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Abstract

In this paper we study a version of constructive linear-time temporal logic (LTL) with the “next” temporal
operator. The logic is originally due to Davies, who has shown that the proof system of the logic corre-
sponds to a type system for binding-time analysis via the Curry-Howard isomorphism. However, he did
not investigate the logic itself in detail; he has proved only that the logic augmented with negation and
classical reasoning is equivalent to (the “next” fragment of) the standard formulation of classical linear-time
temporal logic. We give natural deduction and Kripke semantics for constructive LTL with conjunction and
disjunction, and prove soundness and completeness. Distributivity of the “next” operator over disjunction
“©(A ∨ B) ⊃ ©A ∨ ©B” is rejected from a computational viewpoint. We also give a formalization by
sequent calculus and its cut-elimination procedure.

Keywords: constructive linear-time temporal logic, Kripke semantics, sequent calculus, cut elimination

1 Introduction

Temporal logic is a family of (modal) logics in which the truth of propositions

may depend on time, and is useful to describe various properties of state transition

systems. Linear-time temporal logic (LTL, for short), which is used to reason about

properties of a fixed execution path of a system, is temporal logic in which each

time has a unique time that follows it.

In this paper, we study a constructive propositional LTL with only the “next”

temporal operator ©. Our contributions are (1) to give a Kripke semantics and a

complete proof system for constructive LTL and (2) to give another formalization

by sequent calculus in which cut elimination holds.

Intuitionistic versions of LTL have been already considered in the literature [12,6].

However, a characteristic feature of our version of LTL is that the “distributivity

law” ©(A∨B) ⊃ ©A∨©B, is not admitted in our logic, while (to our knowledge)

it is admitted in the other formalizations as well as in the classical setting.
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The motivation not to admit the distributive law above comes from the type-

theoretic interpretation of © operator, first given by Davies [4]. He pointed out that

a proof system of LTL can be related to a type system of (multi-level) binding-time

analysis, which is used in offline partial evaluation [10] to determine which part

of a program can be computed at specialization-time and which is residualized.

According to this correspondence, a formula ©A, which means that A holds at the

next time, is interpreted as a type of (residual) code of type A; introduction and

elimination rules of © are as Lisp-like quasiquotation and unquote, respectively.

As a result, λ© terms can be considered as program-generating programs, such as

parser generators or generating extensions, which manipulate code fragments by the

quasiquotation mechanism. For example, a parser generator would have a type like

parser spec → ©(string → syntax tree). Now, a proof of the distributive law

would be considered a function which takes a value of type ©(A ∨ B) and returns

a value of type ©A ∨©B. While a value of the return type must be of type ©A

or type ©B with a tag indicating which of the two is actually the case, a value of

the argument type is quoted code, which will not be executed until the next time

comes, that is, until the residual code is executed; it is in general impossible to know

which value (A or B) this code evaluates to now (unless a Lisp-like eval function

was available). From this observation, we conclude that there is no method to turn

a value of type ©(A ∨ B) into a value of type ©A ∨ ©B, and hence ©A ∨ ©B

should be strictly stronger than ©(A ∨ B).

Davies defined a natural deduction system for a constructive LTL with only the

“next” operator © and implication, derived via the Curry-Howard isomorphism a

typed λ-calculus λ©, which was formally shown to be equivalent to a type system of

multi-level binding-time analysis by Glück and Jørgensen [8]. Unfortunately, how-

ever, Davies did not investigate his system in detail, from a logical point of view:

he proved only that his system augmented with negation and classical reasoning is

equivalent to the classical LTL, even though the logic can be considered a construc-

tive version of LTL. The main aim of this paper is to see how his system is formalized

in terms of Kripke semantics and sequent calculus. Davies’ original system is an

implicational fragment, but we also consider conjunction and disjunction. 3

The organization of the rest of this paper is as follows. In Section 2, we discuss

an implicational fragment: we first review the natural deduction by Davies, give

a Kripke semantics, obtained by a natural extension of that of the classical LTL,

and finally prove soundness and completeness of the proof system. We also discuss

that, unfortunately, a straightforward extension of the semantics to disjunction

is not suitable for our interpretation of disjunction. In Section 3 we extend the

logic with conjunction and disjunction. We give another Kripke semantics, which

does not admit the distributivity law mentioned above, and prove soundness and

completeness of the proof system. In Section 4 we define a sequent calculus LJ©,

which is equivalent to the natural deduction, with its cut elimination procedure.

Finally, we give concluding remarks in Section 5.

3 Precisely speaking, Davies extended λ© with pairing and natural numbers, but did not consider conjunc-
tion or disjunction in his logic.
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Γ, An ⊢ An
(Axiom)

Γ ⊢ A ⊃ Bn Γ ⊢ An

Γ ⊢ Bn
(⊃E)

Γ ⊢ ©An

Γ ⊢ An+1
(©E)

Γ, An ⊢ Bn

Γ ⊢ A ⊃ Bn
(⊃I)

Γ ⊢ An+1

Γ ⊢ ©An
(©I)

Fig. 1. Derivation Rules of Davies’ System.

2 Implicational Fragment

In this section, we first recall the natural deduction system by Davies and some of

its properties, define a Kripke semantics for it, and prove completeness of Davies’

system.

2.1 Results by Davies

The temporal logic Davies considered contains only © (“next” operator) and ⊃

(intuitionistic implication), so the language we consider in this section is constructed

from propositional variables using ⊃ and ©.

A judgment in his system takes the form

An1

1 , . . . , Ank

k ⊢ Bm

where Ai, B are formulas and ni,m are natural numbers; it is read “B holds at

time m under the assumption that Ai holds at time ni (for i = 1, . . . , k).” In

what follows, we use A,B,C,D for formulas, k, l,m, n for natural numbers, F,G

for annotated formulas (i.e. formulas with time annotation), and Γ,∆ for sets of

annotated formulas. We consider the left-hand side of a judgment a set.

Inference rules of Davies’ system are listed in Fig. 1. The rules ⊃I, ⊃E, and

Axiom are standard. The other two, the introduction and elimination rules for

© operator, state that A holds at time n + 1 if and only if ©A holds at time

n. This is quite natural since ©A means that “A holds at the next time.” This

system is obtained from intuitionistic K, given by Martini and Masini [13] (aside

from a few notational differences), whose introduction rule for modality has a side

condition that all time annotations in the context must be smaller than n + 1 (the

time annotation of the succedent of the premise).

To show that © operator in this system is indeed the “next” operator in linear-

time temporal logic, Davies compared his system with L©, a well-known Hilbert-

style proof system of the fragment of classical linear-time temporal logic consisting

of only implication, negation and next operators. The axiomatization is given by

Stirling, who also proved that L© is sound and complete for the standard seman-

tics [19]. The axioms and rules of L© are as follows:

Axioms • any classical tautology instance
• ©¬A ⊃ ¬© A
• ¬© A ⊃ ©¬A
• ©(A ⊃ B) ⊃ ©A ⊃ ©B

Rules • if A ⊃ B and A then B
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• if A then ©A

Davies proved that his system extended by negation and classical reasoning is equiv-

alent to L© in the following sense [4]:

Proposition 2.1 A judgment An1

1 , . . . , Ank

k ⊢ Bm is provable in the extended sys-

tem if and only if ©n1A1 ⊃ . . . ⊃ ©nkAk ⊃ ©mB has a proof in L©. In particular,

· ⊢ A0 is provable if and only if A is a theorem of L©.

2.2 Kripke Semantics via Functional Frames

Before discussing the semantics of the implicational fragment, we briefly explain

how the usual classical semantics is given in terms of Kripke semantics. Kripke

frames we consider are functional, in the sense that the accessibility relation R on

possible worlds is a map. 4 This condition guarantees that, in a functional frame,

the next state of a given state is uniquely determined, hence justifying “linear time”.

To give a semantics of constructive LTL, we follow the previous researches on

Kripke-style models of intuitionistic modal logics [1,23,3] and augment functional

frames by another accessibility relation ≤. This additional accessibility represents

the “constructive” counterpart, as in the standard semantics of intuitionistic logic.

Definition 2.2 An intuitionistic functional frame is a triple 〈W,≤, R〉 of a nonempty

set W , a preorder ≤ on W and a map R from W to W such that ≤ ◦ R = R ◦ ≤

holds. Here ◦ stands for a composition of binary relations defined by x R ◦ S y ⇐⇒

∃z.(x R z S y).

This notion is an extension of classical functional frames: if ≤ is the diagonal

relation (that is, x ≤ y if and only if x = y) in this definition, the frame 〈W,≤, R〉

can be identified with a classical functional frame 〈W,R〉. Hereafter, we simply say

functional frame when no confusion arises.

Using functional frames we can define a satisfaction relation on formulas.

Definition 2.3 Let 〈W,≤, R〉 be a functional frame and |= be a binary relation

between W and the set of propositional variables such that w ≤ w′ and w |= p imply

w′ |= p. We extend |= to formulas by induction with

• w |= A ⊃ B ⇐⇒ if w ≤ w′ and w′ |= A then w′ |= B, and

• w |= ©A ⇐⇒ if w R w′ then w′ |= A.

We also write w |= An for w |= ©nA.

This definition is one of the standard semantics of intuitionistic modal logics pre-

viously considered [23]. As is easily verified by induction on the construction of

formulas, this semantics satisfies the monotonicity condition.

Lemma 2.4 If w ≤ w′ and w |= A, then w′ |= A.

It is not very difficult to see that Davies’ system is sound and complete for

this semantics. Soundness is proved by straightforward induction on the derivation.

4 The term “functional” is, to our knowledge, first used by Segerberg [18] (but not in context of semantics
of LTL).
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Completeness is proved by constructing a functional frame in which validity and

provability coincide. We sketch the proof below.

For a set T of formulas, we write ©−1T for the set {A |©A ∈ T } and ©T for

{©A |A ∈ T }. Take the set of all theories as W , let ≤ be a set-inclusion, and R

the map which sends each theory T to the theory ©−1T . First we show that this

defines a functional frame.

Lemma 2.5 The canonical frame 〈W,≤, R〉 above is indeed functional.

Proof. Among conditions of being a functional frame, the only nontrivial one is

R ◦≤ ⊆ ≤◦R. To show this, take theories T and S with ©−1T ⊆ S (i.e. T (R ◦ ≤)

S), and let U be the smallest theory containing T and ©S. We are going to show

that U satisfies T ≤ U R S, i.e. T ⊆ U and ©−1U = S.

Clearly, T ⊆ U holds by definition. It is also easy to see that S ⊆ ©−1U : if

A ∈ S, then ©A ∈ ©S ⊆ U , and from this A ∈ ©−1U follows. For the converse,

let A be a formula in ©−1U . Then we have ©A ∈ U . Since U is the smallest theory

containing T and ©S, there exist formulas A1, . . . , An ∈ S such that ©A1 ⊃ . . . ⊃

©An ⊃ ©A ∈ T . Because ©(A ⊃ B) follows from ©A ⊃ ©B, we also have

©(A1 ⊃ . . . ⊃ An ⊃ A) ∈ T . This implies that A1 ⊃ . . . ⊃ An ⊃ A ∈ ©−1T ⊆ S

holds. As Ai ∈ S from the assumption, we conclude that A ∈ S, as required. 2

Let |= be the satisfaction relation defined by: T |= p if and only if p ∈ T . Then

it holds that T |= A if and only if A ∈ T for each formula A, which is easily verified

by induction on A. Finally, if Γ ⊢ An is not provable, take the set
{

A
∣

∣ Γ ⊢ A0
}

as

T . Then T |= Γ holds but T |= An does not.

2.3 A Problem with Disjunction

The proof strategy above is almost standard, but notice that we took the set of all

theories as W . When we consider the full system (in particular, disjunction), the

same method will not work. In the presence of disjunction, the standard way to

prove completeness is to take the set of all prime theories. 5 Otherwise, we cannot

prove the equivalence of T |= A and A ∈ T in the last step of the proof above.

However, if we give W in this way, there is no natural way to define suitable R

because the theory ©−1T is not necessarily prime even if T is prime.

In fact, functional frames are not appropriate in the presence of disjunction

because they would validate the distributivity law ©(A ∨ B) ⊃ ©A ∨©B, which

we reject as discussed in the introduction, under the straightforward interpretation

of disjunction:

w |= A ∨ B ⇐⇒ if w |= A or w |= B

It does not seem easy to adjust the definition of the satisfaction relation to

exclude the distributivity law. In fact, since necessity and possibility coincide when

R is a (total) map, it may appear natural to adopt the ideas from some of the

Kripke semantics for intuitionistic modal logics [22,1], which rejects distributivity

5 A theory T is said to be prime if A ∨ B ∈ T implies A ∈ T or B ∈ T .
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Γ ⊢ A ∧ Bn

Γ ⊢ An
(∧E1)

Γ ⊢ A ∧ Bn

Γ ⊢ Bn
(∧E2)

Γ ⊢ A ∨ Bn Γ, An ⊢ Cn Γ, Bn ⊢ Cn

Γ ⊢ Cn

(∨E)

Γ ⊢ An Γ ⊢ Bn

Γ ⊢ A ∧ Bn
(∧I)

Γ ⊢ An

Γ ⊢ A ∨ Bn
(∨I1)

Γ ⊢ Bn

Γ ⊢ A ∨ Bn
(∨I2)

Fig. 2. Additional Rules for Full NJ©

♦(A ∨ B) ⊃ ♦A ∨♦B of possibility over disjunction by:

w |= ♦A ⇐⇒ ∀v.(w ≤ v =⇒ ∃w′.(v R w′ ∧ w′ |= A)).

Unfortunately, this attempt fails. To falsify the distributivity we also need to have

≤ ◦ R 6⊆ R ◦ ≤, but then, the formula (©A ⊃ ©B) ⊃ ©(A ⊃ B) becomes in-

valid. Indeed, consider a functional frame 〈W,≤, R〉 defined by W = {a, b, c, d}

and ≤ = {(a, b), (a, a), (b, b), (c, c), (d, d)} and R = {(a, c), (b, d), (c, c), (d, d)} and

the satisfaction relation such that A is true at c and false at d, and B is false at c.

Then, a |= ©A ⊃ ©B holds but a |= ©(A ⊃ B) does not.

From the observation above, it seems that the combination of functionality of R

and soundness leads to the distributivity. In the next section we give a larger class

of frames, by relaxing the functionality condition.

3 Full System: Natural Deduction and Kripke Seman-

tics

In the previous section we have seen that the notion of functional frames is too naive

to represent the intuitive meaning of the © operator we consider. In this section

we propose a more suitable class of Kripke frames and a complete proof system.

3.1 Natural Deduction

First we define a natural deduction system NJ© extending Davies’ system, by

adding conjunction and disjunction. Derivation rules for these two connectives

are listed in Fig. 2. They are fairly straightforward, but only ∨E may be nontrivial.

In this rule, the formula being eliminated must have the same time as the succedent

of the conclusion. At first sight it may seem strange, but in fact this restriction

is essential for our system. Indeed, without this restriction we could prove the

distributivity law ©(A ∨ B) ⊃ ©A ∨ ©B, which should not be a tautology as

mentioned above, as follows:

©(A ∨ B)0, A1 ⊢ A1

©(A ∨ B)0, A1 ⊢ ©A0

©(A ∨ B)0, A1 ⊢ ©A ∨©B0

©(A ∨ B)0, B1 ⊢ B1

©(A ∨ B)0, B1 ⊢ ©B0

©(A ∨ B)0, A1 ⊢ ©A ∨©B0

©(A ∨ B)0 ⊢ ©(A ∨ B)0

©(A ∨ B)0 ⊢ A ∨ B1

©(A ∨ B)0 ⊢ ©A ∨©B0
∨E

In this proof, disjunction being eliminated has time 1 while the time of the succedent

is 0. In fact, the problem would occur only if we allowed the time of the succedent
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C to be strictly less than that of the disjunction A ∨ B being eliminated. (A slight

variation of ∨E in which Cn is changed to Cm with the side condition m ≥ n is

provable by using ©I and ©E.)

3.2 Kripke Semantics

As discussed above, the proof system NJ© does not seem to prove distributivity law,

so we think the logic defined by NJ© is more appropriate than that by functional

frames. Therefore the next question is what kind of frames correspond to our logic.

The answer we give is ©-frames, defined below.

Definition 3.1 A ©-frame is a triple 〈W,≤, R〉 of a nonempty set W , a preorder

≤ on W and a binary relation R on W such that

• ≤ ◦ R = R ◦ ≤ = R, and

• if w R v then there exists w′ such that w ≤ w′ and ∀u ∈ W.(w′ R u ⇐⇒ v ≤ u).

Note that, here, R is not assumed to be a map. This definition is essentially a

special case of Kripke IM-frames considered by Wolter and Zakharyaschev [23]. 6

Satisfaction relations are defined in the same way as the functional frame se-

mantics in Section 2, but we need to add the following two clauses for disjunction

and conjunction.

• w |= A ∨ B ⇐⇒ w |= A or w |= B

• w |= A ∧ B ⇐⇒ w |= A and w |= B

This ©-frame semantics is a generalization of the functional one:

Proposition 3.2 For an arbitrary functional frame F = 〈W,≤, R〉, there exists a

binary relation R′ such that the frame F ′ = 〈W,≤, R′〉 is a ©-frame, and for each

satisfaction relation |= on W its extensions on F and F ′ coincide.

Proof. Let R′ = R ◦ ≤ (in other words, w R′ v if and only if u ≤ v, where u is the

image of R at w). Then ≤ ◦ R′ = R′ ◦ ≤ = R′ is easily verified from ≤ ◦ R = R ◦ ≤

and transitivity of ≤. The latter part is proved by induction on the formula. 2

Theorem 3.3 (Soundness) Suppose that Γ ⊢ An is provable in NJ©. Then for

any ©-frame 〈W,≤, R〉, satisfaction relation |=, and possible world w ∈ W such

that w |= Γ, it holds that w |= An.

Proof. Induction on the derivation. 2

Theorem 3.4 (Completeness) If w |= Γ implies w |= An for any ©-frame

〈W,≤, R〉, satisfaction relation |=, and possible world w ∈ W , then there exists

a derivation of Γ ⊢ An.

Proof. Basically we proceed in a way similar to the proof in Section 2, but we need

some modification. Here we take the set of all prime theories as W , and define

accessibility relation R so that T R T ′ holds if and only if ©−1T ⊆ T ′.

6 It may sound strange that © does not distribute over disjunction in ©-frames, when it is known that
the distributivity law of ♦ over disjunction holds in any IM-frame. This is not a contradiction, however,
because we regard © as necessity 2 rather than possibility ♦.
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(A is atomic)

Γ, An ⇒ An
(Init)

Γ ⇒ An Γ, Bn ⇒ F

Γ, A ⊃ Bn ⇒ F
(⊃L)

Γ, An ⇒ F

Γ, A ∧ Bn ⇒ F
(∧L1)

Γ, Bn ⇒ F

Γ, A ∧ Bn ⇒ F
(∧L2)

Γ, An ⇒ Cn+m Γ, Bn ⇒ Cn+m

Γ, A ∨ Bn ⇒ Cn+m
(∨L)

Γ, An+1 ⇒ F

Γ,©An ⇒ F
(©L)

Γ ⇒ F F,∆ ⇒ G

Γ,∆ ⇒ G
(Cut)

Γ, An ⇒ Bn

Γ ⇒ A ⊃ Bn
(⊃R)

Γ ⇒ An Γ ⇒ Bn

Γ ⇒ A ∧ Bn
(∧R)

Γ ⇒ An

Γ ⇒ A ∨ Bn
(∨R1)

Γ ⇒ Bn

Γ ⇒ A ∨ Bn
(∨R2)

Γ ⇒ An+1

Γ ⇒ ©An
(©R)

Fig. 3. Inference Rules of LJ©.

The only nontrivial point in the proof is that 〈W,≤, R〉 defined above is indeed a

©-frame. The condition ≤◦R = R◦≤ = R is not difficult to prove, and we omit the

details. Below we prove that the other condition is satisfied. Let S and T be prime

theories such that T R S (i.e. ©−1T ⊆ S). Our goal is to prove that there exists

some prime theory U such that T ⊆ U and ∀V ∈ W.(©−1U ⊆ V ⇐⇒ S ⊆ V ).

Let X be the set of theories defined by:

X =
{

U
∣

∣U is a theory such that ©−1U = S and T ⊆ U
}

.

We are going to show that X is not empty, and its maximal element is a prime

theory. For the former, take the smallest theory containing T and ©S and show

that it belongs to X. This is done in the same way as in the last section. To prove

the latter, let U ∈ X be a maximal element and suppose A1, A2 /∈ U . Moreover,

let U0, U1, U2 be the smallest theory containing A1 ∨ A2, A1, A2, respectively, and

U . It is sufficient to prove that U0 6= U . For i = 1, 2 the theory ©−1Ui is a proper

extension of ©−1U = S, so there exists a formula Bi ∈ ©−1Ui \S. For such B1 and

B2, it holds that ©(B1 ∨ B2) ∈ U1 ∩ U2 = U0 and B1 ∨ B2 /∈ S = ©−1U (because

S is prime). Therefore we obtain ©(B1 ∨ B2) ∈ U0 \ U , and this implies U0 6= U ,

as required.

The rest of the proof is almost the same as the previous one. 2

4 Sequent Calculus

In this section we give another formalization LJ© of our logic in the sequent calculus

style. After verifying that the system LJ© is equivalent to NJ© previously defined,

we give a cut-elimination procedure for LJ©.

4.1 Formalization

Sequents of LJ© have the form Γ ⇒ F where Γ is a set of annotated formulas and

F is an annotated formula. Inference rules of LJ© are listed in Fig. 3.
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Since we regard the left-hand side of a sequent as a set, exchange and contraction

rules are not explicitly included. There is not an explicit weakening rule, either—we

included weakening implicitly by allowing extra formulas in the left-hand side of the

initial sequents. To make the proof of cut elimination theorem simpler, we restricted

the right-hand side of the initial sequents to be atomic (but this does not reduce

the proof-theoretic strength). Most of the rest of the rules are standard, but we

comment on the rule ∨L. In this rule, the time of the succedent C must be no less

than that of the principal formula A ∨ B. This corresponds to the issue mentioned

in the previous section that we cannot eliminate disjunction with a succedent of an

earlier time.

LJ© is equivalent to NJ© in the following sense:

Theorem 4.1 A sequent Γ ⇒ F is provable in LJ© if and only if Γ ⊢ F is provable

in NJ©.

To prove this it is sufficient to check that all rules of LJ© are admissible in NJ©

and vice versa. For the former part we need the admissibility of weakening and cut

in natural deduction:

Lemma 4.2 (i) If Γ ⊢ F is provable, then Γ,∆ ⊢ F is also provable.

(ii) If Γ ⊢ F and F,∆ ⊢ G are provable, then Γ,∆ ⊢ G is also provable.

Then, both directions are proved by easy induction, so we omit the details.

4.2 Cut Elimination Procedure

Next we show cut is admissible in the cut-free fragment of LJ©.

Theorem 4.3 If Γ ⇒ F and F,∆ ⇒ G are provable without cut, then Γ,∆ ⇒ G

is also provable without cut.

We sketch the proof below. Consider the cut

D1 =
...

Γ ⇒ F
R1

D2 =
...

F,∆ ⇒ G
R2

Γ,∆ ⇒ G
Cut

We split this into four cases:

(i) R1 6= ∨L or R2 = Init;

(ii) R1 = ∨L and F is not principal in D2;

(iii) R1 = R2 = ∨L and F is principal in D2;

(iv) R1 = ∨L, F is principal in D2, and F is neither atomic nor disjunction.

The standard cut-elimination procedure works in case (i), but in the other cases,

i.e. R1 = ∨L, it is not as obvious. The problem stems from the side condition on

the time on the pricipal formula and that on the succedent in ∨L. Consider the

9
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most general form of cut with R1 = ∨L:

Γ, An ⇒ Cm Γ, Bn ⇒ Cm

Γ, A ∨ Bn ⇒ Cm ∨L
Cm,∆ ⇒ Dl

Γ, A ∨ Bn,∆ ⇒ Dl
Cut

Applying the standard procedure to this derivation, we would obtain a new deriva-

tion

Γ, An ⇒ Cm Cm,∆ ⇒ Dl

Γ, An,∆ ⇒ Dl
Cut

Γ, Bn ⇒ Cm Cm,∆ ⇒ Dl

Γ, Bn,∆ ⇒ Dl
Cut

Γ, A ∨ Bn,∆ ⇒ Dl
∨L

which, however, is not always valid, because it is not necessarily the case that l ≥ n.

So, we split this case into the three subcases, (ii), (iii), and (iv) listed above.

In case (ii) it is easy to reduce the cut into a simpler one: as the cut formula is

not principal in D2, it occurs in all premises of R2, so we just lift the cut into D2.

In case (iii), we can use the standard procedure above because the condition

n ≤ l is always met.

The last case is the case (iv), in which F is neither atomic nor disjunction. In

this case, first rewrite a given derivation D1 into another derivation D′
1 of the same

sequent such that the new derivation ends with a right rule application. Then, the

given cut becomes a principal cut, which is easily reduced into a simpler cut. To do

this, all we need is the following lemma:

Lemma 4.4 If a sequent S ≡ Γ ⇒ F has a cut-free derivation D and F is neither

atomic formula nor disjunction, then there exists a cut-free derivation D′ of S such

that the last rule used in D′ is a right rule.

Proof. It is sufficient to show that any use of a left rule immediately following a

right rule other than the ∨-right rules can be replaced by applications of the right

rule following the left rule. Intuitively this means that by a conversion like

T1 . . . Tk

S′ Right

S
Left

=⇒

T1

S′
1

Left
. . .

Tk

S′
k

Left

S
Right

we always obtain a valid derivation from a valid derivation. This is done by straight-

forward case analysis. 2

From the argument above, we obtain the cut-elimination theorem for LJ©.

Theorem 4.5 If a sequent is provable in LJ©, then it has a cut-free proof.

5 Concluding Remarks

In this paper we have defined a Kripke semantics for constructive LTL, a sound and

complete natural deduction style proof system, and a sequent calculus which enjoys

a cut elimination theorem.
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Although the temporal logic we considered is linear-time, a naive frame con-

dition of functionality turned out to be insufficient, and we used a larger class of

Kripke frames. Compared to other modal logics such as S4 and lax logic, an intu-

itive meaning of the frame condition we presented is not so clear, but it seems to

correspond to the fact that the inverse of axiom K is a theorem.

For a cut elimination procedure, we basically followed the standard method.

However, to make it work correctly, we may need extra transformations.

In this paper we did not mention algebraic semantics and duality between frames

and algebras. Related to these topics, results for constructive S4 and propositional

lax logic are given by Alechina et al. [1]. A similar result also holds for our con-

structive LTL. Let us call a lattice equipped with a unary operation © a ©-algebra

if it has pseudo-complement ⊃ and © preserves ⊃. It is fairly easy to see that the

©-algebras derive a semantics of constructive LTL and that NJ© is sound and

complete. In a way similar to the classical case we can define translations between

©-frames and ©-algebras. Further investigations are left for future work. On dual-

ity for intuitionistic modal logics, Wolter and Zakharyaschev [23] also gave a general

result, but it does not directly give rise to duality between ©-frame and some class

of algebras. This is because we used Kripke frames while they considered general

frames.

In the context of multi-modal and intuitionistic modal logics, a notion of product

of Kripke frames and general frames are considered [7,9]. We conjecture that there

exists a decomposition of functional frame (and maybe ©-frame) into a product of

frames.

Another interesting problem is to consider temporal operators other than ©,

such as “always” or “until.” It is easy to define a semantics for other temporal

operators, so the main interest is how to characterize these operators in terms

of proof systems. In relation with this issue, a completeness result for constructive

propositional dynamic logic is given by Nishimura [17]. Dynamic logic has operators

similar to temporal operators, including “next” operator, so we think there are some

relationship between his work and ours.

Since work by Davies and Pfenning [5] and Davies [4] on Curry-Howard corre-

spondence for modal and temporal logic, many type systems for multi-stage lan-

guages based on their work have been proposed [2,15,20,21,14,16,24,11]. Those

languages typically include not only quasiquotation as in λ© but also Lisp-like eval

and lifting of values to code (also called cross-stage persistence [21]). As a result,

their type systems could be seen as quite different modal logics: for example, the

distributvity law would be validated if eval, which would have type ©A ⊃ A, and

lifting, which would have type A ⊃ ©A, are supported in one language. The com-

bination of these language features is motivated by a practical reason, rather than

a correspondence with logics; it would also be interesting to investigate how these

systems (more precisely, the corresponding logics) are characterized in terms of

temporal or modal logics. (One such investigation is the second author’s work [24],

which tries to capture quasiquotation and eval by linear-time temporal logic with

next and always modalities.)
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Abstract

We formulate precisely and prove formally the proposition that if conscientious players are constructively
rational in a sequential game of perfect information, then the backward induction outcome is reached.

Keywords: Aumann’s Theorem, rationality, backward induction, decidability, type theory, Coq

1 Introduction

A celebrated result in economics, hereinafter called Aumann’s Theorem (on Ra-

tionality), says that “common knowledge of rationality implies backward induc-

tion” [1]. The result pertains to extensive-form games of perfect information, i.e.,

sequentially-playable game trees, and involves epistemic operators. Backward induc-

tion is a restricted form of Nash equilibrium, where the usual perceived optimality

requirement must hold not just for the game as a whole but at all intermediate

stages as well. The result has been used to advocate sustained engagement in the

resolution of regional conflicts, even if no obvious peace is in sight. The argument

says that negotiations foster understanding and that, ultimately, all parties will

come to appreciate each other’s motives, their appreciation of motives, appreciation

of appreciation of motives, etc., at which point a solution will have been reached.

Unfortunately, one might say, semantical arguments exist that both validate [1] and

contradict [7] the result. It is not clear what connectives and predicates are being
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given semantics though, and they obviously differ in the two cases. The technical

point of departure is thought to be what is meant by (substantive) rationality [3].

We undertake a simple proof-theoretic analysis of Aumann’s Theorem and

present a proof of the differently motivated but closely related result in the title,

in part to help clarify the above issue and make sure that less confusion is possi-

ble. Our development uses a new epistemic axiom for K/the knowledge modality,

called “decidable not-K-not”, where not-K-not is often interpreted as a form of be-

lief. The axiom says that if it has been established that some agent does not know

that some proposition is false and the truth status of that proposition is otherwise

clear, then the proposition does in fact hold. Alternatively, the axiom says that

agents may not believe propositions it is within their power to decide to be false

— it is this property that gives rise to the titular ‘conscientious players’, and that

points to constructive logic as the right framework for our proof and the preceding

proof-theoretic analysis. Our proof does not involve common knowledge, in some

sense because of the conscientiousness considerations, and additionally simplifies

the requirements on the amount of knowledge that is needed to qualify as ‘rational’.

We do use general inductive definitions (to formally define extensive-form games)

but it is not completely clear whether that explains why our proof does not need

the fixpoint-defined common-knowledge modality whereas others use it [1,3,7]. The

article is supported by a Coq [2] formalisation that contains additional results [9].

2 Formalism

A key element of our proof is the ability to make inductive definitions, and to

subsequently prove properties about them by structural induction. We now sketch

a simple formalism that incorporates this and the other proof concepts we need; it

is based on extensible type theory but barely goes beyond first-order intuitionistic

logic. The formalism is made extensible by the base language being indexed by a

set of user-specifiable base sorts, U ; additions to U are tightly regulated, as we shall

see, to avoid introducing inconsistencies.

Definition 1 We consider a set V of variable names, ranged over by x; a set F of

function symbols, ranged over by f ; and a set A of ad hoc logical symbols, ranged

over by a. The sets are assumed to be disjoint. Let n range over V ∪ F .

Definition 2 Consider terms T ::= V | F | T(T), and let t range over T.

The terms may occur inside formulas either by themselves or as arguments to ad

hoc logical symbols. (There are further restrictions on the use of terms, see below.)

Definition 3 Let
−→
X denote lists of Xs, let F be the constant false, and consider

P ::= P ∧ P | P ∨ P | P ⇒ P | F | ∀ V ∈ U . P | T | A(
−→
T)

Let p range over formulas P; write ¬p for p ⇒ F and T for ¬F.

In order to ensure that terms are used meaningfully, we introduce a notion of

sorting with the principal aim that only Prop-sorted terms may occur as formulas,

i.e., that terms that occur as formulas are predicates.
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(Assm) if ∆ ⊲f p

Γ1, p,Γ2 ⊢∆ p

Γ ⊢∆ F

(EF)
Γ ⊢∆ p

Γ ⊢∆ pl Γ ⊢∆ pr

(I∧)
Γ ⊢∆ pl ∧ pr

Γ ⊢∆ pl ∧ pr

(El
∧)

Γ ⊢∆ pl

Γ ⊢∆ pl ∧ pr

(Er
∧)

Γ ⊢∆ pr

Γ ⊢∆ pl

(Il
∨)

Γ ⊢∆ pl ∨ pr

Γ ⊢∆ pr

(Ir
∨)

Γ ⊢∆ pl ∨ pr

Γ ⊢∆ pl ∨ pr Γ, pl ⊢
∆ p Γ, pr ⊢∆ p

(E∨)
Γ ⊢∆ p

Γ1, pa, Γ2 ⊢∆ pb

(I⇒) if ∆ ⊲f pa

Γ1, Γ2 ⊢∆ pa ⇒ pb

Γ ⊢∆ pa ⇒ pb Γ ⊢∆ pa

(E⇒)
Γ ⊢∆ pb

Fig. 1. Intuitionistic propositional provability

Γ ⊢∆ Q(Zero) Γ, Q(x) ⊢∆,x:Nat Q(Succ(x))
(Ind

Q

Nat
) if











∆t(Zero) = Nat,

∆t(Succ) = Nat → Nat,

n, x not used in Γ, ∆Γ ⊢∆ ∀n ∈ Nat . Q(n)

Fig. 2. Structural induction over Nat

Definition 4 Let Prop be a distinct constant; consider sorts, ranged over by s.

S ::= U | Prop | S → S

Definition 5 Let ∆ range over pairs 〈∆t,∆f 〉, where ∆t ranges over finite func-

tions from V ∪ F to S and ∆f ranges over finite functions from A to
−→
S ; 4 let ⊕

range over {∧,∨,⇒}. Define well-sortedness for terms, ⊲t, and formulas, ⊲f , thus.

∆ ⊲t tf : sa → sr ∆ ⊲t ta : sa

∆ ⊲t tf (ta) : sr

∆t(n) = s

∆ ⊲t n : s

∆ ⊲f p

∆ ⊲t p : Prop

∆ ⊲f p ∆t(x) = s

∆ ⊲f ∀x ∈ s . p

−−−−−−−→
∆ ⊲t ti : si ∆f (a) = −→si

∆ ⊲f a(−→ti )

∆ ⊲f p1 ∆ ⊲f p2

∆ ⊲f p1 ⊕ p2 ∆ ⊲f F

∆ ⊲t t : Prop

∆ ⊲f t

Next, we define provability; the definition is split into multiple parts but they

address just one relation. We first consider intuitionistic propositional provability.

Definition 6 Let Γ range over lists of formulas,
−→
P , and let ∆ be as in Definition 5.

The propositional part of our provability relation, ⊢∆, is given in Fig. 1. We write

ε for empty lists and say that p is a ⊢∆-theorem if ε ⊢∆ p is derivable.

Appendix A contains example proofs (of the ⊢-equivalence of ¬¬p and

(p ∨ ¬p) ⇒ p). The sort set U will contain any user-defined inductive data types,

with the defining constructors taken as function symbols, F . For example, a user

may define a natural-number sort, with ‘zero’ and ‘successor’ constructors. 5

Nat ::= Zero : Nat | Succ : Nat → Nat

4 Formally, ∆ should be set up as a dependently typed list.
5 Formally, an inductively defined sort may be used only so-called “strictly positively” in the constructors’
sorts. For example, (X → X) → X is not valid because of the first X: the type would not be well-founded.
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Γ ⊢∆ p0

(comp) if ↓ p = p0 and ∆ ⊲f p

Γ ⊢∆ p

Fig. 3. Computational reasoning

(rInd1

LEqNat
) if

{

∆ ⊲t t : Nat

∆t(LEqNat) = 〈Nat, Nat〉Γ ⊢∆ LEqNat(t, t)

Γ ⊢∆ LEqNat(Succ(t1), t2)
(rInd2

LEqNat
) if

{

∆t(LEqNat) = 〈Nat, Nat〉

∆t(Succ) = Nat → NatΓ ⊢∆ LEqNat(t1, t2)

Fig. 4. Ad hoc rule induction for LEqNat

Definition 7 For Inductively defined sorts, add structural induction rules to the

provability relation, see Figure 2 in the case of Nat.

Additionally, we allow for the definition by structural recursion of new function

symbols over inductively defined sorts.

IsEven(Zero) = T

IsEven(Succ(n)) = ¬IsEven(n)

Definition 8 Let the computational reasoning rule be as given in Figure 3, with

↓ being a not-further-specified form of deterministic computation that includes “ex-

haustive definition unfolding” of structural-recursive functions.

With this, we are able to formally prove that, e.g., two is even.

(Assm)
F ⊢∆ F

(I⇒)
ε ⊢∆ T

(comp)
ε ⊢∆ IsEven(Succ(Succ(Zero)))

Lastly, we allow a user to conservatively extend the considered formalism.

LEqNat(t, t)

LEqNat(Succ(t1), t2)

LEqNat(t1, t2)

Definition 9 For ad hoc logical symbols, include the defining rules as proof rules,

see Figure 4, in the case of LEqNat: we refer to their use as rule induction.

Formally, ⊢ is an extensible type theory. Under minor additional constraints,

specifically dependent typing of ∆, Γ, we can guarantee that any so-constructed

extension is consistent. The proof of this will typically use a richer, non-extensible

type theory that is consistent and contains functions that, e.g., send the definition

of Nat to its structural-induction and -recursion rules, seen as terms.

3 Epistemic Provability

As mentioned, Aumann’s Theorem involves epistemic operators, particularly for the

knowledge of a given agent and the common knowledge of the group of agents.
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(TKa
)

Γ ⊢∆ Ka(p) ⇒ p

ε ⊢∆ p

(GenKa
)

ε ⊢∆ Ka(p)
(KKa

)
Γ ⊢∆ (Ka(p1 ⇒ p2)) ⇒ Ka(p1) ⇒ Ka(p2)

Fig. 5. The knowledge modality, Ka(−), for agent a

Definition 10 Consider a set of agents, G ∈ U. The knowledge modality,

Ka : Prop → Prop, for a ∈ G is an ad hoc symbol, defined in Fig. 5. (The defini-

tion style goes beyond Fig. 4’s conservative extensivity.)

We shall not actively pursue the common-knowledge modality, CG, and it suffices

to mention that it can be defined as a fixpoint of knowledges, which means that it

includes knowledge of knowledge ad infinitum. In addition to its fixpoint properties,

CG enjoys the same laws as Ka, see Fig. 5.

4 Extensive-Form Games

Our reason for considering a formalism with support for inductive definitions is

that Aumann’s Theorem pertains to extensive-form games of perfect information.

To economists, such games are expressible as game trees with no restrictions, e.g.,

on the order in which players move/make choices. To us, game trees are a standard

abstract data type that is susceptible to formal treatment in its own right.

Definition 11 Let rwd ∈ U be a sort (for payoffs/rewards) and consider the two-

point sort choice ::= left : choice | right : choice. The inductive sort of strategies

is strt ::= Leaf : (G → rwd) → strt | Node : G → choice → strt → strt → strt.

A (binary) strategy is either a leaf, where a payoff function assigns a payoff to each

agent, or it is an internal node owned by some agent, who chooses between two

sub-strategies. A game is essentially the same sort, except no choice is recorded in

internal nodes. (The binary restriction is not crucial to the considered result.) The

following is an example, with a ∈ G and the choice indicated with a boldface line.

a

[a 7→ r1] [a 7→ r2](1)

Definition 12 Define structural-recursively the function that returns the choice-

induced payoff/reward function in a given strategy, strtRwd : strt → (G → rwd).

strtRwd(Leaf rFct) = rFct

strtRwd(Node a left sl sr) = strtRwd(sl)

strtRwd(Node a right sl sr) = strtRwd(sr)

A strategy, s, is a Nash equilibrium for the underlying game if no agent, a, can

increase strtRwd(s)(a) by changing (only) a’s choices in s. A particular form of Nash

equilibria, Backward Inductions, accomplishes this by all choices being optimal.

Definition 13 Consider the function symbol LEq : rwd → rwd → Prop (less-

than-or-equal-to on rewards) and the structural-recursive predicate, i.e., function

5



into Prop, that identifies Backward Induction strategies, BI : strt → Prop.

BI(Leaf rFct) = T

BI(Node a left sl sr) = BI(sl) ∧ BI(sr) ∧ LEq(strtRwd(sr)(a), strtRwd(sl)(a))

BI(Node a right sl sr) = BI(sl) ∧ BI(sr) ∧ LEq(strtRwd(sl)(a), strtRwd(sr)(a))

(Needless to say, we can similarly define the function that computes a backward-

induction strategy from a given game, thereby proving Kuhn’s Theorem: “all

extensive-form games of perfect information have Nash equilibria” [4,8].)

5 Rationality

Aumann defines rationality informally as follows [1].

“Rationality of a player means . . . that no matter where he finds himself — at

which vertex — he will not knowingly continue with a strategy that yields him

less than he could have gotten with a different strategy.”

The actual definition reads
⋂

v∈Vi

⋂

ti∈Si
(¬Ki[h

v
i (s; ti) > hv

i (s)]) [1, eq. (3)], with Si

being i’s choices and Vi being i’s nodes. Stripping off the outer intersection, we are

lead to the following predicate, where our r is Aumann’s hv
i (s).

Definition 14 Define nKns : strt → G → rwd → Prop by structural recursion.

nKns(Leaf rFct, a, r) = ¬Ka(¬LEq(rFct(a), r)

nKns(Node a c sl sr, a, r) = nKns(sl, a, r) ∧ nKns(sl, a, r)

nKns(Node a′ left sl sr, a, r) = nKns(sl, a, r)

nKns(Node a′ right sl sr, a, r) = nKns(sr, a, r)

Aumann’s outer intersection ranges over one agent’s nodes, and rationality of

all agents in a strategy is therefore as follows.

Definition 15 Define Rat : strt → Prop by structural recursion.

Rat(Leaf rFct) = T

Rat(Node a c sl sr) = Rat(sl) ∧ Rat(sr) ∧ nKns(Node a c sl sr, a, strtRwd(Node a c sl sr)(a))

6 Aumann’s Theorem

Aumann’s theorem states that if there is common knowledge of rationality in a

given strategy, then that strategy is a backward-induction equilibrium.

∀ s : strt, CG(Rat(s)) ⇒ BI (s)

6.1 A Consequence

Consider the strt-example in (1), for which the implication in Au-

mann’s Theorem is supposed to hold. Applying Rat to this exam-

ple gives T ∧ T ∧ ¬Ka(¬LEq(r1, r1)) ∧ ¬Ka(¬LEq(r2, r1)). Applying BI gives

T ∧ T ∧ LEq(r2, r1). Aumann’s Theorem therefore mandates that

CG(¬Ka(F) ∧ ¬Ka(¬LEq(r2, r1))) ⇒ LEq(r2, r1)

¬Ka(F) is short for Ka(F) ⇒ F, i.e., it is an instance of (TKa), and CG(¬Ka(F))

is therefore provable by the CG-generation rule, see (GenKa) in Fig. 5. As CG

6



(dec-nKna)
Γ ⊢∆ Dcdbl(p) ⇒ ¬Ka(¬p) ⇒ p

Fig. 6. Axiom decidable-nKn, with Dcdbl( ) being ‘decidable’.

distributes over conjunction, this means that we are looking at the following.

CG(¬Ka(¬LEq(r2, r1))) ⇒ LEq(r2, r1)(2)

In other words, we need an axiom T for the combined modality CG(¬Ka(¬ )), with

a possible qualification to certain permissible formulas that include LEq(r2, r1). We

have axiom T for CG, and ¬Ka(¬p) ⇒ p would give us (2), by transitivity of ⇒.

6.2 Axiom Decidable nKn and Constructive Logic

We have axiom T for K : (TKa), see Fig. 5, including for negated propositions.

Ka(¬p) ⇒ ¬p

In long form this is Ka(¬p) ⇒ p ⇒ F, or equivalently

p ⇒ ¬Ka(¬p)(3)

Having ¬Ka(¬p) ⇒ p thus collapses the derived modality, i.e., we would have

¬Ka(¬p) ⇔ p. This is clearly not desirable in general as ¬Ka(¬ ) is thought to be

related to epistemic belief. The question we are faced with in (2) is whether the

CG-modality qualifies ¬Ka(¬ ) enough to accept an axiom T for their combina-

tion. If we use the interpretation that ¬Ka(¬ ) is related to belief, or even absence

of doubt, it is difficult to see how common knowledge of that fact can impact on

the inner proposition, and we have found no compelling proof-theoretic argument

either for or against an axiom T for CG(¬Ka(¬ )) (and none can be found in or

can be immediately extracted from [1,3,7]). We note, instead, that (2) holds triv-

ially if, in fact, it is the case that LEq(r2, r1) holds. Conversely, ¬Ka(¬LEq(r2, r1))

cannot be allowed to hold if ¬LEq(r2, r1) can be independently established because

that would allow us to conclude that also LEq(r2, r1) holds, which would leave the

considered formalism inconsistent. Consequently, we propose as a general principle

that ¬Ka(¬p) ⇒ p holds in case of decidable propositions, p, i.e., propositions for

which we know whether and which of it and its negation that is provable.

Definition 16 Axiom decidable-nKn is defined in Fig. 6.

Because ⊢ is constructive, specifically because it enjoys the Disjunction Property

(ε ⊢∆ p ∨ q implies ε ⊢∆ p or ε ⊢∆ q), we have a simple coding of Dcdbl(p) in the

present case: p ∨ ¬p. We shall take advantage of this in Section 8.2, where we

give an alternative account of the axiom and prove that the introduced formalism

is consistent. Informally, the axiom asks agents to not believe in propositions that

it is within their power to refute, which is what restricts access to the axiom to

conscientious players. In logical terms, the axiom prevents agents from believing F.

7



7 Rationality, Backward Induction, Conscientiousness

If we consider Aumann’s two predicates, we can note that the number of conjuncts

will grow faster in Rat than in BI with bigger strategies. The way induction proofs

work, it will suffice for the two predicates to have the same structure/growth rate.

Definition 17 Define lRat, aka local rationality, by structural recursion.

lRat(Leaf rFct) = T

lRat(Node a left sl sr) = lRat(sl) ∧ lRat(sr) ∧ ¬Ka(¬LEq(strtRwd(sr)(a), strtRwd(sl)(a)))

lRat(Node a right sl sr) = lRat(sl) ∧ lRat(sr) ∧ ¬Ka(¬LEq(strtRwd(sl)(a), strtRwd(sr)(a)))

Let ∆0 be the sorting environment constructed so-far.

Theorem 18 Assuming LEq is decidable, ⊢∆0 ∀s ∈ strt . lRat(s) ⇒ BI(s)

Proof We write infix ≤ for LEq, and c for choice complementation. The

proof proceeds by structural strt-induction in s. In the leaf case, the

computational-reasoning rule implies that it suffices to prove T ⇒ T. In the

node case, the computational-reasoning rule implies that we must prove that

the three lRat-conjuncts for nodes imply the three BI -conjuncts, which we show

via (Pa ⇒ Pc) ⇒ (Qa ⇒ Qc) ⇒ (Ra ⇒ Rc) ⇒ Pa ∧ Qa ∧ Ra ⇒ Pc ∧ Qc ∧ Rc, called

(33 ) below. The first two follow directly by the induction hypotheses. For the third,

we case-split on/do structural induction in the choice made and we are straightfor-

wardly done by decidable-nKn and the assumed decidability of ≤.

(dec-nKna)

. . .

(dec≤)

Hi ⊢
∆

′
0 Dcdbl (r2 ≤ r1)

(E⇒)

Hi ⊢
∆

′
0 ¬Ka(r2 6≤ r1) ⇒ r2 ≤ r1

(dec-nKna)

. . .

(dec≤)

Hi ⊢
∆

′
0 Dcdbl (r1 ≤ r2)

(E⇒)

Hi ⊢
∆

′
0 ¬Ka(r1 6≤ r2) ⇒ r1 ≤ r2

(Ind)
choice

Hi ⊢
∆

′
0 ∀c ∈ choice . ¬Ka(rc 6≤ rc) ⇒ rc ≤ rc)

(A)

Hi ⊢
∆

′
0 lRat s1 ⇒ BI s1

(A)

Hi ⊢
∆

′
0 lRat s2 ⇒ BI s2

···································

======================================================
(33)

(comp)
Hi ⊢

∆
′
0 lRat (Nd a c s1 s2) ⇒ BI (Nd a c s1 s2)

==========
(A)

(I⇒)
ε ⊢

∆
′′
0 T ⇒ T

(comp)

ε ⊢
∆

′′
0 lRat (Lf rF) ⇒ BI (Lf rF)

(Ind)strt
ε ⊢

∆0 ∀s ∈ strt . lRat s ⇒ BI s

�

Needless to say, Rat(s) implies lRat(s). By transitivity of ⇒ and axiom T for CG,

it therefore follows from the above result that ⊢∆0 ∀s ∈ strt .CG(Rat(s)) ⇒ BI(s).

As a side-remark, we note that the proof will be even simpler if a decision

procedure for LEq is known. In the case of Nat, the following works, see [9].

LEqdp(Zero,Succ(n)) = T

LEqdp(Succ(n), Zero) = F

LEqdp(Succ(n1),Succ(n2)) = LEqdp(n1, n2)

8 Discussion

8.1 Formalisation

Coq [2] formalisations of the various results we have discussed are avail-

able at http://www.jaist.ac.jp/~vester/Writings/eAumann-abstract-relOrdering.v and
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http://www.jaist.ac.jp/~vester/Writings/eAumann-Nat-fctOrdering.v. The developments

in this paper directly reflect their Coq counterparts and ⊢ is intended as a

lightweight calculus of inductive constructions [6]. The formalisation is shallow and

deep: we borrow Coq’s induction mechanisms but re-formalise the other aspects.

8.2 Epistemic Knowledge

According to [1, Proof of Theorem A], Aumann’s model validates ¬Ki(¬Iv) ⇒ Iv,

¬Ki(¬Iv) ⇔ ¬¬Ki(I
v), and ¬¬Ki(I

v) ⇔ Ki(I
v), where Iv means that “the

backward-induction choice was made in node v”, i.e., Iv is short for our r2 ≤ r1-

conditions. As we saw, the first of these imply that ¬Ki(¬Iv) ⇔ Iv. The

combination of these equivalences makes it difficult (or trivial!) to understand

what is meant by the knowledge and common-knowledge modalities in [1].

For our development, we note that p ⇒ ¬¬p and ¬p ⇔ ¬¬¬p hold intuition-

istically, while ¬¬p ⇒ p typically is thought of as only classically valid. However,

double-negation elimination does hold intuitionistically for decidable formulas.

Proposition 19 ⊢p:Prop (p ∨ ¬p) ⇒ ¬¬p ⇒ p.

Proof Proposition 21, Appendix A (with the last two rules swapped). �

An interesting consequence is the following.

Lemma 20 Let ⊢
(decnKna )

be ⊢ without (dec-nKna); adding axiom (dec-nKna) to

⊢
(decnKna )

is equivalent to adding the following axiom.

(nKna¬¬)
Γ ⊢∆ ¬Ka(¬p) ⇔ ¬¬p

Proof (dec-nKna) follows from (nKna¬¬) according to Proposition 19. For

the other direction, we first note that (3) implies ¬¬p ⇒ ¬Ka(¬p) by contraposi-

tion. For ¬Ka(¬p) ⇒ ¬¬p, we note that ¬¬p is equivalent to (p ∨ ¬p) ⇒ p, see

Appendix A, and we are done by swapping ¬Ka(¬p) and p ∨ ¬p in (dec-nKna). �

In other words, adding axiom (dec-nKna) has the formal effect of mandating

that ¬Ka(¬ ) can only hold for propositions that are not explicitly refutable, which

i) is the usual intuitionistic reading of double-negation and ii) is reassuringly close

to our informal aim. More, adding the axiom i) does not collapse ¬Ka(¬p) and p

in general and ii) is consistent with intuitionistic epistemic logic; in particular, (3)

implies that it is logically consistent to add the axiom to standard epistemic logic.

8.3 Substantive Rationality vs Structural Recursion

Aumann [1] states that substantive rationality means that “when deciding what

to do at v, the player considers the situation from that point on: he acts

as if v is reached.” According to Halpern [3], this amounts to a counter-

factual and, in particular, ‘substantive’ is formalised by the outer intersection in
⋂

v∈Vi

⋂

ti∈Si
(¬Ki[h

v
i (s; ti) > hv

i (s)]). To us, this means that Aumann’s substantive

rationality is definable by structural recursion, as done here: ‘substantivity’ (in

9
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Halpern’s interpretation) corresponds to the recursion over all nodes and (for Au-

mann’s stated intentions) to the compositionality of our rationality predicates, i.e.,

that recursive calls do not depend on the call site; more, ‘counter-factuality’ corre-

sponds to the fact that our rationality predicates recurse into both sub-strategies

of a node of a considered player, meaning that some knowledge will involve choices

that are not going to be reached according to the strategy at hand.

9 Conclusion

If, indeed, we have re-proved and strengthened Aumann’s Theorem (under the rea-

sonable additional assumptions that LEq is decidable and that players check the

most basic of facts before forming beliefs), it is noteworthy how relatively inconspic-

uous our proof (of Theorem 18) is — in particular, the proof is a straightforward

structural induction with one subtlety: (dec-nKna). If the two results are merely re-

lated, an additional proof-theoretic analysis of what is actually meant by Aumann’s

Theorem and its epistemic connectives and consequences would be instructive. Ir-

respective of the relationship between the results, our analysis pinpointed axioms

T to be of central relevance and, additionally, lead us to Axiom (dec-nKna), which

seems to have its own compelling logic, in particular but not only in intuitionis-

tic/constructive logic.
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A “⊢ ¬¬p ⇔ ((p ∨ ¬p) ⇒ p)”

Proposition 21 ⊢p:Prop ¬¬p ⇒ (p ∨ ¬p) ⇒ p

Proof We suppress p : Prop in the proof.

(A)
¬p,¬¬p, p ∨ ¬p ⊢ ¬p ⇒ F

(A)
¬p,¬¬p, p ∨ ¬p ⊢ ¬p

(E⇒)
¬p,¬¬p, p ∨ ¬p ⊢ F

(EF)
¬p,¬¬p, p ∨ ¬p ⊢ p

(A)
¬¬p, p ∨ ¬p ⊢ p ∨ ¬p

(A)
p,¬¬p, p ∨ ¬p ⊢ p

···································
(E∨)

¬¬p, p ∨ ¬p ⊢ p

(I⇒)
¬¬p ⊢ (p ∨ ¬p) ⇒ p

(I⇒)
ε ⊢ ¬¬p ⇒ (p ∨ ¬p) ⇒ p

�

Proposition 22 ⊢p:Prop ((p ∨ ¬p) ⇒ p) ⇒ ¬¬p

Proof We suppress p : Prop in the proof.

(A)
¬p, (p ∨ ¬p) ⇒ p ⊢ (p ∨ ¬p) ⇒ p

(A)
¬p, (p ∨ ¬p) ⇒ p ⊢ ¬p

(Ir
∨)

¬p, (p ∨ ¬p) ⇒ p ⊢ p ∨ ¬p

(E⇒)
¬p, (p ∨ ¬p) ⇒ p ⊢ p

(A)
¬p, (p ∨ ¬p) ⇒ p ⊢ p ⇒ F

···································
(E⇒)

¬p, (p ∨ ¬p) ⇒ p ⊢ F

(I⇒)
(p ∨ ¬p) ⇒ p ⊢ ¬p ⇒ F

(I⇒)
ε ⊢ ((p ∨ ¬p) ⇒ p) ⇒ ¬¬p

�
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Abstract

We construct a reduction of provability to a combination of four kinds of knowledge in multi-agent systems.
These kinds are: individual knowledge (knowledge of messages), plain propositional knowledge (knowledge
that a state of affairs is the case), common knowledge (propositional knowledge shared in a community of
agents), and a new kind of knowledge, namely adductive knowledge (propositional knowledge contingent on
the adduction of certain individual knowledge, e.g., through oracle invocation).

Keywords: modal logic, [designated verifier] proofs as sufficient evidence, oracles, multi-agent systems

1 Introduction

The concept of formal provability (i.e. as internalised in a formal language) goes

back to Gödel (cf. [1, Chapter 16] by S. N. Artëmov); the one of formal knowledge

to Hintikka (cf. [2] for a monograph). Provability is strictly stronger than plain

propositional knowledge (i.e. the knowledge that a state of affairs is the case):

for example, an agent may know that a certain state of affairs is the case from

observation yet not be able to prove her knowledge to the non-observers for lack of

sufficient evidence (i.e. proof) that could confirm her knowledge to them.

Notwithstanding, we prove that provability is reducible to knowledge — even

in multi-agent systems — although of course not to plain propositional knowledge

alone, but to a combination of individual knowledge (knowledge of messages), plain

propositional knowledge, common knowledge (propositional knowledge shared in a

community of agents), and a new kind of knowledge, namely adductive knowledge

(propositional knowledge contingent on the adduction of certain individual knowl-

edge, e.g., through oracle invocation).

Applications of formal provability in distrusted multi-agent systems have been

discovered in [3,4], where it is shown that provability is the key to the logical for-

1 Email: simon.kramer@a3.epfl.ch
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malisation of the class of commitment-related states of affairs such as electronic

contract-signing (including non-repudiation). In trusted multi-agent systems (e.g.

scientific peer-review), the main application of formal provability is the communi-

cability of propositional knowledge: if an agent, say a, has a proof that a state of

affairs, say φ, is the case then a can convince any other agent, say b, that (a knows

that) φ is the case by communicating that (signed) proof to b.

We opine that just as the introduction of Prior’s temporal logic into computer

science by Pnueli has given birth to a generation of concurrent 2 systems specifi-

cation and verification, and as the introduction of Hintikka’s epistemic logic into

computer science by Fagin, Halpern, Moses, and Vardi is giving birth to a gen-

eration of distributed 3 systems specification and verification, the introduction of

Gödel-style provability into computer science will give birth to a next generation of

accountable distributed systems specification and verification. In this opinion, this

paper reduces the third generation of systems specification and verification to the

second generation at the cost of introducing adductive knowledge.

Finally, we opine that in the age of the Internet, which acts as a generator and

amplifier of the virtuality of human relations, accountability, i.e., the possibility of

enforcing responsibility for committed acts, is increasingly important.

2 Reduction

2.1 Definitions

Definition 2.1 [Reduction framework] Let A designate a finite set of agent names 4

a, M ∋ M ::= a | [M ]a | (M, M) a set of messages M with agent names, signed

messages, and message pairs, respectively, and

Φ ∋ φ ::= a k M | ¬φ | φ ∧ φ | ∀m(ϕ) | 2φ | Ka(φ) | K
M
a (φ) | CK(φ)

our logical language of propositions (closed formulae) φ, where ϕ denotes corre-

sponding unary open formulae in which the variable m replaces some occurrences

of a message M . Our language provides individual knowledge (k, pronounced

“knows”), negation, conjunction, universal quantification over messages (ranged

over by variables m), an operator for truth at all future moments in time (2,

pronounced “always”), plain propositional knowledge (Ka, pronounced “a knows

that”), adductive propositional knowledge (KM
a , pronounced “if a knew M then a

would know that”), and common propositional knowledge (CK, pronounced “it is

common knowledge among the agents that”), respectively.

Then, given E ∋ ε ::= Snd(a, M, b) | Rcv(a, M) a set of communication events ε

as generated by message sending and receiving actions, respectively, and E∗ the set

of event traces E, the relation of satisfaction |= ⊆ (E∗ × N) × Φ of our framework

is defined in Table 1. There,

• E⇂i (resp. E⇃i) designates the event trace E up to (resp. from) and including the

event at position i of E

2 e.g., threads forked by a common process, and processes launched by a common computer
3 e.g., agent applications, computer clusters, and peer-to-peer systems
4 Agents are referred to by their (unique) name, and names are transmittable data, i.e., messages.
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Table 1
Satisfaction relation

(E, i) |= a k M :iff E⇂i ⊢a M

(E, i) |= ¬φ :iff not (E, i) |= φ

(E, i) |= φ ∧ φ′ :iff (E, i) |= φ and (E, i) |= φ′

(E, i) |= ∀m(ϕ) :iff for all M ∈ M, (E, i) |= {m 7→ M}(ϕ)

(E, i) |= 2φ :iff for all j ≥ i, (E, j) |= φ

(E, i) |= Ka(φ) :iff for all (E′, i′) ∈ E∗ × N,
if (E′, i′) ≈a (E, i) then (E′, i′) |= φ

(E, i) |= K
M
a (φ) :iff for all M ′ ∈ M,

if (Rcv(a, M ′), 1) |= a k M — the adduction . . .

then (E⇂i · Rcv(a, M ′) · E⇃i + 1, i + 1) |= Ka(φ)

(E, i) |= CK(φ) :iff for all (E′, i′) ∈ E∗ × N,
if (E′, i′) ≈∗

∪ (E, i) then (E′, i′) |= φ

• for all a ∈ A, ⊢a ⊆ E∗ ×M:

· Rcv(a, M) ⊢a M (reception implies knowledge)

· Snd(a, M, b) ⊢a M (sending implies knowledge)

· if b ∈ A then E ⊢a b (agent names are guessable)

· if E ⊢a M then E ⊢a [M ]a (unforgeable signature synthesis)

· if E ⊢a [M ]b then E ⊢a M (signature “analysis”)

· if E ⊢a M then E · ε ⊢a M (monotonicity of individual knowledge)

· if E ⊢a M and E ⊢a M ′ then E ⊢a (M, M ′) (pairing)

· if E ⊢a (M, M ′) then E ⊢a M and E ⊢a M ′ (unpairing)

• for all a ∈ A, ≈a designates a standard S5 epistemic accessibility relation, such

that for all (E, i), (E′, i′) ∈ E∗ × N, if (E, i) ≈a (E′, i′) then for all M ∈ M,

(E, i) |= a k M if and only if (E′, i′) |= a k M

(Indistinguishability of worlds implies identity of individual knowledge.)

• ≈∗
∪ designates the reflexive, transitive closure of ≈∪ :=

⋃
a∈A ≈a.

Notice that φ ∈ Φ have a Herbrand-style semantics, i.e., logical constants (i.e.

agent names) and functional symbols (for signing and pairing) are self-interpreted

rather than interpreted in terms of (other, semantic) constants and functions. This

design choice is admissible because our individuals (messages) are finite. Hence,

substituting (syntactic) messages for message variables into (finite) formulae pre-

serves the finitude of formulae (cf. the semantics of universal quantification).

Further notice that we assume the existence of an unforgeable (proprietary)

mechanism for signing messages, which we model with the above signature synthesis

and analysis rules. In trusted multi-agent systems, such a mechanism is trivially

given by the inclusion of the sender name in the sent message. In distrusted multi-

agent systems, such a mechanism can be implemented with public-key cryptography.

Furthermore, we macro-define: ⊤ := a k a, ⊥ := ¬⊤, φ ∨ φ′ := ¬(¬φ ∧ ¬φ′),

φ → φ′ := ¬φ ∨ φ′, ∃m(ϕ) := ¬∀m(¬ϕ), and 3φ := ¬2¬φ (“eventually”); and —

3
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more interestingly — our syntactic construction and conceptual reduction:

M :a φ := CK((a k M → Ka(φ)) ∧ KM
a (φ)) M is a proof of φ for a

M : φ := ∀a(M :a φ) M is a proof of φ

Pa(φ) := ∃m((m : φ) ∧ a k m) a can prove that φ

M :a φ is also pronounced “M is a proof of φ for the designated verifier a”. In

our spirit of proofs as sufficient evidence, our definition of designated-verifier proofs

stipulates that it be common knowledge among the agents that to the verifier, the

actual and the hypothetical (if received from, e.g., an oracle) knowledge of M be

individually necessary and jointly (vacuity!) sufficient for the knowledge of φ.

The hypothetical nature of adductive knowledge is confirmed by the fact that

adductive knowledge can be recast as a formula in conditional logic (due to Lewis)

with knowledge. That is, we could actually macro-define

K
M
a (φ) := a k M > Ka(φ)

where > designates conditional implication. Informally, φ > φ′ is true in a world

by definition if and only if all minimal φ-worlds are φ′-worlds [1, Page 55], where

the intuition of minimality in our special case would be the one of a single oracle

invocation and sufficient individual knowledge.

Definition 2.2 [Validity] For all φ ∈ Φ, φ is valid, written |= φ, :iff for all (E, i) ∈

E∗ × N, (E, i) |= φ.

Definition 2.3 [Logical consequence] For all φ, φ′ ∈ Φ, φ′ is a logical consequence

of φ, written φ ⇒ φ′, :iff for all (E, i) ∈ E∗ × N, if (E, i) |= φ then (E, i) |= φ′.

2.1.1 Generality

Our reduction is constructed in a fixed framework but without loss of generality in

the following sense:

• The term language can absorb arbitrary additional data types: our reduction just

requires message pairing and (trivial or cryptographic) signing.

• The formula language can absorb additional operators such as a next-time op-

erator or branching-time operators. It is the application domain of multi-agent

systems, not our reduction, that requires temporal operators because knowledge

in multi-agent systems is dynamic due to their intrinsic interactivity.

2.2 Results

Theorem 2.4 Pa is S4, the modal system of Gödel’s provability modality:

K |= Pa(φ → φ′) → (Pa(φ) → Pa(φ
′))

T |= Pa(φ) → φ

4 |= Pa(φ) → Pa(Pa(φ))

4



Kramer

N if |= φ then |= Pa(φ).

For transparency, all our proofs are elementary and Fitch-style 5 . They can be

checked on a tick-off line-by-line basis.

For simplicity, we will not make a typographical distinction between closed for-

mulae φ and open formulae ϕ anymore.

Lemma 2.5 |= φ → φ′ iff φ ⇒ φ′

Proof.

|= φ → φ′ iff

for all (E, i) ∈ E∗ × N, (E, i) |= φ → φ′ iff

for all (E, i) ∈ E∗ × N, (E, i) |= ¬φ ∨ φ′ iff

for all (E, i) ∈ E∗ × N, (E, i) |= ¬(¬¬φ ∧ ¬φ′) iff

for all (E, i) ∈ E∗ × N, not (E, i) |= ¬¬φ ∧ ¬φ′ iff

for all (E, i) ∈ E∗ × N, not ((E, i) |= ¬¬φ and (E, i) |= ¬φ′) iff

for all (E, i) ∈ E∗ × N, not (not not (E, i) |= φ and not (E, i) |= φ′) iff

for all (E, i) ∈ E∗ × N, not ((E, i) |= φ and not (E, i) |= φ′) iff

for all (E, i) ∈ E∗ × N, not (E, i) |= φ or not not (E, i) |= φ′ iff

for all (E, i) ∈ E∗ × N, not (E, i) |= φ or (E, i) |= φ′ iff

for all (E, i) ∈ E∗ × N, if (E, i) |= φ then (E, i) |= φ′ iff

φ ⇒ φ′

2

Lemma 2.6 (The use of signing)

|= ∀a∀b∀m(b k [m]a → Kb(a k m))

Proof.

1. (E, i) ∈ E∗ × N hyp.

2. a, b ∈ A and M ∈ M hyp.

3. (E, i) |= b k [M ]a hyp.

4. (E′, i′) ∈ E∗ × N hyp.

5. (E′, i′) ≈b (E, i) hyp.

6. (E′, i′) |= b k [M ]a 3, 5, property of ≈b

7. (E′, i′) |= a k [M ]a 6, property of k 6

8. (E′, i′) |= a k M 7, property of k

9. if (E′, i′) ≈b (E, i) then (E′, i′) |= a k M 5–8

10. for all (E′, i′) ∈ E∗ × N,

if (E′, i′) ≈b (E, i) then (E′, i′) |= a k M 4–9

11. (E, i) |= Kb(a k M) 10

12. if (E, i) |= b k [M ]a then (E, i) |= Kb(a k M) 3–11

5 http://en.wikipedia.org/wiki/Fitch-style_calculus
6 unforgeability of signatures (no one else but a can have synthesised [M ]a)

5
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13. (E, i) |= b k [M ]a → Kb(a k M) 12

14. for all a, b ∈ A and M ∈ M, (E, i) |= b k [M ]a → Kb(a k M) 2–13

15. (E, i) |= ∀a∀b∀m(b k [m]a → Kb(a k m)) 14

16. for all (E, i) ∈ E∗ × N, (E, i) |= ∀a∀b∀m(b k [m]a → Kb(a k m)) 1–15

17. |= ∀a∀b∀m(b k [m]a → Kb(a k m)) 16

2

Lemma 2.7 (The use of signing proofs)

|= ∀a∀b(∃m(b k [m]a ∧ m : φ) → Kb(Pa(φ)))

Proof.

1. (E, i) ∈ E∗ × N hyp.

2. a, b ∈ A hyp.

3. (E, i) |= ∃m(b k [m]a ∧ m : φ) hyp.

4. there is M ∈ M s.t. (E, i) |= b k [M ]a ∧ M : φ 3

5. M ∈ M and (E, i) |= b k [M ]a ∧ M : φ hyp.

6. (E′, i′) ∈ E∗ × N hyp.

7. (E′, i′) ≈b (E, i) hyp.

8. (E, i) |= b k [M ]a 5

9. (E, i) |= M : φ 5

10. (E′, i′) |= b k [M ]a 7, 8, property of ≈b

11. (E′, i′) |= Kb(a k M) 10, Lemma 2.6

12. (E′, i′) |= a k M 11, T(K)

13. c ∈ A hyp.

14. (E, i) |= ∀c(M :c φ) 9

15. (E, i) |= M :c φ 13, 14

16. (E, i) |= CK((c k M → Kc(φ)) ∧ KM
c (φ)) 15

17. for all (E′′, i′′) ∈ E∗ × N,

if (E′′, i′′) ≈∗
∪ (E, i)

then (E′′, i′′) |= (c k M → Kc(φ)) ∧ KM
c (φ) 16

18. (E′′, i′′) ∈ E∗ × N hyp.

19. (E′′, i′′) ≈∗
∪ (E′, i′) hyp.

20. (E′′, i′′) ≈∗
∪ (E, i) 7, 19, property of ≈∗

∪

21. (E′′, i′′) |= (c k M → Kc(φ)) ∧ KM
c (φ) 17, 18, 20

22. if (E′′, i′′) ≈∗
∪ (E′, i′)

then (E′′, i′′) |= (c k M → Kc(φ)) ∧ KM
c (φ) 19–21

23. for all (E′′, i′′) ∈ E∗ × N,

if (E′′, i′′) ≈∗
∪ (E′, i′)

then (E′′, i′′) |= (c k M → Kc(φ)) ∧ KM
c (φ) 18–22

24. (E′, i′) |= CK((c k M → Kc(φ)) ∧ KM
c (φ)) 23

25. (E′, i′) |= M :c φ 24

26. for all c ∈ A, (E′, i′) |= M :c φ 13–25

6
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27. (E′, i′) |= ∀c(M :c φ) 26

28. (E′, i′) |= M : φ 27

29. (E′, i′) |= (M : φ) ∧ a k M 12, 28

30. there is M ∈ M s.t. (E′, i′) |= (M : φ) ∧ a k M 29

31. (E′, i′) |= ∃m((m : φ) ∧ a k m) 30

32. (E′, i′) |= Pa(φ) 31

33. if (E′, i′) ≈b (E, i) then (E′, i′) |= Pa(φ) 7–32

34. for all (E′, i′) ∈ E∗ × N,

if (E′, i′) ≈b (E, i) then (E′, i′) |= Pa(φ) 6–33

35. (E, i) |= Kb(Pa(φ)) 34

36. (E, i) |= Kb(Pa(φ)) 4–35

37. if (E, i) |= ∃m(b k [m]a ∧ m : φ) then (E, i) |= Kb(Pa(φ)) 3–36

38. (E, i) |= ∃m(b k [m]a ∧ m : φ) → Kb(Pa(φ)) 37

39. for all a, b ∈ A, (E, i) |= ∃m(b k [m]a ∧ m : φ) → Kb(Pa(φ)) 2–38

40. (E, i) |= ∀a∀b(∃m(b k [m]a ∧ m : φ) → Kb(Pa(φ))) 39

41. for all (E, i) ∈ E∗ × N,

(E, i) |= ∀a∀b(∃m(b k [m]a ∧ m : φ) → Kb(Pa(φ))) 1–40

42. |= ∀a∀b(∃m(b k [m]a ∧ m : φ) → Kb(Pa(φ))) 41

2

Proposition 2.8 |= Pa(φ → φ′) → (Pa(φ) → Pa(φ
′))

Proof.

1. (E, i) ∈ E∗ × N hyp.

2. (E, i) |= Pa(φ → φ′) hyp.

3. (E, i) |= Pa(φ) hyp.

4. (E, i) |= ∃m((m : φ → φ′) ∧ a k m) 2

5. there is M ∈ M s.t. (E, i) |= (M : φ → φ′) ∧ a k M 4

6. M ∈ M and (E, i) |= (M : φ → φ′) ∧ a k M hyp.

7. (E, i) |= ∃m((m : φ) ∧ a k m) 3

8. there is M ′ ∈ M s.t. (E, i) |= (M ′ : φ) ∧ a k M ′ 7

9. M ′ ∈ M and (E, i) |= (M ′ : φ) ∧ a k M ′ hyp.

10. (E, i) |= M : φ → φ′ 6

11. (E, i) |= a k M 6

12. (E, i) |= M ′ : φ 9

13. (E, i) |= a k M ′ 9

14. b ∈ A hyp.

15. (E′, i′) ∈ E∗ × N hyp.

16. (E′, i′) ≈∗
∪ (E, i) hyp.

17. (E′, i′) |= (b k M → Kb(φ → φ′)) ∧

KM
b (φ → φ′)

10, 14, 15, 16

18. (E′, i′) |= (b k M ′ → Kb(φ)) ∧ KM ′

b (φ) 12, 14, 15, 16

7
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19. (E′, i′) |= b k (M,M ′) hyp.

20. (E′, i′) |= b k M 19, property of k

21. (E′, i′) |= b k M ′ 19, property of k

22. (E′, i′) |= Kb(φ → φ′) 17, 20

23. (E′, i′) |= Kb(φ) 18, 21

24. (E′, i′) |= Kb(φ
′) 22, 23, K(K)

25. if (E′, i′) |= b k (M,M ′) then (E′, i′) |= Kb(φ
′) 19–24

26. (E′, i′) |= b k (M,M ′) → Kb(φ
′) 25

27. M ′′ ∈ M hyp.

28. S = (E′⇂i′ · Rcv(b, M ′′) · E′⇃i′ + 1, i′ + 1) hyp.

29. (Rcv(b, M ′′), 1) |= b k (M,M ′) hyp.

30. (Rcv(b, M ′′), 1) |= b k M 29, property of k

31. (Rcv(b, M ′′), 1) |= b k M ′ 29, property of k

32. (E′, i′) |= KM
b (φ → φ′) 17

33. S |= Kb(φ → φ′) 27, 28, 30, 32

34. (E′, i′) |= KM ′

b (φ) 18

35. S |= Kb(φ) 27, 28, 31, 34

36. S |= Kb(φ
′) 33, 35, K(K)

37. if (Rcv(b, M ′′), 1) |= b k (M,M ′)

then S |= Kb(φ
′) 29–36

38. if (Rcv(b, M ′′), 1) |= b k (M,M ′) then

(E′⇂i′ · Rcv(b, M ′′) · E′⇃i′ + 1, i′ + 1) |= Kb(φ
′) 28, 37

39. if (Rcv(b, M ′′), 1) |= b k (M,M ′) then

(E′⇂i′ · Rcv(b, M ′′) · E′⇃i′ + 1, i′ + 1) |= Kb(φ
′) 28–38

40. for all M ′′ ∈ M,

if (Rcv(b, M ′′), 1) |= b k (M,M ′) then

(E′⇂i′ · Rcv(b, M ′′) · E′⇃i′ + 1, i′ + 1) |= Kb(φ
′) 27–39

41. (E′, i′) |= K
(M,M ′)
b (φ′) 40

42. (E′, i′) |= (b k (M, M ′) → Kb(φ
′)) ∧ K

(M,M ′)
b (φ′) 26, 41

43. if (E′, i′) ≈∗
∪ (E, i) then

(E′, i′) |= (b k (M, M ′) → Kb(φ
′)) ∧ K

(M,M ′)
b (φ′) 16–42

44. for all (E′, i′) ∈ E∗ × N,

if (E′, i′) ≈∗
∪ (E, i) then

(E′, i′) |= (b k (M, M ′) → Kb(φ
′)) ∧ K

(M,M ′)
b (φ′) 15–43

45. (E, i) |= CK((b k (M,M ′) → Kb(φ
′)) ∧ K

(M,M ′)
b (φ′)) 44

46. (E, i) |= (M,M ′) :b φ′ 45

47. for all b ∈ A, (E, i) |= (M, M ′) :b φ′ 14–46

48. (E, i) |= ∀b((M, M ′) :b φ′) 47

49. (E, i) |= (M,M ′) : φ′ 48

50. (E, i) |= a k (M,M ′) 11, 13

51. (E, i) |= ((M,M ′) : φ′) ∧ a k (M,M ′) 49, 50

8
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52. there is M ′′ ∈ M s.t. (E, i) |= (M ′′ : φ′) ∧ a k M ′′ 51

53. (E, i) |= ∃m((m : φ′) ∧ a k m) 52

54. (E, i) |= Pa(φ
′) 53

55. (E, i) |= Pa(φ
′) 8–54

56. (E, i) |= Pa(φ
′) 5–55

57. if (E, i) |= Pa(φ) then (E, i) |= Pa(φ
′) 3–56

58. (E, i) |= Pa(φ) → Pa(φ
′) 57

59. if (E, i) |= Pa(φ → φ′) then (E, i) |= Pa(φ) → Pa(φ
′) 2–58

60. for all (E, i) ∈ E∗ × N,

if (E, i) |= Pa(φ → φ′) then (E, i) |= Pa(φ) → Pa(φ
′) 1–59

61. Pa(φ → φ′) ⇒ Pa(φ) → Pa(φ
′) 60, Definition 2.3

62. |= Pa(φ → φ′) → (Pa(φ) → Pa(φ
′)) 61, Lemma 2.5

2

Proposition 2.9 |= Pa(φ) → Ka(φ)

Proof.

1. (E, i) ∈ E∗ × N hyp.

2. (E, i) |= Pa(φ) hyp.

3. (E, i) |= ∃m((m : φ) ∧ a k m) 2

4. there is M ∈ M s.t. (E, i) |= (M : φ) ∧ a k M 3

5. M ∈ M and (E, i) |= (M : φ) ∧ a k M hyp.

6. (E, i) |= M : φ 5

7. (E, i) |= a k M 5

8. (E, i) |= a k M → Ka(φ) 6, T(CK)

9. (E, i) |= Ka(φ) 7, 8

10. (E, i) |= Ka(φ) 4–9

11. if (E, i) |= Pa(φ) then (E, i) |= Ka(φ) 2–10

12. for all (E, i) ∈ E∗ × N, if (E, i) |= Pa(φ) then (E, i) |= Ka(φ) 1–11

13. Pa(φ) ⇒ Ka(φ) 12, Definition 2.3

14. |= Pa(φ) → Ka(φ) 13, Lemma 2.5

2

Proposition 2.10 |= Pa(φ) → φ

Proof.

1. |= Pa(φ) → Ka(φ) Proposition 2.9

2. |= Ka(φ) → φ T(K)

3. |= Pa(φ) → φ 1, 2

2

Proposition 2.11 |= Pa(φ) → Pa(Pa(φ))

Proof.

9
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1. (E, i) ∈ E∗ × N hyp.

2. (E, i) |= Pa(φ) hyp.

3. (E, i) |= ∃m((m : φ) ∧ a k m) 2

4. there is M ∈ M s.t. (E, i) |= (M : φ) ∧ a k M 3

5. M ∈ M and (E, i) |= M : φ ∧ a k M hyp.

6. b ∈ A hyp.

7. (E′, i′) ∈ E∗ × N hyp.

8. (E′, i′) ≈∗
∪ (E, i) hyp.

9. (E, i) |= M : φ 5

10. (E′, i′) |= b k [M ]a hyp.

11. (E, i) |= b k [M ]a 8, 10, property of ≈∗
∪

12. (E, i) |= Kb(Pa(φ)) 9, 11, Lemma 2.7

13. (E′, i′) |= Kb(Pa(φ)) 8, 12, property of ≈∗
∪

14. if (E′, i′) |= b k [M ]a then (E′, i′) |= Kb(Pa(φ)) 10–13

15. (E′, i′) |= b k [M ]a → Kb(Pa(φ)) 14

16. M ′ ∈ M hyp.

17. (Rcv(b, M ′), 1) |= b k [M ]a hyp.

18. (Rcv(b, M ′), 1) |= Kb(a k [M ]a) 17, Lemma 2.6

19. (Rcv(b, M ′), 1) |= a k [M ]a 18, T(K)

20. not (Rcv(b, M ′), 1) |= a k [M ]a property of k 7

21. false 19, 20

22. (E′⇂i′ · Rcv(b, M ′) · E′⇃i′ + 1, i′ + 1) |= Kb(Pa(φ)) 21

23. if (Rcv(b, M ′), 1) |= b k [M ]a then

(E′⇂i′ · Rcv(b, M ′) · E′⇃i′ + 1, i′ + 1) |= Kb(Pa(φ)) 17–22

24. for all M ′ ∈ M,

if (Rcv(b, M ′), 1) |= b k [M ]a then

(E′⇂i′ · Rcv(b, M ′) · E′⇃i′ + 1, i′ + 1) |= Kb(Pa(φ)) 16–23

25. (E′, i′) |= K
[M ]a
b (Pa(φ)) 24

26. (E′, i′) |= (b k [M ]a → Kb(Pa(φ))) ∧ K
[M ]a
b (Pa(φ)) 15, 25

27. if (E′, i′) ≈∗
∪ (E, i)

then (E′, i′) |= (b k [M ]a → Kb(Pa(φ))) ∧ K
[M ]a
b (Pa(φ)) 8–26

28. for all (E′, i′) ∈ E∗ × N,

if (E′, i′) ≈∗
∪ (E, i)

then (E′, i′) |= (b k [M ]a → Kb(Pa(φ))) ∧ K
[M ]a
b (Pa(φ)) 7, 27

29. (E, i) |= CK((b k [M ]a → Kb(Pa(φ))) ∧ K
[M ]a
b (Pa(φ))) 28

30. (E, i) |= [M ]a :b Pa(φ) 29

31. for all b ∈ A, (E, i) |= [M ]a :b Pa(φ) 6–30

32. (E, i) |= ∀b([M ]a :b Pa(φ)) 31

33. (E, i) |= [M ]a : Pa(φ) 32

7 there is not a single event for a (only a single one for b)

10
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34. (E, i) |= a k M 5

35. (E, i) |= a k [M ]a 34, property of k

36. (E, i) |= ([M ]a : Pa(φ)) ∧ a k [M ]a 33, 35

37. there is M ′ ∈ M s.t. (E, i) |= (M ′ : Pa(φ)) ∧ a k M ′ 36

38. (E, i) |= ∃m((m : Pa(φ)) ∧ a k m) 37

39. (E, i) |= Pa(Pa(φ)) 38

40. (E, i) |= Pa(Pa(φ)) 4–39

41. if (E, i) |= Pa(φ) then (E, i) |= Pa(Pa(φ)) 2–40

42. for all (E, i), if (E, i) |= Pa(φ) then (E, i) |= Pa(Pa(φ)) 1–41

43. Pa(φ) ⇒ Pa(Pa(φ)) 42, Definition 2.3

44. |= Pa(φ) → Pa(Pa(φ)) 43, Lemma 2.5

2

Proposition 2.12 if |= φ then |= Pa(φ)

Proof.

1. |= φ hyp.

2. (E, i) ∈ E∗ × N hyp.

3. b ∈ A hyp.

4. (E′, i′) ∈ E∗ × N hyp.

5. (E′, i′) |= Kb(φ) 1, N(K)

6. (E′, i′) |= b k a → Kb(φ) 5

7. M ∈ M hyp.

8. (E′⇂i′ · Rcv(b, M) · E′⇃i′ + 1, i′) |= Kb(φ) 1, N(K)

9. if (Rcv(b, M), 1) |= b k a then

(E′⇂i′ · Rcv(b, M) · E′⇃i′ + 1, i′) |= Kb(φ) 8

10. for all M ∈ M,

if (Rcv(b, M), 1) |= b k a then

(E′⇂i′ · Rcv(b, M) · E′⇃i′ + 1, i′) |= Kb(φ) 7–9

11. (E′, i′) |= Ka
b (φ) 10

12. (E′, i′) |= (b k a → Kb(φ)) ∧ Ka
b (φ) 6, 11

13. if (E′, i′) ≈∗
∪ (E, i) then (E′, i′) |= (b k a → Kb(φ)) ∧ Ka

b (φ) 12

14. for all (E′, i′) ∈ E∗ × N,

if (E′, i′) ≈∗
∪ (E, i) then (E′, i′) |= (b k a → Kb(φ)) ∧ Ka

b (φ) 4–13

15. (E, i) |= CK((b k a → Kb(φ)) ∧ Ka
b (φ)) 14

16. (E, i) |= a :b φ 15

17. for all b ∈ A, (E, i) |= a :b φ 3–16

18. (E, i) |= ∀b(a :b φ) 17

19. (E, i) |= a : φ 18 8

20. (E, i) |= a k a property of k

21. (E, i) |= a : φ ∧ a k a 19, 20

8 any datum proves a logical triviality (i.e., a tautology), in particular an agent’s name

11
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22. there is M ∈ M s.t. (E, i) |= M : φ ∧ a k M 21

23. (E, i) |= ∃m(m : φ ∧ a k m) 22

24. (E, i) |= Pa(φ) 23

25. for all (E, i) ∈ E∗ × N, (E, i) |= Pa(φ) 2–24

26. |= Pa(φ) 25

27. if |= φ then |= Pa(φ) 1–26

2

3 Conclusion

We have provided a construction that reduces provability to knowledge in multi-

agent systems, thanks to the introduction of a new kind of knowledge, namely

adductive knowledge. Our resulting epistemic definition of proofs is declarative, as

opposed to operational, in the sense that the definition is formulated in terms of what

(knowledge) proofs effect in agents, as opposed to how proofs do so. In particular,

our definition reflects the effect of mathematical (in the social sense) proofs: if

my peer knew my proof of the statement φ then she would know that φ is true.

(Notice the different kinds of knowledge and the conditional mode!) In contrast,

the traditional definition of proofs is operational, in the sense that it defines proofs

in terms of the deductive operations that are used to construct them. Declarative

definitions of proofs have numerous advantages over their operational counterparts:

(1) generality—abstractness w.r.t. how, (2) succinctness—1 declarative formula as

opposed to 1 operational proof system, (3) intuitiveness—concreteness w.r.t. what.

An alternative idea for reducing provability to knowledge in distrusted multi-

agent settings was presented in [3,4]. There, the reduction involved a universal

quantification over adjoint worlds that amounted to a weak-second -order universal

quantification over (finite sets of) messages, and did not use common knowledge.

Whereas in the reduction here, the quantification is a universal first-order one over

messages, and common knowledge is used.

We plan to relate the idea of [3,4] to the idea presented here, and to concretise our

ideas on interactive provability, i.e., provability in (possibly game-based) interactive

computation, as sketched in [3, Chapter 5].
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Abstract

In this paper, we give a sequent calculus for separation logic. Unlike the logic of bunched implications,
this calculus does not have a tree-shaped context – instead, we use labelled deduction to control when
hypotheses can and cannot be used. We prove that cut-elimination holds for this calculus, and show that
it is sound with respect to the provability semantics of separation logic.

Keywords: Separation logic, sequent calculus, cut-elimination, hybrid logic, labelled deduction

1 Introduction

Separation logic [11] is an extension of Hoare logic, designed to make it easier to

reason about the behavior of programs making use of aliased mutable state.

In ordinary Hoare logic, a predicate describes a set of program states (in our

case, heaps), and a conjunction like A∧B holds of a state when that state holds of

A and also holds of B. Unfortunately, aliasing is quite difficult to treat – if x and

y are pointer variables, we need to explicitly state whether they alias or not. So

as the number of variables in a program grows, the number of aliasing conditions

grows quadratically. Worse still, this defeats modular proof, since as soon as we

put a subprogram into a larger one, we need to add aliasing assertions describing

possible interference between the subprogram and the larger program.

The key innovation in separation logic is to extend the logic of pre- and post-

conditions with the spatial connectives A ∗B and A−∗B. Intuitively, we take A ∗B

to hold of a program state when the state can be divided into two disjoint parts,

one of which holds of A and the other of which holds of B. Since the meaning

of the connective enforces disjointness, we do not need to write aliasing conditions

1 Email: neelk@cs.cmu.edu
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Propositions A ::= ⊤ | A ∧ B | A → B | ⊥ | A ∨ B

| I | A ∗ B | A −∗B | P

Worlds ω ::= α | ǫ | ω · ω

World Contexts Ω ::= · | Ω, α

Equality Contexts Ξ ::= · | Ξ, ω = ω′

Hypothetical Contexts Γ ::= · | Γ, A[ω]

Fig. 1. Syntax

explicitly. As in ordinary Hoare logic, separation logic has a rule of consequence:

P ⊢ P ′ {P ′}c{Q′} Q ⊢ Q′

{P}c{Q}

However, the fact that we have a novel logic means that the entailment relation

P ⊢ P ′ is also novel – so we need rules to reason about the entailment relation. This

is most commonly done in a Hilbert-style deduction system, where axiom schemata

are given that allow direct reasoning about entailment, without context-changing

operations. However, such schemes are somewhat cumbersome to work with in

practice, and it is desirable to have a sequent calculus or natural deduction system.

Our contributions in this paper are:

• First, we present a sequent calculus for separation logic that does not use bunched

contexts. Instead, we interpret separation logic as a modal logic, and give a

labelled deduction system that uses hybrids/labels to control when hypotheses

can be used.

• Second, we prove that cut is an admissible rule for this calculus.

• Third, we show that this calculus is sound with respect to the semantics of sepa-

ration logic – that is, any tautology provable in this calculus is true in the model.

2 The Sequent Calculus

Our logic is the propositional fragment of separation logic. We have ⊤ as truth,

A∧B as conjunction, A → B as implication, ⊥ as falsehood, A∨B as disjunction,

A ∗ B as separating conjunction, I as the unit to the separating conjunction, and

A −∗B as the magic wand (i.e., adjoint to separating conjunction). We do not

include the points-to connective e 7→ e′, but we do add atomic formulas P . The

grammar of propositions is given in Figure 1.

The main idea in this calculus is to move from a judgement of truth to a judge-

ment that determines truth at a particular world. So our judgement does not

provide a proof that A is true, but rather a proof that A[ω], which shows that A

2
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World Well-formedness Ω ⊢ ω : world

Equality Context Well-formedness Ω ⊢ Ξ ok

Context Well-formedness Ω ⊢ Γ ok

World Equality Ω; Ξ ⊢ ω ≡ ω′

Proposition Provability Ω; Ξ; Γ ⊢ A[ω]

Fig. 2. Catalog of Judgements

ω ≡ ω′ ∈ Ξ Ω ⊢ Ξ ok

Ω; Ξ ⊢ ω ≡ ω′
EHyp

Ω; Ξ ⊢ ω ≡ ω′

Ω; Ξ ⊢ ω′ ≡ ω
ESym

Ω ⊢ ω : world Ω ⊢ Ξ ok

Ω; Ξ ⊢ ω ≡ ω
ERefl

Ω; Ξ ⊢ ω ≡ ω′ Ω; Ξ ⊢ ω′ ≡ ω′′

Ω; Ξ ⊢ ω ≡ ω′′
ETrans

Ω; Ξ ⊢ ω1 ≡ ω2 Ω; Ξ ⊢ ω′
1 ≡ ω′

2

Ω; Ξ ⊢ ω1 · ω2 ≡ ω′
1 · ω

′
2

ECat
Ω ⊢ Ξ ok Ω ⊢ ω : world

Ω; Ξ ⊢ ω · ǫ ≡ ω
EUnit

Ω ⊢ Ξ ok Ω ⊢ ω : world Ω ⊢ ω′ : world

Ω; Ξ ⊢ ω · ω′ ≡ ω′ · ω
EComm

Ω ⊢ Ξ ok Ω ⊢ ω : world Ω ⊢ ω′ : world Ω ⊢ ω′′ : world

Ω; Ξ ⊢ ω · (ω′ · ω′′) ≡ (ω · ω′) · ω
EAssoc

Fig. 3. World Equality

holds at a world ω. Likewise, we change the context from a multiset A1, . . . , An to

a multiset of located hypotheses Γ = A1[ω1], . . . , An[ωn].

The world annotations themselves are not structureless. They are expressions

formed from world variables α, concatenation ω ·ω′, and unit ǫ. We give an equality

judgement for worlds Ω; Ξ ⊢ ω ≡ ω′ in Figure 3. This axiomatizes an equivalence

relation (i.e., reflexive, transitive, symmetric) which makes the concatenation ω ·ω′

into an associative and commutative operation that has ǫ as a unit. The free world

variables are in Ω, and a novelty of this equality judgement is that it allows the use

of the hypothetical equalities found in the context Ξ. Ω is a set of variables, and Ξ

is a multiset of equality hypotheses.

Finally, we come to the primary judgement of this calculus, the provability

judgement Ω; Ξ; Γ ⊢ A[ω]. This can be read as, “in a world variable context Ω, when

the equations in Ξ hold, then A is provable at a world ω, under the hypotheses in

Γ.”

We catalog all the judgements of the system in Figure 2, and give the auxilliary

well-formedness judgments in Figure 4.

Below, we give the inference rules for our separation logic calculus. The hypoth-

esis rule Hyp allows us to conclude that an atomic proposition P holds at ω when
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P can be found at ω′ in the context, and the two worlds are equal.

The intuitionistic rules for ⊤, A∧B, A → B, ⊥, and A∨B all exactly follow the

structure of the usual rules of the intuitionistic sequent calculus – the only difference

is that we push around an extra world annotation ω. This corresponds to the fact

that in the Kripke semantics of separation logic (given at the start of section 4),

we never look at the exact shapes of a heap, except in the semantics of the spatial

connectives.

The world annotations start to come into play with the spatial connectives. For

example, in the EmpR rule, we are allowed to introduce I at ω, whenever we can

show that ω equals the empty world ǫ. Likewise, reading the left rule from bottom

to top, the hypothesis that I[ω] holds lets us add the assumption that ω ≡ ǫ.

Ω; Ξ ⊢ ω ≡ ω′ Ω ⊢ Ξ ok Ω ⊢ Γ ok

Ω; Ξ; Γ, P [ω] ⊢ P [ω′]
Hyp

Ω ⊢ ω : world Ω ⊢ Ξ ok Ω ⊢ Γ ok

Ω; Ξ; Γ ⊢ ⊤[ω]
TrueR

(No TrueL)

Ω; Ξ; Γ ⊢ A1[ω] Ω; Ξ; Γ ⊢ A2[ω]

Ω; Ξ; Γ ⊢ A1 ∧ A2[ω]
AndR

Ω; Ξ; Γ, A[ω], B[ω] ⊢ C[ω′]

Ω; Ξ; Γ, A ∧ B[ω] ⊢ C[ω′]
AndL

Ω; Ξ; Γ, A[ω] ⊢ B[ω]

Ω; Ξ; Γ ⊢ A → B[ω]
ImpR

Ω; Ξ; Γ, A → B[ω] ⊢ A[ω] Ω; Ξ; Γ, A → B[ω], B[ω] ⊢ C[ω′]

Ω; Ξ; Γ, A → B[ω] ⊢ C[ω′]
ImpL

(No FalseR)

Ω ⊢ Ξ ok Ω ⊢ Γ,⊥[ω] ok Ω ⊢ ω′ : world

Ω; Ξ; Γ,⊥[ω] ⊢ C[ω′]
FalseL

Ω; Ξ; Γ ⊢ A[ω]

Ω; Ξ; Γ ⊢ A ∨ B[ω]
OrR1

Ω; Ξ; Γ ⊢ B[ω]

Ω; Ξ; Γ ⊢ A ∨ B[ω]
OrR2

Ω; Ξ; Γ, A[ω] ⊢ C[ω′] Ω; Ξ; Γ, B[ω] ⊢ C[ω′]

Ω; Ξ; Γ, A ∨ B[ω] ⊢ C[ω′]
OrL

Ω ⊢ Ξ ok Ω ⊢ Γ ok Ω; Ξ ⊢ ǫ ≡ ω

Ω; Ξ; Γ ⊢ I[ω]
EmpR

Ω; Ξ, ǫ ≡ ω; Γ, I[ω] ⊢ C[ω′]

Ω; Ξ; Γ, I[ω] ⊢ C[ω′]
EmpL

Ω; Ξ; Γ ⊢ A[ω1] Ω; Ξ; Γ ⊢ B[ω2] Ω; Ξ ⊢ ω ≡ ω1 · ω2

Ω; Ξ; Γ ⊢ A ∗ B[ω]
StarR

Ω, α, β; Ξ, ω = α · β; Γ, A ∗ B[ω], A[α], B[β] ⊢ C[ω′]

Ω; Ξ; Γ, A ∗ B[ω] ⊢ C[ω′]
StarL

4



Krishnaswami

Ω, α; Ξ; Γ, A[α] ⊢ B[ω′] Ω, α; Ξ ⊢ ω · α ≡ ω′

Ω; Ξ; Γ ⊢ A −∗B[ω]
WandR

Ω; Ξ; Γ, A −∗B[ω] ⊢ A[ω′′]

Ω; Ξ ⊢ ω · ω′′ ≡ ω1 Ω; Ξ; Γ, A −∗B[ω], B[ω1] ⊢ C[ω′]

Ω; Ξ; Γ, A −∗B[ω] ⊢ C[ω′]
WandL

The rules for A ∗ B are similar, but a little more complicated. In the StarR

rule, we can show that A ∗ B holds at ω whenver we can find a world ω1 that A

holds in, and a world ω2 that B holds in, such that ω equals their concatenation –

exactly in analogy to the Kripke semantics for the separating conjunction.

The left rule for separating conjunction is the most complex rule in this calculus.

If we have A ∗ B as a hypothesis at ω in the conclusion, then in the premise we

can extend the context with two new worlds α and β, such that A holds at α, B

holds at β, and that α · β ≡ ω. The analogy to the Kripke semantics is interesting.

In the Kripke semantics for separation logic, if a heap (an element of a partial

commutative monoid) h satisfies A ∗B, then there is a splitting of h into h1 and h2

such that h1 satisfies A and h2 satisfies B. Note that h1 and h2 are existentially

quantified in the Kripke semantics. Because we have a separating conjunction as a

hypothesis, we have this existential on the left-hand side of an implication. So we

can essentially treat the existential as a universal, via the equivalence (∃x.P (x)) ⊃

Q ≡ ∀x. P (x) ⊃ Q.

Finally we come to the right and left rules for the magic wand A−∗B. The right

rule WandR tells us that we can prove that A −∗B holds at ω, whenever we can

show that if A holds at a new world α, then B holds at a world equivalent to ω ·α.

This is in exact analogy to the Kripke semantics. The left rule tells us that if have

a wand hypothesis A −∗B at ω, and can find a proof that A holds at ω′, then we

can also assume that B holds at a world equivalent to ω · ω′ while proving C.

α ∈ Ω

Ω ⊢ α : world
WHyp

Ω ⊢ ǫ : world
WEps

Ω ⊢ ω : world Ω ⊢ ω′ : world

Ω ⊢ ω · ω′ : world
WCat

Ω ⊢ · ok
EqOkNil

Ω ⊢ Ξ ok Ω ⊢ ω : world Ω ⊢ ω′ : world

Ω ⊢ Ξ, ω ≡ ω′
ok

EqOkCons

Ω ⊢ · ok
CtxOkNil

Ω ⊢ Γ ok Ω ⊢ ω : world

Ω ⊢ Γ, A[ω] ok
CtxOkCons

Fig. 4. Auxilliary Judgements

3 Proof Theory

Since we only allow the hypothesis rule at atomic propositions, we need to prove

that the identity principle holds for this calculus.
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Theorem 3.1 (Identity) If Ω ⊢ Ξ ok, Ω ⊢ Γ ok, and Ω; Ξ ⊢ ω ≡ ω′, then

Ω; Ξ; Γ, A[ω] ⊢ A[ω′].

The proof is a straightforward induction on the proposition A.

Next, we can show that weakening holds for this calculus. Equivalent weakening

rules hold (when they make sense) for all of the other judgements. However, for

conciseness we will only state the theorems for the case of the main provability

judgement.

Theorem 3.2 (Weakening) We have that:

(i) If Ω; Ξ; Γ ⊢ A[ω′′], then Ω, α; Ξ; Γ ⊢ A[ω′′].

(ii) If Ω; Ξ; Γ ⊢ A[ω′′] and Ω ⊢ ω : world, and Ω ⊢ ω′ : world then we have that

Ω; Ξ, ω ≡ ω′; Γ ⊢ A[ω′′].

(iii) If Ω; Ξ; Γ ⊢ A[ω′′] and Ω ⊢ ω : world, then Ω; Ξ; Γ, B[ω′] ⊢ A[ω′′].

Next, we give a contraction principle for this calculus. As before, a similar

contraction principle holds for the other judgements.

Theorem 3.3 (Contraction) We have that:

(i) If Ω; Ξ, ω ≡ ω′, ω ≡ ω′; Γ ⊢ C[ω′′], then Ω; Ξ, ω ≡ ω′; Γ ⊢ C[ω′′].

(ii) If Ω; Ξ; Γ, A[ω], A[ω′] ⊢ C[ω′′] and Ω; Ξ ⊢ ω ≡ ω′, then Ω, α; Ξ; Γ, A[ω] ⊢ C[ω′′].

We do not give explicit theorems for Exchange, because we have been treating

the contexts as multisets.

Finally, we can show that the cut rule is admissible in this calculus. We have

two substitution principles for the world variable and world equation contexts, and

a true cut principle for the provability judgement. (And once again, we elide the

substitution principles for the other judgements in this calculus.)

Theorem 3.4 (Admissibility of Cut) We have that:

(i) If Ω ⊢ ω : world and Ω, α; Ξ; Γ ⊢ C[ω′′], then Ω; Ξ[ω/α]; Γ[ω/α] ⊢ C[ω′′[ω/α]].

(ii) If Ω; Ξ ⊢ ω ≡ ω′ and Ω; Ξ, ω ≡ ω′; Γ ⊢ C[ω′′], then Ω; Ξ; Γ ⊢ C[ω′′].

(iii) If Ω; Ξ; Γ ⊢ A[ω], and Ω; Ξ; Γ, A[ω′] ⊢ C[ω′′], and Ω; Ξ ⊢ ω ≡ ω′, then Ω; Ξ; Γ ⊢

C[ω′′]

The first two cases are just structural inductions over the derivation. The in-

teresting case is the third case, which we prove with a structural cut admissibility

argument in the style of Pfenning [8]. We do a induction on the size of the type A,

lexicographically prior to a simultaneous induction on the sizes of the two provability

derivations.

4 Soundness of the Calculus

In this section, we show that our sequent calculus is sound with respect to the

Kripke semantics of separation logic, in the sense that the provable tautologies of

our calculus are all equal to true in the semantics.
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First, recall the Kripke semantics of separation logic. We write h for a heap (a

finite function from locations to values; the whole set of heaps is written H) 2 ; the

predicate h#h′ holds when the domains of h and h′ are disjoint; e is the empty heap;

and h ·h′ is the union of two heaps, which is defined when the domains are disjoint.

Since we include atoms in our propositional language, this satisfaction relation is

also indexed by a function γ ∈ Atom → P(H) to interpret the atoms.

h |=γ ⊤ iff always

h |=γ A ∧ B iff h |=γ A and h |=γ B

h |=γ A → B iff if h |=γ A then h |=γ B

h |=γ ⊥ iff never

h |=γ A ∨ B iff h |=γ A or h |=γ B

h |=γ I iff h = e

h |=γ A ∗ B iff ∃h1, h2.h = h1 · h2 and h1 |=γ A and h2 |=γ B

h |=γ A −∗B iff ∀h′. if h′ |=γ A and h#h′ then h · h′ |=γ B

h |=γ P iff h ∈ γ(P )

Now, we can give interpretation functions for the world expressions and the

propositions. We will take a world expression as denoting a particular heap, and

since world expressions may have free variables the interpretation will be a mapping

from the free world variables to a heap. This can just follow the structure of the

world expression – note that since heap concatenation is partial, the interpretation

function for worlds is also necessarily partial. We will write ω ↓ η to mean that the

interpretation of ω is defined under the substitution η.

[[ǫ]]η = e

[[α]]η = η(α)

[[ω · ω′]]η = [[ω]]η · [[ω′]]η

We will also need an interpretation of propositions, which we will take to be the

set of heaps satisfying the proposition.

[[A]]γ = {h | h |=γ A}

To show soundness, we first show that the equality judgement is sound.

Lemma 4.1 (Soundness of Equality) If we have that:

• Ω; Ξ ⊢ ω ≡ ω′,

• ωi ↓ η, and ω′
i ↓ η, and [[ωi]]η = [[ω′

i]]η for every ωi ≡ ω′
i in Ξ, and

• ω ↓ η or ω′ ↓ η

then we know that ω ↓ η and ω′ ↓ η and [[ω]]η = [[ω′]]η

2 In fact, the following section does not depend specifically on heaps. The algebraic structure we need is a
separation algebra [3], which is just a partial commutative monoid.
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The proof is a routine induction on the equality judgement. Armed with this

lemma, we can give a soundness theorem for the sequent calculus:

Theorem 4.2 (Soundness of the Sequent Calculus) If we have that:

• Ω; Ξ; Γ ⊢ A[ω],

• η ∈ Ω → H,

• γ ∈ Atom → P(H)

• ωi ↓ η, and ω′
i ↓ η, and [[ωi]]η = [[ω′

i]]η for every ωi ≡ ω′
i in Ξ, and

• ωj ↓ η and [[ωj ]]η ∈ [[Aj ]]γ for every Aj [ωj ] in Γ,

then we can conclude that if ω ↓ η, then [[ω]]η ∈ [[A]]γ holds.

The proof follows from an induction on the structure of the derivation. As an

immediate corollary, it follows that if we can derive α; ·; · ⊢ A[α], then A is a true

proposition of separation logic.

4.1 (In)Completeness

While our calculus is sound, it is not even remotely complete with respect to the

semantics. First, the set of heaps forms a boolean algebra, which means that the

semantics validates the law of the excluded middle. Since we have an intuitionistic

calculus, we cannot prove this. This problem might be rectified by extending the

sequent calculus with multiple conclusions, to support classical reasoning.

However, this is not sufficient. Our equality judgement only allows us to make

positive judgements about equality – and for completeness, we will need some way

to reason from inequality. Concretely, suppose we add the points-to assertion e 7→ v,

which asserts that we have a one-element heap with location e pointing to value v.

Now, consider the separation logic assertion (x 7→ −)∗ (x 7→ −). This formula must

entail false, because we know that the same pointer cannot be in two disjoint heaps

and hence the formula is unsatisfiable. Such a deduction is not possible unless we

have a way of deducing inequalities from world expressions.

5 Future and Related Work

5.1 Future Work

There are a number of directions to proceed from here. First, for practical use it

is necessary to add support for the points-to predicate, perhaps by extending the

language of worlds to refer more explicitly to the contents of a heap. This is an

interesting question even though it is known [4] that the points-to predicate and

equality are sufficient to make judging validity undecidable – there might still be

proof-theoretically well-behaved systems (in the sense of admitting cut-elimination)

that contain points-to.

Doing this is a fairly delicate operation. One of the key features of separation

logic that simplifies reasoning is that we do not normally need to track the aliasing

of worlds. The calculus we have presented supports this property: even though

heaps only have a partial notion of concatenation, we never need to track whether

8
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two world expressions are catenable or not. Retaining this property and at the same

time allowing the controlled use of this knowledge in proofs (for example, if we know

x 7→ u ∗ y 7→ v, we want to be able to deduce that x 6= y) is tricky. In particular,

the fact that these facts are inequalities is difficult to handle intuitionistically, since

inequality is a derived connective.

Finally, in program proofs using separation logic, it is typical to identify and

make use of special classes of formulas (such as the pure propositions, whose truth

does not depend on the heap; or the precise propositions, which unambiguously

identify a piece of state) which satisfy additional axioms. It would be interesting to

see if we can extend this calculus with modalities corresponding to those classes.

5.2 Related Work

Pym’s original work on bunched implications [9,7] includes a natural deduction and

sequent calculus for BI with a branching, tree-structured context. Even though

the metatheory is very elegant, actually writing proofs in this calculus is quite

complicated. This leads Hoare calculi that use separation logic to typically take

the drastic step of abolishing the context altogether. A collection of tautologies of

separation logic are given, and proofs done via Hilbert-style reasoning with them.

Whenever this becomes too inconvenient, semantic arguments are used. While

unquestionably effective, these proofs are often clumsy to read and write.

This is also a problem Bean [1] sought to address, by giving a Fitch-style pre-

sentation of natural deduction for BI, called the ribbon calculus. This calculus

extends the scoping rules of the regular Fitch style into the second dimension, with

a (literally!) spatial scoping principle for the ∗ and −∗ connectives. While visually

appealing, two-dimensional contexts are tricky to mechanize.

We sought to take a middle ground, and retain a context that is a traditional

multiset. Our hope is that this will allow writing relatively natural proofs, without

having to resort to metatheoretic arguments in common program proofs, while still

being amenable to machine checking.

Agostino and Gabbay [5] proposed labelled deduction as a general methodology

for extending the methods for classical theorem proving to cope with intuitionistic

and substructural logics. In his doctoral thesis, Simpson [12] shows how to use

a labelled calculus to give a proof theory for modal logic, in which the labels are

drawn from the Kripke semantics of modal logic.

Galmiche and Mery [6] describe a tableaux method for theorem proving in propo-

sitional BI. This work contains the key idea of using monoidal labels to control where

BI formulas can and cannot be used. However, they must enrich this structure with

an extra preorder structure in order to prevent the provability of formulas like

(A ∧ I) → (A ∗ A), which is not a valid formula of BI. However, we observed that

all such anomalies are true theorems of separation logic, which permits us to leave

out this preorder structure and simplify our calculus.

Braüner and de Paiva [2] present a natural deduction system for a hybrid propo-

sitional logic with a satisfaction operator a : A, which is a proposition that asserts

that A holds at the world a.

Reed [10] integrates a hybrid logic with monoidal labels into the dependent type

9
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theory LF. The context in his system is not explicitly labelled; instead, there is a

preorder on worlds, and hypotheses implicitly exist at the least world. Hypotheses

are restricted to particular worlds via a hybrid “@” modality. This system can ex-

press many substructural types, including a substantial fragment of bunched logic,

including the magic wand. However, it cannot fully model the separating conjunc-

tion. This is because Reed system leaves out explicit equality hypotheses, in order to

make world equality decidable – without the hypothetical equalities, world equality

is checkable via ACU unification. In our system, we make the opposite tradeoff: the

StarL rule can introduce new hypothetical equalities, which greatly complicates

the problem of deciding equality.
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Abstract

In this paper we study proof-search in an intuitionistic hybrid modal logic (for places), denoted IHMLP, whose modalities
allow us to validate properties taking into account the notion of place. In this context we propose different sequent calculi
for this logic and also tableau rules in the perspective of proof-search and countermodel generation. As this logic can be
seen as an instance of Hybrid IS5we can derive new calculi and procedures for this logic. Finally we define a terminating
calculus for the �-free fragment of IHMLP and then propose a decision procedure with countermodel generation.
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1 Introduction

In order to model heterogeneous environments, among them distributed systems, recent

works provide logical foundations tuned to programming in such environments, like an

intuitionistic modal logic with an operational interpretation of logical proofs as distributed

programs [9]. Such a logic allows us to deal with systems seen as a set of different nodes,

called places, that may have different properties and may contain different resources. It
has been recently enriched with the disjunctive connective ∨ and the constant ⊥ in order

to obtain an intuitionistic hybrid modal logic (for places) [4], denoted here IHMLP, that

is suitable for reasoning about distribution of resources. In this context we can mention

related works based on separation logics [13] and resource logics like BI [12] and their

extensions with modalities [1,11]. Our general aim consists in studying such modal logics

dealing with notions of locationsor placesin both perspectives of expressiveness and proof
and countermodel search.

Here we aim at focusing on the modal logic IHMLP for which several results have been

proposed in [4]: two semantics, namely a Kripke semantics and a birelational semantics,

both proved sound and complete; the finite model property w.r.t. birelational semantics and

then decidability of the logic. The formulae in this logic include names, called placesand
assertions are associated with places and validated in places. A key point is that we are not
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only interested in whether a formula is true but also in where a formula is true. Therefore

modalities allow us to express a property to be validated in a specific place p (@p), or in
a unspecified place (♦) or in any place (�). As the first modality internalizes the model in

the logic, this modal logic can also be classified as a hybrid logic [2].

In this paper we aim at studying this logic in the perspective of proof and countermodel

search by defining sequent calculi as an alternative to existing natural deduction systems.

A first contribution consists of a sequent calculus for IHMLP and its refinements in which

contraction and weakening rules are absorbed in the axioms and logical rules. We prove the

cut-elimination property and then the soundness and completeness of this calculus. From

these results we derive a multi-conclusioned calculus for IHMLP and then tableaux rules

for this logic in which the so-called COPY rule is absorbed. As this logic can be seen as the

hybridisation of the intuitionistic modal system IS5 [3] we can deduce, from our results,
new calculi and decision procedures for this logic. Another contribution is the definition of

a terminating calculus for the �-free fragment of IHMLP. Its completeness proof provides

a way to build countermodels in case of non-validity. Moreover we show, for this fragment,

the finite model property w.r.t. the Kripke semantics and thus derive the same result for IS5

without �.

2 An Intuitionistic Modal Logic

In this section, we summarize the key notions about an hybrid intuitionistic modal logic

(of places) that we denote IHMLP [4]. It is designed to reason about places with assertions

of the form (G at p) meaning that the formula G is valid at place p. In such an assertion
G does not contain any occurrence of the construct at but use modalities @p, one for
each place, to cast the meta-linguistic at at the language level. The logic also has other

modalities for reasoning about properties valid at different locations. It corresponds to the

logic introduced in [9] enriched with the connectives ∨ and ⊥.

The set of pure formulae, denoted Form(PL), is defined inductively from a set of propo-

sitional variables, denoted Var, with ⊥ constant and from a countable set of placesPL:

F ::= V | ⊥ | F ∧F | F ∨F | F ⊃F | F@p | �F | ♦F where V ∈ Var and p∈ PL.

The assertions of the form G at p are called sentences. The sequents are of the following
form: Γ;∆⊢P G at p. Γ is a finite multiset of pure formulaecalled the global context, and
contains assumptions that are valid everywhere; ∆ is a finite multiset of sentencescalled the
local context, and contains assumptions that are valid locally; G at p is a sentence called
the conclusionand P is a finite set of places.
Let us mention that P+ q denotes the disjoint union of P and {q} and that PL(S) denotes

the set of places that appear in the syntactic object S.
The sequent Γ;∆ ⊢P G at p is said to be defined iff the set of places PL(Γ)∪PL(∆)∪

PL(G at p) is a subset of P. It has been proved in [4] that for P = PL(Γ)∪PL(∆)∪

PL(G at p), if P⊆ P′ then Γ;∆⊢P G at p is valid iff Γ;∆⊢P′

G at p is valid. Therefore, by
assuming that P is finite, there is no loss of generality.

A birelational semantics, similar to the one proposed in [14], have been defined in [4].

It allows to show the finite model property and the decidability of this logic. In this pa-

per, we focus on the Kripke semantics that is similar to the one given for the intuitionistic

system IS5 knowing that the logic corresponds to IS5 extended with the @ operator [3].

2
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A at p⊢P A at p
[ID]

⊥ at p⊢P G at p′
[⊥]

Γ;∆⊢P G at p′

Γ;∆,A at p⊢P G at p′
[W1L ]

Γ;∆⊢P G at p′

Γ,A;∆⊢P G at p′
[W2L ]

Γ;∆,A at p,A at p⊢P G at p′

Γ;∆,A at p⊢P G at p′
[CL]

Γ,A;∆,A at p⊢P G at p′

Γ,A;∆⊢P G at p′
[COPY]

Γ;∆⊢P A at p Γ;∆,A at p⊢P G at p′

Γ;∆⊢P G at p′
[CUT1]

Γ;∆⊢P+q A at q Γ,A;∆⊢P G at p′

Γ;∆⊢P G at p′
[CUT2]

Figure 1. Axioms and Structural Rules of SC@
1

Definition 2.1 [Kripke model] K ≡ (K,6,{Pk}k∈K ,{Ik}k∈K) is a Kripke modeliff
- K is a non-empty set partially ordered by 6;

- for every k∈ K, Pk is a set of places such that for all k 6 l , Pk ⊆ Pl ;

- for every k∈K, Ik :Var→ 2Pk is such that for all k6 l andV ∈Var we have Ik(V)⊆ Il (V).

The set of places
S

k∈K Pk is denoted by Pls(K ).

Definition 2.2 [Kripke semantics] Let K ≡ (K,6,{Pk}k∈K ,{Ik}k∈K) be a Kripke model,

k∈ K, p∈ Pk and a pure formula Awith PL(A) ⊆ Pk, we define (k, p) � A as follows:
(k, p) � X iff p∈ Ik(X) for X ∈ Var;

(k, p) � ⊥ never;

(k, p) � A∧B iff (k, p) � A and (k, p) � B;
(k, p) � A∨B iff (k, p) � A or (k, p) � B;
(k, p) � A⊃B iff for all l > k, if (l , p) � A then (l , p) � B;
(k, p) � A@q iff q∈ Pk and (k,q) � B;
(k, p) � �A iff for all l > k and for all q∈ Pl , (l ,q) � A;
(k, p) � ♦A iff there exists q∈ Pk, (k,q) � A.

Let us remind that the relation � satisfies the Kripke monotonicity property, i.e., if l > k
then (k, p) � A implies (l , p) � A [4]. We write k � Γ;∆ for Γ a global context and ∆ a
local context iff for every A ∈ Γ and p ∈ Pk, (k, p) � �A; and for every B at q ∈ ∆, and
q ∈ Pk, (k,q) � B. The sequent Γ;∆⊢PC at p is valid in the Kripke model K = (K,6

,{Pk}k∈K ,{Ik}k∈K) iff PL(Γ)∪PL(∆)∪PL(C)∪{p} ⊆ P; and for every k ∈ K such that
P⊆ Pk, if k � Γ;∆ then (k, p) � C. We say that Γ;∆⊢P A at p is valid iff it is valid in every
Kripke model.

3 Sequent Calculi forIHMLP

In this section, we define a first sequent calculus SC@1 for IHMLP. It is obtained by extend-

ing a calculus for the fragment without ∨ and ⊥ [8]. Axioms and structural rules are given

in Figure 1 and logical rules are given in Figure 2. Let S be a sequent (Γ;∆⊢P G at p) we
write �SC@

1

S to express that S is derivable in SC@1 .

Theorem 3.1 (Soundness)LetS be a sequent, if�SC@
1

S thenS is valid.

Proof For every rule, we suppose that its premises are valid in every Kripke model, and
we prove that its conclusion is valid in every Kripke model. Here, we show only the case

3
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Γ;∆,A at p,B at p⊢PC at p′

Γ;∆,A∧B at p⊢PC at p′
[∧L]

Γ;∆⊢P A at p Γ;∆⊢P B at p

Γ;∆⊢P A∧B at p
[∧R]

Γ;∆⊢P A at p

Γ;∆⊢P A∨B at p
[∨R1 ]

Γ;∆⊢P B at p

Γ;∆⊢P A∨B at p
[∨R2 ]

Γ;∆,A at p⊢PC at p′ Γ;∆,B at p⊢PC at p′

Γ;∆,A∨B at p⊢PC at p′
[∨L]

Γ;∆⊢P A at p Γ;∆,B at p⊢PC at p′

Γ;∆,A⊃B at p⊢PC at p′
[⊃L]

Γ;∆,A at p⊢P B at p

Γ;∆⊢P A⊃B at p
[⊃R]

Γ;∆,A at p⊢PC at p′′

Γ;∆,A@p at p′ ⊢PC at p′′
[@L]

Γ;∆⊢P A at p

Γ;∆⊢P A@p at p′
[@R]

Γ,A;∆⊢PC at p′

Γ;∆,�A at p⊢PC at p′
[�L]

Γ;∆⊢P+q A at q

Γ;∆⊢P
�A at p

[�R]

Γ;∆,A at q⊢P+q C at p′

Γ;∆,♦A at p⊢PC at p′
[♦L]

Γ;∆⊢P A at p

Γ;∆⊢P♦A at p′
[♦R]

Figure 2. Logical Rules of SC@
1

of [�R] rule. Let K =(K,6,{Pk}k∈K ,{Ik}k∈K) be a countermodel of Γ⊢P
�A at p. Then,

∃k0 ∈ K such that P ⊆ Pk0 , k0 � Γ;∆ and (k0, p) 2 �A. Thus, ∃l0 > k0 and ∃p0 ∈ Pl0
such that (l0, p0) � A, and from the Kripke monotonicity, l0 � Γ;∆. Let K ′=(K,6,{Pk ∩

{q}}k∈K ,{I ′k}k∈K) where for every A∈ Var, I ′k(A) = Ik(A)∩{q} if p0 ∈ Ik(A) and I ′k(A) =

Ik(A) otherwise. In K ′, the new place q duplicated p0. Hence for all formulae F , (l0, p0) �

F if and only if (l0,q) �F . It is easy to show thatK ′ is a Kripke model. Since qduplicating
p0, we have l0 � Γ;∆ and (l0,q) � A in K ′. Therefore, K ′ is a countermodel of Γ;∆⊢P+q

A at q. As Γ;∆⊢P+qA at q is valid, we get a contradiction and we deduce that Γ⊢P
�A at p

is valid. 2

Theorem 3.2 (Completeness)LetS be a sequent, ifS is valid then�SC@
1

S .

Proof We consider the validity through the natural deduction system introduced in [8] and
extended in [4]. Let S = Γ;∆⊢P G at p′. We suppose that S is derivable in the natural
deduction system, and we prove by induction on the depth of the given derivation in the
natural deduction system that �SC@

1

S . We only prove it when the derivation ends with

♦-elimination:

Γ;∆⊢P♦A at p Γ;∆,A at q⊢P+q G at p′

Γ;∆⊢P G at p′
[♦E]

By induction hypothesis, we have derivations for Γ;∆⊢P♦A at p and Γ;∆,A at q⊢P+q

G at p′. Then, by using [♦L] and [CUT1], we obtain a derivation for Γ;∆⊢P G at p′:

Γ;∆⊢P♦A at p

Γ;∆,A at q⊢P+q G at p′
[♦L]

Γ;∆,♦A at p⊢P G at p′
[CUT1]

Γ;∆⊢P G at p′

2

Theorem 3.3 (Cut-elimination) LetS be a sequent. IfS has a proof in SC@1 thenS has a
proof in SC@1 without using the cut rules.

Proof See Appendix A. 2

4
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By using the approach of [15], we provide another calculus SC@2 in which the contraction
and weakening rules are absorbedin the axioms and logical rules. This version allows
us to improve proof-search in our calculus. It is obtained by replacing the axioms by

Γ;∆,A at p⊢P A at p
[ID] and

Γ;∆,⊥ at p⊢P G at p′
[⊥] and the rule [⊃L] by the following

rule

Γ;∆,A⊃B at p⊢P A at p Γ;∆,B at p⊢PC at p′

Γ;∆,A⊃B at p⊢PC at p′
[⊃L] .

Theorem 3.4 (Soundness)LetS be a sequent, if�SC@
2

S thenS is valid.

Proof By using Kripke semantics like in the proof of Theorem 3.1. 2

Theorem 3.5 (Completeness)LetS be a sequent, if�SC@
1

S then�SC@
2

S .

Proof We start by proving that:
1. If �SC@

2

Γ;∆,A at p,A at p⊢P G at p′ then �SC@
2

Γ;∆,A at p⊢P G at p′;

2. If �SC@
2

Γ;∆⊢P G at p′ then �SC@
2

Γ;∆,A at p⊢P G at p′;

It is done by structural induction on both the derivation of the assumption and A. Then,
by structural induction over the given derivation, we can easily prove the result. Here, we
consider for 1. the case when the derivation of the assumption ends with [⊃L] rule:

D1

Γ;∆,A⊃B at p,A⊃B at p⊢P A at p

D2

Γ;∆,A⊃B at p,B at p⊢P G at p′
[⊃L]

Γ;∆,A⊃B at p,A⊃B at p⊢P G at p′

From �SC@
2

Γ;∆,A⊃ B at p,A⊃ B at p⊢P A at p, by induction hypothesis, we have

�SC@
2

Γ;∆,A⊃B at p⊢P A at p. Then, we show, by induction on the depth of the given

derivation, that if �SC@
2

Γ;∆,A⊃ B at p⊢P G at p′ then �SC@
2

Γ;∆,B at p⊢P G at p′.

Thus, �SC@
2

Γ;∆,B at p,B at p⊢P G at p′ and by induction hypothesis we deduce that

�SC@
2

Γ;∆,B at p⊢P G at p′. Therefore, �SC@
2

Γ;∆,A⊃B at p⊢P G at p′. 2

Let us give the following example of proof in order to illustrate the use of this sequent

calculus.

A⊃B,A;A at q⊢{p,q} A at q A⊃B,A;A at q,B at q⊢{p,q} B at q
[⊃L]

A⊃B,A;A at q,A⊃B at q⊢{p,q} B at q
[COPY]

A⊃B,A;A at q⊢{p,q} B at q
[COPY]

A⊃B,A;⊢{p,q}B at q
[�R]

A⊃B,A;⊢{p}
�B at p

[�L]
A⊃B;�A at p⊢{p}

�B at p
[⊃R]

A⊃B;⊢{p}
�A⊃�B at p

4 Tableaux Rules forHIMLp

In this section, we propose a multi-conclusioned variant of SC@2 calculus and then derive
from it a tableau rules. A multi-conclusioned sequent has the form Γ;∆⊢P Π, where Γ and
∆ are respectively the global and local contexts and Π is a multiset of sentences.

5
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Definition 4.1 Let K =(K,6,{Pk}k∈K ,{Ik}k∈K) be a Kripke model. The sequent Γ;∆⊢P Π
is valid in K iff PL(Γ)∪PL(∆)∪PL(Π) ⊆ P and for every k ∈ K such that P ⊆ Pk, if

k � Γ;∆ then there exists G at p∈ Π such that (k, p) � G. The sequent Γ;∆⊢P Π is valid iff
it is valid in every Kripke model.

The multi-conclusioned version SC@2m is obtained by adding a multiset Π of sentences to
the right part of the sequents in each rule of SC@2 except [∨R1 ], [∨R2 ], [⊃R] and [♦R]. For
example, the rule [∧R] is transformed into:

Γ;∆⊢P A at p,Π Γ;∆⊢P B at p,Π

Γ;∆⊢P A∧B at p,Π
[∧R]

We replace [∨R1], [∨R2], [⊃R] and [♦R] by the following three rules:

Γ;∆⊢P A at p,B at p,Π

Γ;∆⊢P A∨B at p,Π
[∨R]

Γ;∆,A at p⊢P B at p

Γ;∆⊢P A⊃B at p,Π
[⊃R]

Γ;∆⊢{p1,...,pn} A at p1, . . . ,A at pn,Π

Γ;∆⊢{p1,...,pn}♦A at p,Π
[♦R]

Theorem 4.2 (Soundness)If �SC@
2m

Γ;∆⊢P Π thenΓ;∆⊢P Π is valid.

Proof The proof is similar to the one of Theorem 3.1, by using the Kripke semantics and
Definition 4.1. 2

Theorem 4.3 (Completeness)If Γ;∆⊢P Π is valid then�SC@
2m

Γ;∆⊢P Π.

Proof We can see that a multi-conclusioned sequent Γ;∆⊢P A1 at p1, . . . ,An at pn is valid

iff Γ;∆ ⊢P A1@p1 ∨ . . . ∨An@pn at p, where p ∈ P, is valid. Thus, we can show that
if �SC@

2

Γ;∆⊢P A1@p1 ∨ . . . ∨An@pn at p then �SC@
2m

Γ;∆⊢P A1 at p1, . . . ,An at pn. The

proof is done by structural induction on the given derivation of the assumption. We must

prove the weakening property: if �SC@
2m

Γ;∆⊢P Π then �SC@
2m

Γ;∆⊢P Π,A at p. 2

Having defined this multi-conclusioned calculus we derive a tableau calculus appropri-

ate for proof-search because of the control of the COPY rule.

Definition 4.4 A signed formulais an expression of the form S Awhere S∈ {F,T} and A
is a pure formula.

Definition 4.5 A tableau nodeis an expression of the formM1;M2;PLwhereM1 is a mul-
tiset of pure formulae, M2 is of the form {(S A, p) |S Ais a signed formula and p is a place}
and PL is a set of places.
A tableauis tree whose nodes are tableau nodes. The rules of branch expansion are dis-
played in Figure 3.

A tableau node M1;M2,VP is said to be closedif M2 contains occurrences of both
(TA, p) and (FA, p), or if M2 contains (T⊥, p). A branch is closed if it contains a closed

tableau node. A tableau is closed if it only contains closed branches.

Theorem 4.6 (Soundness and completeness)LetS = Γ;∆⊢P Π be a multi-conclusion se-
quent. S is valid iff there is a closed tableau with the initial tableau nodeΓ;M;P, where
M = {T(A, p) | A at p∈ ∆}∪{T(B,q) | B∈ Γ and q∈ P}∪{F(G, p) | G at p∈ Π}.

6
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M1;M2,(T(A∧B), p);P

M1;M2 ,(TA, p),(TB, p);P
[T∧]

M1;M2,(F(A∧B), p);P

M1;M2,(FA, p);P | M1;M2,(FB, p);P
[F∧]

M1;M2,(T(A∨B), p);P

M1;M2,(TA, p);P | M1;M2,(TB, p);P
[T∨]

M1;M2,(F(A∨B), p);P

M1;M2,(FA, p),(FB, p);P
[F∨]

M1;M2,(T(A⊃B), p);P

M1;M2,(T(A⊃B), p),(FA, p);P | M1;M2,(TB, p);P
[T⊃]

M1;M2,(F(A⊃B), p);P

M1;(M2)T ,(TA, p),(FB, p);P
[F⊃]

M1;M2 ,(T(A@p′), p);P

M1;M2,(TA, p′);P
[T@]

M1;M2,(F(A@p′), p);P

M1;M2,(FA, p′);P
[F@]

M1;M2,(T(�A), p);P

M1,A;M2 ,(TA, p1), . . . ,(TA, pK );P
[T�]

M1;M2,(F(�A), p);P

M1;M2,(TM1,q),(FA,q);P+q
[F�]

M1;M2,(T(♦A), p);P

M1;M2,(TM1,q),(TA,q);P+q
[T♦]

M1;M2,(F(♦A), p);P

M1,A;M2 ,(FA, p1), . . . ,(FA, pK );P
[F♦]

Where {p1, . . . , pk} = P and (TM1,q) = {(TF,q) | F ∈ M1}.

Figure 3. The Tableau rules

Proof Soundness and completeness of this tableau method come from SC@2m system. Intu-
itively, in this method, we associated the application of the COPY rule to the application

of the rules where there is an introduction of a new place, i.e., the [F�] and [T♦] rules.

Because of a given pure formula A ∈ Γ and a given place q, a single copy A at q, in the
local context, in a derivation is enough. Since we do not use the COPY rule for the places

in P, we copy the pure formulae of the global context with the places in P in the initial
tableau node. 2

5 A Terminating Calculus for the �-free Fragment

In this section, we propose a terminating calculus, called SCT@, for the �-free fragment of

this logic by using the approach used in [6] for intuitionistic logic.

We start by defining a particular class of Kripke models by using a structure called Kripke
trees. For this, we use a similar approach to that given in [7].

Definition 5.1 A nodeis a set N = {(p1,S
p1
N

), . . . ,(pn,S
pn

N
)} where ∀i ∈ 1..n, pi is a place

and Spi

N
a finite set of logical variables. We note VarN the set S

p1
N
∪ . . . ∪Spn

N
, PLN the set

{p1, . . . , pn} and PX
N
the set {pi | X ∈ Spi

N
}.

Definition 5.2 [Kripke tree] A Kripke treeis a pair T = (NT , [T1, . . . ,Tp]) where NT is a

node And [T1, . . . ,Tp] is a finite list of Kripke trees. Moreover, for each i, VarNT ⊆VarNTi
and ∀X ∈VarNT , P

X
NT

⊆ PX
NTi
.

The concept of subtreeis defined inductively by: T ′ is a subtree of T = (NT , [T1, . . . ,Tp])

iff T ′ = T or there exists i ∈ {1, . . . , p} such that T ′ = Ti or T
′ is a subtreeof Ti .

Definition 5.3 Let T = (NT , [T1, . . . ,Tp]) be a Kripke tree, the subtree model associated
to T , denoted KT , is the quadruple: (T ∗,6,{PLNT ′}T ′∈T ∗ ,{IT ′}T ′∈T ∗) where

- T ∗ is the set of all subtrees of T ;

- 6 is a partial order on T ∗ where T
′′
6 T ′ iff T

′′
is a subtree of T ′;

7
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Γ,APA−p;∆,A at p⊢P G at p′

Γ,APA ;∆⊢P G at p′
[COPY]

(Γ[♦A/A@q,P])+q;∆,A at q⊢P+q C at p′

Γ;∆,♦A at p⊢PC at p′
[♦L]

Γ;∆,X at p,B at p⊢P G at p′

Γ;∆,X at p,X⊃B at p⊢P G at p′
[⊃1L]

Γ;∆,A⊃ (B⊃C) at p⊢P G at p′

Γ;∆,(A∧B)⊃C at p⊢P G at p′
[(∧)⊃L]

Γ;∆,A⊃C at p,B⊃C at p⊢P G at p′

Γ;∆,(A∨B)⊃C at p⊢P G at p′
[(∨)⊃L]

Γ;∆,A⊃B@p′ at p⊢P G at p′′

Γ;∆,A@p⊃B at p′ ⊢P G at p′′
[@⊃]

Γ,(A⊃B@p)P;∆⊢P G at p′

Γ;∆,♦A⊃B at p⊢P G at p′
[♦⊃L]

Γ;∆⊢P G at p′

Γ;∆,⊥⊃A at p⊢P G at p′
[⊥⊃L]

Γ;∆,A at p,B⊃C at p⊢P B at p Γ;∆,C at p⊢P G at p′

Γ;∆,(A⊃B)⊃C at p⊢P G at p′
[(⊃)⊃L]

Figure 4. The SCT@ calculus

- ∀T ′ ∈ T ∗, IT ′ : Var → 2
PLN

T ′ such that for all X ∈ Var we have IT ′(X) = PX
NT ′
.

Proposition 5.4 For every Kripke treeT = (NT , [T1, . . . ,Tp]), the subtree modelKT =

(T ∗,6,{PLNT ′}T ′∈T ∗ ,{IT ′}T ′∈T ∗) is a Kripke model.

Proof Let T = (NT , [T1, . . . ,Tp]) be a Kripke tree. From Definition 2.1 and Definition 5.3,

to show that (T ∗,6,{PLNT ′}T ′∈T ∗ ,{IT ′}T ′∈T ∗) is a Kripke model, we have only to show:

1. for all T ′,T
′′
in T ∗ such that T

′′
6 T ′, we have PLN

T
′′
⊆ PLNT ′ ;

2. for all T ′,T
′′
in T ∗ such that T

′′
6 T ′, we have for all X ∈ Var, PX

N
T
′′
⊆ PX
NT ′
.

These properties can be proved by structural induction on T , namely with induction hy-

pothesis for every subtree of T . 2

In order to define the SCT@ calculus, we replace the rules [COPY] and [⊃L] of the SC@2
calculus by the set of rules of Figure 4 in which every formula of the global contexts is

indexed by a set of places Aind. By such indexes we limit the use of [COPY]. Let us note

that in the [COPY] rule we have p ∈ PA. Moreover the expression Γ[♦A/A@q,P] in the

[♦L] rule means that one substitutes A@q to♦A in all formulae of Γ and changes the index
with P. In addition (Γ)+q means that one adds q to the indexes of the Γ formulae.

Definition 5.5 [Irreducible sequent] An irreducible sequentis a sequent of the form
Γ;X1 at p1, . . . ,Xm at pm,Y1⊃C1 at q1, . . . ,Yn⊃Cn at qn⊢

P F at p where Γ is a multiset
of pure formulae; for all i ∈ {1, . . . ,m} and j ∈ {1, . . . ,n}, if Xi ≡ Yj then pi 6= q j ; and

F ∈ Var∪{⊥} and if F ∈ {X1, . . . ,Xm} then p /∈ {p1, . . . , pm}; for all Aind in Γ, ind = /0.

Definition 5.6 [Inv-irreducible sequent] An inv-irreducible sequentis a sequent of the
form Γ;X1 at p1, . . . ,Xk at pk,Y1⊃D1 at q1, . . . ,Yl ⊃Dl at ql ,(A1⊃B1)⊃C1 at r1, . . . ,(Am⊃

Bm)⊃Cm at rm⊢P F at p where Γ is a multiset of pure formulae; for all i ∈ {1, . . . ,m}

and j ∈ {1, . . . ,n}, if Xi ≡ Yj then pi 6= q j ; F ∈ Var ∪ {⊥}, F ≡ A∨B or F ≡ ♦A; if
F ∈ {X1, . . . ,Xk} then p /∈ {p1, . . . , pm}; for all Gind in Γ, ind = /0.

Proposition 5.7 The number of applications of the COPY rule in any derivationin the
SCT@ calculus is finite.

Proof Let S ≡ Γ;∆⊢P G at p′ be a sequent and D be a derivation of S in SCT@. For every
A in Γ, the number of applications of the COPY rule is smaller than the size of P and the

8



Galmiche and Salhi

number of the new places introduced in D . One can see that the number of the new places

introduced in D is smaller than the number of the subformulae of the form ♦F in S . Since
the size of P and the set of subformulae of the form ♦F in S are finite, we deduce that the
number of applications of the COPY rule is finite. 2

Proposition 5.8 The application of the SCT@ rules to a given sequent terminates with
axioms or irreducible sequents.

Proof See Appendix B. 2

Theorem 5.9 (Soundness)The rules of the SCT@ calculus are sound.

Proof We consider the case for rule [(⊃)⊃L]. We suppose that Γ;∆,A at p,B⊃C at p⊢P

B at p and Γ;∆,C at p⊢P G at p are valid. Let K = (K,6,{Pk}k∈K ,{Ik}k∈K) be a counter-

model of Γ;∆,(A⊃B)⊃C at p⊢PG at p′. Then, ∃k∈ K such that P⊆ Pk, k � Γ;∆, (k, p) �

((A⊃B)⊃C) and (k, p′) 2 G. From (k, p) � �((A⊃B)⊃C), we have ∀l > k, if (l , p) � A⊃B
then (l , p) � C. We suppose that there exists l0 > k such that (l0, p) � A and (l0, p) 2 B.
From l0 > k and the Kripke monotonicity, we have l0 � Γ;∆. Moreover from (l0, p) � A and
(l0, p) 2 B, we have (l0, p) � B⊃C, because for l ′ > l0 if (l ′, p) � B then (l ′, p) � A⊃B and
we deduce that (l ′, p) �C. Therefore, K is countermodel of Γ;∆,Aat p,B⊃C at p⊢PBat p
and this is a contradiction. Thus, ∀l > k, we have (l , p) � A⊃B and thus (l , p) � C. Since
(k, p′) 2 G, K is a countermodel of Γ;∆,C at p⊢P G at p. From this contradiction we
deduce that Γ;∆,(A⊃B)⊃C at p⊢P G at p′ is valid. Proofs for other rules are similar. 2

Let us remind that a proof rule is invertibleif, for any instance of the rule, the non-validity of
at least one of its premises entails the non-validity of its conclusion. It is strongly invertible
if, for any instance of the rule and any Kripke model K , if K is a countermodel of at least

one of its premises then it is a countermodel of its conclusion. We can observe that strong

invertibility implies invertibility.

Theorem 5.10 All the rules of the SCT@ calculus, except the[(⊃)L⊃], [∨R], [♦R] rules,
are strongly invertible.

Proof We consider the case for rule [♦⊃L]. Let K = (K,6,{Pk}k∈K ,{Ik}k∈K) be a coun-

termodel of Γ,(A⊃B@p)P;∆⊢P G at p′. Then, ∃k∈ K such that Pk ⊆ P, k � Γ;∆, (k,q) �

�(A⊃B@p) for q∈ Pk and (k, p′) 2 G. Thus, from (k,q) � �(A⊃B@p), we have ∀l > k
and ∀r ∈ Pl , if (l , r) � A then (l , p) � B. Therefore, (k, p) � ♦A⊃B, because ∀l > k, if
(l , p) � ♦A then (l , p) � B. We deduce that K is a countermodel of Γ;∆,♦A⊃B at p⊢P

G at p′. Thus, the rule [♦⊃L] is strongly invertible. Proofs for other rules are similar. 2

A proof-refutation tree is a tree in which the nodes are indexed by sequents. Especially,

the root node is indexed by a sequent in which the pure formulae of the global context are

indexed by the set of all places belonging to this sequent. The rules of branch expansion are

obtained from the rules of SCT@: if the node is indexed by an inv-irreducible sequent then
its children are indexed by the sequents which correspond to the premises of all rules that

can be applied to its index. Else, the children correspond to premises of one of the strongly

invertible rule which can be applied to its index.

From Proposition 5.8, we can deduce that a proof-refutation tree is finite and its leaf nodes

are indexed by axioms and irreducible sequents. The formal definition is given below.

9
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Definition 5.11 [Proof-refutation tree] A proof-refutation treeis a tree where the nodes are
indexed by sequents and verifying the following properties:

1) The root node is indexed by a sequent of the form Γ;∆⊢PG at pwhere the pure formulae
of Γ are indexed by the set P of places.
2) For every internal node n indexed by a sequent S which is not an inv-irreducible sequent,
n has a maximum of two children: if n has two children (resp. a single child) indexed by

H1 and H2 (resp. H ) then
H1 H2

S
[R] (resp.

H

S
[R] ) is an instance of a strongly

invertible rule.

3) For every internal node n indexed by an inv-irreducible sequent Γ;X1 at p1, . . . ,Xm at pm,

Y1⊃D1 at q1, . . . ,Yn⊃Dn at qn,(A1⊃B1)⊃C1 at r1, . . . ,(Al ⊃Bl)⊃Cl at r l ⊢
P K at p, the

set of children of n is obtained by: for every i ∈ {1, . . . , l}, we have two children indexed
respectively by Γ;∆′,∆′′

i ,Ci at r i ⊢
P K at p and by Γ;∆′,∆′′

i ,Ai at r i ,Bi ⊃Ci at r i ⊢
P Bi at r i

where ∆′ = X1 at p1, . . . ,Xm at pm,Y1 ⊃D1 at q1, . . . ,Yn ⊃Dn at qn, ∆′′ = (A1⊃B1)⊃
C1 at r1, . . . ,(Al ⊃Bl )⊃Cl at r l and ∆′′

i is ∆′′ without (Ai ⊃ Bi)⊃Ci at r i . Moreover,

if K = A∨B then we have two children indexed respectively by Γ;∆′,∆′′ ⊢P A at p and
Γ;∆′,∆′′ ⊢P B at p. And if K = ♦A then for every pl ∈ P, we have a child indexed by
Γ;∆′,∆′′ ⊢P A at pl.
4) The leaf nodes are indexed by axioms and irreducible sequents.

Proposition 5.12 For a rule Γ;∆′ ⊢P G′
at p Γ;∆′′ ⊢P G′′

at p

Γ;∆⊢P G at p
[R] (resp. Γ′;∆′ ⊢P′

G′
at p′

Γ;∆⊢P G at p
[R] )

and∀K = (K,6,{Pk}k∈K ,{Ik}k∈K) and∀k∈ K such that P⊆ Pk (resp. P′ ⊆ Pk), if (k � ∆′

or k � ∆′′) (resp. k� ∆′) then k� ∆.

Proof We consider the rules [(⊃)⊃L], [♦L] and [(∧)⊃L]. We start with the rule [(⊃)⊃L].

Let K = (K,6,{Pk}k∈K ,{Ik}k∈K) be a Kripke model and k ∈ K such that P ⊆ Pk. If k �

∆,A at p,B⊃C at p then by monotonicity ∀k′ > kwe have k′ � ∆,A at p,B⊃C at p. Thus,
∀k′ > k, if (k′, p) � A⊃B then (k′, p) � B and we have (k′, p) � C. Therefore, k � ∆,(A⊃

B)⊃C at p. Otherwise, if k � ∆,C at p then it is easy to see that k � ∆,(A⊃B)⊃C at p.
We now consider the rule [♦L]. Let K = (K,6,{Pk}k∈K ,{Ik}k∈K) be a Kripke model and

k ∈ K such that P+ q ⊆ Pk. If k � ∆,A at q then k � ∆ and there exists pl ∈ Pk such

that (k, pl) � A. Thus, k � ∆,♦A at p. We now consider the rule [(∧)⊃L]. Let K = (K,6

,{Pk}k∈K ,{Ik}k∈K) be a Kripke model and k∈K such that P⊆Pk. If k� ∆,A⊃(B⊃C) at p
then ∀k′ > k, if (k′, p) � A then (k′, p) � B⊃C. Thus, if (k′, p) � A∧B then (k′, p) � B⊃C
and (k′, p) � C because (k′, p) � B. Therefore k � ∆,(A∧B)⊃C at p. Other cases are
treated by similar arguments. 2

Theorem 5.13 (Completeness)Let S = Γ;∆⊢P G at p′ be a sequent where the formulae
of Γ are indexed by the set of places P. IfS does not have a proof in SCT@ then it has a
countermodel.

Proof Let S = Γ;∆⊢P G at p′ be a sequent where all the formulae of Γ are indexed by the
set of places P. Let PR be a proof-refutation tree in which the root node is indexed by S .
We suppose that S has not a proof in SCT@ and we show how to extract a countermodel of
S from PR . See Appendix C. 2

First we show how to generate a countermodel for the sequent ⊢{p}(♦A)⊃A at p. For this,
we need to build the proof-refutation tree associated to this sequent:

10
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A at q⊢{p,q} A at p
[♦L]

♦A at p⊢{p} A at p
[⊃R]

⊢{p}♦A⊃A at p
p q

A

As this logic can be seen as an hybridisation of IS5, we can provide, from the previous
calculi, a new calculi for IS5. For example to prove the formula �(A⊃B)⊃ (♦A⊃♦B)

we can prove A⊃B;⊢{p}♦A⊃♦B at p by using SCT@:

A⊃B;A at q,B at q⊢{p,q} B at q
[♦R]

A⊃B;A at q,A⊃B at q⊢{p,q}♦B at p
[COPY]

A⊃B;A at q⊢{p}♦B at p
[♦L]

A⊃B;♦A at p⊢{p}♦B at p
[⊃R]

A⊃B;⊢{p}♦A⊃♦B at p

6 Conclusion and Perspectives

In this paper we propose a sequent calculus for IHML p and its variants that absorb weak-

ening and contraction rules. Moreover tableaux rules are naturally designed from a derived

multi-conclusioned sequent calculus. Knowing that this logic can be seen as an hybridi-

sation of the intuitionistic modal system IS5, namely it corresponds to IS5 extended with
a satisfaction operator (@), we can provide, from our calculi, new calculi and decision

procedures for IS5. Further investigations will be devoted to the comparison with existing
calculi for such a logic [14]. Moreover we define a terminating calculus for the �-free

fragment of IHML p that allows to build (finite) countermodels in case of non-validity. A

consequence of this study, not developed here, is the proof of the finite model property w.r.t.

the Kripke semantics for this �-free fragment and thus of the same result for IS5 without
�. Next studies will be devoted to the definition of specific rules for the �modality and to

the characterization of the logical fragment of the logic, including �, for which the finite

model property w.r.t. the Kripke semantics is verified. Moreover we will focus on seman-

tics and on the design of new tree-based structures allowing to build finite countermodels

w.r.t. birelational semantics. Finally we will consider our approach for the extension of the

logic with nominals in order to deal with a full intuitionistic hybrid logic like in [3].
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Appendix A: Proof of Theorem 3.3

Theorem 3.3. Let S be a sequent. IfS has a proof in SC@1 thenS has a proof in SC@1
without using the cut rules.

Proof We let�SC@−
1

Γ;∆⊢PG at p′ denote that Γ;∆⊢PG at p′ has a derivation in SC@1 with-
out using the cut rules. To make the proof we use the structural cut-elimination described

in [10], by using a simple structural induction from the admissibility of the cut rules in the

cut-free system.Thus, we have only to show:

(i) If �SC@−
1

Γ;∆⊢P A at p and �SC@−
1

Γ;∆,A at p⊢P G at p′ then �SC@−
1

Γ;∆⊢P G at p′.

(ii) If �SC@−
1

Γ;∆⊢P+q A at q and �SC@−
1

Γ,A;∆⊢P G at p′ then �SC@−
1

Γ;∆⊢P G at p′.

The proof proceeds by mutual structural induction on the cut formula and the given deriva-
tions. For example, if we are in the case:

D1

Γ;∆,A at p⊢P B at p
[⊃R]

Γ;∆⊢P A⊃B at p

D2

Γ;∆⊢P A at p

D3

Γ;∆,B at p⊢P G at p′
[⊃L]

Γ;∆,A⊃B at p⊢P G at p′
[CUT1]

Γ;∆⊢P G at p′

It can be replaced by:

D2

Γ;∆⊢P A at p

D1

Γ;∆,A at p⊢P B at p
[CUT1]

Γ;∆⊢P B at p

D3

Γ;∆,B at p⊢P G at p′
[CUT1]

Γ;∆⊢P G at p′

Since A and B are structurally lower than A⊃B, we deduce, by the induction hypothesis,
that �SC@−

1

Γ;∆⊢P G at p′. 2
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Appendix B: Proof of Proposition 5.8

Proposition 5.8. The application of the SCT@ rules to a given sequent terminates with
axioms or irreducible sequents.

Proof From Proposition 5.7, the number of the applications of the COPY rule in every
derivation of a given sequent in SCT@ is finite. Thus, to prove termination, we have only
to prove that the application of the SCT@ rules without the COPY rule to a given sequent
terminates. For this, we will use the technic proposed in [6], by showing that for every rule,

its conclusion is more complex than its premises by using a measures of complexity over

the pure formulae and the sentences. Here, we use the measure α defined by:
α(A) = 1 (A∈ Var∪{⊤,⊥}), α(A∧B) = α(A)+α(B)+1, α(A∨B) = α(A)+α(B)+1,

α(A⊃ B) = 2 ∗ α(A) + α(B) + 1, α(♦A) = α(A) + 1, α(�A) = α(A) + 1, α(A@p) =

α(A)+1, α(A at p) = α(A)+1.

From this definition, the order relation > on pure formulae and sentences, with A > B iff
α(A) > α(b), is well-founded. Now, we define an order relation on multisets of pure formu-

lae and sentences: letM1 andM2 two multisets of pure formulae and sentences, M1 >m M2
iffM2 is obtained formM1 by replacing one or more pure formulae and sentences by a finite
number of pure formulae and sentences, such that if A is replaced by B then α(A) > α(B).

Since the relation order on pure formulae and sentences is well-fonded, the order relation

>m is well-founded [5]. It is the order relation which is used to show that in every rule,

the conclusion is greater than the premises. For example for the rule [(∧)⊃L], we have

Γ∪∆∪{(A∧B)⊃C at p}∪ {G at p′} >m Γ∪∆∪{A⊃ (B⊃C) at p}∪ {G at p′}, be-
cause α((A∧B)⊃C) = 2∗α(A)+2∗α(B)+α(C)+3 > 2∗α(A)+2∗α(B)+α(C)+2 =

α(A⊃ (B⊃C)).

Since there is always a rule for any sequent which is not an axiom or an irreducible sequent,

we deduce that the application of the SCT@ rules to a given sequent terminates with axioms
or irreducible sequents. 2

Appendix C: Proof of Theorem 5.13

Theorem 5.13.LetS = Γ;∆⊢PG at p′ be a sequent where all the formulae ofΓ are indexed
by the set of places P. IfS has not a proof in SCT@ then it has a countermodel.

Proof Let S = Γ;∆⊢P G at p′ be a sequent where all the formulae of Γ are indexed by the
set of places P. Let PR be a proof-refutation tree in which the root node is indexed by S .
We suppose that S has not a proof in SCT@ and we show how to extract a countermodel of
S from PR .

We show how to decide if an index of a given node in PR is valid or not. We start
by the leaf nodes. We know that the leaf nodes of PR are indexed by axioms and irre-
ducible sequents. If a leaf node is indexed by an axiom then its index is valid. Now, we
prove that the irreducible sequents are not valid. Let L= Γ;X1 at p1, . . . ,Xm at pm,Y1⊃
C1 at q1, . . . ,Yn ⊃Cn at qn ⊢

P K at p be an irreducible sequent. We denote by VP the set
{X1 at p1, . . . ,Xm at pm}. Let T = (N , /0) be a Kripke tree with a single node such that
PLN = P,VarN = {X1, . . . ,Xm}, ∀r ∈ Pwe have Sr

N
= {Xk | Xk at r ∈VP}. We have ∀i ∈

1 . . . ,m, (T , pi) � Xi , and since ∀i ∈ {1, . . . ,m} and ∀ j ∈ {1, . . . ,n} we have if Xi ≡Yj then

pi 6= q j , we obtain ∀ j ∈ 1 . . . ,n, (T ,q j) 2 Yj , and thus, ∀ j ∈ 1 . . . ,n, (T ,q j) �Yj ⊃Cj at q j .

We can see that for every A/0 ∈ Γ and p∈ P, there exists a derivation with a root sequent
of the form Γ′;∆′,A at p⊢P′

G′
at q where L is one of its leaf sequents. Thus, by using
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Proposition 5.12, we have T � Γ. It is easy to see that (T , p) 2 K. From Proposition 5.4,
we deduce that KT is a countermodel of L .

Now, we see how, from the children of a given internal node, we can propagate the validity
or build a countermodel. Let I be an index of an internal node. If I is not an inv-irreducible
sequent then, from Definition 5.11, this node has a maximum of two children where if these

children are indexed by H1 and H2 (resp. H ) then
H1 H2

S
[R] (resp.

H

S
[R] ) is an

instance of a strongly invertible rule. Thus, if H1 and H2 (resp. H ) are valid then I is
valid because [R] is a sound rule. Else, from the strong invertibility of [R], I has the same
countermodels of the non-valid premises of [R].
Let us consider the case of the internal nodes indexed by inv-irreducible sequents. Let
I = Γ;X1 at p1, . . . ,Xm at pm,Y1⊃D1 at q1, . . . ,Yn⊃Dn at qn,(A1⊃B1)⊃C1 at r1, . . . ,(Al ⊃
Bl )⊃Cl at r l ⊢

P K at p be an inv-irreducible sequent and the index of an internal node. We
define ∆′ , X1 at p1, . . . ,Xm at pm,Y1⊃D1 at q1, . . . ,Yn⊃Dn at qn and ∆′′ , (A1⊃B1)⊃
C1 at r1, . . . ,(Al ⊃Bl )⊃Cl at r l ⊢

P K at p. Then, we define ∆′′
i for i ∈ {1, . . . , l} by ∆′′

without (Ai ⊃Bi)⊃Ci at r i and VP, {X1 at p1, . . . ,Xm at pm}. Here, we start by studying
the case where k≡♦F . From Definition 5.11, the children of our internal node are indexed
by the premises of the following rules:

Γ;∆′,∆′′
i ,Ai at r i ,Bi ⊃Ci at r i ⊢

P Bi at r i Γ;∆′,∆′′
i ,Ci at r i ⊢

P♦F at p

Γ;∆′,∆′′
i ,(Ai ⊃Bi)⊃Ci at r i ⊢

P♦F at p
[(⊃)⊃L]

and
Γ;∆′,∆′′ ⊢P F at pl

Γ;∆′,∆′′ ⊢P♦F at p
[♦L]

where i ∈ {1, . . . , l} and pl ∈ P. If there exists i ∈ {1, . . . , l} such that Γ;∆ ′,∆′′
i ,Ci at r i ⊢

P

♦F at p is not valid, then, it has a countermodel TCi . Therefore, TCi is a countermodel

of I because the premiss Γ;∆′,∆′′
i ,Ci at r i ⊢

P ♦F at p in [(⊃)⊃L] is strongly invertible.

Else, if there exists i ∈ {1, . . . , l} such that Γ;∆′,∆′′
i ,Ai at r i ,Bi ⊃Ci at r i ⊢

P Bi at r i is

valid or there exists pl ∈ P such that Γ;∆′,∆′′ ⊢P F at pl is valid, then I is valid because
the rules [(⊃)⊃L] and [♦L] are sound. Now we deal with the last case, ∀i ∈ {1, . . . , l},
Γ;∆′,∆′′

i ,Ai at r i ,Bi ⊃Ci at r i ⊢
PBi at r i has a countermodel KTi

; and for all pl ∈ Pwe have
Γ;∆′,∆′′⊢PF at pl has a countermodel KTpl

. We define T , (N ,{T1, . . . ,Tl ,Tpl1 , . . . ,Tplk})

where P = {pl1, . . . , plk}, PLN = P, VarN = {X1, . . . ,Xm}, ∀r ∈ P we have Sr
N

= {Xk |

Xk at r ∈VP}. It is easy to see that T is a Kripke tree.
Now we prove that T � Γ;∆′,∆′′ and (T , p) 2 ♦F in KT . By using Proposition 5.12, we
have for all i ∈ {1, . . . , l} and for all j ∈ {1, . . . ,k}, Ti � Γ;∆′,∆′′ and Tpl j � Γ;∆′,∆′′. We

have for all i ∈ {1, . . . , l}, Ti � A and Ti 2 B. Thus, Ti 2 A⊃B and by Kripke monotonic-
ity we obtain T 2 A⊃B. Therefore, T � Γ;∆′,∆′′ holds. As ∀ j ∈ {1, . . . ,k} we have
(Tpl j , pl j) 2 F at pl, and we obtain by monotonicity (T , p) 2 ♦F because in KT we have
PT = P. Thus, KT is a countermodel of Γ;∆′,∆′′ ⊢P♦F at p. For the case K ≡ A∨B, the
Kripke model is T , (N ,{T1, . . . ,Tl ,TA,TB}) where TA (resp. TB) is a countermodel of

Γ;∆′,∆′′ ⊢P A at p (resp. Γ;∆′,∆′′ ⊢P B at p). For the case K ∈ Var∪⊥, we use the Kripke

model T , (N ,{T1, . . . ,Tl}). The proofs of these two cases are similar to the previous

proof. We can see that if S is valid then it has a proof in SCT@ and we get a contradiction.
Therefore, S has a countermodel built by the previous method. 2
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Abstract

We report on work in progress concerning the investigation of a semantics of proofs for the positive fragment
of intuitionistic two-sequent K. We propose a semantics that is given in terms of simple fibrations and argue
that the syntactic model construction yields an instance of it. The semantics provides means to characterize
the 2-modality as the right adjoint of the substitution functor induced by a projection in the base category.

Keywords: modal logic, proof theory, fibred category theory

1 Introduction

Finding a good proof theory for intuitionistic modal logics has a long history and var-

ious proposals are suggested in the literature. Particular attention deserves Martini

and Masini’s proposal given in [4]. It provides a two-dimensional natural deduction

system that allows one to express the modal rules as introduction and elimination

rules. An analogous proposal for intuitionistic K can be found in the Fitch-style

natural deduction system outlined in [1]. It corresponds to a one-dimensional rep-

resentation of two-sequent K that employs stacks of context instead of the indexing

used by Martini and Masini.

We propose a categorical semantics for the positive fragment of intuitionistic

two-sequent K. It is given in terms of fibred category theory and is closely related

to models of simple type theory or, equivalently, intuitionistic propositional logic.

The investigation of a semantics of proofs for two-sequent K is motivated by the ob-

servation that two-sequent modal logic seems fine-grained enough to express other

approaches to intuitionistic modal logic in terms of it, thus providing a sort of uni-

fying framework. Furthermore, the proposed semantics allows one to characterize

the modal rules as arising from an adjoint situation, thus satisfying the well-known

1 I would like to thank Gianluigi Bellin for his suggestion to look for a categorical semantics of Martini and
Masini’s two-sequent approach to intuitionistic modal logic and for providing me with the opportunity to
present the ideas developed in this note at a seminar at the University of Verona.
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criteria according to which logical connectives should be expressed in terms of ad-

junctions. This note is organized as follows: section 2 provides a concise overview of

intuitionistic two-sequent K; section 3 deals with the categorical structure induced

by the so-called syntactic model construction.

2 Two-sequent K

We work with the positive fragment of intuitionistic two-sequent K, i.e formulae or

types A are defined by the grammar A ::= p | ⊤ |A ∧ A |A → A |2A. The rules of

the system are provided in table 1 where types have been annotated with terms t

defined by the grammar t ::= x | ∗ |λx.t | tt | 〈t, t〉 |πi(t) | box(t) | unbox(t). As usual

in such presentations Γ stands for a context, i.e. a multiset x1: A1, . . . , xn:An of

typed variables. The main feature of the system is that sequents S |Γ ⊢ t:A also

depend on a stack S of contexts.

Stacks of contexts are defined by the grammar S ::= () |S 2 Γ where () stands

for the empty stack and 2 for the separator between the elements of the stack. For

a nonempty stack we shall omit the leading empty stack when writing out the stack

in full. Hence Γ may stand both for a multiset of typed variables and for a stack of

length 1. |S|, the number of elements in a stack S, is defined inductively as follows:

|()| = 0 and |S 2 Γ| = |S| + 1.

Our presentation of the rules is inspired by the Fitch-style natural deduction

system outlined in [1], the main difference being that we use stacks to emulate the

arbitrary number of so-called stoups in the lefthand side of the sequent, and it differs

slightly from the one given in [4]. Indeed, since it would be to cumbersome to write

out two-sequents such as

Γ1 ǫ

Γ2 ǫ
... ⊢

...

Γn ǫ

Γ t:A

in full all the time one uses a one-dimensional representation of it instead. Whereas

Martini and Masini use indexed types and terms to distinguish the different levels

of the two-sequent under consideration we do so by using a stack. Our Fitch-style

representation Γ1 2 · · · 2 Γn |Γ ⊢ t:A of the above two-sequent can simply be re-

garded as the sequent (Γ1)
1, . . . , (Γn)n, (Γ)n+1 ⊢ tn+1:An+1 in their one-dimensional

representation where the function (−)i maps a multiset x1: A1, . . . , xn:An into the

multiset xi
1:A

i
1, . . . , x

i
n:Ai

n.

It is worth mentioning that the position of a context in the stack plays a crucial

role, since there is a close connection with the nesting of 2-modalities. This can

be best explained by considering the informal interpretation of a two-sequent as

a modal formula: for instance, the above two-sequent is interpreted as the modal

formula
∧

Γ1 → 2(
∧

Γ2 → · · ·2(
∧

Γn → 2(
∧

Γ → A)) · · ·). Therefore, the posi-

tion of a context in the stack is in one-to-one correspondence with the number of

2
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ax
S |Γ, x:A ⊢ x: A

⊤ ax
S |Γ ⊢ ∗:⊤

S |Γ ⊢ t1: A1 S |Γ ⊢ t2:A2
∧I

S |Γ ⊢ 〈t1, t2〉:A1 ∧ A2

S |Γ ⊢ t:A1 ∧ A2
∧Ei

S |Γ ⊢ πi(t):Ai

S |Γ, x:A1 ⊢ t:A2
→I

S |Γ ⊢ λx.t:A1 → A2

S |Γ ⊢ t:A1 → A2 S |Γ ⊢ s:A1
→E

S |Γ ⊢ ts:A2

S 2 Γ |∅ ⊢ t:A
2 I

S |Γ ⊢ box(t):2A

S |Γ ⊢ t: 2A
2 E

S 2 Γ |Γ′ ⊢ unbox(t):A

Table 1
Natural deduction rules

modalities that prefix its interpretation as a conjunction of formulae. It is for this

reason that the substitution rules have following form.

Lemma 2.1 The substitution rules

S |Γ ⊢ s:A′
S |Γ, x:A′ ⊢ t: A

sub
S |Γ ⊢ t[s/x]:A

and

S |Γ′ ⊢ s:A′
S

′[Γ′, x:A′] |Γ ⊢ t: A
sub

S
′[Γ′] |Γ ⊢ t[s/x]:A

where in the latter case S
′[Γ] is shorthand for S2Γ2Γ1 2 · · ·2Γn, are admissible

in natural deduction.

Proof. By simultaneous induction on the length of the derivation of the right

premise. The following cases are the most interesting ones. If the derivation ends

with an instance
π

S
′ |Γ′ ⊢ t:2A

S
′
2 Γ′ |Γ, x: A′ ⊢ unbox(t):A

of 2 E then we can simply eliminate the substitution. Further, if the derivation ends

with an instance
π

S 2 (Γ, x:A′) |∅ ⊢ t:A

S |Γ, x:A′ ⊢ box(t):2A

of 2 I then we switch from the former variant of substitution to the latter. 2

That we have two instances of the substitution rule follows from the fact that

3
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β-reductions: η-expansions:

πi(〈t1, t2〉) ; ti t ; 〈π1(t), π2(t)〉

(λx.t)s ; t[s/x] t ; λx.(tx) [where x 6∈ FV (t)]

unbox(box(t)) ; t t ; box(unbox(t))

Table 2
Reductions and expansions

we distinguish between the stack S and and the current context Γ in a sequent; we

could avoid this by writing sequents as S2Γ ⊢ t:A but refrain from doing so in order

to get a tighter correspondence with the categorical semantics. Since a substitution

applies only when the stack of the sequent in the left premise matches with the one

of the sequent in the right premise as shown in the statement of the previous lemma,

we have to prove that weakening is admissible. We have to consider the following

two cases: weakening of contexts is tackled in lemma 2.2 below; weakening of stacks

in lemma 2.3 below. It is worth mentioning that weakening of stacks corresponds to

the lifting of indexes used in the proof of lemma 3.2 of [4]. For a concise statement

of the latter result we shall use the following notational convention: given a stack

S = Γ1 2 · · · 2 Γn, we say that S
′ ⊆ S if and only if there exists m ≥ 0 such that

S
′ = Γ′

1 2 · · · 2 Γ′

m 2 Γ1 2 · · · 2 Γn.

Lemma 2.2 Given Γ ⊆ Γ′,

(i) if S |Γ ⊢ t:A is derivable then so is S |Γ′ ⊢ t:A;

(ii) if S[Γ] |Γ′′ ⊢ t:A is derivable then so is S[Γ′] |Γ′′ ⊢ t:A.

Proof. By induction on the length of the derivation. 2

Lemma 2.3 Given S
′ ⊆ S, if S |Γ ⊢ t:A is derivable then so is S

′ |Γ ⊢ t:A.

Proof. By induction on the length of the derivation. 2

We conclude this section with a brief remark about the computational inter-

pretation of the system. As usual, one is interested in relating certain derivations

to each other via so-called reductions and expansions: the β-reductions and η-

expansions for the positive fragment of two-sequent K are summarized in table 2.

Note that the β-reductions are simply the ones provided in [4]. With respect to the

η-expansions it is worth mentioning that each of them applies only if the term t is

of the appropriate type: for instance, the expansion t ; box(unbox(t)) applies only

if the type of t is of the form 2A.

3 Simple fibrations

The semantics we propose is based on the concept of simple fibration provided in

section 1.3 of [2]. Given a category B with finite products ×, let s(B) denote the

category having:

4
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objects pairs (I, X) of objects of B;

morphisms (I1, X1) −→ (I2, X2) are pairs (u: I1 −→ I2, f : I1 × X1 −→ X2) of

morphisms in B.

The functor sB: s(B) −→ B given by (I,X) 7→ I and (u, f) 7→ u is then called

the simple fibration on B. We argue that a categorical semantics for the positive

fragment of intuitionistic two-sequent K consists of a simple fibration that satisfies

the following properties:

(i) the fibres s(B)I over I are cartesian closed categories;

(ii) the substitution functor induced by the left projection π1 has a right adjoint.

The aim of this section is to show that the syntactic model construction yields

such a simple fibration. Making the assumption that we have a category C with

objects given by formulae A, we show that stacks of objects of C yield a category

Stacks(C) with finite products �. Since objects of C can be seen as stacks that

contain exactly one element, we have that sequents Γ1 2 · · · 2 Γn |Γ ⊢ t:A can be

seen as morphisms t: (
∧

Γ1 2 · · · 2
∧

Γn) �
∧

Γ −→ A of Stacks(C), thus giving

rise to the second morphism in the pair (u, f) of morphisms from the definition of

s(B) provided above.

Definition 3.1 Given a category C, Stacks(C) denotes the category having:

objects stacks of objects A of C, i.e. S ::= () |S 2 A;

morphisms S1 −→ S2 are compositions of the three basic morphisms

1S:S −→ S pushA
S

:S −→ (S 2 A) popA
S

: (S 2 A) −→ S

satisfying the two kinds of structural properties listed below.

inverse identity

pushA
S

; popX
S

= 1S 1S2A; popA
S

= popA
S

= popA
S

; 1S

popA
S

; pushA
S

= 1S2A 1S; pushA
S

= pushA
S

= pushA
S

; 1S2A

Note that, since associativity of composition is trivial, the equations on the

righthand side of the above table guarantee that Stacks(C) is indeed a category.

The equations on the lefthand side state that push and pop are inverse to each

other and, furthermore, they guarantee that each composition of basic morphisms

is equivalent to one that uses a minimum number of push and pop operations, thus

making Stacks(C) become a discrete category. As a consequence thereof we can

easily prove the following result.

Lemma 3.2 The category Stacks(C) has finite products.

Proof. First we note that Stacks(C) has a terminal object, namely the empty stack

(). The unique morphism from S to () consists of |S| consecutive pop operations.

Given stacks Si = Ai1 2 · · · 2 Aiki
(i ∈ {1, 2}), we define their concatenation � as

follows:

S1 � S2 =def A11 2 · · · 2 A1k1
2 A21 2 · · · 2 A2k2

5
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Binary products are given by concatenation of two stacks; left and right projections

(π1: S1 � S2 −→ S1 and π2:S1 � S2 −→ S2) can be defined as compositions of

pop and/or push operations in a straightforward way. 2

Definition 3.3 Given a category C, st(C) denotes the category having:

objects pairs (S, A) of objects of Stacks(C);

morphisms (S1, A1) −→ (S2, A2) are pairs (u:S1 −→ S2, f :S1 � A1 −→ A2)

of morphisms in Stacks(C).

Note that st(C) is equivalent to s(Stacks(C)). Hence, we have shown that the

syntactic model construction yields the simple fibration given by the projection

functor s(Stacks(C)) −→ Stacks(C). However, it remains to show that this fibra-

tion also satisfies the properties mentioned at the beginning of the section. With

respect to the first property we have that a close examination of the rules provided

in table 1 and of the reductions and expansions provided in table 2 immediately

reveals that the fibres st(C)S over S are cartesian closed. The argument for the

second property is more involved.

In contrast to the rules of the 2-free fragment the 2-rules do not induce specific

structure in the fibres, but provide means to relate the fibres to each other. Indeed,

we have that
Γ1 2 · · · 2 Γn 2 Γ |∅ ⊢ t: A
=====================
Γ1 2 · · · 2 Γn |Γ ⊢ t′:2A

i.e. that the sequent in the premise is derivable if and only the sequent in the

conclusion is. That t 7→ box(t) and t′ 7→ unbox(t′) are inverses of each other follows

immediately from the lowermost β-reduction and η-expansion provided in table 2.

Therefore, the introduction of the 2-modality is in bijective correspondence with

the application of a pop operation. If we use S as shorthand for
∧

Γ1 2 · · ·2
∧

Γn

and A′ as shorthand for
∧

Γ then we can define the two functors π∗

1 and Π(S,A′) as

follows:

π∗

1: st(C)S −→ st(C)S�A′ Π(S,A′): st(C)S�A′ −→ st(C)S

(S, A) 7→ (S � A′,⊤) (S � A′, A) 7→ (S,2A)

(S, A1) (S � A′,⊤) (S � A′, A1) (S, 2A1)

↓ 7→ ↓ ↓ 7→ ↓

(S, A2) (S � A′,⊤) (S � A′, A2) (S, 2A2)

From a fibred category theory perspective we have that the substitution functor

π∗

1: st(C)S −→ st(C)S�A′ induced by the left projection π1: S � A′ −→ S has a

right adjoint Π(S,A′): st(C)S�A′ −→ st(C)S, i.e. we obtain the following bijective

correspondence:

[π∗

1(S, A′) = ] (S � A′,⊤) −→ (S � A′, A)

(S, A′) −→ (S,2A)) [ = Π(S,A′)(S � A′, A) ]

6
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4 Conclusion

Starting from a Fitch-style presentation of two-sequent K we have worked out the

categorical structure induced by the so-called syntactic model construction, thus

providing part of the proof of a completeness theorem. We have not investigated

soundness but plan to do so in future research. One of the reasons for this om-

mission is that a more direct semantics might be obtained by switching to indexed

categories and developing a categorical semantics along the lines of [3] where an

S4-like modality has been taken into consideration as well. This line of attack

would not only provide means to tackle other modal logics but it would also pave

the ground for a comparison with [5] where we have proposed a semantics for a

parameterized variant of relevant K with a flat modality, i.e. without iterations of

2, in terms of indexed categories.

Besides these issue we would also like to compare our semantics with the one

provided in [1]. Our one-dimensional representation of two-sequents is inspired by

their Fitch-style natural deduction system and thus our semantics can be regarded

as a direct semantics for it. However, this does not explain how the semantics

proposed in this note relates to the one given in terms of a monoidal functor on a

cartesian closed category. We believe that a good starting point for the investigation

of this issue is provided by the observation that the modal rule investigated in [1]

can be regarded as a derived rule of two-sequent K. Indeed, the following simple

instance of the rule

Γ ⊢ s: 2A′ x:A′ ⊢ t:A

Γ ⊢ box t with s for x:2A
can be expressed as:

() |Γ ⊢ s: 2A′

2 E
Γ |∅ ⊢ unbox(s):A′

() |x:A′ ⊢ t: A
(2.3)

Γ |x:A′ ⊢ t:A
sub

Γ |∅ ⊢ t[unbox(s)/x]:A
2 I

() |Γ ⊢ box(t[unbox(s)/x]):2A

Note that if Γ = x′:2A′ and s = x′ then the above derived rule yields a derivation of

() |x′: 2A′ ⊢ box(t[unbox(x′)/x]):2A from a derivation of () |x′:A′ ⊢ t:A. Further-

more, there exists a term t such that () |x:2(A1 → A2) ⊢ t:2A1 → 2A2 is derivable

in two-sequent K (see for instance [4]). Thus we get a monoidal endofunctor on the

fibre over the empty stack ().
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Abstract

We present an authorization logic that is quite similar to constructive modal S4.
The logic assumes that principals are conceited in their beliefs. We describe the
sequent calculus, Hilbert-style axiomatization, and Kripke semantics of the logic. A
distinguishing characteristic of the sequent calculus is that hypothetical reasoning is
relativized to beliefs of principals. We prove several meta-theoretic results including
cut-elimination, and soundness and completeness for the Kripke semantics.

1 Introduction

Authorization refers to the act of deciding whether or not an agent making a request to
perform an operation on a resource should be allowed to do so. For example, the agent
may be a browser trying to read pages from a website. In that case, the site’s web server
may consult the browser’s credentials and a .htaccess file to determine whether to send
the pages or not. Such access control is pervasive in computer systems. As systems and
their user environments evolve, policies used for access control may become complex and
error prone. This suggests the need for formal mechanisms to represent, enforce, and
analyze policies. Logic appears to be a useful mechanism for these purposes. Policies
may be expressed as formulas in a suitably chosen logic. This has several merits. First,
the logic’s rigorous inference eliminates any ambiguity in meaning that may be inherent
in a textual description of policies. Second, policies may be enforced end-to-end using
generic logic-based mechanisms like proof-carrying authorization [8–10, 29]. Third, by
writing policies in a logic, there is hope that the policies themselves can be checked for
correctness against some given criteria.

Whereas first-order logic and sometimes propositional logic suffice to express many
authorization policies, distributed systems pose a peculiar challenge: how do we express
and combine policies of different agents and systems? This is often necessary since
policies and the authorizations derived from them may vary from system to system.

1



Policies on different systems may also interact to allow or deny access. To model such
distributed policies, Abadi and others proposed logics with formulas of the form K says

A, where K is an agent or a system (abstractly called a principal) and A is a formula
representing a policy [6, 28]. The intended meaning of the formula is that principal K

states, or believes that policy A holds. From a logical perspective K says · is a modality
and the logic is an indexed modal logic with one modality for each principal. We call
such a modal logic an authorization logic. In the past fifteen years there have been
numerous proposals describing authorization logics that differ widely in the specific
axioms (or inference rules) used for K says · [2, 3, 8–10, 15, 17, 19, 24–26, 29, 30].
One emerging trend is the increased use of intuitionistic logics for authorization (e.g.,
[3, 19, 22, 24–26, 29, 37]) as opposed to classical logics.

This paper presents a new intuitionistic authorization logic called DTL0. This logic
is peculiar in a certain respect: it abandons the usual objectivity in reasoning from
hypothesis, relativizing hypothetical reasoning to principals. The hypothetical judgment

of the logic has the form Γ
K
−→ A, which means, up to a first approximation, that under

the assumption that all beliefs of K are true, the hypotheses Γ imply A. Although
this choice of binding hypothetical reasoning to principals may be unintuitive from a
philosophical point of view, it seems attractive from the perspective of access control.

Our primary interest in developing DTL0 is deployment in proof-carrying authoriza-
tion [8–10, 29, 37]. Hence our main focus is DTL0’s proof-theory, especially the sequent
calculus, which we describe in detail (Section 3). We prove several meta-theoretic prop-
erties of the sequent calculus, including cut-elimination (Section 3.1). We also present
a Hilbert-style system for DTL0 (Section 2), and sound and complete Kripke semantics
(Section 4). The principal-centric reasoning of DTL0 reflects in the Kripke semantics:
worlds are explicitly associated with principals who may view them. This suggests that
principals in DTL0 may be related to nominals from hybrid logic [13, 14, 16]. We also
show that DTL0 is a generalization of constructive modal S4 [7, 33].

DTL0 is a fragment of a larger authorization logic, DTL, which we are currently
developing. The latter is quite broad, incorporating first-order quantifiers, explicit time
for modeling time-bounded policies [19], and linearity for modeling consumable creden-
tials [25]. Besides developing the logic’s theory, a secondary goal of ongoing work is
to understand how DTL0 relates to existing authorization logics, through translations
between them. The eventual objective of this line of work is more ambitious; we want to
establish a common framework in which policies written in different logics may be com-
bined. Initial efforts in this direction using (classical) modal S4 as foundation appeared
in earlier work [24].

By itself, this paper makes two contributions. First, it presents a new authorization
logic that explicitly relativizes hypothetical reasoning to principals, and describes the
logic’s proof theory. To the best of our understanding, such relativization is unique to
our logic, at least in the context of authorization. A second, albeit minor contribution
of the paper is sound and complete Kripke semantics, which are relatively rare for
authorization logics (as opposed to their prevalence in modal logics). The only other
examples we know of are Kripke semantics for authorization logics based on lax-like

2



modalities [24], and those for an earlier authorization logic based on the modal logic
K [6].

To save space, proofs of theorems and many other results related to DTL0 have been
omitted from this extended abstract. These may be found in the full version of the paper
that is available on the author’s web page [23]. In addition to proofs and a description
of some of the design choices, the full version contains a natural deduction system, a
construction of canonical Kripke models, and sound and complete translations between
DTL0 and other modal logics, including several authorization logics and constructive
multi-modal S4.

2 The logic DTL0

DTL0 extends propositional intuitionistic logic with a principal-indexed modality, K says

A. Principals, denoted K, are abstractions for users, programs, machines, and systems,
that either create policies or request access to resources. We stipulate a fixed set of
principals Prin, pre-ordered by a relation written �. K1 � K2 is read “principal K1

is stronger than principal K2”, and entails that K1 says A implies K2 says A for every
formula A. We assume that Prin has at least one maximum element, called the local
authority (denoted ℓ).1 The syntax of formulas in DTL0 is shown below. P denotes
atomic formulas.

A,B, C ::= P | A ∧ B | A ∨ B | ⊤ | ⊥ | A ⊃ B | K says A

Axiomatic Proof-System. A Hilbert-style proof-system for DTL0 consists of any ax-
iomatization of propositional intuitionistic logic (elided here), and the following axioms
and rules for K says A. We write ⊢ A to mean that A is valid.

⊢ A

⊢ K says A
(nec)

⊢ (K says (A ⊃ B)) ⊃ ((K says A) ⊃ (K says B)) (K)
⊢ (K says A) ⊃ K says K says A (4)
⊢ K says ((K says A) ⊃ A) (C)
⊢ (K1 says A) ⊃ (K2 says A) if K1 � K2. (S)

(nec) and (K) are the usual necessitation rule and closure under consequence axiom
for normal modal logics (see e.g., [12]). (4) is also standard from modal logics such
as S4. (C) is the characterizing axiom of DTL0. It is characteristic of the doxastic
logic of conceited reasoners (hence the name C) [35]. Intuitively, the axiom means that
every principal says that all its statements are true. Although the propriety of this
axiom in the context of doxastic reasoning has been questioned, it seems quite useful
for authorization. The axiom (S) means that whenever principal K1 believes a formula
A, every weaker principal K2 believes it as well.

1To the best of our understanding, the term local authority as used here was first introduced in the
preview implementation of the language SecPAL [1].
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The following properties may be established in DTL0. 6⊢ A means that A is not valid
in the stated generality (although specific instances of A may be valid). A ≡ B denotes
(A ⊃ B) ∧ (B ⊃ A).

⊢ (ℓ says A) ⊃ (K says A)

⊢ (K says K says A) ≡ (K says A)

6⊢ A ⊃ K says A

6⊢ (K says A) ⊃ A

⊢ (K says (A ∧ B)) ≡ ((K says A) ∧ (K says B))

6⊢ (K says (A ∨ B)) ⊃ ((K says A) ∨ (K says B))

6⊢ ⊥

6⊢ (K says A) ⊃ (K ′ says (K says A))

The last property means that if a principal K states policy A, not every principal may
believe this. In some cases, this may not be desirable, since some policies may be stated
and published by K. If K publishes policy A, we may expect that K ′ says K says A.
In DTL0, published policies may be expressed using the defined connective K publ

A = ℓ says K says A (read “K publishes A”), which satisfies the following properties:

⊢ (K publ A) ⊃ K says A.

6⊢ (K says A) ⊃ K publ A.

⊢ (K publ A) ⊃ K ′ says (K publ A).

⊢ (K publ A) ⊃ K ′ says (K says A).

Example 2.1 (Policies in DTL0). We illustrate the use of DTL0 for expressing autho-
rization policies through a simple example. Suppose that the principal OAL (Online
Academic Library) represents an online repository of scientific articles. Academics in-
stitutions (such as CMU) may buy corporate subscriptions that allow all their members
to download articles from OAL. It is up to the subscribing institutions to tell OAL

who their members are. Alice is an individual who wishes to download an article from
OAL. Let the formula downloadAlice mean that Alice may download articles from OAL,
and let memberAliceCMU mean that Alice is a member of CMU. Further, let us assume
that CMU has a subscription at OAL. The following represent possible policies of the
principals.

1. OAL says ((CMU says memberAliceCMU) ⊃ memberAliceCMU)

2. OAL says (memberAliceCMU ⊃ downloadAlice)
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3. CMU publ memberAliceCMU

The first policy, stated by OAL, means that if CMU says that Alice is its member, then
this is the case. The second policy, also stated by OAL, means that if Alice is a member
of CMU, then she may download articles. The third policy, stated and published by
CMU, means that Alice is a member of CMU. It is easy to check that these three policies
entail the formula OAL says downloadAlice in DTL0, and that this would not be the
case if we changed publ to says in the last policy.

3 Sequent Calculus

Now we describe a sequent calculus for DTL0. Our presentation is inspired by earlier
work on proof-theory for modal logics [25, 33]. Broadly, we follow Martin-Löf’s judg-
mental method [31], and make a strong distinction between formulas and judgments.
Judgments are the objects of knowledge, and are established through proofs. Formulas
are subjects of judgments. For DTL0, we use two basic (categorical) judgments: A true,
meaning that formula A is true, and K claims A, meaning that principal K believes or
claims that formula A is true. The two categorical judgments do not entail each other
in general. K says A internalizes the judgment K claims A as a formula, allowing it to
be combined with other connectives. In other words the judgments (K says A) true and
K claims A are equivalent.

To reason from hypothesis, we introduce hypothetical judgments (sequents) Γ
K
−→

A true, informally meaning that principal K may reason from the hypothesis in Γ that
A is true. Formally, the symbol Γ denotes a (possibly empty) multiset of categorical
judgments, called the hypothesis or assumptions:

Γ ::= · | Γ, A true | Γ,K ′ claims A

The principal K is called the context of the judgment. In context K, K ′ claims C entails
C true if K ′ � K. This is the only principle that distinguishes reasoning in one context

from that in another. The formula A on the right of
K
−→ is called the conclusion of the

sequent.
The inference rules of the sequent calculus are shown in Figure 1. For brevity, we

often elide the judgment name true, abbreviating A true to A. The notation Γ|K used
in the rule (saysR) stands for the multiset {(K ′ claims C) ∈ Γ | K ′ � K}. If we assume
that formula A is true, we should certainly be able to conclude that A is true. For
atomic formulas, this may be established by the rule (init); for others we prove it as a
theorem (see Theorem 3.2).

The rules (claims), (saysR), and (saysL) characterize DTL0. Read from the conclu-
sion to the premises, the rule (claims) states that whenever we assume K claims A, we
are also justified in assuming that A is true, if we are reasoning in a context K ′ such
that K � K ′. The rule (saysR) means that K says A may be established in any context
if we can prove in context K that A is true using only assumptions K ′′ claims C for
K ′′ � K. Observe that this is the only rule that changes the context of the sequent.
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P atomic

Γ, P
K
−→ P

init
Γ,K claims A,A

K′

−−→ C K � K ′

Γ,K claims A
K′

−−→ C
claims

Γ|K
K
−→ A

Γ
K′

−−→ K says A
saysR

Γ,K says A,K claims A
K′

−−→ C

Γ,K says A
K′

−−→ C
saysL

Γ
K
−→ A Γ

K
−→ B

Γ
K
−→ A ∧ B

∧R
Γ, A ∧ B,A, B

K
−→ C

Γ, A ∧ B
K
−→ C

∧L

Γ
K
−→ A

Γ
K
−→ A ∨ B

∨ R1

Γ
K
−→ B

Γ
K
−→ A ∨ B

∨ R2

Γ, A ∨ B,A
K
−→ C Γ, A ∨ B,B

K
−→ C

Γ, A ∨ B
K
−→ C

∨ L

Γ
K
−→ ⊤

⊤R
Γ,⊥

K
−→ C

⊥L

Γ, A
K
−→ B

Γ
K
−→ A ⊃ B

⊃R
Γ, A ⊃ B

K
−→ A Γ, A ⊃ B,B

K
−→ C

Γ, A ⊃ B
K
−→ C

⊃L

Figure 1: Sequent calculus for DTL0

The rule (saysL) captures the idea that K says A internalizes K claims A: if we assume
that K says A is true, then we may also assume K claims A.

The rules for the connectives ∧, ∨, ⊤, ⊥, and ⊃ are standard, except for a context
which is associated with each sequent. We elide a description of these standard rules,
and turn to the meta-theoretic properties of the sequent calculus.

3.1 Meta-Theory

Meta-theoretic properties, such as cut-elimination, are important from our perspec-
tive because proof-carrying authorization (our intended application) is heavily based
in proof-checking, and proof-construction. Besides, meta-theoretic properties also im-
ply that the inference rules of the logic fit well with each other, increasing faith in the
logic’s good foundation. Cut-elimination also means that all proofs can be normalized.
Normalization is sometimes useful for auditing proofs of authorization.

Formally, the cut-elimination theorem states that adding a cut rule to a sequent
calculus does not make more judgments provable. This is an easy consequence of the
following theorem.
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Theorem 3.1 (Admissibility of Cut). The following hold for the sequent calculus of
Figure 1.

1. Γ
K
−→ A and Γ, A

K
−→ C imply that Γ

K
−→ C.

2. Γ|K
K
−→ A and Γ,K claims A

K′

−−→ C imply that Γ
K′

−−→ C.

Proof (Outline). Both statements can be proved simultaneously by lexicographic in-
duction, first on the size of the cut formula A, and then on the size of the two given
derivations, as in earlier work [32].

The logical dual of the cut-elimination theorem is identity, which states that when-
ever A true is assumed as a hypothesis, we may conclude it. The following theorem
captures this generalization of the (init) rule.

Theorem 3.2 (Identity). For each formula A, Γ, A
K
−→ A.

Proof (Outline). By induction on A.

Another theorem of interest for DTL0 is subsumption, which states that contexts
lower in the order � allow more provable formulas.

Theorem 3.3 (Subsumption). If Γ
K
−→ A and K � K ′, then Γ

K′

−−→ A.

Proof (Outline). By induction on the given derivation of Γ
K
−→ A.

Finally, we prove equivalence of the sequent calculus and the Hilbert-style system.

Theorem 3.4 (Equivalence). Γ
K
−→ A if and only if ⊢ K says (Γ ⊃ A).

Proof (Outline). In each direction by induction on the given derivations. For proving
the “only-if” clause, we have to generalize the Hilbert-style system to allow hypothesis
and prove the deduction theorem. This is done in the usual way.

Observe that there is no equivalent of ⊢ B in the sequent calculus unless B has the
form K says A. In this sense, the above theorem actually embeds the sequent calculus
into the Hilbert-style system. While it is possible to recover the entire Hilbert-style
system in the sequent calculus by adding non-indexed hypothetical judgments Γ −→ A,
this extension seems uninteresting for authorization policies, and we omit it here.

4 Kripke Semantics for DTL0

Next we describe sound and complete Kripke semantics for DTL0. Although not directly
applicable to policies, Kripke semantics are an invaluable tool for proving properties of
the logic (e.g., [4, 24]). There is also hope that Kripke countermodels can be used as
proofs of failure, in case an authorization does not succeed. Our presentation of Kripke

7



semantics is inspired by work on the modal logic constructive S4 [7], and also uses some
ideas from work on Kripke semantics of lax logic [21, 24].

The distinguishing characteristic of our Kripke semantics are views [24]. With each
world w, we associate a set of principals θ(w) to whom the world is said to be visible.

Our correctness property is that ·
K
−→ A if and only if each world visible to K satisfies

A.2 In this manner, views allow us to distinguish reasoning in one context from that in
another. If K � K ′ then we require that any world visible to K ′ also be visible to K.
This ensures that context K validates fewer formulas than context K ′, and captures the
subsumption principle (Theorem 3.3).

We model falsehood by explicitly specifying in each frame a set F of worlds where ⊥
holds. These worlds are called fallible worlds [20, 21, 36]. We say that w |= ⊥ iff w ∈ F .
To model intuitionistic implication, we use a pre-order ≤ between worlds (as usual) and
say that w |= A ⊃ B iff for all w′, w ≤ w′ and w′ |= A imply w′ |= B. Finally, to model
the modality says, we use a principal-indexed binary relation ⊑K between worlds and
define:

w |= K says A iff either w ∈ F or for all w′, w′′, w ≤ w′ ⊑K w′′ implies w′′ |= A.

The clause w ∈ F in the above definition is required to validate ⊥ ⊃ K says A. The
remaining definition is a generalization of satisfaction for �A from Kripke semantics of
constructive S4 [7]. To validate axiom (4), we stipulate that ⊑K ;≤ be a subset of ⊑K .3

Both the use of a pre-order to model intuitionistic implication, and the use of different
binary relations to model each modality are standard in modal logic. The novelty here
is the interaction of these relations with views. We require that ≤ preserve views, i.e.,
if w ≤ w′ and w be visible to K, then w′ also be visible to K. We also require that
whenever w ⊑K w′, w′ be visible to K. For example, in the definition of w |= K says A

above, w′′ would be visible to K. By forcing these restrictions, we ensure that the
semantics of all connectives except K says · can be defined without changing views. On
the other hand, the semantics of K says · shift the reasoning to worlds that are visible
to K. This subtle interaction between views and binary relations captures the exact
meaning of formulas in DTL0.

Definition 4.1 (Kripke Models). A Kripke model M for DTL0 is a tuple
(W, θ,≤, (⊑K)K∈Prin, ρ, F ), where

- W is a non-empty set of worlds (worlds are denoted w).

- θ : W 7→ 2Prin is a view function that maps each world w to a set of principals. If
K ∈ θ(w), we say that w is visible to K, else w is said to be invisible to K. We
often write WK for the set {w ∈ W | K ∈ θ(w)}. We require that:

2Throughout this section we use the sequent calculus of DTL0 to state correctness properties. Use of
the sequent calculus as opposed to the axiomatic system is partly a matter of personal taste and partly
a matter of technical convenience.

3We believe that this condition can be weakened to (⊑K ;≤) ⊆ (≤;⊑K) without affecting the cor-
rectness of the Kripke semantics, but have not verified that this is the case.
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(View-closure) K ∈ θ(w) and K ′ � K imply K ′ ∈ θ(w).

- ≤ is a pre-order on W called the implication relation. We require that:

(Imp-mon) w ≤ w′ imply θ(w) ⊆ θ(w′).

- For each K, ⊑K is a subset of W × WK called the modality relation. We require
that:

(Mod-refl) If w ∈ WK , then w ⊑K w.

(Mod-trans) ⊑K be transitive.

(Mod-closure) w ⊑K w′ and K ′ � K imply w ⊑K′ w′

(Commutativity) If w ⊑K w′ ≤ w′′, then w ⊑K w′′.

- ρ : W 7→ 2AtomicFormulas is a valuation function that maps each world to the set of
atomic formulas that hold in it. We require that:

(Rho-her) P ∈ ρ(w) and w ≤ w′ imply P ∈ ρ(w′).

- F ⊆ W is the set of fallible worlds. We require that:

(F-her) w ∈ F and w ≤ w′ imply w′ ∈ F .

(F-univ) w ∈ F imply P ∈ ρ(w)

Definition 4.2 (Satisfaction). Given a model M = (W, θ,≤, (⊑K)K∈Prin, ρ, F ), and a
world w ∈ W , the satisfaction relation w |= A (world w satisfies formula A) is defined
by induction on A as follows.

w |= P iff P ∈ ρ(w).

w |= A ∧ B iff w |= A and w |= B.

w |= A ∨ B iff w |= A or w |= B.

w |= ⊤.

w |= ⊥ iff w ∈ F .

w |= A ⊃ B iff for all w′, w ≤ w′ and w′ |= A imply w′ |= B.

w |= K says A iff either w ∈ F or for all w′, w′′, w ≤ w′ ⊑K w′′ implies w′′ |= A.

We say that a principal K validates A in model M (written M |=K A) if for each
world w ∈ WK in M , it is the case that w |= A. The Kripke semantics defined above
are sound and complete in the following sense.

Theorem 4.3 (Soundness and Completeness). ·
K
−→ A in the sequent calculus if and

only if for each Kripke model M , M |=K A.
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Soundness (“only if” direction) follows by an induction on the given sequent calculus
proof. We must generalize the statement to allow non-empty hypotheses. The proof
of completeness (“if” direction) uses a canonical model construction, which we omit
here. The construction generalizes Alechina et al’s construction of canonical models for
constructive S4 [7].

DTL0 as a Generalization of Constructive S4

In the special case where there is only one principal (say ℓ), DTL0 reduces to the modal
logic constructive S4. The sole modality ℓ says A behaves exactly like the necessitation
modality �A. The sequent calculus of Figure 1 reduces to a judgmental sequent calcu-
lus for constructive S4 (e.g., [25]). Similarly, the Kripke semantics reduce to those of
constructive S4 described by Alechina et al [7], with the exception that our treatment
of falsehood uses fallible worlds explicitly, and that DTL0 does not have a modality
corresponding to ♦. The following theorem is straightforward.

Theorem 4.4. In the special case where there is only one principal ℓ, the following are
equivalent:

1. ⊢ A treating ℓ says · as the � modality from constructive S4.

2.
ℓ
−→ A in the sequent calculus of Figure 1.

3. ⊢ ℓ says A in the axiomatic system of Section 2.

Even though DTL0 reduces to constructive S4 when there is only one principal, it is
very different from the multi-modal constructive S4 obtained by taking independent S4
� modalities (i.e., the logic S4⊗S4. . .⊗S4). For example, the latter logic validates
(K says K ′ says A) ⊃ K ′ says A, which DTL0 does not. In earlier work, we described
the use of this logic for modeling knowledge in authorization policies [25].

5 Related Work

Many authorization logics have been proposed in the past, all of which contain the
modality K says A [2, 3, 8–10, 15, 17, 19, 24–26, 29, 30]. The axioms and rules used
in these logics differ widely. The particular combination of rules used in DTL0 appears
to be novel. Perhaps most closely related to DTL0 is a proposal by Abadi in a survey
paper [2], where the axiom (K says A) ⊃ (K ′ says K says A) is suggested. says with this
axiom behaves very much like the defined connective publ in DTL0. In a recent paper,
Abadi studies connections between many possible axiomatizations of says, as well as
higher level policy constructs such as delegation and control [4].

Also related to DTL0 is work on languages for authorization (e.g., [11, 18, 27, 34]),
most notably the languages Soutei and Binder [18, 34]. Our use of the term “context”
is borrowed from the latter. Binder was also one of the earliest languages to explicitly
define a notion of exporting policies from one context to another, which is very similar to
publication of policies illustrated in Section 2. The pre-order � on principals draws on
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ideas from the Dependency Core Calculus [3, 5], where the modal indices are elements
of a lattice.

Our Kripke semantics, as well as the completeness proof, are based on those of
Alechina et al’s work [7] for constructive S4. View functions were used earlier by the au-
thor and Abadi to describe semantics of authorization logics with lax-like modalities [24].
Fallible worlds have been used in the past to explain intuitionistic logic [20, 36], and also
in semantics of lax logic [21]. It also appears to us that DTL0 may be closely related
to intuitionistic hybrid logics, and especially to the work of Chadha and others [16],
but further investigation is needed to make an explicit connection. The presentation of
the sequent calculus for DTL0 is inspired by Pfenning and Davies’ work on constructive
S4 [33], and more directly by earlier work of the author and others [25].

6 Conclusion

We have presented a new constructive authorization logic, which explicitly relativizes
hypothetical reasoning to the policies of individual principals. We have described the
proof-theory and Kripke semantics of the logic. In ongoing work, we are considering
extensions of the logic with first-order connectives, explicit time, and linearity to model
other policy motifs. We are also translating existing authorization logics and languages
for writing authorization policies to DTL0, with the goal of understanding relations
between the different formalisms.

There are several other avenues for future work. For instance, there seem to be
strong connections between DTL0 and hybrid logics. A useful generalization of DTL0

would be to internalize the pre-order � as a formula. Such an extension would allow us
to model delegation, along lines of the “speaks for” connective present in some autho-
rization logics [3, 6, 24, 28]. Although the proof-theory of such an extension is relatively
straightforward, it would be interesting to see its effects on Kripke semantics.
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