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Abstract

A stoppable state machine is one whose execution can be termi-
nated by a special stopping command. Stoppable state machines can
be used to implement reconfiguration in a replicated state machine;
a reconfigurable state machine is implemented by a sequence of stop-
pable state machines, each running in a fixed configuration. Stoppable
Paxos, a variant of the ordinary Paxos algorithm, implements a repli-
cated stoppable state machine.
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1 Introduction

State machine replication is a well-known method of implementing a fault-
tolerant service [11, 14]. The service is described as a deterministic state
machine that accepts client commands and produces outputs, and multiple
replicas of the state machine are implemented. The different replicas operate
independently and asynchronously. However, they all have the same initial
state and execute the same sequence of commands, so they all produce the
same sequence of outputs. Since each replica can respond to any client
request, using f + 1 replicas allows the system to tolerate the failure of f
processes.

Implementing a replicated state machine requires a fault-tolerant algo-
rithm for choosing the sequence of state machine commands executed by
the replicas. Such an algorithm must guarantee that, for each i , if a replica
executes c as the i th command in the command sequence, then (i) c was
issued by a client, and (ii) no replica executes a different command as the
i th command in the sequence.

Different replicas operate asynchronously, so they may execute the same
command at different times. Moreover, if the output produced by executing
command number i does not depend on what commands are executed as
numbers 1 through i − 1, then a replica may generate the output for com-
mand i before it generates the output for command i − 1. Hence, although
the replicas all produce the same sequence of outputs, the outputs in that
sequence could be generated in different orders.

An asynchronous algorithm for choosing the sequence of state machine
commands requires at least 2f + 1 processes to tolerate the (non-malicious)
failure of f of them [4]. Hence, we need more processes to choose the com-
mands than to execute the replicas. The processes that choose the sequence
of commands are called acceptors, and the ones that execute the replicas are
called learners.

We can choose a sequence of commands by using a separate consen-
sus protocol to choose each one, where the i th consensus protocol chooses
the i th command. The protocol used to choose the i th command will be
called the i th consensus instance. Separate consensus instances need not
have disjoint implementations—for example, messages belonging to sepa-
rate instances may be batched in a single physical message. However, the
separate instances are logically independent, which makes reasoning about
their correctness easier.

Different commands in the command sequence can be chosen concur-
rently. Processes can begin the i th consensus instance without waiting for
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instances 1 to i − 1 to terminate. This concurrent processing is vital to the
efficiency of an asynchronous distributed system. For example, in a typical
leader-based protocol, the current leader can send proposals for commands
one after another, without waiting for acknowledgements of previous pro-
posals.

In a static system, all consensus instances are instances of the same algo-
rithm. In particular, they all use the same sets of acceptors and learners—
sets we call the configuration. However, achieving long-term resilience re-
quires a reconfigurable system, in which the configuration can change. A
reconfigurable system requires that, for each i , there be agreement on the
configuration that is to execute consensus instance i .

In state machine replication, reconfiguration has traditionally been done
by using the state machine itself to perform special reconfiguration com-
mands [10, 14, 15]. The obvious method is to have a reconfiguration com-
mand change the configuration for all subsequent instances until the next
reconfiguration command. However, since a consensus instance cannot be
executed until the configuration executing it is known, this prevents concur-
rent execution of different instances. We can permit concurrent execution of
up to α consensus instances by instead letting a reconfiguration command
executed as command number i determine the configuration starting from
instance i + α, where α is a system parameter [10]. Instances i + 1 through
i + α can begin execution once commands 1 through i have been chosen.
In practice, α can be made large enough so the system never has to wait
to learn the current configuration, if no reconfiguration command has been
issued. However, this approach has two somewhat awkward properties:

• To force a reconfiguration to happen quickly, a reconfiguration com-
mand must be followed by α− 1 no-op commands that have no effect.

• If α > 1, then several reconfiguration command could appear among
commands i through i+α−1, meaning that one configuration is choos-
ing the next several configurations. This can happen when using a
leader-based consensus algorithm if a failure causes multiple processes
to each think it is the leader.

In this paper, we propose an alternative reconfiguration procedure based on
stoppable state machines. A stoppable state machine has a special class of
stopping commands that terminate the state machine. If a stopping com-
mand is chosen as the i th command, then the complete sequence of chosen
state machine commands has length i . That is, if a stopping command is
chosen as command i , then no command can ever be chosen as command j
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for j > i . We implement the system state machine by executing a sequence
of stopping state machines. Each consensus instance of a single stopping
state machine is executed by the same configuration. Reconfiguration is
performed by stopping the current state machine and starting a new one
with a new configuration. The stopping command specifies the configura-
tion used to execute the new stopping state machine. The system’s complete
sequence of state machine commands is the concatenation of the command
sequences of the individual stopping state machines. If one stopping state
machine is terminated by executing a stopping command as command num-
ber i , then we can number the commands of the next stopping state machine
starting with i + 1. This provides consecutive numbers for the commands
in the system state machine.

This method of reconfiguring with stoppable state machines seems to
correspond more closely to the way engineers have traditionally approached
reconfiguration. It is similar to view changing in group communication [1, 2,
3, 5, 6, 7, 8, 12]. However, the purpose of this paper is to present Stoppable
Paxos, an algorithm for implementing a stoppable state machine. We have
discussed reconfiguration only to indicate why stoppable state machines may
be useful. A detailed description of how stoppable state machines are used
for reconfiguration and how they relate to group communication is beyond
the scope of this paper.

Stoppable Paxos is a variant of Paxos [10]. Our goal was to devise an
algorithm that is as efficient as Paxos in the absence of a stopping command.
This is not easy to do because Paxos allows the choosing of the i th com-
mand to be performed concurrently for different values of i . We must avoid
the possibility that the i th command is chosen and a stopping command is
concurrently chosen as the j th command for j < i . The obvious method
is to delay the choice of the i th command until all previous commands are
chosen, but this would considerably degrade the performance. Stoppable
Paxos adds no messages or delays to ordinary Paxos, except that a leader
cannot propose an i th command if, in the normal course of execution, it
learns that a stopping command has been chosen or was proposed and may
have been chosen as the j th command for some j < i . Although the basic
idea of the algorithm is not complicated, getting the details right was not
easy.

The following section reviews ordinary Paxos. The Stoppable Paxos
algorithm is described in Section 3, and its correctness properties are stated
in Section 4. A proof of correctness appears in the appendix for reading at
the program committee’s discretion.
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2 Paxos Revisited

Ordinary Paxos assumes a distributed system of processes communicating
by messages. Processes can fail only by stopping, and messages can be lost
or duplicated but not corrupted. Timely actions by non-failed processes and
timely delivery of messages among them is required for progress; safety is
maintained despite arbitrary delays and any number of failures.

The core of Paxos is a consensus algorithm (originally called the Synod
algorithm). In a consensus algorithm, client processes can propose values,
and learner processes each learn a value. We use the term command for a
value that may be proposed. A consensus algorithm must satisfy two safety
properties:

Consistency No two learners can learn different commands.

Nontriviality Any command learned must have been proposed.

For almost all consensus algorithms, including Paxos, nontriviality is easily
seen to hold. We therefore ignore it and consider only consistency. A con-
sensus algorithm must also ensure that, under some suitable hypothesis, a
command is learned.

A replicated state machine is implemented with a sequence of instances
of a consensus algorithm, the i th instance choosing the i th state-machine
command. We briefly review the Paxos consensus algorithm and how it is
used to implement a state machine. We consider the static case, in which
the same processes implement all consensus instances.

2.1 The Paxos Consensus Protocol

The Paxos consensus algorithm assumes three sets of processes: leaders
that propose commands, acceptors that choose a command, and learners
that learn the chosen command. These sets are not necessarily disjoint—in
particular, leaders are usually learners. We ignore the clients, which provide
commands for the leaders to propose. Leaders propose commands in num-
bered ballots. For simplicity, we take ballot numbers to be natural numbers.
A configuration assigns to each ballot a unique leader that performs actions
of that ballot. For example, the leader of ballot number b may be deter-
mined by the low-order bits of b. We also assume certain sets of acceptors
to be quorums, subject only to the requirement that the intersection of any
pair of quorums is non-empty.

Acceptors accept and store proposed commands and their ballot num-
bers. In particular, each acceptor a maintains the value bal [a] that records
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the highest ballot number that a has received, “voted for”, and acknowl-
edged, and the value vote[a][b] that records the command proposed with bal-
lot number b that a has voted for. Initially, bal [a] equals −∞ and vote[a][b]
equals >, a special value that is not a command.

For any acceptor a, let maxbal(a) be the largest ballot number b for
which vote[a][b] 6= >, and to equal −∞ if vote[a][b] = > for all b. Define
maxvote(a) to equal vote[a][maxbal(a)], or > if maxbal(a) = −∞. Instead of
maintaining the entire array vote[a], acceptor a need only record the values
maxbal(a) and maxvote(a). For simplicity, we ignore this optimization.

At any point during the execution of the consensus algorithm, the state
consists of the values of the arrays bal and vote and the sets of messages
that have been sent and received by the processes. A state function is an
expression whose value depends on the state.

A ballot consists of two phases, each with two sub-phases. In the first
phase, the leader determines whether a command may have been chosen in
a lower-numbered ballot. In the second phase, it proposes a command and
the acceptors vote for that command. The command is chosen if a quorum
of acceptors vote for it.

The heart of the algorithm is the state function val2a(b,Q), which the
ballot b leader computes on the basis of messages it receives in phase 1
from acceptors in the quorum Q . If val2a(b,Q) equals a command v , then
v might have been chosen in a lower-numbered ballot and the leader must
propose it in phase 2. If val2a(b,Q) equals >, then no command has been or
ever will be chosen in a lower-numbered ballot, and the leader can propose
any value. We define val2a below. First, we describe the following actions
that the algorithm can perform.

Phase1a(b) The leader of ballot number b sends the message 〈“1a”, b 〉 to
all acceptors. (This action is always enabled.)

Phase1b(a, b) When acceptor a receives a 〈“1a”, b 〉message with b > bal [a],
it sets bal [a] to b and sends the message

〈“1b”, a, b, 〈maxbal(a),maxvote(a)〉〉

to the ballot b leader. (The acceptor ignores a 〈“1a”, b 〉 message if
bal [a] ≥ b.)

Phase2a(b, v ,Q) This action is performed by the ballot b leader, for a com-
mand v and quorum Q . It is enabled iff the following three conditions
are satisfied:

5



E1(b,Q) The leader has received a message of the form 〈“1b”, a, b, r 〉
from every acceptor a in Q .

E2(b) The leader has not executed a Phase2a(b,w ,U ) action for any
w and any quorum U .

E3(b,Q , v) If val2a(b,Q) 6= > then v = val2a(b,Q).

The action sends the message 〈“2a”, b, v 〉 to all acceptors.

Phase2b(a, b, v) When acceptor a receives a 〈“2a”, b, v 〉 message from the
ballot b leader and bal [a] ≤ b, it sets bal [a] to b and vote[a][b] to v
and it sends a 〈“2b”, b, v 〉 message to the learners. (The 〈“2a”, b, v 〉
message is ignored if bal [a] > b.)

We omit the action by which a learner learns a command. It is enabled by
the receipt of a 〈“2b”, a, b, v 〉 message from every acceptor a in a quorum.
Instead, we say that a command v is chosen if there exists a ballot number
b and a quorum Q such that vote[a][b] = v for all a in Q . Consistency is
obviously satisfied by ensuring that, if any commands v and w are chosen,
then v = w .

The state function val2a(b,Q) is defined as follows. Let R be the set
of all r such that the ballot b leader has received from some acceptor a
in Q the message 〈“1b”, a, b, r 〉. (The elements of R are pairs 〈c, v 〉 with
either c a ballot number and v a command, or c = −∞ and v = >.) Let
〈c, v 〉 be an element of R such that c ≥ d for all 〈d ,w 〉 ∈ R, and define
val2a(b,Q) to equal v . (For any state reachable during execution of the
algorithm, 〈c, v〉 ∈ R and 〈c,w〉 ∈ R imply v = w , so this uniquely defines
val2a(b,Q).) For later reference, we also define mbal2a(b,Q) to equal c.

Although the algorithm executes a sequence of ballots, those ballots
need not be executed sequentially. It is possible for two or more leaders
to be executing Phase1a and/or Phase2a actions concurrently, and for the
resulting messages to be received by different acceptors in different orders.
This can impede progress but cannot cause inconsistency.

To achieve progress, Paxos uses some algorithm to select a unique active
leader. The active leader starts a new ballot with a number higher than that
of any other ballot it knows to have been started. An acceptor a informs
the leader it has chosen too low a ballot number if it receives a ballot b
message with b < bal [a], causing the leader to choose a higher-numbered
ballot. This achieves progress if there is a unique active leader and a quorum
of acceptors that are nonfaulty and can communicate in a timely fashion.
For most systems, it is easy to devise a leader-selection algorithm that works
properly when the system is behaving normally.
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2.2 The Paxos State Machine Implementation

Paxos executes a sequence of instances of the Paxos consensus algorithm.
For each instance i , it maintains an array vote i , where vote i [a][b] is the
value of vote[a][b] for instance i of the consensus algorithm. Paxos achieves
its efficiency by executing Phase 1 simultaneously for all instances of the
consensus algorithm as follows, using the same value of bal [a] for all of
them. More precisely:

1. The ballot b leader simultaneously executes Phase1a(b) for all in-
stances, sending a single Phase1a message to each acceptor.

2. Upon receipt of a Phase1a message, an acceptor simultaneously ex-
ecutes Phase1b actions for all instances, bundling the infinite set of
Phase1b messages in a single physical message. (That physical mes-
sage contains only a finite amount of information because, for any
acceptor a and ballot number b, the value of vote i [a][b] is > for all
but a finite number of instances i .)

We add an extra instance parameter to the Phase2a and Phase2b
actions and to the val2a and mbal2a state functions. For exam-
ple, Phase2a(i , b, v ,Q) is the Phase2a(b, v ,Q) action of instance i and
val2a(i , b,Q) is the state function val2a(b,Q) of instance i . We subscript
messages with instance numbers, so 〈“1b”, . . .〉i is a Phase1b message sent
for instance i (and bundled with Phase1b messages sent for other instances).

In normal operation, there is a single active leader that receives client
commands and performs Phase2a actions for them. When the active leader
fails, a new active leader is selected that performs a Phase1a(b) action for
a new ballot number b higher than any that has been used so far. When
the active leader receives Phase1b messages from a quorum Q , for each i it
finds either:

1. val2a(i , b,Q) is a command v , meaning that v may have been chosen
in instance i at some ballot less than b.

2. val2a(i , b,Q) = >, meaning that no command can have been (or can
ever be) chosen in instance i at any ballot less than b.

In case 1, it performs a Phase2a(i , b, v ,Q) action to try to get v chosen. Let
k be the largest instance for which this case holds, so it is the highest instance
in which any acceptor in Q has voted. For all instances i with i < k such
that val2a(i , b,Q) = >, the leader performs a Phase2a(i , b,noop,Q) action
to try to choose a noop command that does nothing. Without waiting for
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responses to its Phase2a messages, the leader can begin performing Phase2a
actions in instances higher than k for client commands.

It is possible for a leader to learn a set of commands that have already
been chosen and to optimize this procedure to avoid unnecessary actions for
those chosen commands. This optimization is straightforward and we will
not discuss it.

Remember that what we have just described is how Paxos works in the
normal case when there is a single active leader. Consistency is maintained
even if multiple processes believe themselves to be the active leader. A single
active leader is required only to ensure progress.

3 The Stoppable Paxos Algorithm

Stoppable Paxos uses the same variables and sends the same messages as
Paxos. Before describing the actual algorithm, we sketch how the Stoppable
Paxos algorithm works in the normal case when a (single) new active leader
is selected.

As in ordinary Paxos, the new active leader performs a Phase1a(b) action
for a suitable ballot number b. The algorithm differs from Paxos if the leader
finds that a stopping command stp might have been chosen in some instance
i . In that case, the leader performs Phase2a actions for lower-numbered
instances as before. However, to ensure that the state machine stops when
it should, we must ensure that the leader does not perform a Phase2a action
for any instance greater than i if the stopping command actually was chosen
in instance i .

The problem is to decide what the leader should do if it finds
val2a(i , b,Q) equal to a stopping command stp and val2a(j , b,Q) equal
to any command, for some i and j with j > i . The answer depends
on the values of mbal2a(i , b,Q) and mbal2a(j , b,Q). Remember that, for
any k , the value of mbal2a(k , b,Q) is the highest ballot number less than
b for which some acceptor a in Q set votedk [a]. If mbal2a(j , b,Q) >
mbal2a(i , b,Q), then the stopping command c could not have been cho-
sen in (a lower ballot of) instance i , so stp is voided—meaning that the
leader acts as if val2a(i , b,Q) equals >. Otherwise, the leader performs a
Phase2a(i , b, stp,Q) action to try to get stp chosen and does nothing in any
higher-numbered instance, including instance j .

If the leader performs a Phase2a action for a stopping command in
instance i , then it performs no Phase2a actions for instances greater than i .
Otherwise, it begins processing new client commands as in ordinary Paxos.
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It continues until it performs a Phase2a action for a stopping command,
whereupon it performs no further Phase2a actions for any higher-numbered
instance. Except when the leader is prevented from performing Phase2a
actions because of a stopping command, Stoppable Paxos allows all the
concurrent execution that ordinary Paxos does.

We now begin our description of the actual Stoppable Paxos algorithm.
As in ordinary Paxos, the algorithm can be optimized to take advantage
of knowledge of already-chosen commands. For simplicity, we ignore this
optimization. Stoppable Paxos then differs from Paxos only in the enabling
conditions of the Phase2a action. We begin with an intuitive description of
these enabling conditions, which are labeled E1–E6.

Conditions E1–E3 are the same as for ordinary Paxos except that, in
E3, we replace val2a by a new state function sval2a. Recall that E3 requires
val2a(i , b,Q) to be the proposed command if it does not equal >, because
in that case it might have been chosen in a lower-numbered ballot. We will
define sval2a(i , b,Q) to be the same as val2a(i , b,Q) except that it equals >
if val2a(i , b,Q) is a stopping command that is voided. As indicated above, a
stopping command is voided if information about higher-numbered instances
implies that the command could not have been chosen in this instance in a
lower-numbered ballot.

Enabling condition E4 applies iff v is a stopping command, in which
case it requires the two conditions:

E4a A Phase2a action must not have been performed for ballot b of a
higher-numbered instance.

E4b If the leader was not forced (by the value of sval2a) to propose the
stopping command, then it must not be forced to propose any com-
mand in a higher-numbered instance.

Condition E5 asserts that the leader has not performed a Phase2a action for
a stopping command in ballot b of a lower-numbered instance, and condition
E6 asserts that the value of sval2a does not force the leader to propose such
a value.

It appears that progress is impossible if the ballot b leader is forced
(by E3) to propose a stopping command in an instance i and to propose
some command in another instance j > i . If it executes the Phase2a action
for instance i , then E5 prevents it from executing the Phase2a action for
instance j . If it executes the action for instance j first, then E4a prevents
it from executing the action for instance i . This situation is prevented by
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voiding. The definition of sval2a ensures that the Phase1b messages for
instance j void the stopping command in instance i .

Unlike in ordinary Paxos, in Stoppable Paxos the separate consensus
instances are not logically separate. Enabling conditions E4–E6 and the
definition of sval2a for a ballot in one instance depend on Phase2a actions
performed and Phase1b messages received for that ballot in other instances.
However, this implies no extra messages or delays. As in ordinary Paxos, the
Phase1b messages for all instances are bundled together; and no enabling
condition requires that a Phase2a action for another instance be done first.
The enabling conditions require only that certain actions not have been
done.

We now precisely define sval2a and E1–E6. For clarity, we write math-
ematical formulas in mathematics, using English only where necessary to
avoid distracting formalization. We let the range over which a variable is
quantified, if not stated explicitly, depend on the variable name as follows:

i , j , k : instance numbers b, c : ballot numbers Q : quorums
u, v , w : commands a, q : acceptors

We use customary abbreviations such as ∃ i < j : P for ∃ i : (i < j ) ∧ P .
The definition of sval2a is:

sval2a(i , b,Q) ∆= if (val2a(i , b,Q) ∈ StopCmd)
∧ (∃ j > i : mbal2a(j , b,Q) ≥ mbal2a(i , b,Q))

then >
else val2a(i , b,Q)

Define Done2a(i , b, v) to be the state function that is true iff a
Phase2a(i , b, v ,Q) action has been executed for some quorum Q . (More
precisely, it is true iff there is a 〈“2a”, b, v 〉i message in the set of sent
messages.) The enabling conditions of the Phase2a(i , b, v ,Q) action are:

E1(b,Q) ∆= ∀ a ∈ Q , i : the ballot b leader has received a message of
the form 〈“1b”, a, b, r〉i from a

E2(i , b) ∆= ∀w : ¬Done2a(i , b,w)

E3(i , b,Q , v) ∆= (sval2a(i , b,Q) 6= >) ⇒ (v = val2a(i , b,Q))

E4(i , b,Q , v) ∆= (v ∈ StopCmd) ⇒ E4a(i , b, v) ∧ E4b(i , b,Q , v)

where

E4a(i , b, v) ∆= ∀ j > i , w : ¬Done2a(j , b,w)
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E4b(i , b,Q , v) ∆= ∀ j > i :
(sval2a(i , b,Q) = >) ⇒ (sval2a(j , b,Q) = >)

E5(i , b) ∆= ∀ j < i , w ∈ StopCmd : ¬Done2a(j , b,w)

E6(i , b,Q) ∆= ∀ j < i :
(sval2a(j , b,Q) 6= >) ⇒ (sval2a(j , b,Q) /∈ StopCmd)

The ballot b leader can propose commands in different instances in any
order. This applies to a stopping command as well. In particular, the
leader can propose a stopping command as command number i and then
propose lower-numbered commands. Since stopping commands are used for
reconfiguration, this allows the leader to let i be the next available command
number for reconfigurations that must occur quickly and to be larger for
reconfigurations that may occur lazily.

4 Correctness

We now state the correctness properties satisfied by Stoppable Paxos. A
rigorous informal proof of these properties appears in the appendix. We
have also written a formal hand proof that gives us greater confidence in the
algorithm’s correctness than such an informal proof can provide.

First, we define Chosen(i , b, v) to assert that command v is chosen in
ballot b of instance i . As in ordinary Paxos, Chosen(i , b, v) is defined to be
true iff there is a quorum Q such that vote i [a][b] = v holds for all a in Q .

Chosen(i , b, v) ∆= ∃Q : ∀ a ∈ Q : vote i [a][b] = v

Our algorithm satisfies the same consistency property as ordinary Paxos
plus the property that a stopping command stops the state machine. These
properties are expressed by the invariance of the following state predicates.

Consistency ∆= ∀ i , b, c, v ,w : Chosen(i , b, v)∧Chosen(i , c,w) ⇒ (b = c)

Stopping ∆= ∀ i , j < i , v ∈ StopCmd , w :
Chosen(j , b, v) ⇒ ¬Chosen(i , c,w)

Like ordinary Paxos, our Stoppable Paxos assures progress if eventually
there is a unique leader for a high enough ballot number that is nonfaulty
and can communicate with a nonfaulty quorum. The precise property we
prove is that the following condition holds, for all b and Q .
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Progress(b,Q) ∆=
P1(b,Q) ∧ P2(b,Q) ∧ P3(b) ⇒

eventually (∃ v : Chosen(i , b, v))
∨ (∃ j < i , v ∈ StopCmd : Chosen(j , b, v))

where

P1(b,Q) ∆= No ballot b action of the ballot b leader or of an acceptor
in Q can become forever enabled and never executed.

P2(b,Q) ∆= Every ballot b message sent between the ballot b leader
and the acceptors in Q is eventually received.

P3(b) ∆= ∀ c > b : No Phase1a(c) action is ever executed.

Condition P1(b,Q) means that the ballot b leader eventually executes the
Phase1a(b) action, and that it and the acceptors in Q perform ballot b
actions that are enabled by the receipt of messages. Condition P2(b,Q) is
satisfied if eventually the leader and the acceptors in Q are nonfaulty and
communicate reliably with one another, using a retransmission protocol to
recover from lost messages. Condition P3(b) asserts that no ballot numbered
greater than b is ever started.

Conditions P1–P3 are the same ones under which ordinary Paxos
achieves progress. As with ordinary Paxos, they are satisfied in practice
by using a leader-selection algorithm. However, because of the extra en-
abling conditions in the Phase2a action, the proof that they ensure progress
is more difficult.
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Appendix: The Proof of Correctness

We now prove that Stoppable Paxos satisfies its safety and liveness proper-
ties. For clarity and conciseness, we write simple temporal logic formulas
with two temporal operators: 2 meaning always, and 3 meaning eventu-
ally [13]. We use a linear-time logic, so 3 can be defined by 3F ∆= ¬2¬F ,
for any formula F . For a state predicate P , the formula 2P asserts that
P is an invariant, meaning that it is true for every reachable state. The
temporal formula 32P asserts that at some point in the execution, P holds
from that point onward.

We define a predicate P to be stable iff it satisfies the following condition:
if P is true in any reachable state s, then P is true in any state reachable
from s by any action of the algorithm. We let stableP be the assertion that
state predicate P is stable. It is clear that a stable predicate is invariant if
it is true in the initial state. Because stability is an assertion only about
reachable states s, we can assume that all invariants of the algorithm are
true in state s when proving stability.

Our proofs are informal, but careful. The two complicated, multi-page
proofs are written with a hierarchical numbering scheme in which 〈x 〉y is
the number of the yth step of the current level-x proof [9]. Although it may
appear intimidating, this kind of proof is easy to check and helps to avoid
errors.

A.1 The Proof of Safety

We now prove that Consistency and Stopping are invariants of Stoppable
Paxos. First, we define:

NotChoosable(i , b, v) ∆=
(∃Q : ∀ a ∈ Q : (bal [a] > b) ∧ (vote i [a][b] 6= v) )

∨ (∃ j < i , w ∈ StopCmd : Done2a(j , b,w) )
∨ ( (v ∈ StopCmd) ∧ (∃ j > i , w : Done2a(j , b,w)) )

We next prove a number of simple invariance and stability properties of the
algorithm.

Lemma 1
1. ∀ i , b, v : 2 (Chosen(i , b, v) ⇒ Done2a(i , b, v)).

2. ∀ i , b, v ,w : 2 ((Done2a(i , b, v) ∧Done2a(i , b,w) ⇒ (v = w))

3. ∀i , b, a, v : 2 ((vote i [a][b] = v) ⇒ Done2a(i , b, v))
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4. ∀i , b, v , a, q : 2 ((vote i [a][b] = v) ⇒ (vote i [q ][b] ∈ {v , >}))
5. (a) ∀ i , a, b, v : stable ((bal [a] > b) ∧ (vote i [a][b] = v))

(b) ∀ i , a, b : stable ((bal [a] > b) ∧ (vote i [a][b] = >))

6. ∀ i , j < i , b, w ∈ StopCmd , v :
2 (Done2a(j , b,w) ⇒ ¬Done2a(i , b, v))

7. ∀ i , b, v : stableNotChoosable(i , b, v)

8. ∀ i , b,Q : 2 (E1(b,Q) ⇒ (mbal2a(i , b,Q) < b))
Proof:

1. Chosen(i , b, v) implies that votei [a][b] = v for some acceptor a, which implies
a received a 〈“2a”, b, v 〉i message, which implies Done2a(i , b, v).

2. This follows from enabling condition E2 for the Phase2a action.

3. votei [a][b] = v implies that acceptor a must have received the Phase2a mes-
sage sent by executing Phase2a(i , b, v ,Q) for some quorum Q .

4. This follows from Lemmas 1.2 and 1.3.

5. No action decreases bal [a], and votei [a][b] is changed to (a command) u only
by a Phase2b(i , a, b, u) action, which is enabled only if bal [a] ≤ b.

6. Done2a(j , b,w) ⇒ ¬Done2a(i , b, v) is obviously true initially. It is stable
because enabling condition E4a(j , b,w) of Phase2a(j , b,w ,Q) implies that
Done2a(j , b,w) can become true only when ¬Done2a(i , b, v) is true, and en-
abling condition E5(i , b) of Phase2a(i , b, v ,Q) implies that ¬Done2a(i , b, v)
can become false only when Done2a(j , b,w) is false.

7. It suffices to show that each of the disjuncts in the definition of
NotChoosable(i , b, v) is stable. The first disjunct is the conjunction of for-
mulas (bal [a] > b) ∧ (votei [a][b] 6= v), each of which can be written as the
conjunction of formulas (bal [a] > b) ∧ (votei [a][b] = w) (for w a command or
>) which are stable by part 5 of this lemma. The stability of the second and
third conjuncts follows easily from the obvious stability of Done2a(j , b,w) for
all j and w .

8. An acceptor a changes votei [a][b] only by performing a Phase2b action that
sets bal [a] to b. Because bal [a] is never decreased, (votei [a][b] 6= >) ⇒
(bal [a] ≥ b) is an invariant. A 〈“1b”, a, b, 〈c, v 〉〉i message is sent by a
Phase1b(a, b) action that is enabled only if b > bal [a], so c < b for any
such message. The definition of mbal2a then implies that mbal2a(i , b,Q) < b
if some acceptor in Q has sent a Phase1b message for ballot b of instance i ,
which is the case if E1(b,Q) is true.

We now prove some less obvious invariants.

Lemma 2 ∀ i , b, v : 2 (NotChoosable(i , b, v) ⇒ ¬Chosen(i , b, v))
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Proof: We assume NotChoosable(i , b, v) is true in a reachable state (so all invari-
ants are true) and prove ¬Chosen(i , b, v). By definition of NotChoosable, there are
three cases to consider.
1. Case: ∃Q : ∀ a ∈ Q : (bal [a] > b) ∧ (votei [a][b] 6= v)

Proof: Since any two quorums have non-empty intersection, any quorum con-
tains an acceptor a in Q , for which the case assumption implies votei [a][b] 6= v .
By definition of Chosen, this implies ¬Chosen(i , b, v).

2. Case: ∃ j < i , w ∈ StopCmd : Done2a(j , b,w)
Proof: Lemma 1.6 implies ¬Done2a(i , b, v), and Lemma 1.1 then implies
¬Chosen(i , b, v).

3. Case: ∃ j > i , w : Done2a(j , b,w).
Proof: Lemma 1.6 (with i ↔ j and v ↔ w) implies ¬Done2a(i , b, v), and
Lemma 1.1 then implies ¬Chosen(i , b, v).

Lemma 3 ∀ i , b, c < b, w , Q :
2 (Hyp(i , b, c,Q) ∧ E1(b,Q) ⇒ NotChoosable(i , c,w) )

where Hyp(i , b, c,Q) ∆=
(mbal2a(i , b,Q) < c)

∨ ( (mbal2a(i , b,Q) = c) ∧ (w 6= val2a(i , b,Q)) )

Proof: We assume c < b, Hyp(i , b, c,Q), and E1(b,Q) and prove
NotChoosable(i , c,w). Assumption E1(b,Q) implies that every acceptor a in Q
has sent a “1b” message for ballot b of instance i . Since Phase1b(a, b) is enabled
only if b > bal [a] and sets bal [a] to b, acceptor a can have sent only one such “1b”
message. Let 〈“1b”, a, b, 〈ba , va 〉〉i be that message. We consider the two disjuncts
of the assumption Hyp(i , b, c,Q) separately.
1. Case: mbal2a(i , b,Q) < c

Proof: Let a be any acceptor in Q . The case assumption implies ba < c,
so val i [a][c] equaled > when a executed its Phase1b(a, b) action. That action
made bal [a] = b true, so c < b and Lemma 1.5 imply val i [a][c] = > is still
true. Every quorum contains an acceptor a in Q , for which we have shown that
val i [a][c] = >, so NotChoosable(i , c,w) is true.

2. Case: mbal2a(i , b,Q) = c and w 6= val2a(i , b,Q)
Proof: Let a be any acceptor in Q . The assumption mbal2a(i , b,Q) = c
implies ba ≤ c. The definitions of ba and va imply that, when a executed its
Phase1b(a, b) action, the value of votei [a][c] was va if ba = c and was > if
ba < c. Since the action set bal [a] to b and c < b, Lemma 1.5 implies that
votei [a][c] still has that value. If ba = c, then Lemma 1.4 and the definition
of val2a imply va = val2a(i , b,Q). The case assumption w 6= val2a(i , b,Q)
therefore implies that votei [a][c] 6= w for all acceptors a in Q . Since every
quorum contains an acceptor in a, this implies NotChoosable(i , c,w).
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We now make some more definitions, culminating in the key invariant
PropInv(i , b, v).

SafeAt(i , b, v) ∆= ∀ c < b, w 6= v : NotChoosable(i , c,w)

NoReconfigBefore(i , b) ∆=
∀ j < i , c ≤ b, w ∈ StopCmd : NotChoosable(j , c,w)

NoneChoosableAfter(i , b, v) ∆=
(v ∈ StopCmd) ⇒ ∀ j > i , c < b, w : NotChoosable(j , c,w)

PropInv(i , b, v) ∆= Done2a(i , b, v) ⇒ SafeAt(i , b, v)
∧ NoReconfigBefore(i , b)
∧ NoneChoosableAfter(i , b, v)

The heart of the safety proof is the following proof that PropInv is invariant.

Lemma 4 2 (∀ i , b, v : PropInv(i , b, v))
Proof: ∀, i , b, v : PropInv(i , b, v) is true in the initial state because Done2a(. . .)
is initially false. We therefore need only show that it is stable. We do this by
assuming that it is true in a state s and proving it is true in state t . For any state
function f we let f be its value in state s and f ′ be its value in state t .
〈1〉1. It suffices to

Assume: 1. ∀ j , c,w : PropInv(j , c,w)
2. i is an instance number, b a ballot number, v a command, and

Q a quorum.
3. s → t is a Phase2a(i , b, v ,Q) step.
4. E1(b,Q)

Prove: SafeAt(i , b, v)′

∧ NoReconfigBefore(i , b)′

∧ NoneChoosableAfter(i , b, v)′

Proof: To prove (∀, i , b, v : PropInv(i , b, v))′, it suffices to prove it for a partic-
ular i , b, and v . It follows from Lemma 1.7 (the stability of NotChoosable(. . .))
that

SafeAt(i , b, v) ∧NoReconfigBefore(i , b) ∧NoneChoosableAfter(i , b, v)

is stable. Hence, the first step that can possibly make PropInv(i , b, v) false
is one that makes Done2a(i , b, v) true. We can therefore assume s → t is a
Phase2a(i , b, v ,Q) step for some quorum Q . Formula E1(b,Q) holds because it
is an enabling condition of the Phase2a(i , b, v ,Q) action.

The three primed formulas of the “Prove” clause of 〈1〉1 are proved as steps 〈1〉5,
〈1〉6, and 〈1〉7 below. The next three steps are used in their proofs.

〈1〉2. ∀ j : (mbal2a(j , b,Q) 6= −∞) ⇒ Done2a(j , mbal2a(j , b,Q), val2a(j , b,Q))
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Proof: Assume mbal2a(j , b,Q) 6= −∞. By definition of mbal2a, this implies
val2a(j , b,Q) is a command (and not >). Since E1(b,Q) holds by assump-
tion 〈1〉1.4, the definitions of mbal2a and val2a imply that some acceptor a
in Q has sent a 〈“1b”, a, b, 〈mbal2a(j , b,Q), val2a(j , b,Q)〉〉j message, which
implies votej [a][mbal2a(j , b,Q)] = val2a(j , b,Q) when the message was sent.
Lemma 1.3 then implies Done2a(j ,mbal2a(j , b,Q), val2a(j , b,Q)) was true when
the message was sent, and is still true because Done2a(. . .) is stable.

〈1〉3. ∀ j , c < b, w : (c ≤ mbal2a(j , b,Q)) ∧ (w 6= val2a(j , b,Q)) ⇒
NotChoosable(j , c,w)

Proof: We assume c ≤ mbal2a(j , b,Q) and w 6= val2a(j , b,Q) and
we prove NotChoosable(j , c,w). Since −∞ < c ≤ mbal2a(j , b,Q), step
〈1〉2 implies Done2a(j ,mbal2a(j , b,Q), val2a(j , b,Q)). By assumption 〈1〉1.1,
this implies SafeAt(j ,mbal2a(j , b,Q), val2a(j , b,Q)). The assumption c ≤
mbal2a(j , b,Q), together with assumption 〈1〉1.4 and Lemma 1.8 (which im-
ply mbal2a(j , b,Q) < b), implies c < b. The assumption w 6= val2a(j , b,Q) and
SafeAt(j ,mbal2a(j , b,Q), val2a(j , b,Q)) then imply NotChoosable(j , c,w).

〈1〉4. ∀ j , c < b, w : (sval2a(j , b,Q) = >) ⇒ NotChoosable(j , c,w)
Proof: We assume c < b and sval2a(j , b,Q) = > and prove
NotChoosable(j , c,w). We split the proof into two cases.
〈2〉1. Case: mbal2a(j , b,Q) = −∞

Proof: The case assumption implies mbal2a(j , b,Q) < c, so assumption
〈1〉1.4 and Lemma 3 imply NotChoosable(j , c,w).

〈2〉2. Case: mbal2a(j , b,Q) 6= −∞
Proof: Since c < b, we can split the proof into the following three cases.
〈3〉1. Case: mbal2a(j , b,Q) < c < b

Proof: By assumption 〈1〉1.4, the case assumption and Lemma 3 imply
NotChoosable(j , c,w).

〈3〉2. Case: c ≤ mbal2a(j , b,Q) and w 6= val2a(j , b,Q)
Proof: By 〈1〉3.

〈3〉3. Case: c ≤ mbal2a(j , b,Q) and w = val2a(j , b,Q)
〈4〉1. val2a(j , b,Q) ∈ StopCmd and we can choose k > j such that

mbal2a(k , b,Q) ≥ mbal2a(j , b,Q).
Proof: We deduce that val2a(j , b,Q) ∈ StopCmd and such a k exists
by the 〈2〉2 case assumption, the assumption sval2a(j , b,Q) = >, and
the definition of sval2a.

〈4〉2. Done2a(k ,mbal2a(k , b,Q), val2a(k , b,Q))
Proof: The 〈3〉3 case assumption and 〈4〉1 imply mbal2a(k , b,Q) 6= −∞.
Step 〈1〉2 then proves 〈4〉2.

〈4〉3. NotChoosable(j , c,w)
Proof: Assumption 〈1〉1.1 (with j ← k , c ← mbal2a(k , b,Q), and w ←
val2a(k , b,Q)) and 〈4〉2 imply NoReconfigBefore(k ,mbal2a(k , b,Q)).
Step 〈4〉1 asserts j < k ; case assumption 〈3〉3 and 〈4〉1 imply
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c ≤ mbal2a(k , b,Q); and 〈4〉1 and case assumption 〈3〉3 imply
w ∈ StopCmd . Therefore, NoReconfigBefore(k ,mbal2a(k , b,Q)) implies
NotChoosable(j , c,w).

〈1〉5. SafeAt(i , b, v)′

Proof: We assume c < b and w 6= v and prove NotChoosable(i , c,w)′. By
Lemma 1.7, it suffices to prove NotChoosable(i , c,w). We split the proof into two
cases.
〈2〉1. Case: sval2a(i , b,Q) = >

Proof: 〈1〉4 (substituting j ← i) implies NotChoosable(i , c,w).

〈2〉2. Case: sval2a(i , b,Q) 6= >
Proof: Since c < b, we can break the proof into two sub-cases.
〈3〉1. Case: mbal2a(i , b,Q) < c < b

Proof: Assumption 〈1〉1.4 and Lemma 3 imply NotChoosable(i , c,w)
〈3〉2. Case: c ≤ mbal2a(i , b,Q)

Proof: Assumption 〈1〉1.3 implies E3(i , b,Q , v). Case assumption 〈2〉2
and E3(i , b,Q , v) imply v = sval2a(i , b,Q). Case assumption 〈2〉2 and
the definition of sval2a then imply v = val2a(i , b,Q). Case assumption
〈3〉2, the assumption w 6= v , and step 〈1〉3 (substituting j ← i) then imply
NotChoosable(i , c,w).

〈1〉6. NoReconfigBefore(i , b)′

Proof: We assume j < i , w ∈ StopCmd , and c ≤ b and we prove
NotChoosable(j , c,w)′. By Lemma 1.7, it suffices to prove NotChoosable(j , c,w).
Since c ≤ b, we need consider only the following two cases.
〈2〉1. Case: b = c

Proof: Assumption 〈1〉1.3 implies Done2a(i , b, v)′. Since i > j and
w ∈ StopCmd , this implies the third disjunct of NotChoosable(j , b,w)′ (sub-
stituting i and v for the existentially quantified variables), which by the case
assumption proves NotChoosable(j , c,w)′.

〈2〉2. Case: c < b
Proof: We consider two sub-cases.
〈3〉1. Case: sval2a(j , b,Q) = >

Proof: 〈1〉4 and case assumption 〈2〉2 imply NotChoosable(j , c,w).
〈3〉2. Case: sval2a(j , b,Q) 6= >

Proof: By case assumption 〈2〉2, we have the following two sub-cases.
〈4〉1. Case: mval2a(j , b,Q) < c < b

Proof: Assumption 〈1〉1.4, the case assumption, and Lemma 3 imply
NotChoosable(j , c,w).

〈4〉2. Case: c ≤ mval2a(j , b,Q)
Proof: Assumption 〈1〉1.3 implies E6(i , b,Q). The 〈3〉2 case
assumption, the assumption j < i , and E6(i , b,Q) imply
sval2a(j , b,Q) /∈ StopCmd . The assumption w ∈ StopCmd then im-
plies w 6= sval2a(j , b,Q). By the 〈3〉2 case assumption and the defi-
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nition of sval2a, we then have w 6= val2a(j , b,Q). The 〈4〉2 case as-
sumption (which implies mval2a(j , b,Q) 6= −∞) and 〈1〉3 then imply
NotChoosable(j , c,w).

〈1〉7. NoneChoosableAfter(i , b, v)′

Proof: We assume v ∈ StopCmd , j > i , c < b, and w any command and we prove
NotChoosable(j , c,w)′. By Lemma 1.7, it suffices to prove NotChoosable(j , c,w).
We split the proof into two cases.
〈2〉1. Case: sval2a(i , b,Q) = >

Proof: Assumption 〈1〉1.3 implies E4(i , b,Q , v), so the assumption
v ∈ StopCmd implies E4b(i , b,Q , v). The case assumption, the assumption
j > i , and E4b(i , b,Q , v) imply sval2a(j , b,Q) = >. The assumption c < b
and step 〈1〉4 then imply NotChoosable(j , c,w).

〈2〉2. Case: sval2a(i , b,Q) 6= >
〈3〉1. sval2a(i , b,Q) = val2a(i , b,Q) = v

Proof: Assumption 〈1〉1.3 implies E3(i , b,Q , v), which implies
sval2a(i , b,Q) = v . The case assumption and the definition of sval2a then
implies val2a(i , b,Q) = v .

〈3〉2. Done2a(i ,mbal2a(i , b,Q), v)
Proof: 〈3〉1, assumption 〈1〉1.4, and the definition of val2a imply
votei [a][mbal2a(i , b,Q)] = v for some acceptor a in Q , which by Lemma 1.3
implies Done2a(i ,mbal2a(i , b,Q), v).

By the assumption c < b, it suffices to consider the following two cases.
〈3〉3. Case: c < mbal2a(i , b,Q)

Proof: Step 〈3〉2 and assumption 〈1〉1.1 imply
NoneChoosableAfter(i ,mbal2a(i , b,Q), v). By the case assumption and the
assumptions v ∈ StopCmd and j > i , this implies NotChoosable(j , c,w).

〈3〉4. Case: mbal2a(i , b,Q) ≤ c < b
〈4〉1. mbal2a(j , b,Q) < mbal2a(i , b,Q)

Proof: The assumption v ∈ StopCmd and 〈3〉1 imply
sval2a(i , b,Q) ∈ StopCmd . Case assumption 〈2〉2 and the defini-
tion of sval2a then imply mbal2a(k , b,Q) < mbal2a(i , b,Q) for all
k > i .

〈4〉2. NotChoosable(j , c,w)
Proof: 〈4〉1 and case assumption 〈3〉4 imply mbal2a(j , b,Q) < c < b.
By assumption 〈1〉1.4, Lemma 3 implies NotChoosable(j , c,w).

Theorem 1 2Consistency
Proof: By definition of Consistency , it suffices to assume Chosen(i , b, v) and
Chosen(i , c,w) and to prove v = w . Without loss of generality, we can assume
b ≤ c. We then have two cases.
1. Case: b < c

Proof: We assume v 6= w and obtain a contradiction. Lemma 1.1
and Chosen(i , c,w) imply Done2a(i , c,w). By Lemma 4, this implies
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SafeAt(i , c,w). The assumptions b < c, an v 6= w then im-
ply NotChoosable(i , b, v). By Lemma 2, this contradicts the assumption
Chosen(i , b, v).

2. Case: b = c
Proof: Lemma 1.1 implies Done2a(i , b, v) ∧ Done2a(i , c,w), which by
Lemma 1.2 implies b = c.

Theorem 2 2Stopping
Proof: By definition of Stopping , it suffices to assume Chosen(i , b, v),
Chosen(j , c,w), v ∈ StopCmd , and j > i and to obtain a contradiction. We split
the proof into two cases.
1. Case: c < b

Proof: Chosen(i , b, v) and Lemma 1.1 imply Done2a(i , b, v). This and
Lemma 4 imply NoneChoosableAfter(i , b, v), which by the case assumption and
the assumptions v ∈ StopCmd and j > i implies NotChoosable(j , c,w). The as-
sumption Chosen(j , c,w) and Lemma 2 then provide the required contradiction.

2. Case: c ≥ b
Proof: Chosen(j , c,w) and Lemma 1.1 imply Done2a(j , c,w). Lemma 4
then implies NoReconfigBefore(j , c). The case assumption, the as-
sumptions v ∈ StopCmd and j > i , and NoReconfigBefore(j , c) imply
NotChoosable(i , b, v). The assumption Chosen(i , b, v) and Lemma 2 then pro-
vide the required contradiction.

A.2 The Proof of Progress.

Theorem 3 ∀ b,Q : Progress(b,Q)
Proof: We assume P1(b,Q), P2(b,Q) and P3(b) and we must prove that there
exists a v such that either 3Chosen(i , b, v) or (v ∈ StopCmd) ∧ 3Chosen(j , b, v),
for some j < i .
〈1〉1. 32E1(b,Q)

Proof: P1(b,Q) implies that the ballot b leader eventually executes a
Phase1a(b) action. By P2(b,Q), every acceptor a in Q eventually receives the
Phase1a messages. Because bal [a] is set to a value c only by receiving a ballot c
message, assumption P3(b) implies bal [a] ≤ b. Hence, a must eventually receive
the Phase1a message and execute Phase1b(a, b). By P2(b,Q), the Phase1b
message it sends is eventually received by the leader.

〈1〉2. ∀ i ,w : 2(Done2a(i , b,w) ⇒ 3Chosen(i , b,w))
Proof: Done2a(i , b,w) means that a Phase2a(i , b,w) action has been executed
sending a 〈“2a”, b,w 〉i message to every acceptor a. If a is in Q , then assumption
P2(b,Q) implies that it eventually receives that message. Assumption P3(b)
implies bal [a] ≤ b, so P1(b,Q) implies that every a in Q eventually executes
Phase2b(i , a, b,w), setting votei [a][b] to w . Hence, eventually Chosen(i , b,w)
becomes true.
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Since ¬3F is equivalent to 2¬F , for any formula F , we can split the proof into
the following two cases.

〈1〉3. Case: ∃ k > i , w : 3Done2a(k , b,w)
〈2〉1. 2E5(i , b)

Proof: By definition of E5(i , b), it suffices to assume j < i , v ∈ StopCmd ,
and 3Done2a(j , b, v) and obtain a contradiction. By the 〈1〉3 case assumption,
we have 3Done2a(k , b,w) for k > i > j . Since k 6= j , the following two cases
are exhaustive.
〈3〉1. Case: Phase2a(k , b,w) is executed after Phase2a(j , b, v)

Proof: This is impossible because the enabling condition E5(k , b) of
Phase2a(k , b,w) implies ¬Done2a(j , b, v).

〈3〉2. Case: Phase2a(j , b, v) is executed after Phase2a(k , b,w)
Proof: This is impossible because E4a(j , b, v), which by the assump-
tion v ∈ StopCmd is an enabling condition of Phase2a(j , b, v), implies
¬Done2a(k , b,w).

〈2〉2. Pick a quorum U such that 32(E1(b,U ) ∧ E6(i , b,U ))
Proof: Case assumption 〈1〉3 implies that we can choose U such that
3(E1(b,U ) ∧ E6(k , b,U )). By definition of sval2a, we have E1(b,U ) im-
plies E6(k , b,U ) is stable. Since E1(b,U ) is obviously stable, 3(E1(b,U ) ∧
E6(k , b,U )) implies 32 (E1(b,U ) ∧E6(k , b,U )). The assumption k > i and
the definition of E6 imply 2 (E6(k , b,U ) ⇒ E6(i , b,U )).

〈2〉3. Pick w /∈ StopCmd such that 32E3(i , b,U ,w)
Proof: By 〈2〉2, we can choose a point in the execution at which 2(E1(b,U )∧
E6(k , b,U )) holds. By 2E1(b,U ), the value of sval2a(i , b,U ) remains con-
stant from that point on. If sval2a(i , b,U ) = >, let w be any command not
in StopCmd . Otherwise, let w = val2a(i , b,U ), which by E6(k , b,U ) and the
assumption k > i is not in StopCmd .

〈2〉4. 3Chosen(i , b,w)
Proof: The theorem is proved if 3Chosen(i , b, u,V ) for any u and V .
Hence, by 〈1〉2 it suffices to assume 2 ∀u : ¬Done2a(i , b, u), which is
2E2(i , b). We have proved 2E5(i , b) (〈2〉1), 32E3(i , b,U ,w) (〈2〉3), and
32(E1(b,U ) ∧ E6(i , b,U )) (〈2〉2). By 〈2〉3 (w /∈ StopCmd), E4(i , b,U ,w)
holds trivially. Hence, the Phase2a(i , b,w ,U ) action is eventually always en-
abled, so by assumption P1(b,Q) it is eventually executed by the ballot b
leader. Step 〈1〉2 then implies 3Chosen(i , b,w).

〈1〉4. Case: ∀ k > i , w : 2¬Done2a(k , b,w)
〈2〉1. ∃ j , v : 3Done2a(j , b, v)

Proof: We assume ∀ j , v : 2¬Done2a(j , b, v) and prove that eventually a
Phase2a(1, b, v) step occurs for some v . (Recall that 1 is the lowest instance
number.)
〈3〉1. 2E2(1, b)
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Proof: By the assumption ∀ j , v : 2¬Done2a(j , b, v).
〈3〉2. 2 (E5(1, b) ∧ E6(1, b,Q))

Proof: Conditions E5 and E6 are vacuously true for instance 1.
〈3〉3. ∃ v : 32 (E3(1, b,Q , v) ∧ E4(1, b,Q , v))

Proof: 〈1〉1 implies either (a) 32(sval2a(1, b,Q) = >) or
(b) 32(sval2a(1, b,Q) = v) for some command v . In case (a),
E3(1, b,Q , v) and E4(1, b,Q , v) are trivially satisfied for any command
v not in StopCmd . In case (b), let v = sval2a(1, b,Q), so E3(1, b,Q , v)
is satisfied. If v /∈ StopCmd , then E4(1, b,Q , v) is trivially satis-
fied. If v ∈ StopCmd , then E4a(i , b, v) is satisfied by the assumption
∀ j , v : 2¬Done2a(j , b, v) and E4b(i , b, v ,Q) is trivially satisfied.

〈3〉4. ∃ v : 3Done2a(1, b, v)
Proof: 〈1〉1, 〈3〉1, 〈3〉2, and 〈3〉3 imply that the Phase2a(1, b, v ,Q) action
is eventually always enabled. By P1(b,Q), this action must eventually be
executed.

〈2〉2. It suffices to:
Assume: 1. h an instance number, vh a command not in StopCmd , and

3Done2a(h, b, vh)
2. ∀ j > h, v : 2¬Done2a(j , b, v)

Prove: ∃v : 3Done2a(h + 1, b, v)
Proof: 〈2〉1 and case assumption 〈1〉4 implies that there is a largest instance
number h and a command vh such that 3Done2a(h, b, vh), and that h ≤ i . If
vh ∈ StopCmd , then 〈1〉2 implies 3Chosen(h, b, vh), and h ≤ i then implies
we are done. Therefore, it suffices to assume vh /∈ StopCmd and obtain a
contradiction, which we do by proving that the assumptions imply the Prove
clause.

〈2〉3. 32E5(h + 1, b)
Proof: Assumption 〈2〉2.1 asserts 3Done2a(h, b, vh), which implies
3E5(h, b). Since Done2a(h, b, vh) implies ∀ j < h, w ∈ StopCmd :
¬E4a(j , b,w), it implies that Phase2a(j , b,w ,U ) is not enabled for any j < i ,
w ∈ StopCmd , and quorum U , which implies that E5(h, b) is stable, prov-
ing 32E5(h, b). Assumption 〈2〉2.1 and Lemma 1.2 imply ∀v ∈ StopCmd :
2¬Done2a(h, b, v), which together with 32E5(h, b) implies 32E5(h +1, b).

〈2〉4. Choose a quorum U such that Phase2a(h, b, vh ,U ) is eventually executed.
Proof: U exists by assumption 〈2〉2.1.

〈2〉5. 32E1(b,U )
Proof: By 〈2〉4 and the stability of E1(b,U ).

〈2〉6. 32E6(h + 1, b,U )
Proof: 〈2〉4, 〈2〉5, and the enabling condition E6(h, b,U ) imply

(∗) ∀ j < h : 32((sval2a(j , b,U ) 6= >) ⇒ (sval2a(j , b,U ) /∈ StopCmd))

Step 〈2〉4, assumption 〈2〉2.1 (which implies vh /∈ StopCmd), and enabling
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condition E3(h, b,U , vh) imply 32(sval2a(h, b,U ) /∈ StopCmd). This and
(∗) imply 32E6(h + 1, b,U ).

〈2〉7. ∃ v : 32(E3(h + 1, b,U , v) ∧ E4(h + 1, b,U , v))
Proof: 〈2〉5 implies that it suffices to consider the following two cases.
〈3〉1. Case: 32(sval2a(h + 1, b,U ) = v) for some command v .

Proof: The case assumption implies 32E3(h + 1, b,U , v). Assumption
〈2〉2.2 implies 2E4a(h, b, v), and the case assumption trivially implies
32E4b(h, b,U , v).

〈3〉2. Case: 32 (sval2a(h + 1, b,U ) = >)
Proof: The case assumption implies 32(E3(h + 1, b,U , v) ∧ E4(h +
1, b,U , v)) for any command v not in StopCmd .

〈2〉8. 2E2(h + 1, b)
Proof: Assumption 〈2〉2.2.

〈2〉9. ∃ v : 3Done2a(h + 1, b, v)
Proof: 〈2〉3, 〈2〉5, 〈2〉6, 〈2〉7, and 〈2〉8 show that the Phase2a(h + 1, b, v ,U )
action is eventually always enabled for some v . Assumption P1(b,Q) implies
that the ballot b leader eventually executes this action. By 〈2〉2, this completes
the proof of 〈1〉4.
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