have been thus accounted for, only
interactions between threads (red arrows) remain and sincewe
have performed all possible reductions on the graph, the exis-
tence of a red arrow indicates interactions across threads.The
simple example shown in Figure 10(a) has three green nodes and
one blue edge – hence, it requires two threads to execute. Simi-
larly we can calculate the minimum number of threads for larger,
more complex graphs (Figure 11).

(a) Smallest non-
serializable graph

(b) Basic producer-
consumer relationship

Figure 10. Outcome of graph transformations

6.1. Futures and Program Modifications
The final graph obtained after performing all reductions can

be further reduced by simplifying modifications to the program –
(a) get rid of red edges (i.e. the interactions among threads. This
is difficult to do because removing red edges results in modifying
the inherent, expected behavior of the program and could eas-
ily make it incorrect. However, reducing red edges, when done
with care, may make the programmoreparallelizable.(b) Con-
vert blue edges to red edges. This is possible by using thefu-
tures [14] mechanism. If all the targets of blue edges (green
nodes) are converted into futures, then consequently blue edges
turn into red edges, and since futures are expected to execute
at some point after they are invoked, the correctness of the pro-
gram is maintained. From Figure 12 we see that when edge “2”
is changed from blue to red and node “B” is converted into a fu-
ture.

By turning nodes into futures, weincreasethe expressed con-
currency of the program. If multiple processors are available
then the futures can often execute inparallel (Figure 13(a)) to
the extent allowed by the dependency graph (which is expressed
as apartiture). It also increases the flexibility available to the
scheduler – to decide when to execute the code in the future.
Another important result is that because these nodes are nowfu-
tures, they can execute independently of each other and onlya
loose order has to be maintained. Hence, they can even be exe-
cutedseriallyon a single processor as long as the callees execute
at some time in the future,after the callers. One such serializa-
tion is seen in Figure 13(b). The order of nodes “B” and “C” can
be switched around to form another serial schedule.

Thus, we see a surprising result –by increasing the concur-
rency of the program, we can also increase its serializability!
This result may seem counter-intuitive, but has great potential. It
indicates that by using the graph transformations outlinedin the
paper followed by the “futurization” of some nodes, the sched-
uler is given the flexibility to either parallelize the program for
larger systems or serialize it for execution on small, constrained,
embedded systems.

6.2. False Parallelism and Hot Spots
One of the goals of this work is provide a visualization of the

reduced graph for the programmers to analyze, which could be
achieved by feeding the graph structure from the ”temporal tim-
ing analyzer” into the GLEE visualization tool [22]. This will
help the programmer in weeding outfalse parallelismand prob-
lem spots in the program (hot spots). where a large number of
interactions could be concentrated (thus degrading the overall
program performance). Hot spots are again identified by find-
ing nodes which have an unusually large number of interactions
centered around it – either incoming condition waits or outgo-
ing condition signals, or even both. What is an “unusually large
number” is decided by the systems designers based on the ac-
tual application. Sometimes two could be large, and sometimes
nodes can handle 20 interactions. While both of these problems

Figure 11. Multiple producer-consumers



are identified by visual inspection of the graph structure, it is not
a difficult task to automate the process.

Each of the basic producer-consumer blocks (Figure 10) is an
indicator of false parallelismin the program. While it requires
multiple threads (at least two) for forward progress, the execu-
tion actually happens in serial order –i.e., B→ A → C. No other
order will work and none of these nodes can execute in parallel
with one another.

7. Experimental Framework
The simulation environment used for the experiments and

analysis is the Giano [6] simulator using the eMips CPU model,
running the lightweight MMLite [13] operating system. Apart
from the synthetic benchmark presented in Figure 4, the main
benchmark used for analysis was the network stack from the
MMLite operating system, compiled down to a single loadable
module. The original MMLite network stack was an extension of
the BSD implementation of the networking protocol. We devel-
oped a unique tool, the“temporal timing analyzer” (TTA), which
aids in the creation of timing graphs. Other tools used in thein-
formation gathering process are – the MIPS compiler for Gi-
ano and thenm command line tool. The various steps used in
the creation of the graph are –(a) a disassembly of the object
code of the network stack is obtained using the MIPS compiler;
(b) the list of functions in the network module is obtained us-
ing the nm tool;(c) both of the above are provided as inputs to
the TTA, which, at first, creates a static control flow graph of
the entire program. It is able to express information at the ba-
sic block level or even at a higher function level. The TTA is
also able to determine the static dependencies among the vari-
ous basic blocks/functions in the program –i.e., it generates the
green nodes and some of the blue nodes that go into the tim-
ing graph. It is also able to provide an estimate of the yellow
and black edges in the graph;(d) a dynamic trace of the network
stack running on Giano is obtained. The inputs are various web-
service calls that trigger different functionality in the network.
While this does not guarantee complete dynamic coverage of the
network stack, it is able to obtain quite a few dynamic depen-
dencies (function pointers) and also match condition variables to
their wait/signal sites. These traces, and the informationgleaned
from them, are fed into the TTA, where it is able to form a more
complete picture of the timing graph. From the dynamic traces
it is able to restrict some yellow edges to blue edges while com-
pletely doing away with some other yellow edges (as explained
in section 4). From information on the wait/signals on condition
variables, the TTA is also able to change some of the red edgesto
black edges and eliminate other impossible black edges. In fact,
if we are able to determine the entire range of possible inputs for
a function/application then tracing will be able to providea com-
plete picture of the dynamic behavior of the application;(e) type
analysis is performed and the information is then fed into the

Figure 12. Converting Blue edges to Red – creat-
ing futures

TTA. This adds more information to the timing graph;(f) infor-
mation from other sources, such as domain knowledge, abstract
executionetc.(section 4) can also be plugged in to obtain a more
comprehensive graph.

Any static timing analysis framework [4, 17, 18, 21] can be
plugged in to the TTA to obtain the WCETs for the green nodes,
after step(b). We performed step (e) by hand and did not im-
plement (f). The purpose of the experimental framework is to
show that creation of the timing graph using information col-
lected from various sources is entirely feasible, which it did, as
we shall see in the results section (section 8). In fact, the design
of the TTA enables us to provide it with information about the
graph from any of the above mentioned (or even other sources),
which will then be plugged into the graph to obtain a better un-
derstanding of the timing and runtime behavior of the applica-
tion. The most interesting part about our analysis (graph reduc-
tions and subsequent observations) is that it can be performed on
an incomplete graph as well as a graph which has all of its char-
acteristics mapped. While the former will yield approximate re-
sults, the latter can yield precise results. These insights(on the
state of the concurrency, serialization and resource constraints of
the application) can greatly assist programmers and systemde-
signers.

8. Results
In section 8.1, we shall enumerate the results obtained by per-

forming the transformations and analyses on the timing graph.
Section 8.2 lists results obtained from the temporal timingana-
lyzer which show that the process of creating the timing graph is
a feasible one.

8.1. Graph Results
The following insights were obtained by performing the vari-

ous analyses and transformations on the timing graph:
(a) The most important, and perhaps most surprising result, is
that increasing the concurrencyof the timing graph, using cer-
tain program modifications, resulted inincreased serializability.
This provides the scheduler with a lot of flexibility in creating
the final schedule and tailoring it to the particular hardware sys-
tem in use.
(b) Various graph transformations finally lead to three types
of graphs – those that can be completely serialized, those
that resulted in deadlocks or those that are constructed of
basic producer-consumer relationships. From the last result,
we are able to calculate the minimum resource requirements
(threads and corresponding execution stacks) for correct forward
progress in the program. This results in memory usage reduction
in embedded systems.
(c) The analysis is able to direct the programmer’s attention to-
wards false parallelism and hot spots in the program.
(d) The final graph is the worst-case schedule possible for the
program.

(a) Parallel (b) Serialized

Figure 13. Options for the Future



(e) From the graph reduction, we are able to minimize the num-
ber of context switches in the application.
(f) Inter-thread communication/dependencies are reduced.
(g) The transformations result in the smallest partiture.
(h) The graph helps programmers visualize and understand the
application – this will tell them if their original design was cor-
rectly translated into code and perhaps, tell them if there were
any deficiencies in the original design.

8.2. Temporal Timing Analyzer Results
Results from the temporal timing analyzer are tabulated in ta-

ble 1.Note: These results are not intended to show the runtime
performance of our analysis tool, but to show the effect of apply-
ing the combination of analysis techniques on the timing graph
that we create.

The first column represents the type of information being an-
alyzed, where “S” represents the static call information and “D”
represents the dynamic call information. The second columnlists
the number of possible (yellow) edges. The third column rep-
resents the actual calls that were made (blue edges), while the
fourth column lists the number of calls sites for each type ofcall
- static or dynamic. The last column lists the remaining yellow
edges after each type of analysis.

We first conducted experiments on a simple toy benchmark
(Figure 4) to show that our ideas are feasible. This simple exam-
ple shows that static analysis alone will not be able to capture the
true nature of the program, as it will not be able to deal with calls
through function pointers (func2). The benchmark has5 func-
tions and at the outset, it is possible that any function could call
any other function (including itself) leading to5 ∗ 5 = 25 edges.
Once static analysis has been used, we see that func1 is called
which leads to the creation of a blue edge. Dynamic analysis re-
sults tell us that another call (func2) was made. This adds a sec-
ond blue edge, but there is a possibility that this dynamic call site
could be used to call any other function as well. Type informa-
tion tells us that only func3 has the same signature as func2 and
has the potential to be called, while func4 has an entirely differ-
ent type signature and will never be called. Assuming that none
of the other functions made any calls, we reduced the number of
edges from a possible25 to 3 actual edges.

Another benchmark used was the network stack for MM-
Lite (second half of table 1). This module contains412 func-
tions all of which, combined, are broken down into4, 886 ba-
sic blocks. With such a large number of functions, the numberof
yellow edges, considering only static calls for all of thesefunc-
tions is4122 = 169, 744, as every function can potentially call
every other function. Static analysis of the interactions among
the functions tell us that only2, 386 functions were called stat-
ically by all 412 functions. This converts2, 386 of the yellow
edges to blue edges and also eliminates all of the remaining
169, 744− 2, 386 = 167, 358 ones.

Call Type PossibleActual Call SitesRemaining

Toy (S) 5*5 = 25 1 1 0
Toy (D) 25 1 1 2

Network (S) 169,744 2386 412 0
Network (D) 169,744 76 76 31,312

Table 1. Graph edges based on static/dynamic in-
formation

Similar results are presented for dynamic calls. The remain-
ing yellow edges were calculated as follows – each one of the76

call sites can potentially call any one of the412 functions leading
to 76 ∗ 412 = 31, 312 possible yellow edges. Type analysis now
tells us that only functions which match the signature of these76

callees can ever be called from these dynamic call sites, which
will lead a further reduction in the number of possible edges. Do-
main knowledge can further reduce this figure, as some of these
“potential” callees (with function signature matches) cannot be
called during the same execution instance. Hence, the number of
edges drops to a number which will be far less than31, 312.

So, the initial estimates of339, 488 potential edges (static
+ dynamic) have been reduced to a more manageable number
which is in the tens of thousands, if not less – an order of a mag-
nitude (or more) difference. Hence, we see that analysis of com-
plex programs using our framework and graph transformation
techniques is feasible – it is able to handle large programs,which
to date, have been excluded from such analyses due to their in-
herent complexity. This would not have been possible by any
one of static analysis, dynamic analysis, type information, do-
main knowledge alone, but was achieved as a result of combina-
tion of all these methods.

9. Related Work
Understanding the temporal behavior of programs is essential

for system designers. This is more critical if the system being de-
signed has other inherent constraints, such as the resourcecon-
straints seen in common embedded systems. Sometimes these
systems have more severe constraints imposed on them (real-
time systems) where advance knowledge of the behavior of the
program becomes critical. We believe that the work presented in
this paper is unique in that it is able to transform large applica-
tions into a graph representation on which transformationsare
applied to gather the “meaning” of the program, with the aim
of making distributed embedded systems more scalable, primar-
ily by creating models of the program based on our ideas ofpar-
tituresandfutures.

Andersson [2] studied the temporal behavior of embedded
programs and also used dynamic traces to add more informa-
tion to his analysis. This work differs from ours in that he cre-
ates a model of the application and uses model checking and re-
gression analysis coupled with dynamic traces to reason about
the temporal characteristics of the program. It stops with analyz-
ing the impact of the behavior of the temporal characteristics of
the program and does not provide any further insights like wedo
in section 6. We also deal with concurrent programs in our anal-
ysis.

The level of parallelism required by an application has been
explored by Motuset. al. [19, 20]. They focus on model driven
development, where an engineer writes a timing model (Q
model), including educated guesses for minimum and maximum
times of processes in periodic applications such as are found in
telephone switches. The model is based on processes and chan-
nels. While our work facilitates writing the model by hand, it
may also be used to analyze existing programs and does not re-
quire the processes to be periodic.

Henzingeret. al. [15] introduced the idea of compiler-driven
feasibility checking of scheduling code. In their approachthe
compiler creates an executable, which represents the schedule,
which is then attached to the end of the task. This schedule is



executed and validated each time the task is invoked on spe-
cialized embedded hardware. Our work creates partitures and
futures based on analysis of timing graphs. Also, compared to
them, we are able to determine the levels of parallelism and po-
tential problem spots in the application, which could proveben-
eficial to a large range of systems.

Previous work in real-time systems deals with either static
or dynamic analysis. Recent, independent work [17] discusses
a hybrid approach to performing timing analysis. Our work is
similar in that it is also a hybrid approach which uses informa-
tion for a variety of sources. The difference is that while our
work is focused on finding the properties of interactions among
threads in concurrent programs, theirs is focused on obtaining
worst-case execution time results for modern, out-of-order pro-
cessors. In fact, the results from that framework (the WCETs)
can be plugged in to our temporal timing analyzer to obtain more
precise results for applications running on modern processors.

10. Conclusion
In this paper we extended the reach of static timing analysis

to applications that were, due to their complexity, not previously
analyzable for determination of worst-case behavior. Thiswas
done by combining static analysis with dynamic analysis based
on traces and with other techniques such as type inference. We
used a combination of analysis tools and methods to glean infor-
mation from programs and then combined the result into a graph.
The graph represents a model of the temporal behavior of a pro-
gram. The paper defined the graph coloring, invariants, and aset
of valid transformations. The transformations were used toex-
tract information out of the graph. One insight gained was that
increasing the concurrency of the application can also leadto in-
creasing the serializability. The graph could be output as aparti-
ture that is usable as a manifesto of the program behavior as well
as in scalable and distributed scheduling. The practicality of the
graph generation and analysis methods were demonstrated with
an implementation that was used to create a graph of an entire
TCP/IP stack. The topological properties that the graph trans-
formations reveal are useful in understanding and optimizing an
application for variable levels of parallelism. The methodology
presented here forms a solid base for further work in schedula-
bility analysis.
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