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Abstract

Recently, network coding (NC) emerged as a promising technology for significantly improving

throughput and energy efficiency of wireless networks, evenfor unicast communication. Often, NC

schemes are designed as an autonomous layer, independent ofthe underlying Phy and MAC capabilities

and algorithms. Consequently, these schemes are greedy, inthe sense that all opportunities of broad-

casting combinations of packets are exploited.We demonstrate that this greedy design principle may in

fact reduce the network throughput. This begets the need for adaptive NC schemes. We further show

that designing appropriate MAC scheduling algorithms is critical for achieving the throughput gains

expected from NC. In this paper, we propose a general framework to develop optimal and adaptive joint

NC and scheduling schemes. Optimality is shown for various Phy and MAC constraints. We apply this

framework to two different NC architectures: COPE, a schemerecently proposed in [11], and XOR-Sym,

a new scheme we present here. XOR-Sym is designed to achieve alower implementation complexity

than that of COPE, and yet to provide similar throughput gains.

Index Terms

Multi-hop wireless networks, network coding, throughput optimality

I. INTRODUCTION

Recently, network coding (NC) emerged as a promising technology for designing power

efficient and scalable schemes that provide optimized usageof the available bandwidth. Our
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aim is to investigate possible performance gains through NCand the optimal way of using

inter-session NC for unicast communication in multi-hop wireless networks.

Though NC was first applied mainly in the context of multicastin wired networks [1], [13],

and subsequently in wireless networks [16], [20], it is found to be particularly amicable for

enhancing the throughput (the number of packets delivered to the destination per unit time) of

wireless networks even for unicast applications [10], [11], [14], [22], [25], [28]. This is mainly

due to the broadcast property of wireless channel, meaning that a transmission from a node can

potentially be intercepted by all its neighbors.

The throughput gain via NC in case of unicast sessions is typically illustrated using the network

shown in Figure 1. Without NC, four transmissions are required to deliver one packet from each

of the sessions. Thus, a throughputλ is achievable if and only ifλ ≤ 1/4, i.e., if λ ≤ (>, resp.)

1/4, then there exists (does not exist, resp.) a scheduling scheme that arbitrates transmissions

in various slots such that the throughputλ is provided to each of the sessions. Now, with NC,

m XORs two packets, one from each session, and then broadcaststhe XOR-ed packet. Now,

nodesa andb recover the desired packet by XOR-ing the received packet from m with their own

packet. Thus, only 3 transmissions are required to deliver one packet from each of the sessions.

Clearly,λ is achievable iffλ ≤ 1/3. The throughput gain of NC is therefore 4/3 in this example.

The promise of potential throughput gain has instigated significant research in designing

efficient NC schemes for unicast communication in wireless networks. Following are the two

key features of the schemes proposed in the literature: (i) They advocate the use of NC each

time an opportunity to combine and broadcast packets is available. Indeed, the schemes are

designed to increase the number of NC opportunities throughbetter routing [25] and through

opportunistic listening [11]. Distributed algorithms arealso designed to identify certain structures

in the network topology so as to determine and exploit most ofthe NC opportunities [6], [19],

[29], [7], [21]. (ii) Network coding and scheduling schemesare designed separately. We advocate

caution in using these features. The main motivation of thispaper stems from the following

observation regarding the schemes with at least one of thesefeatures:Systems with NC may

have smaller throughputs than those without it.

This observation may seem counter-intuitive as previous work shows that one can only gain

by using NC, and the gain can only increase if more opportunities to combine packets are used.

We show that if NC is used each time an opportunity arises or ifthe scheduling scheme does
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not account for NC, then the system throughput may be smallerthan that achieved without NC.

This calls for a joint design of scheduling and NC strategies. This paper aims at developing a

framework that enables this joint design. Specifically, ourcontributions are as follows:

• We first explain why NC can deteriorate throughput when it is not jointly designed with

scheduling, or when NC opportunities are all exploited (seeSection II).

• We then propose a general framework that allows us to characterize the throughput region (the

set of achievable throughputs of the various sessions) of networks with NC, and to design optimal

and adaptive joint NC and scheduling schemes. The schemes are optimal as they provide the

required throughputs, whenever possible. The schemes are adaptive as they take the scheduling

and NC decisions based on the current system state only, and do not require the knowledge of

channel and arrival statistics a priory (see Section IV).

• We show how our framework can be applied to COPE, a NC scheme recently proposed for

unicast sessions in wireless networks [11] (see Section V).

• We also propose a novel NC scheme, XOR-Sym, which exhibits a lower computational

complexity than that in COPE. Under XOR-Sym, packets have tobe decoded at their destinations

only, not at intermediate nodes (see Section VI). In spite ofthis additional constraint, we show

that XOR-Sym and COPE may provide similar throughput gains (see Section VII).

Because of the space constraints, proofs for all the resultswill be presented in [4]. However,

in this submission, we include the proofs in the appendix to facilitate the review process.

II. CAN NC DETERIORATE THENETWORK THROUGHPUT?

Here, we illustrate, using three representative examples,the fact that if NC is used each time

an opportunity arises or if the scheduling scheme does not account for NC, then the throughput

can be smaller than that achieved without NC. In the first example, we fix the scheduling

scheme (it provides maximum throughput when NC is not implemented) and demonstrate how

applying NC reduces the system throughput. This indicates that NC and scheduling should be

jointly considered. In the last two examples, we compare: (a) the throughput under an optimal

scheduling without NC; (b) the throughput of the same systemunder an optimal scheduling

adapted to NC. The scheduling in (b) is optimal subject to using NC at each opportunity. We

show again that the throughput decreases when NC is used. This conclusion is more striking

than that of the first example as here the scheduling scheme isaware of the NC capabilities.
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Example 1 : Consider the network of Figure 1. Let the links experience random fading.

Consequently, their rates oscillate randomly and independently between 1 andN : R1(t) and

R2(t) are independent and identically distributed (i.i.d.), andequal to 1 with probability (w.p.)

1/2, and toN w.p. 1/2. With NC, for correct reception at botha and b, m has to broadcast at

rate min{R1(t), R2(t)}. First, consider the system without NC and with the following optimal

opportunistic scheduling: IfR1(t) = N = R2(t), schedule link(a, m) w.p. 1/2 and(b, m) w.p.

1/2; if R1(t) = 1 = R2(t), schedule each link w.p. 1/4; if(R1(t), R2(t)) = (N, 1), schedule

(a, m) w.p. 1/4 and(m, a) w.p. 3/4; if (R1(t), R2(t)) = (1, N), schedule(b, m) w.p. 1/4 and

(m, b) w.p. 3/4. With this scheme, a throughputλ is achievable iffλ ≤ (1 + 3N)/16. When

NC is implemented, nodem broadcasts XOR-ed packets whenever either(m, a) or (m, b) is

scheduled in the above scheme. For the above scheduling scheme with NC,λ is achievable iff

λ ≤ 1/2 asm always transmits at rate 1 when scheduled. Note that applying NC strictly reduces

the throughput ifN > 7/3.

We make the following two observations on Example 1. (1) Assume that the ratesR1(t) = r1

andR2(t) = r2 are not time varying, and without loss of generality, letr1 ≤ r2. Then, irrespective

of the scheduling used, NC provides a higher throughput thanthat without it. This is because

with NC, packets fromm to b (faster link) are transmitted along with packets fromm to a (slower

link). Since the transmissions fromm to a have to happen in any case, NC saves transmissions

from m to b. (2) With NC, there exists a scheduling scheme that can provide a throughputλ

iff λ ≤ (1 + 3N)/12 (which is higher than the achievable throughput without NC). The optimal

scheme is as follows: If(R1(t), R2(t)) = (N, 1), then schedule(a, m); if (R1(t), R2(t)) = (1, N),

then schedule(b, m); if (R1(t), R2(t)) = (N, N), then broadcast XOR-ed packets fromm; if

(R1(t), R2(t)) = (1, 1), then schedule transmissions from nodes uniformly at random.

From the first observation, it may seem that if the link rates are constant, then NC improves

the throughput performance for any topology. And from the second observation, it may seem

that if an optimal scheduling with NC is used, then again the throughput increases. But, in the

following example, we show that both statements do not hold.

Example 2 :We now provide an example illustrating why taking all opportunities to combine

packets may result in throughput reduction, even when an optimal scheduling is used. Consider,

in Figure 2, a simple extension of the network shown in Figure1. Let R1(t) = 2 andR2(t) = 1

for all t, i.e., the rates are fixed but different. Now, for correct receptions at botha and b, m
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has to broadcast combined packets at rate 1. Let the throughput requirements beλ = λ1 = 2/3

andλ2 = 1/3. We claim that the desired throughputs can be provided if NC is not used, while

they can not be guaranteed if NC is used. Without NC, to provide the desired throughputs,

we can use a scheduling scheme that activates the links(a1, a2) and (m, b) simultaneously and

(a1, a2) and(b, m) simultaneously in 1/3 fraction of slots each, and activates(b1, b2) and(m, a)

simultaneously and(b1, b2) and (a, m) simultaneously in 1/6 fraction of slots each. Now we

prove that these throughputs can not be achieved using NC. Indeed, sinceλ1 = 2/3, (a1, a2) has

to be active in at least 2/3 fraction of slots. As a consequence, (a, m) and (m, a) can be active

in at most 1/3 fraction of slots. Thus, to provide a throughput of 1/3 to each of the two sessions

that use(a, m) or (m, a), these links must transmit at a rate no less than 2 when active. This is

impossible if NC is used as thenm broadcasts XOR-ed packets at rate 1 only.

From the above example it may seem that the main reason for reduction in throughput with NC

is that the links have different capacities, and hence a broadcasted packet has to be transmitted

at a lower rate (in this example,m broadcasts at the rate of 1 packet/slot, while the capacity of

the link (m, b) is 2 packets/slot). In the next example, we demonstrate thatthe throughput with

NC can be less than that without NC even when all the links havethe same capacity.

Example 3 : Consider a wireless network shown in Figure 3. Let the throughput require-

ments beλ = 1/4 andλ1 = λ2 = 1/2. We claim that the desired throughputs can be provided

if NC is not used, while they can not be guaranteed if NC is used. Without NC, to provide the

desired throughputs, we can use a scheduling scheme that activates the links(a1, a2) and(m, b)

simultaneously and(a1, a2) and(b, m) simultaneously in 1/4 fraction of slots each, and activates

(b1, b2) and(m, a) simultaneously and(b1, b2) and(a, m) simultaneously in 1/4 fraction of slots

each. Now we prove that these throughputs can not be achievedusing NC. Since,λ1 = λ2 = 1/2

and (a1, a2) and (b1, b2) can not be active simultaneously, at least one them has to be active in

each slot to guarantee the required throughput (necessary condition). But if NC is used then

both a1 andb1 have to be silent. Thus, the required throughput can not be guaranteed.

In all previous examples, we have considered networks whereNC does not useopportunistic

listening(OL). OL refers to the ability of nodes to overhear packets transmitted in their neighbor-

hood even when these packets are not meant for them. To see howOL helps, refer to Figure 4.

Here, whena (resp.b) transmits a packetPa (resp.Pb) to m, b′ (resp.a′) can overhear it. Thus

as in Figure 1, nodem can broadcast the XOR-ed packetPa⊕Pb to botha′ andb′, who recover
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their respective packets by XOR-ing the broadcasted packetwith the overheard packet. Using

similar arguments as those used in Example 3, it can be shown that the network of Figure 4 can

support the throughputsλ = 1/4 andλ1 = λ2 = 1/2 without NC, while it cannot when NC and

OL are used. Thus, NC does not guarantee throughput improvement even when OL is used.

A key feature used in the above examples is that when an XOR-edpacket is transmitted to

multiple receivers, all the other nodes in the neighborhoodof the receivers have to remain silent:

the use of NC reduces the spatial reuse in the network. Hence,for deciding whether to use NC,

one has to evaluate the trade-off between the reduction in capacity due to the reduction in the

spatial reuse and the capacity improvement due to the broadcast of XOR-ed packets.

Summarizing the insights from the above examples, Example 1shows that NC and scheduling

should be jointly designed, since using NC with arbitrary scheduling may result in performance

losses. Examples 2 and 3 show that the decision to use NC has tobe a function of many

parameters including the network topology, the link rates and the throughput requirements of

the various sessions. This calls for the design of joint NC and scheduling schemes that adapt

to the network topology and link rates and provide the required throughput to each session, if

doing so is at all possible.

III. A F RAMEWORK FOR DESIGNING JOINT NC AND SCHEDULING

A. Network Topology and Sessions

Consider a multi-hop wireless network, represented as a directed graphG = (V, E), where

V and E denote the set of nodes and links, respectively. The networkis used by sessions to

transport data packets. A sessionA is characterized by a doublet(s(A), d(A)) ∈ V × V , where

s(A) and d(A) denote the source and the destination, respectively, ofA. Let S denote the set

of all sessions. Time is slotted.

We assume that the exogenous packets corresponding to the sessionA arrive ats(A) as per

a stochastic process{λA(t)}t≥1, where λA(t) denote the number of packets arriving in slot

t. Packets have the same length. Exogenous arrivals across the slots are assumed to be i.i.d.

Moreover, assume thatλA(1) ≤ c < ∞ for every A and defineλA = E[λA(1)]. Packets are

stored in infinite buffers until served.

Packets of sessionA ∈ S are routed froms(A) to d(A) in, possibly, multiple hops. We

consider fixed routing, and denote byRA the route for sessionA. This route is an ordered
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subset ofV , RA = {a0, a1, . . . , aNA
}, such thata0 = s(A) andaNA

= d(A). Let us denote by

eA
k = (ak, ak+1) for everyk ∈ {0, . . . , NA − 1}. Furthermore, for everyi ∈ RA and i 6= s(A),

let si(A) denote the node preceding nodei on the route of sessionA, i.e., packets of sessionA

use link (si(A), i). Similarly, for everyi 6= d(A), di(A) denotes the node after nodei on route

of sessionA. For each sessionA ∈ S, each nodei ∈ V maintains a queueqi,A to store packets

corresponding to this session. All the queues are served in First In First Out (FIFO) order. At the

beginning of slott, the queue length ofqi,A is denoted byQi,A(t), and its Head of Line (HoL)

packet byPi,A(t). Finally, we say that sessionsA andA′ are symmetric sessions ifs(A) = d(A′)

and d(A) = s(A′). Note that the sets of links traversed by the packets of symmetric sessions

may not be the same. The notations are illustrated in Figure 5.

B. MAC Layer and Scheduling Policies

In networks without NC, a scheduling policy at MAC layer decides, in each slot, which

links should be activated and which sessions should be served on these links. In networks with

NC, a scheduling policy has to additionally decide whether and how NC should be used. In

other words, the policy imposes which nodes should use NC, and which packets should be

encoded at these nodes. In this paper, we restrict our attention to NC schemes that allow bit-

wise XOR of packets only. Thus, the NC scheme defines the set ofpossible XORs at each

node; but, it is the scheduling scheme that decides whether and when to perform these XORs.

For illustration, consider Figure 2. Here, NC allows XOR-ing the packets from nodesa and b

at nodem, but the scheduling policy will arbitrate whether and when to use this facility. For

example, ifλ = λ1 = 2/3 and λ2 = 1/3, then a scheduling policy that provides the required

throughputs to all the sessions will not XOR packets atm (refer to Example 2); but ifλ = 4/3

and λ1 = λ2 = 1/3, then a scheduling policy that provides the required throughputs to all the

sessions will XOR packets atm.

Let L denote the set ofL feasible scheduling decisions, or schedules. Each elementof L

defines (1) the links that are activated, (2) the sessions that are served on these links, and (3)

the sessions whose packets are XOR-ed together.

Assumption 1:If ℓ ∈ L, then everyℓ1 such that the set of active links underℓ1 is a subset of

that underℓ also belongs toL.

The exact nature ofL depends on the MAC and Phy layer constraints, and also on the NC
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scheme used. We provide the description ofL after presenting the NC schemes considered

in Sections V and VI. But, for illustration, let us assume that the NC scheme XORs packets

corresponding to symmetric sessions only. Then, each schedule ℓ ∈ L is a subset ofE × S,

whereS = S ∪{A⊕A′, A ∈ S}. Notation(e, A) ∈ ℓ means that the linke = (i, j) is active and

serves queueqi,A; (e, A ⊕ A′) ∈ ℓ means thate = (i, j) is active and serves XOR-ed packets

from queuesqi,A andqi,A′. The MAC and Phy layer constraints further restrict the choice of valid

schedules. For example, if the RTS/CTS mechanism is used in IEEE 802.11-based networks and

link e = (i, j) is scheduled, then no node in theneighborhoodof i and j can be scheduled.

Thus,L can not contain a schedule that allows nodes in the neighborhood of i andj to transmit,

while simultaneously activating link(i, j). Finally, the set of feasible schedules in a given slot

has to reflect the fact that the transmissions from empty queues can not be scheduled.

Definition 1 (Scheduling Policy):A scheduling policy∆ is an algorithm that chooses a fea-

sible scheduleℓ ∈ L in each slott.

To describe the system states under policy∆, we use the superscript∆: for example,ℓ∆(t)

will denote the schedule chosen by∆ in slot t; Q∆
i,A(t) will denote the length ofqi,A in slot t

under∆. Let CL denote the class of scheduling policies∆ such thatℓ∆(t) ∈ L for all t. The

classCL also includes theoff-line policies that arbitrate scheduling by taking into account past,

present and even future network states.

C. The Phy Layer

We categorize the wireless systems into two classes, namely, systems with fixed link rates and

systems with adaptive link rates.

1) Fixed Rate Systems:In such systems, the transmitter and receiver of each link negotiate

the link rate during network set-up, and then always use thisrate to communicate. Examples

of such systems are networks based on the IEEE802.11 standards, where the rate control is

performed rarely (at much longer time scale than that of packet transmissions). LetRe denote

the rate negotiated on linke. The variations in channel quality induced by fading and interference

can be captured through packet error probabilities (PEP). Specifically, the PEP is the probability

that the SINR is above certain level. We denote bypeA
k
(ℓ) the PEP on linkeA

k for sessionA

under scheduleℓ. The PEP also depends ont if the model accounts for fading. We assume that
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peA
k
(ℓ) = 1, if sessionA is not scheduled oneA

k underℓ. Now, we give an example to show how

the PEP is related to the interference model.

Example 4: The Protocol Model:This model is a generalization of that considered in [9].

A transmission on linke = (i, j) at the negotiated rate is successful if none of the nodes in the

setKe is transmitting. Typicallyk ∈ Ke, if the distance fromk to j is sufficiently small. As a

consequence,pe(ℓ) = 0, if all nodes inKe are inactive underℓ; andpe(ℓ) = 1 otherwise.

2) Adaptive Rate Systems:In systems with a more elaborated Phy layer, link rates are adapted

to the channel conditions and interference (e.g., by using advanced coding capabilities such as

Hybrid ARQ). We denote byReA
k
(ℓ) the rate of linkeA

k for sessionA under scheduleℓ. The link

rate also depends ont if the model has to account for fading. We assume thatReA
k
(ℓ) = 0 if

sessionA is not scheduled oneA
k underℓ. Here is an example to show how the link rates relate

to the interference model.

Example 5: The SINR-rate Model:Usually the link rate is related to the SINR at the

receiver, and it is often well approximated by Shannon formula (up to a multiplicative constant).

For example, consider the network of Figure 5, and assume that all nodes transmit at full power,

say 1, when scheduled. If linkseA
1 = (1, 2) and eA′

1 = (3, 4) are active underℓ in slot t,

then, the rate on linkeA
1 is: ReA

1
(ℓ, t) = W log

(
1 + G12(t)

N0+G41(t)

)
, whereGij(t) is the channel

gain from i to j in slot t, N0 is the noise power, andW is the bandwidth. Now, if node2

broadcasts XOR-ed packet to nodes1 and3 underℓ in slot t, then the rates on these links are:

ReA
2
(ℓ, t) = R

eA′

3
(ℓ, t) = W log

(
1+min

{
G21(t)

N0
,G23(t)

N0

})
.

Assumption 2:Let ℓ1 be such that the set of active links inℓ1 is a subset of that inℓ. Then,

the rate (PEP, resp.) on every active link inℓ1 is greater (smaller, resp.) than or equal to that

on the same link inℓ. (Assumption 2 is typically valid in wireless networks as activating fewer

links reduces interference.)

D. Design Objectives

Our aim is to proposeoptimal joint adaptive NC and scheduling schemes. Next, we introduce

various definitions and then state this optimization problem.

Recall that the set of valid schedulesL accounts for the possible NC opportunities, i.e., for the

NC scheme. Most of the proposed NC schemes, e.g. COPE, are designed under the constraint

that XOR-ed packets must to be decoded at the next hop. Here, we relax this constraint. Thus,
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encoded packets can be further XOR-ed with other, possibly encoded, packets. Hence, we have

to carefully study the decodability of packets. For scalability, we impose that packets are decoded

on the fly: if the NC scheme decides that an XOR-ed packetP has to be decoded at nodei, then

i should be able to decodeP immediately after it receivesP . Thus, the NC schemes considered

have to be correct in the following sense.

Definition 2 (Correctness):Let P be a packet of sessionA. It is created inqs(A),A at time

t. Assume that the packets ofA are to be decoded at nodei ∈ RA. Also, let G = {ℓ(u)}u≥t

denote a sequence of valid schedules after timet such that the first packet containingP (say

P ′) arrives ati in slot tG. Then, we say that the NC scheme is correct, ifi can decodeP ′ to

recoverP immediately upon arrival ofP ′ for every valid scheduling sequenceG.

Intuitively, the notion of correctness decouples the NC scheme and the scheduling strategy.

Note that NC scheme only affects the set of valid schedulesL. But, onceL is defined, NC

oblivious scheduling policy can be designed (see Definition1). Now, if the NC scheme is correct,

then each packet of every session can be recovered at its respective destination irrespective of

the scheduling decisions as the packets of each sessionA must be decoded atd(A). Next, we

define the performance measures of interest.

Definition 3 (Stability): The system is stable under∆, if supt≥1{E[Q∆
i,A(t)]} < ∞ for every

i ∈ V and A ∈ S. An arrival rate vectorλ = [λA : A ∈ S] is said to be stabilizable by∆, if

the system is stable under∆ for λ.

Stability ensures finite expected delay for every packet. Moreover, in practice, the buffer

capacity is finite, though large. Here, stability guarantees limited losses due to buffer overflow.

Definition 4 (Throughput Region):The throughput region of∆ is the setΛ∆ of all the sta-

bilizable rate vectors by∆. The throughput region of the class of scheduling policiesCL is

ΛL = ∪∆∈CLΛ∆.

Definition 5 (Throughput Optimality):A policy ∆ is said to be throughput optimal in class

CL, if Λ∆ = ΛL.

IV. OPTIMAL SCHEDULING THEOREM

Now, we propose a throughput optimal policy within the classCL, for any given set of schedules

L. In fact, we obtain a more general result: we provide a throughput optimal policy that minimizes

certain cost. The cost may, for example, reflect the power consumption in the system, or as
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explained in Section VII, may also be used to control the packet header size. We use the results

derived here to obtain the throughput optimality of the NC and scheduling schemes considered

in Sections V and VI.

Let f(ℓ) denote the cost if scheduleℓ is chosen. We assume that this cost function satisfies:

Assumption 3:The functionf(·) is bounded, and for everyℓ1 such that the set of activated

links underℓ1 is a subset of that underℓ, f(ℓ1) ≤ f(ℓ).

Clearly, Assumption 3 holds iff(ℓ) is the total power required when scheduleℓ is chosen.

Now let the arrival rate vector beλ. Then, the cost incurred under scheduling policy∆ is:

F∆(λ) = lim supT→∞
1
T

∑T

t=1 f(ℓ∆(t)). Let CL(λ) denote the set of all policies that stabilizes

λ using schedules inL. Then, defineF CL(λ)
min = inf∆∈CL(λ){F

∆(λ)}.

Definition 6 (ǫ-Optimality): A policy ∆ is said to beǫ-optimal for a givenλ, if ∆ ∈ CL(λ),

andF∆(λ) ≤ F
CL(λ)
min + ǫ.

We propose a policy that is both throughput optimal andǫ-optimal. Due to space limitations,

we obtain the results only for adaptive rate systems. Similar results can be obtained for fixed

rate systems by replacingReA
k
(ℓ) with ReA

k
(1 − peA

k
(ℓ)) in the following. We analyze systems

without random fading. The analysis can be generalized to account for fading, see [4].

A. Throughput Region

We first characterize the throughput region ofCL. Let XL denote the set of all arrival rate

vectorsλ for which there exists a vectorα = [α1 · · · αL] such that for allℓ, αℓ ≥ 0,
∑

ℓ∈L αℓ =

1, and,
∑

ℓ∈L αℓReA
k
(ℓ) ≥ λA, ∀ k < NA and∀A ∈ S. Let X ◦L be the set ofν such that there

existsλ ∈ XL with ν < λ coordinate-wise. Next, we characterize the throughput region of CL.

Theorem 1:The throughput regionΛL satisfiesX ◦L ⊆ ΛL ⊆ XL. In words, if λ ∈ X ◦L, then

there exists∆ ∈ CL such thatλ ∈ Λ∆, but if λ 6∈ XL, thenλ 6∈ Λ∆ for every∆ ∈ CL.

B. Optimal Policy

Now, we define a parameterized back-pressure based policy denoted by∆∗(κ), and prove

its throughput optimality andǫ-optimality. Let∂Qk,A(t) denote the back-pressure alongeA
k , i.e,

∂Qk,A(t) = Qak,A(t) − Qak+1,A(t). At time t, ∆∗(κ) chooses the schedule defined by:

ℓ∆∗(κ)(t) = arg max
ℓ∈L

{
∑

A,k

ReA
k
(ℓ)∂Qk,A(t) − κf(ℓ)

}
. (1)
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Theorem 2:For all κ < ∞, ∆∗(κ) is throughput optimal inCL. Moreover, for allǫ > 0, there

existsκ̂ > 0 such that for allκ > κ̂, ∆∗(κ) is ǫ-optimal.

The problem of minimizing cost subject to stability has beenstudied previously in [5], [18],

[26]. However, our result is not a consequence of the resultsderived there. In [5], [18], the authors

analyze one hop sessions only. So, the queueing process is driven primarily by the exogenous

arrivals that are independent of the scheduling decisions.Here, however, the queueing process is

affected by the chosen schedule as the arrivals inqak ,A are the departures fromqak−1,A. In [26],

the author has studied multi-hop networks, but under the following assumption: if the set of

active links underℓ1 is a subset of that underℓ, then for all linkseA
k activated under bothℓ1 and

ℓ, ReA
k
(ℓ1) = ReA

k
(ℓ). This assumption does not hold in typical wireless networksas the link rates

depend on the interference caused by the transmissions on other active links. Thus, typically,

ReA
k
(ℓ1) > ReA

k
(ℓ). In view of these differences, though the nature of our optimal policy ∆∗(κ)

is similar to those proposed earlier, the proofs from [5], [18], [26] do not hold here.

Like many other back-pressure based policies proposed in literature [5], [18], [27], [26],∆∗(κ)

is centralized and has high computational complexity. Fortunately, back-pressure based policies

are extensively studied, and many schemes for reducing their complexity [5] and for distributed

implementations [3], [8], [17], [24] have been proposed. Similar approaches can be developed

for the joint NC and scheduling scheme proposed here.

V. OPTIMAL SCHEDULING FOR COPE

Here, we apply the general framework developed in Section IVto provide an optimal schedul-

ing strategy adapted to COPE, a NC scheme recently introduced in [11].

A. Overview of COPE

COPE is a practical NC scheme designed for improving the throughput of unicast sessions

in networks with arbitrary topology. In COPE, nodes send XOR-ed combinations of packets

that can be decoded at the next hop: a nodei sends an XOR-ed packetP1 ⊕ . . . ⊕ Pm only to

nodes that already havem − 1 of m packetsP1, . . . , Pm. When a nodej receives an encoded

packet, it immediately decodes it. A nodej possesses them−1 required packets in two possible

scenarios: (i) these packets have been transmitted byj or (ii) j has intercepted these packets

by listening to the transmissions (not meant forj) from its neighboring nodes; this is referred
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to asopportunistic listening(OL). Scenario (ii) is possible because of the broadcast nature of

the wireless channel. Here, we do not consider OL. A detaileddiscussion on advantages and

limitations of OL is presented in [4].

Locally Symmetric Sessions:Since, we do not allow OL, a node can have the packets

required to decode an encoded packet only if (i) is satisfied.Let packets of sessionsA andB be

routed throughi. These sessions arelocally symmetricat i if di(A) = si(B) andsi(A) = di(B).

Here, i can XOR packets from sessionsA and B, and broadcast the XOR-ed packet todi(A)

anddi(B). The latter nodes will be able to decode the XOR-ed packet as (i) holds.

As illustrated in Example 1, COPE, associated with an arbitrary scheduling policy, may not

provide any throughput gain. This calls for the design of a joint NC and scheduling policy that

will guarantee that the gains expected from COPE can actually be met. To this aim, we apply

the framework of Section IV and derive a throughput optimal policy adapted to COPE.

B. An Optimal Scheduling for COPE

Let us first characterize the set of valid schedulesLCOPE compatible with COPE. Note that

COPE is correct only if at most two packets corresponding to locally symmetric sessions are

XOR-ed (Theorem 4.1 of [11]). Hence, the set of schedules compatible with COPE is defined

as follows: A scheduleℓ ∈ LCOPE is defined as a subset ofE = ∪e∈E(e × S(e)), where

S(e) = S ∪ {A ⊕ B : A, B locally symmetric ati, e = (i, di(A))}. Notation(e, A) ∈ ℓ means

that the linke = (i, j) is active and serves queueqi,A; (e, A⊕B) ∈ ℓ means that linke = (i, j)

is active and serves XOR-ed packets from locally symmetric sessionsA andB. Now, schedule

ℓ belongs toLCOPE if it satisfies the following constraints:∀A ∈ S and∀e = (i, di(A)),

• if (e, A) ∈ ℓ, then for allB, (e, A ⊕ B) /∈ ℓ;

• if (e, A ⊕ B) ∈ ℓ, then(e′, A ⊕ B) ∈ ℓ wheree′ = (i, di(B)), and(e, A) /∈ ℓ, (e′, B) /∈ ℓ.

In addition to the above constraints, any scheduleℓ in LCOPE has to satisfy the Phy and MAC

constraints as illustrated in Section III-B.

Consider the scheduling policy∆∗COPE that depending on the queue lengths and link rates,

selects, in slott, scheduleℓ defined as follows:

ℓ∆∗

COPE(t) = arg max
ℓ∈LCOPE

{
∑

A,k

ReA
k
(ℓ)∂Qk,A(t)

}
.
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We prove that∆∗COPE has the largest throughput region within the classC1 of the joint NC

and scheduling policies with correct NC and that do not use OL.

Theorem 3:The policy∆∗COPE is throughput optimal inC1.

Proof: Since any correct NC scheme without OL can XOR two packets from locally

symmetric sessions only, any∆ ∈ C1 selects schedules fromLCOPE. Thus, from Theorem 2,

∆∗COPE is throughput optimal inC1.

C. Throughput gains of COPE

In general, quantifying the throughput gain achieved with NC is difficult as it depends on

many parameters that include the network topology, the underlying Phy and MAC layers and

the relative throughput requirements of the sessions. We define the throughput gain by comparing

the throughput region of the set of scheduling policies withNC, and the throughput regionΛ0

of policies without NC. The gain achieved by COPE for the network of Figure 5 with a Phy

layer satisfying the Protocol model is illustrated in Figure 6. There,G(u) is the gain in direction

u, whereu is the unit vector representing the relative throughput requirements of the sessions

A andA′. The throughput gain is then defined asmaxu G(u).

In [22], [23], the authors characterize the maximum throughput region of 1D networks with

NC. In [15], [12], [2], upper bounds on the throughput gains for large random networks are

derived. Characterizing the throughput gain with NC for more general topologies is quite chal-

lenging. However, even for an arbitrary network, one can useTheorem 1 to characterize the

throughput region with or without NC, and numerically compute the throughput gain. A similar

approach is used in [25].

VI. XOR-SYM : A SIMPLIFIED NC SCHEME

In this section, we design a NC scheme that requires a minimalchange in the present network

architecture and yet provides similar performance benefitsas COPE. To this aim, we enforce

the following constraint on the type of NC used in the network.

C1: Decoding at Destination Only:A packet corresponding to sessionA is decoded at

d(A) only, and not at any other node.

Many of the NC strategies proposed in the literature (e.g., COPE) require that packets are

decoded at each node. Thus, each node has to maintain the packets received and transmitted
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successfully in the past in order to decode the packets that will arrive in the future. Moreover,

whenever an encoded packet arrives, in order to decode it, a node has to perform look-up

in its buffer for all but one packets that compose the incoming packet. The look-up may be

computationally expensive. We eliminate this potential bottleneck for scalability of NC schemes

by imposing the constraint C1. Intermediate nodes can then remain simple: they only need to

perform bit-wise XOR of HoL packets; the required additional functionality can be incorporated

without adversely affecting scalability. In the following, we propose XOR-Sym, a correct NC

scheme satisfying the constraint C1 and yet providing throughput benefits.

A. The XOR-Sym coding scheme

Figures 7 and 8 provide the pseudo codes for XOR-Sym in the cases of fixed and adaptive

rate systems. The key feature of XOR-Sym is that it XORs packets corresponding to symmetric

sessions only. Contrast this with COPE which XORs packets corresponding tolocally symmetric

sessions at each node. Due to space limitations, we only describe XOR-Sym for fixed rate

systems. Consider the network of Figure 5, whose Phy layer follows the Protocol model and with

negotiated link rates all equal to 1 packet/slot (refer to Figure 7 for systems with heterogeneous

rates). If the scheduling scheme decides to serve sessionA only on link (2, 3) in slot t, then

node 2 transmitsP2,A(t). If P2,A(t) is successfully received at node 3, then node 2 discards this

packet and replace it with a new packet at the HoL position inq2,A. P2,A(t) is queued at the end

of q3,A. If P2,A(t) is not successfully received at node 3, then it is retained atthe HoL position

in q2,A. Now, suppose that the scheduling scheme decides to broadcast an XOR-ed packet from

node 2 on links(2, 1) and (2, 3). Then, 2 broadcastsP = P2,A(t) ⊕ P2,A′(t). Three cases arise.

(i) Both 1 and 3 receiveP successfully. Then, 2 discards these packets, and new packets come

to the HoL positions inq2,A andq2,A′. P is decoded at node 1, while it is queued at the end of

q3,A. (ii) Only one of the intended recipients, say node 3, receivesP correctly. Then,P2,A(t) is

discarded fromq2,A and is replaced by a new packet at the HoL position ofq2,A, while P2,A′(t)

is retained at the HoL position inq2,A′ . P is queued at the end ofq3,A. The case when only 1

receivesP correctly is similar. (iii) Both 1 and 3 do not receiveP correctly. Then, bothP2,A(t)

andP2,A′(t) are retained at HoL positions inq2,A andq2,A′ .

Since intermediate nodes do not decode packets, encoded packets can be XOR-ed again. For

example, in (ii) above, the XOR-ed packetP is queued inq3,A as it is. WhenP comes to the
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HoL position in q3,A, it can be XOR-ed again with a packet fromq3,A′ . Thus, it is not clear

whether the destinations can decode the received packets. In the following lemma, we show that

XOR-Sym is correct given that: for each sessionA, s(A) keeps all the packets ofA that it has

already transmitted, andd(A) keeps all the packets ofA that it could correctly decode.

Lemma 1:The NC scheme XOR-Sym is correct.

B. An Optimal Scheduling for XOR-Sym

Since XOR-Sym combines packets only from symmetric sessions, the set of all possible

schedulesLXOR−Sym is as follows. A scheduleℓ ∈ LXOR−Sym is a subset ofE × S, where

S = S ∪ {A ⊕ A′, A ∈ S}. In addition, if ℓ ∈ LXOR−Sym, it satisfies the following constraints:

• if (e, A) ∈ ℓ, then(e, A ⊕ A′) /∈ ℓ;

• if (e, A ⊕ A′) ∈ ℓ, then(e′, A ⊕ A′) ∈ ℓ wheree′ = (i, di(A
′)), and(e, A) /∈ ℓ, (e′, A′) /∈ ℓ.

Now, consider the scheduling policy∆∗XOR−Sym that, depending on the queue lengths and link

rates, selects, in slott, scheduleℓ defined as follows:

ℓ∆∗

XOR−Sym(t) = arg max
ℓ∈LXOR−Sym

{
∑

A,k

ReA
k
(ℓ)∂Qk,A(t)

}

.

Now, we prove that∆∗XOR−Sym has the largest throughput region within the classC2 of the joint

NC and scheduling schemes with correct NC and that satisfies the constraint C1. Note thatC2

also contains off-line policies.

Theorem 4:The policy∆∗XOR−Sym is throughput optimal inC2.

In view of Theorem 2, the above result follows from the fact that any scheme inC2 chooses

schedules fromLXOR−Sym in each slot, which is a consequence of the following lemma.

Lemma 2:Consider a NC scheme satisfying the constraint C1, and assume that it XORs

packets from sessionsA andB, whereB 6= A′. Then the NC scheme is not correct.

C. Throughput gains of XOR-Sym

Note that for any network,L0 ⊆ LXOR−Sym ⊆ LCOPE, whereL0 is the set of all feasible

schedules without NC. Thus,Λ0 ⊆ ΛXOR−Sym ⊆ ΛCOPE: the throughput gain achieved with

XOR-Sym over policies that do not use NC is greater than 1, butit may be less than that

achieved with COPE. The scalability of XOR-Sym compared to that of COPE is obtained at

the expense of a smaller throughput region. Note however, that the maximum gain achieved by
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XOR-Sym and COPE are identical, and are achieved in the 1D network as described at the end of

Section V. Moreover, under XOR-Sym, the computational complexity at intermediate nodes and

the throughput gain can be traded by splitting sessions intoseveral logical sessions. For example,

consider a network where packets of sessionsA and B follow the routesRA = {1, 2, 3, 4, 5}

andRB = {6, 4, 3, 2, 1}. A andB are not symmetric asd(A) 6= s(B), but both these sessions

traverse through nodes 1, 2, 3 and 4. Now, let us split each of these sessions into two logical

sessions as follows:A1 = (1, 4), A2 = (4, 5) and B1 = (4, 1), B2 = (6, 4). Note that now

A1 and B1 are symmetric and their packets can be XOR-ed under XOR-Sym.Thus, splitting

sessions will provide a larger throughput region. But, now the intermediate node4 has to decode

packets, increasing its complexity. Note that XOR-Sym and COPE are identical if the sessions

are split into several logical sessions, each traversing exactly one link. A technical difficulty with

this approach is that the arrivals at the sources of the logical sessions are not i.i.d.; however,

the analysis in Section IV can be extended to this case. Finally, we believe that creating 1-hop

logical sessions everywhere (as in COPE) is not necessary toensure optimal throughput, because

most often only few links are bottlenecks in the network. It may be sufficient to define logical

sessions so as to maximize the NC opportunities around theselinks. The logical sessions may

also be created adaptively based on the queue length information.

D. Limitation of XOR-Sym

In NC schemes, to ensure decodability, the header of each packet contains the identities of all

the packets XOR-ed in this packet. For a packetP = P1 ⊕· · ·Pm, we say that its packet header

size ism. Now, if two packets of header sizesm andn are XOR-ed, then the header length of

the resulting packet is at mostm+n. With XOR-Sym, since packets are decoded at destinations

only, the header sizes can be quite large. Theoretically, itis possible to construct an example

where the header size can become arbitrarily large even for networks with simple topologies as

in Figure 5; however, as shown in Section VII, we have verifiedusing simulations that in fact,

the header size remains modest unless the network becomes heavily loaded. In Section VII, we

also propose some solutions to limit the header sizes.
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VII. N UMERICAL EXPERIMENTS

In this section, we present some numerical experiments verifying the analytical results of

the previous sections. We give the performance of XOR-Sym and of the associated optimal

scheduling policy∆∗XOR−Sym. Due to space limitations, we present results in the case of simple

1D networks. Refer to [4] for results on networks with more general topologies.

Consider a 1D network as depicted in Figure 5 but withN nodes. Interference follows the

protocol model, and we assume that the reception at a node is interfered by the transmission of

the 1-hop neighbors, i.e., for instance, using the notationof Section III-C.1,K(i,i+1) = {i + 2}.

The negotiated link rates are all equal to 1. It is then easy toprove (see [4]) that the throughput

regions with and without XOR-Sym are independent ofN and represented in Figure 6. In this

example, the NC gain is maximized when the arrival rates of the two symmetric sessions are

equal,λA = λA′, and COPE and XOR-Sym provide similar throughput gains.

Figure 9 (top-left) provides the mean end-to-end packet delay as a function of the session rate

for ∆∗XOR−Sym. The results are compared with those obtained without NC, but with a throughput

optimal policy. Note that as expected, these schemes achieve maximum throughput, i.e., the

mean packet delay is finite for allλA < 1/3 with XOR-Sym, and for allλA < 1/4 without

NC. In Figure 9 (top-right) we present the mean packet headersize using XOR-Sym. When the

network size is small, e.g.N = 4, the mean header size remains small unless the system load

approaches the stability limit. The header size increases with N .

To reduce the number of packets XOR-ed into a single packet, we associate a cost to the

XOR-ing procedure: for any scheduleℓ chosen at time slott, we denote byf(ℓ, t) the total

number of packets involved in XORs underℓ (e.g., if underℓ, only packetsP1 ⊕P2 andP3 are

XOR-ed, the cost is 3). Note that this cost function does not strictly correspond to the framework

of Section IV; but the latter can be readily modified to account for this kind of costs. Figure

9 (Bottom) presents the mean packet header size using the optimal policy ∆∗XOR−Sym(κ), for

different values ofκ in a network ofN = 8 nodes. The choice ofκ allows us to tune the

trade-off between packet header size and delay.

VIII. C ONCLUSION

We have investigated the use of network coding (NC) in wireless multi-hop networks for

unicast sessions. Surprisingly, we could build simple and realistic examples of networks where
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NC reduces the throughput performance. This happens when the NC schemes are greedy in

the sense that all opportunities to combine and broadcast packets are exploited. We have also

observed that if NC and scheduling are designed separately,then the throughput gain expected

from NC may not be achieved.

These observations have emphasized the need for adaptive schemes that use NC opportunities

only when they can provide performance benefits. It seems also critical that the scheduling

choices and the NC decisions should be coupled. Hence, we have developed a generic framework

to design joint optimal NC and scheduling schemes. We have applied this framework to propose

an optimal scheduling scheme adapted to COPE, a recently introduced NC scheme. We have also

designed XOR-Sym, a new NC scheme, and its associated optimal scheduling scheme. XOR-

Sym exhibits a lower complexity than that of COPE but yet offers similar performance gains.

The proposed framework can be extended to account for randomfading, and also to design rate

control mechanisms to maximize certain network utility. Due to the space constraints, we present

the extensions in [4].
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λ

R1(t) R2(t)

a m b

λ

Fig. 1. A 3-node network topology handling two sessions, one froma to b and another fromb to a. Packets for

both the sessions are routed through relaym. The network is symmetric, i.e., the required throughputs for sessions

from a to b and fromb to a are the same (λ packets/slot), and the rates on the links(a, m) and(m, a) ((b, m) and

(m, b), resp.) are equal toR1(t) (R2(t), resp.) packets/slot in slott. R1(t) = R2(t) = 1 at all time t. Because of

interference, only one of nodesa, b andm can transmit in a slot.

λ

R1(t) R2(t)

λ1 λ2

a2 a1 a m b b1 b2

λ

Fig. 2. An extension of the network shown in Figure 1. Here, two sessions froma1 to a2 andb1 to b2 are added,

and these require throughputs ofλ1 andλ2, respectively. The maximum transmission rate on(a1, a2) and (b1, b2)

is 1 packet/slot in each slot. We assume thata1 (b1, resp.) can not transmit whena (b, resp.) is either transmitting

or receiving. This interference model arises if IEEE 802.11MAC with RTS and CTS is used.

λ

b2
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b1

a2

a

b

m

λ λ1

λ2

Fig. 3. The network shown in Figure 1 with different topology. Here,the maximum transmission rates on all

the links is 1 packet/slot in each slot. We assume thata1 (b1, resp.) can not transmit whena (b, resp.) is either

transmitting or receiving. Moreover,a1 andb1 can not simultaneously transmit.
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b′

b2

a1

b1

a2

λ1

λ2

a

b

m

λ

λ

a′

Fig. 4. A network topology with four sessions, viz. froma to a′, from b to b′, from a1 to a2 and from b1 to

b2. Paths traversed by each of the sessions is shown using the directed arrows. The dashed arc between the nodes

a and b′ (b and a′, resp.) indicates that the transmissions froma (b, resp.) can be intercepted byb′ (a′, resp.).

The maximum transmission rates on all the links is 1 packet/slot in each slot. We assume thata1 (b1, resp.) can

not transmit when either link (a,m) or link (m,b′) ((b,m) or (m,a′), resp.) is active. Moreover,a1 and b1 can not

simultaneously transmit.

1 2 3 4

A′’s Departures

q2,A q3,A

q2,A′ q4,A′q3,A′

λA

λA′
Q2,A′(t) = 3

Q2,A(t) = 2

q1,A
A’s Departures

Fig. 5. A 4-node linear network with symmetric sessionsA andA′. s(A) = d(A′) = 1 and s(A′) = d(A) = 4.

At s(A) and s(A′) new packets arrive at rateλA and λA′ , respectively. Here,RA = {1, 2, 3, 4}, while RA′ =

{4, 3, 2, 1}. Regarding node 2 for example:s2(A) = 1 andd2(A) = 3; 2 FIFO queues,q2,A andq2,A′ , corresponding

to both sessions are maintained; packets from these queues can be XOR-ed and broadcasted to nodes1 and3.

1/3

1/4

1/31/40 λ1

Gain in directionu: G(u) = a
b

u

a
b

λ2 Λ0
ΛCOPE

Fig. 6. The throughput regions with or without COPE for the network of Figure 5 - The Phy layer follows the

Protocol model, and interfering nodes are the 1-hop neighbors only.
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XOR-Sym for Fixed Rate Systems
begin
1: Assume(e, A) ∈ ℓ∆(t), wheree = (i, di(A));

2: for j = 1, . . . , Re do

3: TransmitPi,A(t);

4: if di(A) successfully receives the packetthen

5: DiscardPi,A(t);

6: Pi,A(t) is replaced by the next in line packet inq(i,A);

7: end if

8: end for

9: Assume(e, A⊕ A′) ∈ ℓ∆(t), wheree = (i, di(A));

10: for j = 1, . . . , min{Re, Re′} do

11: P ← Pi,A(t) ⊕ Pi,A′ (t);

12: Broadcast P;

13: if Both di(A) anddi(A′) successfully receiveP then

14: Discard P;

15: Pi,A(t) andPi,A′ (t) are replaced by the next in line packets inq(i,A) andq(i,A′) respectively;

16: else if Only di(A) successfully receivesP then

17: RetainPi,A′ (t) at HoL position inq(i,A′);

18: Pi,A(t) is replaced by the next in line packet inq(i,A);

19: else if Only di(A
′) successfully receivesP then

20: RetainPi,A(t) at HoL position inq(i,A);

21: Pi,A′(t) is replaced by the next in line packet inq(i,A′);

22: else

23: Retain both the packets at HoL positions in their respectivequeues;

24: end if

25: end for

end

Fig. 7. Pseudo code of XOR-Sym NC scheme with scheduling policy ∆ for fixed rate systems - These tasks are performed

in each slot.
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XOR-Sym for Adaptive Rate Systems
begin
1: Assume(e, A) ∈ ℓ∆(t), wheree = (i, di(A));

2: TransmitRe(ℓ(t)) packets fromq(i,A);

3: Discard all the transmitted packets;

4: Assume(e, A⊕ A′) ∈ ℓ∆(t), wheree = (i, di(A));

5: R← min{Re(~ℓ(t)), Re′ (~ℓ(t))}, wheree′ = (i, di(A′));

6: for j = 1, . . . , R do

7: BroadcastPi,A(t) ⊕ Pi,A′(t) (at rateR);

8: DiscardPi,A(t) andPi,A′(t);

9: Pi,A(t) andPi,A′ (t) are replaced by the next in line packets inq(i,A) andq(i,A′) respectively;

10: end for

end

Fig. 8. Pseudo code of XOR-Sym NC scheme with policy∆ for adaptive rate systems - These tasks are performed in each

slot.
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Fig. 9. [Top] Mean packet delay as a function of session throughputsλ = λA = λA′ with or without XOR-Sym

and policy∆∗

XOR−Sym - [Middle] Mean packet header size using∆∗

XOR−Sym - [Bottom] Mean packet header size

using∆∗

XOR−Sym(κ) for κ = 0, 0.1, and 0.13,N = 8.
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APPENDIX I

PROOFS OFTHEOREMS 1 AND 2

First we state the supporting lemmas that we use to prove Theorems 1 and 2. Due to space

constraints, proofs for some of the lemmas are omitted.

Lemma 3:The throughput region satisfiesΛL ⊆ XL.

Let CL denote the space of all the policies that are allowed to schedule transmission fromqi,A

in slot t even whenQi,A(t) = 0. Scheduling a transmission from an empty queue corresponds

to transmitting a pseudo packet. The pseudo packets are immediately discarded by the receiving

node. We note that we use such policies only to obtain a compact proof of the optimality of∆∗,

and we do not allow policies to schedule transmissions from empty queues. Note thatCL ⊆ CL.

Lemma 4: If λ ∈ X ◦L, then there existsδ1 > 0 such that for every0 < δ < δ1, there exists

α = [α1 · · · αL] that satisfies

L∑

ℓ=1

αℓReA
k

,A(ℓ) = λA + (k + 1)δ, ∀ k < NA andA ∈ S

L∑

ℓ=1

αℓ = 1, and αℓ ≥ 0 for everyℓ.

Proof: The result follows from Assumption 1, and the fact that for every λ ∈ X ◦L, there

existsδ1 > 0 and such that for every0 < δ < δ1, λ + δ ∈ X ◦L.

For rest of the section, fix anyλ ∈ X ◦L. Also, fix δ1 > 0 that satisfies the conditions in

Lemma 4. Now, we define a randomized policy∆1(δ) ∈ CL as follows. Under∆1(δ), ℓ∆1(δ)(t) =

ℓ w.p. αℓ in every slott independent of the queue lengths and the decisions in the previous slots.

The vectorα is a solution of the following Linear Program (LP) for0 < δ < δ1.

LP(δ) :- Minimize: U(δ) =
∑L

ℓ=1 αℓf(ℓ)

Subject to:

1)
∑L

ℓ=1 αℓReA
k

,A(ℓ) = λA + (k + 1)δ for everyk < NA andA ∈ S

2)
∑L

ℓ=1 αℓ = 1, andαℓ ≥ 0 for everyℓ.

Lemma 5:For everyǫ > 0 there existsδǫ > 0 such that for everyδ < δǫ, F
CL(λ)
min ≥ U(δ) −

ǫ w.p. 1.

Proof: First, we show thatU(0) ≤ F
CL(λ)
min w.p. 1. Let∆ ∈ CL(λ). Such∆ exists because

of Lemma 4. Fix any non-trivial sample path. Letγℓ denote the fraction of timeℓ is scheduled
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by ∆. Clearly, by stationarity of∆,

L∑

ℓ=1

γℓ = 1, and γℓ ≥ 0 for everyℓ. (2)

Then, by stability of∆, we also know that

λA =
L∑

ℓ=1

γℓReA
k

,A(ℓ), ∀ k < NA and A ∈ S, (3)

F∆ =

L∑

ℓ=1

γℓf(ℓ). (4)

Equations (2) and (3) show thatγ is a feasible solution forLP(0). Moreover, (4) is the

objective function forLP(0). Since∆ is an arbitrary policy inCL(λ), we conclude that

U(0) ≤ F
CL(λ)
min w.p. 1. (5)

Since the feasible set ofLP(δ) is convex and compact, andf(ℓ) is a bounded function, by

continuity, we conclude thatU(δ) → U(0) as δ → 0. Thus, for everyǫ > 0 there existsδǫ > 0

such that for everyδ < δǫ, U(δ) ≤ U(0) + ǫ. From (5), we conclude that

U(δ) ≤ F
CL(λ)
min + ǫ w.p. 1. (6)

Now, sinceCL(λ) ⊆ CL(λ), the result follows.

Note thatF∆1(δ) = U(δ). Thus, Lemma 5 forges the first link between the costs under policies

in CL(λ) and that underCL(λ). Let us denote the drift in the backlog ofqk,A in slot t under∆

as∂R∆
k,A(t), i.e.,

∂R∆
k,A(t) =






ReA
k−1,A(ℓ∆(t)) − ReA

k
,A(ℓ∆(t)) : k 6= 0, NA

ΛA(t) − ReA
k

,A(ℓ∆(t)) : k = 0

0 : k = NA.

Now, consider any∆ ∈ CL and observe that

Q∆
ak ,A(t + 1) = max

{
Q∆

ak ,A(t) + ∂R∆
k,A(t), 0

}
. (7)

Let ξ∆(t)
def
=

∑

k,A

[(
Q∆

ak ,A(t + 1)
)2

−
(
Q∆

ak ,A(t)
)2

]
.
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With (7) and some elementary algebra, it follows that

E[ξ∆|Q] ≤ Z + 2
∑

A

Qa0,AλA − 2κE[f(ℓ∆)|Q]

−2E

[
∑

k,A

ReA
k

,A(ℓ∆)∂Qk,A − κf(ℓ∆)|Q

]

, (8)

whereZ = |S|(c2 + R2
max). We have omittedt for notational simplicity. Then,

Lemma 6:Given the queue lengths,∆∗(κ) maximizes the last term in (8) among all the

policies inCL.

Now, from Lemma 6 and (8), we conclude that

E[ξ∆∗(κ)|Q]

≤ Z + 2
∑

A

Qa0,AλA − 2κE[f(ℓ∆∗(κ))|Q]

−2E

[
∑

k,A

ReA
k

,A(ℓ∆1(δ))∂Qk,A − κf(ℓ∆1(δ))|Q

]

. (9)

Since the choice of schedule is independent of the queue lengths under∆1(δ), it follows that

E
[
f(ℓ∆1(δ))|Q

]
= E

[
f(ℓ∆1(δ))

]
=

∑

ℓ

αℓf(ℓ) = U(δ).

E

[
ReA

k
,A(ℓ∆1(δ)))|Q

]
=

∑

ℓ

αℓReA
k

,A(ℓ) = λA + (k + 1)δ.

Substituting the above quantities in (9), we obtain

E[ξ∆∗(κ)|Q]

≤ Z−2κE[f(ℓ∆∗(κ))|Q]−2δ
∑

k,A

Qak ,A+2κU(δ). (10)

Note that the process{Q∆∗(κ)(t)}t≥1 is a Markov chain. Thus, to show stability under∆∗(κ),

it suffices to show that the queue length process is positive recurrent.

Lemma 7:For everyλ ∈ X ◦L, {Q∆∗(κ)(t)}t≥1 is positive recurrent for everyκ < ∞.

Proof: Note thatE[ξ∆∗(κ)|Q] denote the expected Lyapunov drift. From (10),κ < ∞ and

finite support off(·), it follows thatE[ξ∆∗(κ)|Q] < ∞ for everyQ. Moreover,E[ξ∆∗(κ)|Q] < −1

whenever
∑

k,A Qak ,A > (Z+κU(δ)+1)/2δ. Thus, the positive recurrence follows from Foster’s

Theorem.

Lemma 8:For all λ ∈ X ◦L, F∆∗(κ)(λ) ≤ Z
2κ

+ U(δ) w.p. 1.
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Proof: From Lemma 7, for everyλ ∈ X ◦L, the queue length is stationary under∆∗(κ). Thus,

the result follows by taking the expectation in (10) with respect to stationary distribution of the

queue length process, and observing from the Renewal RewardTheorem thatE[f(ℓ∆∗(κ))] =

F∆∗(κ)(λ) w.p. 1.

Now, we prove Theorems 1 and 2.

A. Proof of Theorem 1

Proof: (Theorem 1) From Lemma 7,X ◦L ⊆ Λ∆∗(κ) ⊆ ΛL for everyκ ≥ 0. Thus, the result

follows from Lemma 3.

B. Proof of Theorem 2

Proof: (Theorem 2) From Lemma 7,∆∗(κ) is throughput optimal for everyκ < ∞. Now,

we showǫ-optimality. Fix ǫ > 0. From Lemma 5, chooseδ > 0 such thatU(δ)−F
CL(λ)
min ≤ ǫ/2.

Also, choosêκ such thatZ/κ̂ = ǫ. Now, ǫ-optimality follows from Lemma 8 for everyκ > κ̂.

APPENDIX II

PROOF OFLEMMAS 1 AND 2

A. Proof of Lemma 1

Proof: We sketch the proof. Let{P A
k }k≥1 denote the ordered sequence of sessionA’s

packets, i.e.,P A
k is transmitted bys(A) beforeP A

k+1 and afterP A
k−1. Let P (k) = P1⊕· · ·⊕Pm(k)

denote the first packet containingP A
k arriving at d(A) in slot t(k). Because of FIFO service,

clearly, t(k) ≤ t(k + 1) for everyk ≥ 1. Now, the result follows from the following claim: For

everyk ≥ 1, there does not existu ∈ {1, . . . , m(k)} andv > k such thatP A
v = Pu. Thus,P (k)

can only contain packets from sessionA′ or the packets transmitted beforeP A
k . The correctness

follows by induction onk.

B. Proof of Lemma 2

Proof: Consider a NC scheme that allows XOR-ing of packets from sessions A andB at

nodei, whereB 6= A′ andi ∈ RA ∩RB. Also, without loss of generality, lets(B) 6= d(A), and

RA = {a0, . . . , aNA
} andRB = {b0, . . . , bNB

} with ak = bj = i for somek andj. Furthermore,
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let PA be the first packet arriving inqs(A),A at time t. Now, our aim is to construct a sequence

of valid schedules such that the first packet containingPA arriving atd(A) can not be decoded

correctly. Then, the result will follow from Definition 2. The construction is as follows: First,

let qi,B is empty att. Then, find the largestu < j such thatqbu,B is non-empty. If no suchu

exists, then do not schedule any link until a packet (sayPB) arrives inqs(B),B . Note that a new

packet will arrive ats(B) in finite time w.p. 1 asλB > 0. When a packet arrives inqs(B),B,

we can chooseu = 0. Once the value ofu is determined, scheduleeB
u , eB

u+1 and so on, one at

a time until a packet arrives inqi,B. Next, schedule a sequence of linkseA
0 , . . . , eA

k−1 one at a

time so thatPA arrives inqi,A. Now, multicastPA ⊕PB on eA
k andeB

j , which is possible as NC

allows XOR-ing of these packet ati. Finally, scheduleeA
k+1, . . . , e

A
NA−1 one at a time so that the

XOR-ed packetPA ⊕ PB arrives atd(A). Now, note that because of the FIFO service,PB is

not available atd(A). Thus,PA can not be recovered atd(A) upon its arrival. This proves the

required.


