
Kiwi: Synthesis of FPGA Circuits from Parallel Programs

David Greaves
Computer Laboratory

University of Cambridge
Cambridge CB3 0FD

United Kingdom
David.Greaves@cl.cam.ac.uk

Satnam Singh
Microsoft Research Cambridge

Cambridge CB3 0FB
United Kingdom

satnams@microsoft.com

Abstract

We describe the Kiwi parallel programming library and
its associated synthesis system which is used to transform
C# parallel programs into circuits for realization on FP-
GAs. The Kiwi system is targeted at making reconfig-
urable computing technology accessible to software en-
gineers that are willing to express their computations as
parallel programs. Although there has been much work
on compiling sequential C-like programs to hardware by
automatically ‘discovering’ parallelism, we work by ex-
ploiting the parallel architecture communicated by the de-
signer through the choice of parallel and concurrent pro-
gramming language constructs. Specifically, we describe
a system that takes.NET assembly language with suit-
able custom attributes as input and produces Verilog out-
put which is mapped to FPGAs. We can then choose to ap-
ply analysis and verification techniques to either the high-
level representation in C# or other.NET languages or to
the generated RTL netlists. A distinctive aspect of our ap-
proach is the exploitation of existing language constructs
for concurrent programming and synchronization which
contrasts with other schemes which introduce specialized
concurrency control constructs to extend a sequential lan-
guage.

1 Introduction

Reconfigurable computing technology is well placed to
play an important role in the heart of future heterogeneous
computing systems. Soon the role of a mainstream soft-

ware engineer will involve designing programs for pro-
cessors that contain not only regular CPUs as we know
them today but also more specialized processing units e.g.
the evolution of today’s GPUs as general purpose com-
puting engines and a version of today’s FPGAs as a Lego-
like 2D parallel computing resource. This presents a valu-
able opportunity for efficiently expressing many compute
intensive calculations using more parallel computing re-
sources. However, heterogeneous systems also pose a
huge programming challenge because, up to now, differ-
ent kinds of compute resources have been modeled and
programmed in very different ways. Successful heteroge-
neous systems need new unified programming techniques
if they are to be widely exploited by mainstream devel-
opers. Our contribution in this paper is a step in that
direction because we try to model parallel computations
with parallel programs written in a mainstream language
and then effectively transform these descriptions into cir-
cuits for realization on FPGAs. Such an approach helps to
make reconfigurable computing technology accessible to
software engineers who are willing to write parallel pro-
grams. The trend towards multi-core processors means
that software engineers will be increasingly writing paral-
lel programs even for execution on regular processors.

A significant amount of valuable work has already been
directed at the problem of transforming sequential imper-
ative software descriptions into good-quality digital hard-
ware and these techniques are especially good at control-
orientated tasks which can be implemented with finite-
state machines. Our approach builds upon this work by
proposing the use of parallel software descriptions which

capture more information from the designer about the par-
allel architecture of a given problem that can then be ex-
ploited by our tools to generate good-quality hardware for
a wider class of descriptions.

A novel contribution of this work is a demonstration of
how systems-level concurrency abstractions, like events,
monitors and threads, can be mapped onto appropriate
hardware implementations. Furthermore, our system can
process bounded recursive methods and object-orientated
constructs (including object pointers).

The output of our system has been tested with the Xil-
inx XST synthesis flow and we report the experience of
producing circuits that perform low-level bus control and
parallel implementations of test pattern images for a DVI
controller. These circuits were implemented on a Virtex-5
FPGA on the ML-505 development board. Currently our
system is in the early stages of design and development
and we are working on supporting larger examples and
higher level concurrency models.

Throughout this paper when when we refer to an ‘as-
sembly’ language file we specifically mean the textual
representation of the byte code file produced by our com-
pilation flow rather than an a .NET assembly which is an
altogether different entity.

Although we present work in the context of the .NET
system the techniques are applicable to other platforms
like the Java Virtual Machine (JVM). The experimental
work described in this paper was undertaken on Windows
machines and also on Linux machines running the Mono
system.

2 Background

A lot of previous research has been directed at transform-
ing sequential C-like programs into digital circuits and
this work is strongly related to work on automatic par-
allelization. Indeed, it is instructive to notice that C-to-
gates synthesis and automatic parallelization are (at some
important level of abstraction) the same activity although
research in these two areas has often occurred without
advances in one community being taken up by the other
community.

The idea of using a programming language for digi-
tal design has been around for at least two decades [4].
Previous work has looked at how code motions could be

exploited as parallelization transformation technique [9].

Examples of C-to-gates systems include Catapult-C
[13] from Mentor Graphics, SystemC synthesis with Syn-
opsys CoCentric [1], Handel-C [8], the DWARV [14] C-
to-VHDL system from Delft University of Technology,
single-assignment C (SA-C) [11], ROCCC [2], SPARK
[5], CleanC from IMEC [7] and Streams-C [3].

Some of these languages have incorporated constructs
to describe aspects of concurrent behavior e.g. thepar

blocks of Handel-C. The Handel-C code fragment below
illustrates how thepar construct is used to identify a block
of code which is understood to be in parallel with other
code (the outerpar on line 1) and a parallel for loop (the
par at line 4).

1 par

2 { a[0] = A; b[0] = B;
3 c[0] = a[0]b[0] == 0 ? 0 : b[0] ;
4 par (i = 1; i < W; i++)
5 { a[i] = a[i−1] >> 1 ;
6 b[i] = b[i−1] << 1 ;
7 c[i] = c[i−1] + (a[i][0] == 0 ? 0 : b[i]);
8 }
9 ∗C = c[W−1];

10 }

A notable recent example of exploiting high level paral-
lel descriptions for hardware design is the Bluespec Sys-
temVerilog language [12] which provides a rule-based
mechanism for circuit description which is very amenable
to formal analysis.

Our approach involves providing hardware semantics
for existing low-level concurrency constructs for a lan-
guage that already supports concurrent programming and
then to define features such as the Handel-Cpar blocks
out of these basic building blocks in a modular manner.
By expressing concurrent computations in terms of regu-
lar concurrency constructs we hope to make our synthesis
technology accessible to mainstream programmers. Al-
though SystemC descriptions may be very efficiently syn-
thesized they still require the designer to think like a dig-
ital circuit engineer. Our approach allows software engi-
neers to remain in the software real to help them move
computationally demanding tasks from executing on pro-
cessors to implementation on FPGAs.

appropriate

concurrency

models

for

hardware

appropriate

concurrency

models

for

software

Kiwi

asynchronous

threads

monitors

events

priorities

message passing

event-based

simulation

Kahn

networks

multi-clock

synchronous

data-flow

Figure 1: Concurrency models and constructs

3 Parallel Circuit Descriptions

We provide a conventional concurrency library, called
Kiwi, that is exposed to the user and which has two im-
plementations:

• A software implementation which is defined purely
in terms of the supporting .NET concurrency mech-
anisms (events, monitors, threads).

• A corresponding hardware semantics which is used
to drive the .NET IL to Verilog flow to generate cir-
cuits.

A Kiwi program should always be a sensible concurrent
program but it may also be a sensible concurrent circuit.
The design of the Kiwi library tries to capture a common
ground between the concurrency models constructs used
for hardware and software (see Figure 1). Our aim to is
try and identify concurrency models and constructs which
have a sensible meaning both for programs and circuits
and this may involve restricting the way they are used in
order to support our synthesis approach.

A major paradigm in parallel programming is thread
forking, with the user writing something like:

1 ConsumerClass consumer =
2 new ConsumerClass(...);
3

4 Thread thread1 =
5 new Thread(new ThreadStart(consumer.process));
6 thread1.Start();

Within the Kiwi hardware library, the .NET library func-
tions that achieve this are implemented either by compila-
tion in the same way as user code or using special action.
Special action is triggered when thenewobj ThreadStart is

elaborated: the entry point for the remote thread is added
to a list that was first created by the user from a com-
mand line list of entry points. On the other hand, the call
to Threading::Start that enables the thread to run is im-
plemented entirely C# (and hence compiled to hardware)
simply as an update to a fresh gating variable that the ac-
tual thread waits on before starting its normal behavior.

Another important paradigm in parallel composition is
thechannel. The implementation uses blocking read and
write primitives to convey a potentially composite item, of
generic typeT , atomically. These channels are designed
to allow one circuit to produce a result which is consumed
by another circuit and in hardware they can be compiled
into single place buffers which are placed between a sin-
gle producer circuit and a single consumer circuit.

1 public class channel<T>

2 { T datum;
3 bool empty = true;
4 public void write(T v)
5 { lock(this)
6 { while (!empty)
7 Monitor.Wait(this) ;
8 datum = v ;
9 empty = false ;

10 Monitor.PulseAll(this);
11 }
12 }
13

14 public T read()
15 { T r ;
16 lock (this)
17 { while (empty)
18 Monitor.Wait(this);
19 empty = true;
20 r = datum;
21 Monitor.PulseAll(this);
22 }
23 return r;
24 }
25 }

The lock statements on lines 5 and 16 are translated by
the C# compiler to calls toMonitor.Enter andMonitor.Exit

with the body of the code inside atry block whosefinally

part contains theExit call. This construct can be used to
model a rendezvous between a specific producer and con-
sumer pair.

There are numerous levels at which we might intro-
duce primitives when implementing parts of the Kiwi li-
brary for hardware synthesis. An entire function can be
recognized and translated to the primitives of the under-
lying virtual machine. Alternatively, the C# code from
the software implementation can be partially translated.
In our current implementation of channels, calls toMoni-

tor.Enter andMonitor.Exit were replaced with the follow-
ing C# code (containing only native functions understood
by the core compiler)

void Enter(object mutex)
{ while (hpr testandset(mutex, 1))

hpr pause();
}
void Exit(object mutex)
{ hpr testandset(mutex, 0);
}

Monitor.Wait was replaced with

void Wait(object mutex)
{ hpr testandset(mutex, 0);

hpr pause();
while (hpr testandset(mutex, 1))

hpr pause();
}

andMonitor.Strobe was treated as a NOP (no operation),
because the underlying hardware implementation is in-
trinsically parallel and can busy wait without cost.

4 Synthesis Flow

In our flow, shown in Figure 2, the .NET Assembly Lan-
guage is parsed to an AST and then a CIL (common inter-
mediate language) elaborate stage converts the AST to the
internal form known as an HPR machine. This was used
because a library of code from the University of Cam-
bridge can operate on this format. The HPR machine con-
tains imperative code sections and assertions. The library
enables HPR machines to be emitted in various hardware
and software forms and converted between them. The im-
perative code sections can be in series or parallel with
each other, using Occam-likeSER andPAR blocks.

For illustration, we show some IL code below. Key as-
pects of the IL code include the use of a stack rather than
registers (e.g.mul pops two elements off the stack, mul-
tiplies them and pushes the result onto the stack); local

variables stored in mutable state (e.g.ldloc.1 pushes the
value at local memory location 1 onto the stack); control
flow through conditional and unconditional branches; and
direct support for overloaded method calls.

IL 0019: ldc.i4.1
IL 001a: stloc.0
IL 001b: br IL 005b
IL 0020: ldc.i4.1
IL 0021: stloc.1
IL 0022: br IL 0042
IL 0027: ldloc.0
IL 0028: ldloc.1
IL 0029: mul
IL 002a: box [mscorlib]System.Int32
IL 002f: ldstr ” ”
IL 0034: call string string::Concat(object, object)

The IL elaboration stage subsumes a number of vari-
ables present in the input source code, including all object
pointers.

The resulting machine is simulated with all inputs set
to don’t know. Any variables which are assigned a con-
stant value and not further assigned in the body of the pro-
gram (i.e. that part which is not deterministic given uncer-
tain inputs) are determined as compile-time constants and
subsumed by the constant propagation function shown in
Figure 2. Constructor code must not depend on run-time
inputs.

The resulting HPR machine is an array of impera-
tive code for each thread, indexed by a program counter
for that thread. There is no stack or dynamic stor-
age allocation. The statements are: assign, conditional
branch, exit and calls to certain built-in functions, includ-
ing hpr testandset(), hpr printf() andhpr barrier(). The ex-
pressions occurring in branch conditions, r.h.s. of assign-
ment and function call arguments still use all of the arith-
metic and logic operators found in the .NET input form.
In addition, limited string handling, including a stringcon-

cat() function are handled, so that console output from the
.NET input is preserved as console output in the gener-
ated forms (e.g.$display() in Verilog RTL).

4.1 .NET Assembly Language Elaboration

From the .NET AST, an hierarchic dictionary is created
containing the classes, methods, fields, and custom at-
tributes. Other declarations, such as processor type, are

IL parse and
elaborate. Simulate

FSM
Generation

Verilog
Conversion

User’s
Design

(C#)

.NET
Assembly Compile

Time
Constants

HPR
MACHINE

Constant
Propagate

Kiwi
Library

(C#)

Mono/Microsoft
C# Compiler

HPR
MACHINE

FPGA
Vendor Tools

HPR
MACHINE

Figure 2: Overall System Flow.

ignored.

A variable is either a static or dynamic object field, a
top-level method formal, a local variable, or a stack lo-
cation. For each variable we decide whether tosubsume
it in the elaboration. If not subsumed, it appears in the
VM code that is fed to the next stage (where it may then
get subsumed for other reasons). Variables that are sub-
sumed during elaboration always include object and array
handles.

We perform a symbolic execution of each thread at the
.NET basic block level and emit VM code for each block.
.NET label names that are branch destinations define the
basic block boundaries and these appear verbatim in the
emitted VM code.

Although .NET byte-code defines a stack machine, no
stack operations are emitted from the .NET processing
stage. Stack operations within a basic block are symbol-
ically expanded and values on the stack at basic block
boundaries are stored and loaded into statically scoped
surrogate variables, create for this purpose, on exit and
entry to each basic block. The surrogate variables are fre-
quently subsumed, but can appear in the VM code and
hence, from time-to-time, in the output RTL. Where a
method is expanded in line multiple times, the same lo-
cal and surrogate variable instances are shared across all
frames at the same depth of recursion.

A -root command line flag enables the user to select a
number of methods or classes for compilation. The ar-
gument is a list of hierarchic names, separated by semi-
colons. Other items present in the .NET input code are
ignored, unless called from the root items.

Where a class is selected as the root, its contents are
converted to an RTL module with I/O terminals consisting
of various resets and clocks that are marked up in the C#
source using attributes defined in the Kiwi library. Where
a method is given as a root component, its parameters are
added to the formal parameter list of the RTL module cre-
ated. Where the method code has a preamble before enter-
ing an infinite loop, the actions of the preamble are treated
in the same way as constructors of a class, viz. interpreted
at compile-time to give initial or reset values to variables.
Where a top-level method exits and returns a non-void
value, an extra parameter is added to the RTL module for-
mal parameter list. Additional fields may be declared as
I/O terminals using attribute mark up within the C# source
code:

[OutputBitPort(‘‘scl’’)]
static bool scl;
[InputBitPort(‘‘sda in’’)]
static bool sda in;

RTL languages, such as Verilog and VHDL, do not sup-
port the common software paradigm of method entry
points and upcalls. Threads are not allowed to cross
between separately-compiled modules. To provide C#
users with procedure call between separately-compiled
sections, while keeping our output RTL synthesisable to
FPGA, we must provide further connections to each RTL
module that implement RPC-like stubs for remote callers.

Certain restrictions exist on the C# that the user can
write. Currently, in terms of expressions, only integer
arithmetic and limited string handling are supported, but
floating point could be added without re-designing any-

thing, as could other sorts of run-time data. More impor-
tantly, we are generating statically allocated output code,
therefore:

1. arrays must be dimensioned at compile time

2. the number of objects on the heap is determined at
compile time,

3. recursive function calling must bottom out at com-
pile time and so the depth cannot be run-time data
dependent.

The start-up path is split off from the main process loop
by running an interpreter on the code up to the first block-
ing primitive or to the top of the first loop that cannot be
unwound (for reasons of it being infinite or the number of
trips depending on run time data values). The main pro-
cess loop of each thread is converted to an LTS by defin-
ing a sequencer. The sequencer is an automata with a state
defined for each blocking primitive and for each .net pro-
gram label that is the destination for more than one flow of
control. The I/O operations and operations on local vari-
ables performed by the program are all recorded against
the appropriate arc of the sequencer.

4.2 FSM Generation

The input and output to the FSM generation stage are both
HPR machines. Each input machine consists of an ar-
ray of instructions addressed by a program counter. Each
instruction is either an assignment, exit statement, built-
in primitive or conditional branch. The expressions oc-
curring in various fields of the instructions may be arbi-
trarily complicated, containing any of the operators and
referentially-transparent library calls present in the input
language, but their evaluation must be non-blocking.

The output machine consists of an HPR parallel con-
struct for each clock domain. The parallel construct con-
tains a list of finite-state-machine edges, where edges
have two possible forms:

(g, v, e)
(g, f, [args])

where the first form assignse to v wheng holds and the
second calls built-in functionf wheng holds.

An additional input, from the command line, is an un-
wind budget: a number of basic blocks to consider in any

loop unwind operation. Where loops are nested or fork in
flow of control, the budget is divided amongst the various
ways. Alternatively, in the future, the resulting machine
can be analyzed in terms of meeting a user’s clock cycle
target and the unwinding decisions can be adjusted until
the clock budget is met.

The central data structure is the pending activation
queue (Figure 3), where an activation has form(p ==
v, g, σ) and consists of a program counter (p) and its cur-
rent value (v), a guard (g) and an environment list (σ) that
maps variables that have so far been changed to their new
(symbolic) values. The guard is a condition that holds
when transfer of control reaches the activation.

Activations that have been processed are recorded in
the completed activation queue and their effects are rep-
resented as edges written to the output queue. All three
queues have checkpoint annotations so that edges gen-
erated during a failed attempt at a loop unwind can be
rolled-back.

The pending activation queue is initialized with the en-
try points for each thread. Operation removes one acti-
vation and symbolically steps it through a basic block of
the program code, after which zero, one or two activations
are returned. These are either converted to edges for the
output queue or added to the pending activation queue.
An exit statement terminates the activation and a basic
block terminating in a conditional branch returns two ac-
tivations. A basic block is also terminated with a single
activation at a blocking native call, such ashpr pause().
When returned from the symbolic simulator, the activa-
tion may be flagged as blocking, in which case it goes
to the output queue. Otherwise, if the unwind budget is
not used up the resulting activation(s) go to the pending
queue. If the budget is used up, the system is rewound
to the latest point where that activation had made some
progress.

The basic rules for assignment and conditional branch,
implemented by the symbolic simulator, with guardg and
with environmentσ, are:

[[v := e;]](n,g,σ) → [(n + 1, g, [[[e]]σ/v]σ)]

[[if (e) goto d;]](n,g,σ) → [(d, g ∧ [[e]]σ, σ),

(n + 1, g ∧
∼[[e]]σ, σ)]

The conditional branch returns a list of two activations.

-ubudget n

HPR
Machine

HPR
Machine(s)

Output queue with
rollback checkpoints

(pc==loc, g, sigma=[e1/v2, e2/v2, ...]) list

Pending activation queue

Input
program

Symbolic
simulator

Input Activation

Entry point
for each thread

0, 1, or 2
output activations

Blocking
activation or

budget
consumed ?

Completed activation list

Unwind
budget

Already processed
checker ? Discard

yes

no
no

yes

Figure 3: Conversion of control flow graph to FSM.

Activations are discarded instead of being added to the
pending queue if they have already been successfully pro-
cessed. Checking this requires comparison of symbolic
environments. These are kept in a ‘close to normal form’
form so that typographical equivalence can be used. A
more-powerful proof engine can be used to check equiva-
lence between activations, but there will always be some
loops that might be unwound at compile time that are
missed (decidability).

Operation continues until the pending activation queue
is empty.

The generated machine contains an embedded se-
quencer for each input thread, with a variable correspond-
ing to the program counter of the thread and states cor-
responding to those program counter values of the input
machine that are retained after unwinding. However, the
sequencer is no longer explicit; it is just one of the vari-
ables assigned by the FSM edges. When only one state
is retained for the thread, the program counter variable is
removed and the edges made unconditional.

The output edges must be compatible. Compatible
means that that no two activations contain a pair of as-
signments to the same variable under the same conditions

that disagree in value. Duplicate assignments of the same
value at the same time are discarded. This checking can-
not always be complete where values depend on run-time
values, with array subscript comparison being a common
source of ambiguity. Where incompatibility is detected,
an error is flagged. When not detected, the resulting sys-
tem can be non-deterministic.

The built-in hpt testandset() function, operating on a
mutex, m, solves non-determinism arising from multi-
ple updates at the same time using an ordering that arises
from the order the activations are processed. (Other, fairer
forms of arbiter could also be implemented.) Mutexes
are statically-allocated boolean values. The acquire op-
eration returns the previous value from the symbolic en-
vironment,σ, of the activation, or the mutex itself if it is
not present, while updating the environment to set the mu-
tex. A clear operation is implemented as a straightforward
reset of the mutex:

[[hpr testandset(m, 1)]]σ → (σ(m), [1/m]σ)

[[hpr testandset(m, 0)]]σ → (0, [0/m]σ)

Multiple set and clear operations can occur within one
clock cycle of the generated hardware with only the final
value being clocked into the hardware register.

If all variables are kept in flip-flops, it is almost trivial
to convert the HPR machine in FSM form to an RTL de-
sign. However, we map arrays in the C# source code to
arrays to RAMs in hardware and scalar variables to flip-
flops. In the future we will extend the Kiwi attributes set
so that the user can control which variables are placed
in which output RAMS. A static structural hazard occurs
when the actions of a single transition require more than
one operation out of a RAM, such as reads to a single-
ported RAM at more than one location. Other expensive
components, that must be shared, such as an ALUs, can
also generate structural hazards. A dynamic structural
hazard occurs when two differentthreadsboth try to use
the same location at once. Static structural hazards are re-
solved at compile time, using rewrites that stall one FSM
at the expense of another and introducing any necessary
holding registers. Dynamic structural hazards can be re-
solved at run-time using arbitration circuits that delay the
advancement of one FSM while a needed resource is in
use by another.

5 I2C Controller Example

In this section we demonstrate how a circuit that performs
communication over an I2C bus can be expressed using
the Kiwi library. The motivation for tackling such an ex-
ample arises from the fact that the typical coding style for
such circuits involves hand coding state machines using
nested case statements in VHDL (or equivalent features
in Verilog). In particular, the sequencing of operations
is tedious and error prone. However we can exploit the
built in ‘semi-colons’ of a conventional language to cap-
ture sequencing. By allowing the programmer to express
control orientated tasks using the convenience of a regu-
lar language we believe Kiwi affords the designer a more
productivity since the corresponding high level state ma-
chine specification can be automatically derived by our
system and then efficiently implemented down to the gate
level by vendor tools.

The example we use is a circuit that writes a series of
values into the register of a DVI control chip on the Xilinx
ML-505 board. These registers are written using an I2C

interface between the FPGA and the DVI chip. The code
below demonstrates what is wrong with a typical VHDL
implementation for performing I2C control, which also
representative of many other kinds of control code:

case state is

when initial
=> case phase is

when 0 => scl <= ’1’ ; sda out <= ’1’ ;
when 1 => null ;
when 2 => sda out <= ’0’ ; −− Start condition
when 3 => scl <= ’0’ ;

index := 6 ;
state := deviceID state ;

end case ;
when deviceID state

=> case phase is

when 0 => sda out <= deviceID (index) ;

Such nestedcase statements are typical of situations like
this where the designer ends up hand coding a nested fi-
nite state machine to capture a sequence of operations i.e.
we are missing the semi-colons of an imperative language.
Using Kiwi, we can more directly represent the sequenc-
ing operations e.g. in the following deserialization code.

public static void SendDeviceID()
{ int deviceID = 0x76;

for (int i = 7; i > 0; i−−)
{ scl = false;

sda out = (deviceID & 64) != 0;
Kiwi.Pause(); // Set it i−th bit of the device ID
scl = true; Kiwi.Pause(); // Pulse SCL
scl = false; deviceID = deviceID << 1;
Kiwi.Pause();

}
}

The call toKiwi.Pause() in turn makes a call to aAutoRe-

setEvent object by waiting for an event that corresponds
to the rising edge of a clock signal.

This is is processed by our system which generates Ver-
ilog RTL code. Although not designed to be human read-
able, the RTL can then be processed by FPGA vendor
tools to generate a programming bitstream.

The generated Verilog was fed to the Xilinx ISE 9.2.03i
tools and a programming netlist was produced for the
Virtex-5 XC5VLX50T part on the ML-505 development
board. The source program performed a series of write
operations to the registers of the Chrontel DVI chip over

the I2C bus. The design was then used to successfully
configure the Chrontel DVI chip. The generated design
used 126 slice registers and 377 slice LUTS with a criti-
cal path of 5.8ns. A hand written version will be smaller
because these results do not yet reflect the use of integer
sub-ranges so some registers are represented with 32-bits
rather than just a hand full of bits.

6 Future Work

The techniques presented in this paper lay the groundwork
for expressing higher-level concurrency and parallelism
idioms in terms of lower level concurrency constructs in
the form of events, monitors and threads.

Aggressive loop unwinding increases the complexity of
the actions on each clock step in exchange for reducing
the number of clock cycles used. Currently an unwind
budget is given as a command line option but it may be
worth exploring higher-level ways of guiding such space/-
time trade-offs.

In software designs, threads pass between separately
compiled sections and update the variables in the section
they are in. This is not supported in synthesisable RTL, so
instead updates to a variable from a separately compiled
section must be via a special update interface with asso-
ciated handshaking for write and test and set. It would
be interesting to explore others mechanisms for separate
compilation and composability.

One initial source of inefficient circuits was the use of
int types in C# which resulted in circuits with 32-bit ports
after synthesis. Our fix for this problem involves attach-
ing yet another custom attribute that specifies the range
for integer values which can then be used by our system
to generate bit-vectors of the appropriate size in Verilog.
Another approach would have been to follow the exam-
ple of System-C and provide a new type that encapsulates
the idea of an integer range but we felt that this would be
change that permeates the whole program in a negative
way.

Our hypothesis for our future work is that because we
have a good translation for the low-level concurrency con-
structs into hardware then we should be able to translate
the higher-level idioms by simply implementing them in
the usual way. An interesting comparison would be ex-
amine the output of our system when used to compile

join patterns and then compare them to existing work on
compiling join patterns in software using Hardware Join
Java [6].

Another direction to take our work is to generate code
for other kinds of parallel computing resources like GPUs.
It is not clear if we can continue to use the same concur-
rency abstractions that we have developed for Kiwi or if
we need to add further domain specific constructs and cus-
tom attributes.

It may appear that our approach requires static alloca-
tion although strictly speaking our system analyzes in-
stances of dynamic allocation (as identified by thenew

keyword) and tries to subsume them as static allocations.
Future work could involve dealing with a broader class
of dynamic allocations in order to make the programming
model less restrictive.

A significant and perhaps optimistic assumption in our
approach is that programmers can write parallel software
and it is not clear that thread-level parallelism as sup-
ported by current mainstream languages is suitable for our
objectives [10]. Although we have shown how to map
specific uses of systems level concurrency constructs to
hardware a more realistic system would provide levels of
abstractions that make it easier to specify concurrency and
parallelism e.g. nested data parallel arrays and their asso-
ciated operations.

7 Conclusions

We have demonstrated that it is possible to write effective
hardware descriptions as regular parallel programs and
then compile them to circuits for realization on FPGAs.
Furthermore, we have shown that we can transform pro-
grams written using conventional concurrency constructs
and synchronization primitives into hardware. Specif-
ically, we have provided translations for events, mon-
itors, the lock synchronization mechanism and threads
under specific usage idioms. By providing support for
these core constructs we can then automatically translate
higher-level constructs expressed in terms of these con-
structs e.g. join patterns, multi-way rendezvous and data-
parallel programs.

The designs presented in this paper were developed us-
ing an off the shelf software integrated development en-
vironment (Visual Studio 2005) and it was particularly

productive to be able to use existing debuggers and code
analysis tools. By leaveraging an existing design flow and
existing language with extension mechanisms like cus-
tom attributes we were able to avoid some of the issues
that face other approaches which are sometimes limited
by their development tools.

Our approach complements the existing research on the
automatic synthesis of sequential programs (e.g. ROCCC
and SPARK) as well as work on synthesizing sequen-
tial programs extended with domain specific concurrency
constructs (e.g. Handel-C). By identifying a valuable
point in the design space i.e. parallel programs written
using conventional concurrency constructs in an existing
language and framework we hope to provide a more ac-
cessible route reconfigurable computing technology for
mainstream programmers. The advent of many-core pro-
cessors will require programmers to write parallel pro-
grams anyway, so it is interesting to consider whether
these parallel programs can also model other kinds of par-
allel processing structures like FPGAs and GPUs.

Our initial experimental work suggests that this is a vi-
able approach which can be nicely coupled with vendor-
based synthesis tools to provide a powerful way to express
digital circuits as parallel programs.

References

[1] Francesco Bruschi and Fabrizio Ferrandi. Synthesis
of complex control structures from behavioral sys-
temc models.Design, Automation and Test in Eu-
rope, 2003.

[2] B. A. Buyukkurt, Z. Guo, and W. Najjar. Impact
of loop unrolling on throughput, area and clock fre-
quency in ROCCC: C to VHDL compiler for FP-
GAs. Int. Workshop On Applied Reconfigurable
Computing, March 2006.

[3] M. Gokhale, J. M. Stone, J. Arnold, and M. Kali-
nowski. Stream-oriented FPGA computing in the
Streams-C high hevel language.8th IEEE Sym-
posium on Field-Programmable Custom Computing
Machines, 2000.

[4] Rajesh K. Gupta and Stan Y. Liao. Using a pro-
gramming language for digital system design.IEEE
Design and Test of Computers, 14, April 1997.

[5] Sumit Gupta, Nikil D. Dutt, Rajesh K. Gupta,
and Alex Nicolau. SPARK: A high-level synthe-
sis framework for applying parallelizing compiler
transformations.International Conference on VLSI
Design, January 2003.

[6] John Hopf, G. Stewart Itzstein, and David Kearney.
Hardware Join Java: A high level language for re-
configurable hardware development.IEEE Interna-
tional Conference on Filed Programmable Technol-
ogy, 2002.

[7] IMEC. CleanC analysis tools. Web page
http://www.imec.be/CleanC/, 2008.

[8] Celoxica Inc. Handel-C language overview.Web
pagehttp://www.celoxica.com, 2004.

[9] Monia S. Lam and Robert P. Wilson. Limits of con-
trol flow on parallelism.The 19th Annual Interna-
tional Symposium on Computer Architecture, May
1992.

[10] Edward A. Lee. The problem with threads.IEEE
Computer, 39(5), 2006.

[11] W. A. Najjar, A. P. W. Bohm, B. A. Draper,
J. Hammes, R. Rinker, J. R. Beveridge,
M. Chawathe, and C. Ross. High-level lan-
guage abstraction for reconfigurable computing.
IEEE Computer, 36(8), 2003.

[12] Rishiyur Nikhil. Bluespec SystemVerilog: Effi-
cient, correct RTL from high-level specifications.
Formal Methods and Models for Co-Design (MEM-
OCODE), 2004.

[13] Andres Takach, Bryan Bower, and Thomas Bollaert.
C based hardware design for wireless applications.
Design, Automation and Test in Europe, 2005.

[14] Y. D. Yankova, G.K. Kuzmanov, K.L.M. Ber-
tels, G. N. Gaydadjiev, Y. Lu, and S. Vassil-
iadis. DWARV: Delftworkbench automated recon-
figurable VHDL generator.17th International Con-
ference on Field Programmable Logic and Applica-
tions, August 2007.

