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Abstract guarantee for each core in isolation; instructions are st be
partially ordered across core boundaries.

The advent of multicore processors requires mainstream  Controlling the scheduling on multiprocessors is crucial
concurrent programming languages with high level concur- not only for performance, but because data races can cause
rency constructs and effective debugging techniques. Un-scheduling choices to change a program’s function. Worse,
fortunately, many concurrent programming languages are the operating system schedules non-deterministically.
non-deterministic and allow data races. Non-deterministic functional behavior arising from tim-

We present a deterministic concurrent communication ing variability—a data race—is among the nastiest thing
library for an existing multi-threaded language. We im- a programmer may confront. It makes debugging all
plemented the SHIM communication model in the Haskell but impossible because unwanted behavior is rarely repro-
functional language, which supports asynchronous commu-ducible [1]. Re-running a non-deterministic program on the
nication and transactional memory. The SHIM model uses Same input usually does not produce the same behavior. In-
multi-way rendezvous to guarantee determinism. We de-serting assert or print statements or running the program in
scribe two implementations of the model in Haskell, demon-a debugger usually changes timing enough to make the bug
strating the ease of writing such a library. disappear. Debugging such programs is like trying to catch

We illustrate our library with examples and experimen- @ butterfly that is only visible from the corner of your eye.
tally compare two implementations. We also compare our ~We believe a programming environment should always
new model with equivalent sequential programs and par- Provide functional determinism because it is highly desir-

allel versions using Haskell's existing concurrency mecha able and is very difficult to check for on a per-program ba-
nisms. sis. Sequential programming environments for languages

such as assembly, C, or BASIC have always guaranteed
such determinism, but many parallel environments do not.

In this paper, we present a concurrency library that guar-
antees deterministic functional behavior. We implemented
this library in the functional language Haskell, but many of

Multicore shared-memory multiprocessors now rule the the lessons apply to any language. Haskell actually support
server market. While such architectures provide better per-several concurrency mechanisms, but does not guarantee
formance per watt, they present many challenges. functional determinism. We chose Haskell because it has

Scheduling—instruction ordering—is the biggest issue a fairly mature STM implementation, carefully controlled
in programming shared-memory multiprocessors. While side effects, and lightweight user-mode scheduled threads
uniprocessors go to extremes to provide a sequential execuWe were also curious about whether our model, which we
tion model despite caches, pipelines, and out-of-order dis proposed previously for an imperative setting, would trans
patch units, multiprocessors typically only provide such a late well to a functional language.

1. Introduction



Our library is based on Edwards and Tardieu’s SHIM Void f(int a) {
(software-hardware integration medium) model [5], which ~ //@is acopyofc
consists of concurrent asynchronous processes that com- & = 3 // change local copy
municate exclusively through rendezvous communication /r}e;(tnc?\;v 5// receive (wait for )
channels. Processes only interact at communication points
where they rendezvous and synchronize. The model com-
bines the functional determinism of Kahn networks [9] with  void g(int &) { //bisan alias of ¢

the more tractable rendezvous of Hoare’s CSP [7]. Ourli-  next b = 5; //sets cand send (wait for f)
brary provides the multi-way rendezvous, but not the excep- //b now 5
tions, of the latest version of SHIM [12]. }

Deadlock is another bane of parallel programming.
While the SHIM model does not prevent deadlocks, they Void main() {
are at least deterministic, i.e., if a program can deadlock int ¢ = 0
for a particular input, it will do so consistently. Again,ish f(c); par g(c); //startf() and g() concurrently
aids debugging—a programmer can reliably test whether a
deadlock has been eliminated for a particular input.

We implemented two versions of our library: one that
uses mailboxes for inter-process communication and use
that uses software transactional memory. Experimentally, nication operator that synchronizes on charmehd either
we find mailboxes are more efficient for implementing sends or receives data depending on which side of an as-
the multi-way rendezvous mechanism, especially for large signment (=) thenext appears. The SHIM language also
numbers of processes. We also found our library easier toprovides concurrent exceptions [12]; our library currgntl
code using mailboxes. While our results are most relevantdoes not implement them.
to implementing rendezvous, they suggest not all styles of |n Figure 1, functiond andg run in parallel and com-
concurrent communication are equal. municate on channel Channek is passed by value th

After reviewing the SHIM communication model, some and SHIM interprets theextin f as a receive since it is an
related work, and Haskell's concurrency model, we describe rvalue. Channet is passed by reference tpand itsnext
our library and its implementation in Section 5 and presentais a send because it is an rvalue. Textin f waits forg
series of experiments with our library on an eight-processo to send a value. The functions therefore rendezvous at their

Figure 1. A SHIM program

machine in Section 6. nexs, then continue to run after communication takes place.
Inter-process communication in SHIM requires synchro-
2. The SHIM Communication Model nization, and is thus more costly than intra-process commu-

nication (i.e., reading and writing local variables). Its-i
plementation on a multiprocessor usually involves locking
a shared data structures. As usual, effective algorithnmst mu
balance local computation with communication.

The SHIM model guarantees functional determinism by
restricting inter-thread communication to a multi-way +en
dezvous mechanism. It has been implemented in two lan-
guages [5, 12]. One goal in this paper is to examine the )
advantages and disadvantages of implementing this mode®-1. SHIM as a Library Versus a Language
in a library instead of a full-blown language.

Unlike Haskell, the SHIM language [12] is impera- The SHIM model provides functional determinacy irre-
tive with a C-like syntax. SHIM provides function calls spective of being implemented as a language or a library, so
with pass-by-value and pass-by-reference parameters, buan obvious question is which is preferred. We present the
no pointers, references, or support for recursive datastru library approach in this paper. A library can leverage exist
tures. Its syntax and semantics allow the compiler to per- ing language facilities (editors, compilers, etc.) butsinet
form an inexpensive syntactic check for possible data races provide guarantees about its misuse. A program that uses
Basically, if no variable is passed by reference more thanour library is functionally deterministic if it only uses pu
once at a parallel call site, the program is deterministic. library for inter-thread communication, but there is nothi
This is a brute-force way to guarantee unique ownership ofto prevent other mechanisms from being used.
each variable; other researchers have proposed richermech The SHIM language does not provide any other inter-
anisms such as ownership and region types. thread communication mechanism, guaranteeing determin-

In our library, we adopt two SHIM language constructs: ism. However, the SHIM language and compiler are not as
p par gruns statementgsandq in parallel, waiting for both mature or feature-rich as Haskell, the implementation-vehi
to terminate before proceedingext cis a blocking commu-  cle for our library.



3. Related Work

The advent of mainstream multicore processes has em-
phasized the challenges of concurrent programming. Tech-

nigues ranging ranging from new concurrent languages to
new concurrent libraries for existing languages are being
investigated. @ [2] is an example of a new research lan-

guage, which provides join patterns in the form of chords
that synchronize the arrival of data on multiple channels to

sampleMailbox

= do

m <- newEmptyMVar—— Create a new mailbox

n <- newEmptyMVar

forklO (putMVar m (5: :Int)) —— thread writes5tom

forklO (do
c <- takeMVar m —— thread reads m
putMVar n (c+l)) —— writeton

result <- takeMVar n —— block for result

return result

atomically capture and bind values that are used by a han-

dler function (such chords are also easy to implement in an
STM setting). This pattern can capture many kinds of con-

currency mechanisms, including rendezvous and actors, but

it is non-deterministic and suffers from all the debugging
challenges the SHIM model avoids.
Cilk [3] is another C-based language designed for multi-

Figure 2. Using Mailboxes in Haskell. One
thread writes to mailbox m, a second reads
m, adds one, and writes to mailbox n. The

outer thread blocks on n to read the result.

threaded parallel programming that exploits asynchronousSampleSTM ¢

parallelism. It provides deterministic constructs to the-p
grammer, but it is the programmer’s responsibility to use
them properly; the compiler does not guarantee determin-
ism. This is one of the major differences between SHIM
and Cilk. Cilk focuses on the runtime system, which esti-
mates the complexities of program parts.

We built our library in Haskell, a functional language
with support for concurrency [8]. Its concurrency mecha-
nisms are not deterministic; our library provides a determi
istic layer over them. Experimentally, we find such layering
does not impose a significant performance penalty.

Our library resembles that of Scholz [11], which also
provides an existing concurrency model in Haskell. Unlike

= atomically (do

value <- readTVar c
if value == -1 then
retry —— not written yet

else writeTVar c (value + 1))

Figure 3. A Haskell program using STM. This
updates the shared (“transactional”) variable
¢ when itis not —1, otherwise blocks on c.

Haskell's software transactional memory mecha-
nisms [6, 4] are another way to manage communication

Scholz, however, we implement our mechanisms atop theamong concurrent threads. In STM, threads can communi-

existing concurrency facilities in Haskell [8] and insist o
functional determinism.

4. Concurrency in Haskell

We built our deterministic communication library atop
Haskell's concurrency primitives. The most basifaskIO,
which creates an explicit thread and does not wait for its
evaluation to complete before proceeding.

We implemented two versions of our library: one us-
ing mailboxes [8] for inter-thread communication, the athe
using software transactional memory [6, 4]. On a mail-
box, takeMVarandreadMVarperform destructive and non-
destructive readgutMVarperforms a blocking write. Sim-
ilarly, within the scope of amtomically statementreadT-
Var and writeTVar read and write transactional variables.
Other threads always perceive the actions withiratomi-
cally block as executing atomically.

The Haskell code in Figure 2 creates a mailbnand
forks two threads. The first thread puts the value 5 imto
and the second thread takes the value from the maifthox
adds one to it, and puts it in mailbox

cate or manipulate shared variables by reading or writing
transactional variables. Statements within aomically
block are guaranteed to run atomically with respect to all
other concurrent threads. A transaction can block on a
retry statement. The transaction is rerun when one of the
transaction variables changes.

The code in Figure 3 readsand updates it if its value
is not —1. Theatomically guarantees the read and write
appear atomic to other threads. The thread blocks while
is —1, meaning no other thread has written to it.

5. Our Concurrency Library

In this section, we present our SHIM-like concurrency
library and its implementation. Our goal is to provide
an efficient high-level abstraction for coding parallel al-
gorithms that guarantees functional determinism. As de-
scribed above, Haskell already has a variety of concurrency
primitives (mailboxes and STM), but none guarantee deter-
minism. Our hypothesis is that determinism can be pro-
vided in an efficient, easy-to-code way.



produce [ C]
= do
val <- produceData
dSend c val
if val == -1 then —— End of data
return ()
else
produce [ c]

consume| ]

inputToPipeline[ c1]

= do
vall <- getval
dSend c1 vall
inputToPipeline[ c1]

pipelineStagel[ c1, c2]

= do
vall <- dRecv cl
val2 <- processl vall

= do dSend c2 val2
val <- dRecv c pipelineStagel] c1, c2]
if val == -1 then —— End of data
return () pipelineStage2[ c2, c3
else = do
do consumeData val val2 <- dRecv c2
consume| ] val3 <- process2 val2
dSend c¢3 val3
producerConsumer pipelineStage?[ c2, c3
= do
¢ <- newChannel outputFromPipeline[ c3]
(., ) <- dPar produce] c] = do
consume| c] val3 <- dRecv c3
return () putStrLn ( show val3)

outputFromPipeline[ c3]

Figure 4. A simple producer-consumer sys-

tem using our library pipelineMain

= do
cl <- newChannel
c2 <- newChannel
c3 <- newChannel
let dPar2 funl clistl fun2 clist2 clist

. . . . = dPar funl clistl fun2 clist2
Our library provides channels with multi-way ren- let forkFuncl = dPar2 inputToPipeline[ c1]

dezvous .and a facility for spawning concurrent threads that pipelineStagel] c1, c2]
communicate among themselves through channels. let forkFunc2 = dPar2 pipelineStaged c2, c3]

Figure 4 illustrates the use of our API. TheoducerCon- outputFromPipeline[ c¢3
sumerfunction usesiewChanneto create a new channel dPar forkFuncl[cl, cZ]
and passes it to theroduceand consuméunctions, which forkFunc2 [ c2, c3
dPar runs in parallel. The producer sends data to the con- return ()
sumer, which consumes it while the producer is computing
the next iteration. For communication costs not to domi-
nate, evaluatinggroduceDataand consumeDatahould be
relatively costly. Depending on which runs first, either the
dSendof the producer waits fodRecvof the consumer or
vice-versa, after which point both proceed with their execu
tion to the next iteration.

Such a mechanism is also convenient for pipelines, suc
as Figure 5. The four functions run in parallel. The first
feeds data tpipelineStagelwhich receives it asall, pro-
cesses it and sends the processedwdlfto pipelineStage2
through channet2. PipelineStagects similarly, sending  While our library guarantees functional determinism, it
its output tooutputFromPipelinghroughc3. does not prevent deadlocks. For example, our library dead-

Figure 6 shows the formal interface to our library. locks when multiple threads calSendn the same channel
newChannetreates a new rendezvous chanmar takes (a channel may only have one writer). While this could be
four arguments: the first two are the first function to run and detected, other deadlocks are more difficult to detect. If no
the list of channels passed to it; the last two are the secondsender ever rendezvous, the readers will block indefinitely

5.1. Our Library’s API

Figure 5. A two-stage pipeline in our library

function and its channel connectiordSendtakes two pa-

rameters: the channel and the value to be communicated.

dRecwvtakes the channel as argument and returns the value
hin the channel.

5.1.1 Deadlocks and Other Problems



newChannel: : 10 (Channel a newChannel

dPar :: ([Channel @ -> 10 b) -> = do

[ Channel & -> connectionsT<- atomically $ newTVar 1

([ Channel @ -> 10 c¢) -> waitingReadersT<- atomically $ newTVar 0

[Channel & -> 10 (b, ¢ writtenT <- atomically $ newTVar False
dSend:: Channel a-> a -> 10 () allReadsDoneT<- atomically $ newTVar False
dRecv:: Channel a-> 10 a valT <- atomically $ newTVar Nothing

return ( Channel connectionsT waitingReadersT

Figure 6. The interface to our concurrency li- writtenT allReadsDoneT vaJT

brary. newChannel creates a new channel;
dPar forks two threads and waits for them to
terminate; dSend rendezvous on a channel
and sends a value; and dRecv rendezvous
and receives a value.

Figure 8. Creating a new channel (STM)

dPar funcl vl func2 v2= do
done <- newEmptyMVar
let common=
intersectBy
(\ xy->(val X == (val y)) vl v2
atomically ( do
apply (\ ¢ -> do
nt <- readTVar ( connections

data Channel a= Channel {
connections: : TVar Int,
waitingReaders: : TVar Int,

written :: TVar Bool, . :
allReadsDone: : TVar Bool, ) Végﬁ?{%: (connections k- (nt + 1)
val :: TVar (Maybe a) forkiO ( do
} res <- funcl vl —— Run funclin child
putMVar done res —— Save result

Figure 7. The channel type (STM) res2 <- func2 v2 —— Run func2 in parent

resl <- takeMVar done—— Get funcl result
atomically ( do

Two threads that attempt to communicate on shared apply (\ ¢ -> do

channels in different orders will deadlock. For example, nt <- readTVar ( connections X
dSend c1 value dSend c2 value writeTVar (.connections k (nt - 1)
dRecv c2 dRecv cl ) commoi

et
will deadlock because the left thread is waiting for the tigh return: (resl  res3

to rendezvous orl, while the right is waiting for the left apply func[] = return ()
to rendezvous on2. Such a deadlock is deterministic: the apply func (hd: tl) = do func hd ; apply func tl
scheduler cannot make it disappear.

Figure 9. Our implementation of dPar
5.2. An STM Implementation

5.2.1 Forking parallel threads
One implementation of our library uses Haskell's facil-

ities for Software Transactional Memory (STM) [6]. Our Figure 9 shows our implementationd®arfor STM. It cre-
goal was to see how difficult it would be to code and how ates a new MVar to hold the result from the child thread,
efficient it would be for multi-way rendezvous. We describe then determines which channels are shavddidv2 holds
the implementation below and defer experimental results totheir names) and atomically increases tl@innections
Section 6. To evaluate the two functions, the parent forks a thread.
Figure 7 shows the collection of transactional variables The child thread evaluatéanc2and then writes the result
used to represent a channel. The type variabieakes it  into the mailbox. Meanwhile, the parent evaluatescl,
polymorphic,connectiongracks the number of threads that waits for the child to report its result, atomically decresas
must rendezvous to perform the communication (it is ad- the connection count on shared channels, and finally returns
justed by threads starting and terminatingyl holds the  the results fronfunclandfunc2
data being communicatediaitingReadersracks the num- Figure 10 illustrates howonnectiongvolves as threads
ber of threads that have blocked trying to read from the fork and terminate. In Figure 10(a), FO has spawned F1
channel,written indicates whether the writer has written and F2, increasingonnectionsto 2. In (b), F2 has
the data, andllReadsDonéndicates when the last blocked spawned F3 and F4, increasiognnectiongo 3. Finally, in
reader has unblocked itself. (c), F3 and F4 have terminated, reductannectiongo 2.



connections=1

Time

connections=2

@) (b) (©)

Figure 10. The effects on connections when (a) main function FO calls dPar F1 [c] F2 [c], then (b) F2
calls dPar F3 [c] F4 [c], and (c) when F3 and F4 terminate.

Note that this only happens when FO, ..., F4 are all
connected to channel. If a thread was not connected,
spawning it would not require the number of connections T3
to change. This is what the computationcoinmonin Fig- a2end c v
ure 9 accomplishes by looking for channels passed to both T1 ;

threads being started. dRedv ¢ T2

Time | Wait
5.2.2 Deterministic send and receive Wait :

Multi-way rendezvous is a three-phase process: wait for all L dRecve...... .
peers to rendezvous, transfer data, and wait for all peers td : Rendezvous
complete the communication. Our library supports single-
writer, multiple-reader channels, sorif is the number of

threads connected to chanrela writer waits forng — 1 Figure 11. A rendezvous among two readers
readers; a reader waits for one writer and- 2 other read- and one writer

ers. We describe how to maintaig in the next section.

Figure 11 illustrates a scenario with two readers and a
writer. Threads T1 and T3, call dRecv and dSend respec-
tively. T1 and T3 wait for thread T2 to communicate. Once
T2 calls dRecy, the three threads rendezvous and exchange
data and continue with their individual execution. dSend ¢ value= do
Figure 12 shows our implementation dSendusing atomically ( do
STM. It first waits forne — 1 readers to rendezvous, invok- wr <- readTVar ( waitingReaders
ing retry to delay. Once they have, it atomically writes the connections<- readTVar ( connections
value to send itval and resets the number of waiting read- if wr < connections- 1 then retry else (do
ers, thewritten flag, and theallReadsDondlag. Finally, it writeTVar (val ¢ (Just valug

. . writeTVar ( waitingReaders 0
waits for all the last receiver to satlReadsDone writeTVar (written ¢ True

Figure 13 is the complementary process. It first incre- writeTVar ( allReadsDone )k Falseg))
mentswaitingReadersthen waits for thewritten flag to be atomically (do
set bydSend Once it has, it readgal—the data being com- ard <- readTVar (allReadsDone X
municated, increasegaitingReadersand sees if it was the if ard == False then retry else return ())
last one. If it was, it resetwaitingReadersallReadsDong
andwritten, thereby releasing all the readers (including it- Figure 12. dSend (STM)

self) and the writer. Otherwise, it waits for another reader
to setallReadsDone



dRecv c= do newChannel

atomically ( do = do
wr <- readTVar ( waitingReaders X mVal <- newEmptyMVar
writeTVar ( waitingReaders © (wr + 1) mVarCount<- newMVar 1
return ()) mVarBegin <- newEmptyMVar
v <- atomically (do mVarEnd <- newEmptyMVar
w <- readTVar (written ¢ return ( Channel mVal mVarCount
if w == False then retry else (do mVarBegin mVarEnd
Just v <- readTVar (val ¢
wr <- readTVar (waitingReaders Figure 15. newChannel (Mailboxes)
writeTVar ( waitingReaders  (wr + 1)
nc <- readTVar ( connections t dSend ( Channel mVar mVarCount
—— If last reader to read mVarBegin mVarEnd val = do
when (wr + 1 == nc - 1) (do waitForRecvrsToArrive mVarCount mVarBegin 1
writeTVar (waitingReaders 0 —— Wait for every receiver to send a sync.
writeTVar ( allReadsDone  True n <- readMVar mVarCount
writeTVar (written ¢ False) sendValueToRecvrs mVar véin- 1)
return v)) putMVar mVar val
atomically ( do takeMVar mVar
ard <- readTVar (allReadsDone X signalRecvrs mVarEnd n- 1)
if ard == False then retry else return () )
return v sendValueToRecvrs mVar value countdo
if (count == Q) then
Figure 13. dRecv (STM) return ()
else do putMVar mVar value
data Channel a= Channel { sendValueToRecvrs mVar
mval :: MVar a value (count - 1)
mVarCount: : MVar Int, return ()
mVarBegin:: MVar (),
mVarEnd : : MVar () WaitgorRecvrsToArrive mVarCount mVarBegin i
= do
b count <- readMVar mVarCount
Figure 14. The channel type (Mailboxes) if (count== i) then return ()
else do
takeMVar mVarBegin
5.3. A Mailbox Implementation waitForRecvrsToArrive mVarCount

mVarBegin (i+1)

For comparison, we also implemented our multi-way sjgnalRecvrs mvarEnd count

rendezvous library using Haskell's mailboxes [8]. = do if (count == 0)
Figure 14 shows th€hannelstructure used to represent then return ()
the channel. FieldnVal holds the datamVarCountholds else do putMVar mvarEnd()
the number of connections to this channel, andarBegin signalRecvrs mVarEnd count 1)

andmVarEndare synchronization variables.

Figure 17 shows thdRecvprocedure. A receiver sends
a signal to the sender indicating it has arrived, then the re-
ceiver waits for the value from the sender. Once all recsiver
have read the value, the sender signals an end, after which
dRecv returns with the value.

ThedSendprocedure (Figure 16) waits for all receivers,

Figure 16. dSend (Mailboxes)

dRecv ( Channel mVar mVarCount
mVarBegin mVarEnd

then performs @utMVaron the value once per receiver. To - 44

ensure the last receiver has read, it does a redurpisat- putMVar mVarBegin() —— Inform sender
Var andtakeMVar Finally, once all receivers have read the value <- takeMVar mVar —— Wait for sender
value, it signals the receivers to continue executidvait- takeMVar mVarEnd—— Wait for sender end
ForRecvrsToArrivavaits for every receiver to send a sync return value

indicating it has arrived.SignalRecvrsignals the end by _ .
informing each receiver the rendezvous is complete. Figure 17. dRecv (Mailboxes)



Threads Time to Rendezvous Speedup fib n I gthi: '1se: 1
Wi =
STM ~ Mailbox  (STM/Mailbox) par resl (pseq res2(resl + res2 + 1))

2 011ms 007 ms 16 where res%i ?g (n - é)

3 014 008 18 res2 = fib (n - 2

4 0.17 014 12 _ _ _ _

5 021 016 13 Fllgure 18. Calculating Fibonacci numbers

6 0.28 017 16 with Haskell's par-seq

7 031 021 15

8 0.37 023 16

9 0.42 027 16 6.2. Examples Without Rendezvous

10 047 028 17
;88 324 163 g; These examples only catlPar and do not uselSend

: or dRecv Our goal here is to compare our library with

400 110 14 4 Haskell's existing par-seq facility, which we feel present
800 300 34 15¢]

an awkward programming interface [10].
Haskell's par-seq constructs can be used to emulate our
dPar. The following are semantically equivalent

Table 1. Time to rendezvous for STM and
Mailbox implementations
dpar M [] N [] < (par M (pseq N(M, N)))

. but the par does not guarantell and N are executed in
6. Experimental Results parallel because Haskell uses lazy evaluation. Nevedhbgle
we find the par-seq method can run faster thandiar.

To test the practicality and efficiency of our library, we  ysing par-seq is subtle, illustrated by Figure 18. While
created a Variety of programs that used it and timed them. both par and pseqonly return the Value Of their Second ar-

gument, the meaning @il par m2s “start the calculation
6.1. STM Versus Mailbox Rendezvous of m1for speculative evaluation and then go onto evaluate
m2” This is useful whermlis a sub-expression oh2 so

As a basic test of efficiency, we had our library ren- mimay be evaluated in parallel with the bodyro® Con-
dezvous 100000 times among various numbers of threads/ersely,psegmakes sure its first argument is evaluated be-
on a two-processor machine (a 500 MB, 1.6 GHz Intel fore evaluating its second. In this example, piseqguaran-
Core 2 Duo running Windows XP) and measured the time. tees thafib ( n-2) is evaluated beforéib (n- 1), which
Table 1 lists the results. can usdib (n-2).

Mailboxes appear to be more efficient for our applica-  We find this mechanism subtle and difficult to con-
tion, especially when large numbers of threads rendezvoustrol. It provides weak control over the scheduling of
We believe this may be fundamental to the STM approach, computation—a complex issue for a lazy language like
in which threads continue to execute even if there is a con-Haskell made all the more tricky by parallelism. We believe
flict. Only at the end of the transaction is conflict checked providing users with easy-to-use mechanisms to control
and rolled back if needed. In the case of a multi-way ren- scheduling is necessary for achieving high performance; ex
dezvous, many threads will conflict and have to be rolled pecting the compiler or runtime system to make the best
back. Mailboxes are more efficient here because they check:hoices seems unrealistic.
for conflicts earlier. We ran these and all later experiments on an 8-processor

The STM method also requires more memory to hold |ntel machine containing two 5300-series 1.6 GHz
the information for a roll-back. Again, mailboxes have less quad processors, 2 GB of RAM, and running Win-
overhead because they do not need this information. dows NT Server.

The STM method is more complicated. Unlike mail-
boxes, which only require a mutual exclusion object, a flag, 6
and the data to be transferred, STM requires managing in-
formation to identify conflicts and roll back transactions.  Figure 19 shows the execution times for a program that uses

However, the ratio of communication to computation is a linear search to find the maximum element in a 400 000-
the most critical aspect of application performance. For element list. The program, whose behavior is shown in Fig-
a computationally-intensive application, a 50% increase i ure 20, splits a list into pieces, one per thread, finds the
communication time hardly matters. maximum of each piece, and finally finds the maximum of

.2.1 Maximum element in a list
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the pieces. We compared a sequential implementation, onle
that uses Haskell's par-seq constructs, and one that uses g
dParto the ideal speedup of the sequential implementation.

Figure 19 shows the par-seq implementation is slightly
more efficient, although both implementations fall short of
the ideal ¥n speedup on more than two processors.

6.2.2 Boolean Satisfiability

Figure 21 shows the execution times of a simple Boolean
SAT solver implemented sequentially, using par-seq, and
with our dPar. We ran it on an unsatisfiable problem
with 600 variables and 2500 clauses. Figure 22 shows the
structure of our approach: we pick an unassigned variable
and spawn two threads that check whether the expression
can be satisfied if the variable is true or false. Because of
our demand for determinism, we do not asynchronously ter-

that it does not do any online learning.

Again, we find ourdPar has more overhead than
minate all the threads when one finds the expression haHaskell's par-seq. Also, this algorithm does not appear to
been satisfied. Our algorithm is also primitive in the sense benefit from more than four processors, which we attribute
in part to Haskell's single-threaded garbage collector.
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Figure 22. Structure of the SAT Solver
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Figure 24. Linear Search Structure . . -
g Our implementation takes the approach shown in Fig-

ure 24: the list is broken inte fragments and passed to
6.3. Examples With Rendezvous parallel threads. However, rather than asynchronousty ter
minating all the threads when the key is found, instead all
the threads rendezvous at a prearranged interval to check

Here we consider algorithms that use rendezvous com- _
munication among threads. The comparisons are to pure|ywhether any have found the key. All threads proceed if the

sequential implementations of the same algorithm. key is not found or terminate and negotiate which copy is
reported if one has been found.

_ This technique trades off communication frequency and

6.3.1 Linear Search the amount of extra work likely to be done. Infrequent com-
Figure 23 shows the execution times of a linear search pro-munication means less overhead, but it also makes it more
gram that uses rendezvous communication to find a key inlikely the threads will waste time after the key is found. Fre
a 420 000-element list (we put it in the 390 000th position). duent communication exchanges overhead for punctuality.
Unlike the maximum element problem, linear search gener- e did not have time to explore this trade-off.
ally does not need to scan the list completely, so the algo-
rithm shpgld have away of terminating early. ' 6.3.2 Systolic Filter and Histogram

Requiring determinism precludes the obvious solution of
scanningn list fragments in parallel and terminating imme- Figure 25 shows the execution times of a Systolic 1-D filter
diately when the key is found. This constitutes a race if running on 50 000 samples. Each thread run by the filter can
the key appears more than once, since the relative executiofindependently process a chunk of the input in parallel with
rates of the threads affect which copy was reported. other threads following the structure in Figure 27. Because
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of determinism, jobs are distributed and collected from the
worker threads in a round-robin order.

Figure 26 shows the execution time of a similar algo-
rithm: a histogram of RGB values in an image. We ran it on
a 565 KB raster file.

7. Conclusions

Our experiences do provide insight for the library vs. lan-
guage debate. While the library approach has the advantage
of leveraging features of the host language, we encountered
a number of infelicitous that made the library difficult to
implement and use.

Unlike C, Haskell does not allow its type system to be
circumvented. This avoids more runtime errors but makes
building really polymorphic things harder. We would like
adPar that spawns an arbitrary number of threads, each of
which is connected to an arbitrary number and type of chan-
nels. Such flexibility is difficult to express in a library. We
settled on spawning only two threads at a timevay forks
can be recovered by nesting) and not checking the num-
ber of channels, thus deferring certain errors to runtime.
Haskell probably allows a more flexible interface, but the
code can become very obscure.

The type system in C is easy to circumvent and C al-
lows functions with a variable number of parameters, so a
C implementation of our library might have a cleaner API.
However, going around the type system opens the door to
runtime type errors, e.g., trying to pass a string through a
channel intended for floating-point numbers.

We believe our library presents an easier, less error-prone
programming model than either mailboxes or STM, but this
is hard to prove. Anecdotally, we found it easier to de-
bug, especially deadlocks, which were reproducible. Fur-
thermore, it seems easier to reason about explicit synchro-
nization instead of explicitly usinggtry in the STM setting.

Tardieu and Edwards recently added concurrent, deter-
ministic exceptions to the SHIM model [12], which are a
convenient mechanism for thread control but tricky to im-
plement correctly. We plan to add such concurrent excep-
tions to the next version of our library.

While we found it was reasonable and fairly efficient Acknowledgments

to implement a deterministic concurrency library based on
multi-way rendezvous, our efforts did raise a few issues.
We found that the performance of our library was slightly
lower than that of Haskell’s built-in par-seq mechanism. We
suspect this is from additional layers of abstraction betwe

our library calls and the par-seq mechanism. Despite this,
we believe our library provides a nicer abstraction because

it makes communication and synchronization explicit and
therefore makes an easier optimization target, but thig-is d
ficult to quantify.

While we were successful at implementing the library

using both Mailboxes and software transactional memory

(STM), we are happier with the mailbox-based implemen-

We would like to thank Simon Peyton Jones, Simon Mar-
low and Tim Harris of Microsoft Research for their valuable
suggestions and feedback. This research was supported in
part by Microsoft Research, Cambridge. Edwards and the
SHIM project is supported by the NSF.

tation because it is both faster and easier to program and un-

derstand. While it is clearly possible to wait to synchronize
with peers in STM, coding it seems needlessly awkward.

We also observed STM increased synchronization overhead

by at least 50%, although this is not prohibitive.
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