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Abstract

Recently, network coding (NC) emerged as a promising teldgyofor significantly improving
throughput and energy efficiency of wireless networks, ef@nunicast communication. Often, NC
schemes are designed as an autonomous layer, independeatusfderlying Phy and MAC capabilities
and algorithms. Consequently, these schemes are greethg isense that all opportunities of broad-
casting combinations of packets are exploitd& demonstrate that this greedy design principle may in
fact reduce the network throughputhis begets the need for adaptive NC schemes. We furthev sho
that designing appropriate MAC scheduling algorithms isical for achieving the throughput gains
expected from NC. In this paper, we propose a general frametwalevelop optimal and adaptive joint
NC and scheduling schemes. Optimality is shown for varidug &d MAC constraints. We apply this
framework to two different NC architectures: COPE, a schezaently proposed in [11], and XOR-Sym,
a new scheme we present here. XOR-Sym is designed to achieveeaimplementation complexity

than that of COPE, and yet to provide similar throughput giain
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. INTRODUCTION

Recently, network coding (NC) emerged as a promising teolgyofor designing power

efficient and scalable schemes that provide optimized uségbe available bandwidth. Our
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aim is to investigate possible performance gains through ad@ the optimal way of using
inter-session NC for unicast communication in multi-hopeMss networks.

Though NC was first applied mainly in the context of multicestired networks [1], [13],
and subsequently in wireless networks [16], [20], it is foulm be particularly amicable for
enhancing the throughput (the number of packets delivergtié destination per unit time) of
wireless networks even for unicast applications [10], [T1#], [22], [25], [28]. This is mainly
due to the broadcast property of wireless channel, meahigigat transmission from a node can
potentially be intercepted by all its neighbors.

The throughput gain via NC in case of unicast sessions isajlgiillustrated using the network
shown in Figure 1. Without NC, four transmissions are rezgpito deliver one packet from each
of the sessions. Thus, a throughpuis achievable if and only ik < 1/4, i.e., if A < (>, resp.)
1/4, then there exists (does not exist, resp.) a scheduthgnse that arbitrates transmissions
in various slots such that the throughputs provided to each of the sessions. Now, with NC,
m XORs two packets, one from each session, and then broadbastsOR-ed packet. Now,
nodesa andb recover the desired packet by XOR-ing the received packet frn. with their own
packet. Thus, only 3 transmissions are required to delimermacket from each of the sessions.
Clearly, A is achievable iffA < 1/3. The throughput gain of NC is therefore 4/3 in this example.

The promise of potential throughput gain has instigatedhiBgant research in designing
efficient NC schemes for unicast communication in wirelessvorks. Following are the two
key features of the schemes proposed in the literature:H@yTadvocate the use of NC each
time an opportunity to combine and broadcast packets idadlai Indeed, the schemes are
designed to increase the number of NC opportunities thrdaegter routing [25] and through
opportunistic listening [11]. Distributed algorithms aso designed to identify certain structures
in the network topology so as to determine and exploit moghefNC opportunities [6], [19],
[29], [7], [21]. (i) Network coding and scheduling schenae designed separately. We advocate
caution in using these features. The main motivation of gaper stems from the following
observation regarding the schemes with at least one of tfeegeres:Systems with NC may
have smaller throughputs than those without it

This observation may seem counter-intuitive as previouskwsbows that one can only gain
by using NC, and the gain can only increase if more oppotigsito combine packets are used.

We show that if NC is used each time an opportunity arises thafscheduling scheme does



not account for NC, then the system throughput may be snihléer that achieved without NC.
This calls for a joint design of scheduling and NC strategidss paper aims at developing a
framework that enables this joint design. Specifically, comtributions are as follows:
e We first explain why NC can deteriorate throughput when it @& jointly designed with
scheduling, or when NC opportunities are all exploited (Seetion II).
¢ We then propose a general framework that allows us to claraetthe throughput region (the
set of achievable throughputs of the various sessions)tefanks with NC, and to design optimal
and adaptive joint NC and scheduling schemes. The schersegpimal as they provide the
required throughputs, whenever possible. The schemesagive as they take the scheduling
and NC decisions based on the current system state only, amdtdrequire the knowledge of
channel and arrival statistics a priory (see Section V).
e We show how our framework can be applied to COPE, a NC scheosntig proposed for
unicast sessions in wireless networks [11] (see Section V).
e We also propose a novel NC scheme, XOR-Sym, which exhibitewaerl computational
complexity than that in COPE. Under XOR-Sym, packets haveetdecoded at their destinations
only, not at intermediate nodes (see Section VI). In spitéhief additional constraint, we show
that XOR-Sym and COPE may provide similar throughput gase® (Section VII).

Because of the space constraints, proofs for all the rewiilltbe presented in [4]. However,

in this submission, we include the proofs in the appendixamlitate the review process.

II. CAN NC DETERIORATE THENETWORK THROUGHPUT?

Here, we illustrate, using three representative examphesfact that if NC is used each time
an opportunity arises or if the scheduling scheme does rmmusat for NC, then the throughput
can be smaller than that achieved without NC. In the first getapwe fix the scheduling
scheme (it provides maximum throughput when NC is not imgleted) and demonstrate how
applying NC reduces the system throughput. This indicdtas NC and scheduling should be
jointly considered. In the last two examples, we compargti{a throughput under an optimal
scheduling without NC; (b) the throughput of the same systerder an optimal scheduling
adapted to NC. The scheduling in (b) is optimal subject tagitNC at each opportunity. We
show again that the throughput decreases when NC is usesl.cbhiclusion is more striking

than that of the first example as here the scheduling schem®sare of the NC capabilities.



Example 1 : Consider the network of Figure 1. Let the links experiencedoen fading.
Consequently, their rates oscillate randomly and indepethy between 1 andV: R,(¢) and
Ry (t) are independent and identically distributed (i.i.d.), auglal to 1 with probability (w.p.)
1/2, and toN w.p. 1/2. With NC, for correct reception at bothand b, m has to broadcast at
rate min{ R, (t), R2(t)}. First, consider the system without NC and with the follogvioptimal
opportunistic scheduling: IR, (t) = N = Ry(t), schedule link(a, m) w.p. 1/2 and(b, m) w.p.
1/2; if Ri(t) = 1 = Ry(t), schedule each link w.p. 1/4; {fR,(t), R2(t)) = (N, 1), schedule
(a,m) w.p. /4 and(m,a) w.p. 3/4; if (Ry(t), Ra(t)) = (1, N), schedule(b,m) w.p. 1/4 and
(m,b) w.p. 3/4. With this scheme, a throughputis achievable iffA < (1 4+ 3N)/16. When
NC is implemented, node: broadcasts XOR-ed packets whenever eithera) or (m,b) is
scheduled in the above scheme. For the above schedulinghechéh NC, A is achievable iff
A < 1/2 asm always transmits at rate 1 when scheduled. Note that agpN{ strictly reduces
the throughput iftN > 7/3.

We make the following two observations on Example 1. (1) Assuhat the rate®, (t) =
and R, (t) = ro are not time varying, and without loss of generality,lge& r,. Then, irrespective
of the scheduling used, NC provides a higher throughput thahwithout it. This is because
with NC, packets fromn to b (faster link) are transmitted along with packets fromnto a (slower
link). Since the transmissions from to a have to happen in any case, NC saves transmissions
from m to b. (2) With NC, there exists a scheduling scheme that can geosi throughput\
iff A\ < (1+3N)/12 (which is higher than the achievable throughput without N3)e optimal
scheme is as follows: [fR, (t), R2(t)) = (N, 1), then scheduléa, m); if (Ry(t), Ra2(t)) = (1, N),
then scheduléb, m); if (Ri(t), R2(t)) = (N, N), then broadcast XOR-ed packets from if
(Ri(t), Ro(t)) = (1,1), then schedule transmissions from nodes uniformly at rando

From the first observation, it may seem that if the link rates @nstant, then NC improves
the throughput performance for any topology. And from theosel observation, it may seem
that if an optimal scheduling with NC is used, then again tireughput increases. But, in the
following example, we show that both statements do not hold.

Example 2 :We now provide an example illustrating why taking all oppaities to combine
packets may result in throughput reduction, even when amapscheduling is used. Consider,
in Figure 2, a simple extension of the network shown in Figureet R, (t) = 2 and Ry(t) = 1

for all ¢, i.e., the rates are fixed but different. Now, for correctegons at bothu and b, m



has to broadcast combined packets at rate 1. Let the thratigbguirements be = \; = 2/3
and \, = 1/3. We claim that the desired throughputs can be provided if 8l@ot used, while
they can not be guaranteed if NC is used. Without NC, to pevite desired throughputs,
we can use a scheduling scheme that activates the (inks,) and (m, b) simultaneously and
(a1, a9) and (b, m) simultaneously in 1/3 fraction of slots each, and activétes,) and (m, a)
simultaneously andb,, b,) and (a, m) simultaneously in 1/6 fraction of slots each. Now we
prove that these throughputs can not be achieved using Ni€eth since\; = 2/3, (a1, az) has
to be active in at least 2/3 fraction of slots. As a consegegfacm) and (m,a) can be active
in at most 1/3 fraction of slots. Thus, to provide a throughgful /3 to each of the two sessions
that use(a, m) or (m,a), these links must transmit at a rate no less than 2 when adtvs is
impossible if NC is used as then broadcasts XOR-ed packets at rate 1 only.

From the above example it may seem that the main reason foctred in throughput with NC
is that the links have different capacities, and hence adwastied packet has to be transmitted
at a lower rate (in this example; broadcasts at the rate of 1 packet/slot, while the capatity o
the link (m, b) is 2 packets/slot). In the next example, we demonstratethigathroughput with
NC can be less than that without NC even when all the links hlagesame capacity.

Example 3 :Consider a wireless network shown in Figure 3. Let the thihpug require-
ments be\ = 1/4 and \; = A\, = 1/2. We claim that the desired throughputs can be provided
if NC is not used, while they can not be guaranteed if NC is u¥éithout NC, to provide the
desired throughputs, we can use a scheduling scheme thattestthe linkga,, as) and (m, b)
simultaneously anéa, , a;) and (b, m) simultaneously in 1/4 fraction of slots each, and activates
(by,by) and(m, a) simultaneously andb,, b,) and (a, m) simultaneously in 1/4 fraction of slots
each. Now we prove that these throughputs can not be achisied NC. Since); = X\, = 1/2
and (a;,as) and (by, be) can not be active simultaneously, at least one them has tethe @
each slot to guarantee the required throughput (necessaition). But if NC is used then
both a; andb; have to be silent. Thus, the required throughput can not laeagteed.

In all previous examples, we have considered networks wR€&loes not usepportunistic
listening(OL). OL refers to the ability of nodes to overhear packeasasmitted in their neighbor-
hood even when these packets are not meant for them. To se®hdwelps, refer to Figure 4.
Here, whena (resp.b) transmits a packeP, (resp.P,) to m, v’ (resp.a’) can overhear it. Thus

as in Figure 1, node: can broadcast the XOR-ed packetd P, to botha’ andd’, who recover



their respective packets by XOR-ing the broadcasted paghkbtthe overheard packet. Using
similar arguments as those used in Example 3, it can be shuatriite network of Figure 4 can
support the throughputs = 1/4 and A\; = A\, = 1/2 without NC, while it cannot when NC and
OL are used. Thus, NC does not guarantee throughput impravieeven when OL is used.

A key feature used in the above examples is that when an XOpaeket is transmitted to
multiple receivers, all the other nodes in the neighborhaitithe receivers have to remain silent:
the use of NC reduces the spatial reuse in the network. Héocdeciding whether to use NC,
one has to evaluate the trade-off between the reductionpacity due to the reduction in the
spatial reuse and the capacity improvement due to the basadt XOR-ed packets.

Summarizing the insights from the above examples, Exampgleofvs that NC and scheduling
should be jointly designed, since using NC with arbitrarlgextuling may result in performance
losses. Examples 2 and 3 show that the decision to use NC hhe # function of many
parameters including the network topology, the link rated &he throughput requirements of
the various sessions. This calls for the design of joint N@ acheduling schemes that adapt
to the network topology and link rates and provide the reglthroughput to each session, if

doing so is at all possible.

lIl. A FRAMEWORK FORDESIGNING JOINT NC AND SCHEDULING
A. Network Topology and Sessions

Consider a multi-hop wireless network, represented as ectdid graphz = (V, F), where
V' and E denote the set of nodes and links, respectively. The netigtsed by sessions to
transport data packets. A sessidris characterized by a doublét(A),d(A)) € V x V, where
s(A) andd(A) denote the source and the destination, respectively}.dfet S denote the set
of all sessions. Time is slotted.

We assume that the exogenous packets corresponding todtiersé arrive ats(A) as per
a stochastic procesg\4(t)}:>1, where \4(¢) denote the number of packets arriving in slot
t. Packets have the same length. Exogenous arrivals acressidts are assumed to be i.i.d.
Moreover, assume that,(1) < ¢ < oo for every A and define\y = E[\4(1)]. Packets are
stored in infinite buffers until served.

Packets of sessiol € S are routed froms(A) to d(A) in, possibly, multiple hops. We

consider fixed routing, and denote I®/, the route for sessioml. This route is an ordered



subset ofl’, R4 = {ap,a1,...,an,}, such thatay = s(A) anday, = d(A). Let us denote by
et = (ag,ari1) for everyk € {0,..., N4 — 1}. Furthermore, for every € R4 andi # s(A),
let s;(A) denote the node preceding noden the route of session, i.e., packets of session
use link (s;(A), 7). Similarly, for everyi # d(A), d;(A) denotes the node after nod®n route
of sessionA. For each sessioA € S, each node € V maintains a queug; 4 to store packets
corresponding to this session. All the queues are servetshlR First Out (FIFO) order. At the
beginning of slott, the queue length af; 4 is denoted byQ; 4(¢), and its Head of Line (HoL)
packet byP; 4(t). Finally, we say that sessionsand A’ are symmetric sessionsdfA) = d(A’)
andd(A) = s(A’"). Note that the sets of links traversed by the packets of symngessions

may not be the same. The notations are illustrated in Figure 5

B. MAC Layer and Scheduling Policies

In networks without NC, a scheduling policy at MAC layer d#s, in each slot, which
links should be activated and which sessions should be demwehese links. In networks with
NC, a scheduling policy has to additionally decide whethead &dow NC should be used. In
other words, the policy imposes which nodes should use N@,vemch packets should be
encoded at these nodes. In this paper, we restrict our iattett NC schemes that allow bit-
wise XOR of packets only. Thus, the NC scheme defines the spbsdible XORs at each
node; but, it is the scheduling scheme that decides whetigemdoen to perform these XORs.
For illustration, consider Figure 2. Here, NC allows XORyrithe packets from nodesandb
at nodem, but the scheduling policy will arbitrate whether and whenuse this facility. For
example, ifA = A\, = 2/3 and A\, = 1/3, then a scheduling policy that provides the required
throughputs to all the sessions will not XOR packetsnafrefer to Example 2); but ik = 4/3
and \; = \, = 1/3, then a scheduling policy that provides the required thinpugs to all the
sessions will XOR packets at.

Let £ denote the set of. feasible scheduling decisions, or schedules. Each elenfeft
defines (1) the links that are activated, (2) the sessiortsatigaserved on these links, and (3)
the sessions whose packets are XOR-ed together.

Assumption 1:If ¢ € L, then every/; such that the set of active links undgris a subset of
that under/ also belongs ta_.

The exact nature of depends on the MAC and Phy layer constraints, and also on e N



scheme used. We provide the description/ofafter presenting the NC schemes considered
in Sections V and VI. But, for illustration, let us assumettbiee NC scheme XORs packets
corresponding to symmetric sessions only. Then, each ahéds £ is a subset ofF x S,
whereS = SU{A® A’, A € S}. Notation(e, A) € ¢ means that the link = (i, j) is active and
serves queueg; 4; (e, A® A’) € ¢ means that = (i, ) is active and serves XOR-ed packets
from queuesy; 4 andg; 4. The MAC and Phy layer constraints further restrict the chaf valid
schedules. For example, if the RTS/CTS mechanism is usdeBR B802.11-based networks and
link e = (i,7) is scheduled, then no node in theighborhoodof i and j can be scheduled.
Thus, £ can not contain a schedule that allows nodes in the neigbbdrbf: and; to transmit,
while simultaneously activating linki, j). Finally, the set of feasible schedules in a given slot
has to reflect the fact that the transmissions from empty egiean not be scheduled.

Definition 1 (Scheduling Policy)A scheduling policyA is an algorithm that chooses a fea-
sible schedulé € £ in each slot.

To describe the system states under policywe use the superscrigk: for example /> (t)
will denote the schedule chosen by in slot ¢; Q7,(¢) will denote the length ofj; 4 in slot ¢
underA. Let C, denote the class of scheduling policidssuch that/~(¢) € £ for all t. The
classC, also includes theff-line policies that arbitrate scheduling by taking into accousstp

present and even future network states.

C. The Phy Layer

We categorize the wireless systems into two classes, nasystems with fixed link rates and
systems with adaptive link rates.

1) Fixed Rate Systemsn such systems, the transmitter and receiver of each ligjotiegte
the link rate during network set-up, and then always use rtditis to communicate. Examples
of such systems are networks based on the IEEE802.11 stsndahere the rate control is
performed rarely (at much longer time scale than that of gatlansmissions). Lek. denote
the rate negotiated on link The variations in channel quality induced by fading andrifgrence
can be captured through packet error probabilities (PEBci8cally, the PEP is the probability
that the SINR is above certain level. We denoteﬁg?/(ﬁ) the PEP on linkey! for sessionA
under schedulé. The PEP also depends oriif the model accounts for fading. We assume that



pea(l) =1, if sessionA is not scheduled on! under/. Now, we give an example to show how
the PEP is related to the interference model.

Example 4: The Protocol ModelThis model is a generalization of that considered in [9].
A transmission on linke = (, j) at the negotiated rate is successful if none of the nodesein th
set K. is transmitting. Typicallyk € K., if the distance fromk to j is sufficiently small. As a
consequencey.(¢) = 0, if all nodes inK, are inactive undef; andp.(¢) = 1 otherwise.

2) Adaptive Rate SystemB systems with a more elaborated Phy layer, link rates aaptad
to the channel conditions and interference (e.g., by usth@mced coding capabilities such as
Hybrid ARQ). We denote byz, (¢) the rate of linke;! for session4d under schedulé. The link
rate also depends anif the model has to account for fading. We assume that(¢) = 0 if
sessionA is not scheduled on! under/. Here is an example to show how the link rates relate
to the interference model.

Example 5: The SINR-rate ModelJsually the link rate is related to the SINR at the
receiver, and it is often well approximated by Shannon fdenfup to a multiplicative constant).
For example, consider the network of Figure 5, and assumeabthaodes transmit at full power,
say 1, when scheduled. If links! = (1,2) and e’ = (3,4) are active under in slot ¢,
then, the rate on link? is: Rea(l,t) = Wlog (1 + %) , where G;;(t) is the channel
gain from: to j in slot ¢, N, is the noise power, antl’ is the bandwidth. Now, if node
broadcasts XOR-ed packet to nodeand 3 under/ in slot ¢, then the rates on these links are:
Res(6,6) = R (£,1) = W log(14+min{ %38 G204 )

Assumption 2:Let /; be such that the set of active links 4 is a subset of that id. Then,
the rate (PEP, resp.) on every active link/nis greater (smaller, resp.) than or equal to that
on the same link irf. (Assumption 2 is typically valid in wireless networks agieating fewer

links reduces interference.)

D. Design Objectives

Our aim is to proposeptimal joint adaptive NC and scheduling schemes. Next, we intreduc
various definitions and then state this optimization proble

Recall that the set of valid schedulésaccounts for the possible NC opportunities, i.e., for the
NC scheme. Most of the proposed NC schemes, e.g. COPE, agnel@sinder the constraint
that XOR-ed packets must to be decoded at the next hop. Hereelax this constraint. Thus,
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encoded packets can be further XOR-ed with other, possiidpaed, packets. Hence, we have
to carefully study the decodability of packets. For scdigbive impose that packets are decoded
on the fly if the NC scheme decides that an XOR-ed padRkdtas to be decoded at nodehen

7 should be able to decode immediately after it receive®. Thus, the NC schemes considered
have to be correct in the following sense.

Definition 2 (Correctness)Let P be a packet of sessioA. It is created ing,a) 4 at time
t. Assume that the packets ¢f are to be decoded at node= R ,4. Also, letG = {{(u)}u>
denote a sequence of valid schedules after tinsech that the first packet containirig (say
P’) arrives ati in slot tg. Then, we say that the NC scheme is correct, dan decodeP’ to
recover P immediately upon arrival o’ for every valid scheduling sequenge

Intuitively, the notion of correctness decouples the NCesacl and the scheduling strategy.
Note that NC scheme only affects the set of valid scheduleBut, once, is defined, NC
oblivious scheduling policy can be designed (see DefinitipriNow, if the NC scheme is correct,
then each packet of every session can be recovered at itsctegpdestination irrespective of
the scheduling decisions as the packets of each sessimust be decoded at(A). Next, we
define the performance measures of interest.

Definition 3 (Stability): The system is stable undey, if sup,.,{E[Q:,(t)]} < oo for every
i€V andA € S. An arrival rate vectoth = [\, : A € S| is said to be stabilizable by, if
the system is stable undéx for A.

Stability ensures finite expected delay for every packetrddeer, in practice, the buffer
capacity is finite, though large. Here, stability guarastimited losses due to buffer overflow.
Definition 4 (Throughput Region)The throughput region of is the setA* of all the sta-
bilizable rate vectors byA. The throughput region of the class of scheduling poliggsis

Az = Upee, A2,

Definition 5 (Throughput Optimality)A policy A is said to be throughput optimal in class

Cr, if A® = Ap.

V. OPTIMAL SCHEDULING THEOREM

Now, we propose a throughput optimal policy within the cldgsfor any given set of schedules
L. In fact, we obtain a more general result: we provide a thinpugioptimal policy that minimizes

certain cost. The cost may, for example, reflect the poweswmption in the system, or as
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explained in Section VII, may also be used to control the pableader size. We use the results
derived here to obtain the throughput optimality of the N@ acheduling schemes considered
in Sections V and VI.

Let f(¢) denote the cost if scheduleis chosen. We assume that this cost function satisfies:

Assumption 3:The functionf(-) is bounded, and for ever§; such that the set of activated
links under/; is a subset of that undér f(¢,) < f(¢).

Clearly, Assumption 3 holds if (¢) is the total power required when scheddlés chosen.
Now let the arrival rate vector ba. Then, the cost incurred under scheduling polikyis:
FAX) = limsupy_ = S0, f(£2(1)). Let C(X) denote the set of all policies that stabilizes
A using schedules iff. Then, defineF "™ = infcc, n {F2(A)}.

Definition 6 ¢-Optimality): A policy A is said to bec-optimal for a givenX, if A € Cz(N),
and FA(A) < FEX e

We propose a policy that is both throughput optimal araptimal. Due to space limitations,
we obtain the results only for adaptive rate systems. Simn@daults can be obtained for fixed
rate systems by replacing.a(¢) with R.a(1 — p.a(£)) in the following. We analyze systems

without random fading. The analysis can be generalized ¢owat for fading, see [4].

A. Throughput Region

We first characterize the throughput region@®f. Let X; denote the set of all arrival rate
vectors for which there exists a vecter = [a; --- o] such that forall, a, >0, >, .oy =
1, and,> ", . OégRe;:\(f) > M, VkE< Ny andVA € S. Let X7 be the set ov such that there
existsA € X with v < A coordinate-wise. Next, we characterize the throughpubregf C.
Theorem 1:The throughput region\ satisfiesX? C A, C X.. In words, if A € A7, then
there exists\ € C, such thatx € A, but if X € X, thenX ¢ A> for every A € C;.

B. Optimal Policy

Now, we define a parameterized back-pressure based poliuytete by A*(x), and prove
its throughput optimality and-optimality. Let 9Q;, 4(t) denote the back-pressure alog i.e,
0QrA(t) = Qapa(t) — Qq,,,.a(t). At time ¢, A*(x) chooses the schedule defined by:

(4" (1) = arg max {Z Roa(0)0Qa(t) — nf(é)} : €y
Ak
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Theorem 2:For all k < 0o, A*(k) is throughput optimal ir€.. Moreover, for alle > 0, there
existsk > 0 such that for alls > =, A*(x) is e-optimal.

The problem of minimizing cost subject to stability has be&ndied previously in [5], [18],
[26]. However, our result is not a consequence of the redeltsed there. In [5], [18], the authors
analyze one hop sessions only. So, the queueing proceswas grimarily by the exogenous
arrivals that are independent of the scheduling decisidege, however, the queueing process is
affected by the chosen schedule as the arrivalg,in are the departures from, , 4. In [26],
the author has studied multi-hop networks, but under thieiahg assumption: if the set of
active links under; is a subset of that undér then for all Iinks(a;;1 activated under both, and
l, Rea(l1) = R.a((). This assumption does not hold in typical wireless netwakthe link rates
depend on the interference caused by the transmissionshen attive links. Thus, typically,
Rea(ly) > Rea((). In view of these differences, though the nature of our oglipolicy A*(x)
is similar to those proposed earlier, the proofs from [58][126] do not hold here.

Like many other back-pressure based policies proposetenature [5], [18], [27], [26]A* (k)
is centralized and has high computational complexity. traately, back-pressure based policies
are extensively studied, and many schemes for reducing ¢bmplexity [5] and for distributed
implementations [3], [8], [17], [24] have been proposedni&ir approaches can be developed

for the joint NC and scheduling scheme proposed here.

V. OPTIMAL SCHEDULING FORCOPE

Here, we apply the general framework developed in Sectiotolprovide an optimal schedul-

ing strategy adapted to COPE, a NC scheme recently introiduncpll].

A. Overview of COPE

COPE is a practical NC scheme designed for improving theutffiput of unicast sessions
in networks with arbitrary topology. In COPE, nodes send X&Rcombinations of packets
that can be decoded at the next hop: a nobdends an XOR-ed packé & ... & F,, only to
nodes that already have — 1 of m packetsP;, ..., P,,. When a node receives an encoded
packet, it immediately decodes it. A noggossesses the — 1 required packets in two possible
scenarios: (i) these packets have been transmitteg doy (i) ; has intercepted these packets

by listening to the transmissions (not meant jyrfrom its neighboring nodes; this is referred
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to asopportunistic listening OL). Scenario (ii) is possible because of the broadcasireabf
the wireless channel. Here, we do not consider OL. A detalisdussion on advantages and
limitations of OL is presented in [4].

Locally Symmetric SessionsSSince, we do not allow OL, a node can have the packets
required to decode an encoded packet only if (i) is satisfiet packets of session$ and B be
routed through. These sessions alecally symmetriati if d;(A) = s;(B) ands;(A) = d;(B).
Here,i can XOR packets from sessiodsand B, and broadcast the XOR-ed packetd#gA)
andd;(B). The latter nodes will be able to decode the XOR-ed packet) dmids.

As illustrated in Example 1, COPE, associated with an abjtscheduling policy, may not
provide any throughput gain. This calls for the design ofiiatjdlC and scheduling policy that
will guarantee that the gains expected from COPE can agtballmet. To this aim, we apply

the framework of Section IV and derive a throughput optimaliqy adapted to COPE.

B. An Optimal Scheduling for COPE

Let us first characterize the set of valid schedulegpr compatible with COPE. Note that
COPE is correct only if at most two packets correspondingotially symmetric sessions are
XOR-ed (Theorem 4.1 of [11]). Hence, the set of schedulespetiole with COPE is defined
as follows: A scheduld € Lcopg is defined as a subset &f = U.ep(e X %), where
S(e) =SU{A® B : A, B locally symmetric ati, e = (i,d;(A))}. Notation (e, A) € ¢ means
that the linke = (i, j) is active and serves queygy; (e, A® B) € ¢ means that linke = (i, j)
is active and serves XOR-ed packets from locally symmetgsi®nsA and B. Now, schedule
¢ belongs toLcopg If it satisfies the following constraint&A € S andVe = (i, d;(A)),

« if (e,A) € ¢, then for all B, (e, A® B) ¢ ¢;

. if (e, A® B) €/, then(¢/, A® B) € ¢ wheree' = (i,d;(B)), and (e, A) ¢ ¢, (¢, B) ¢ (.

In addition to the above constraints, any scheduile L-opr has to satisfy the Phy and MAC
constraints as illustrated in Section Il1-B.

Consider the scheduling polick.,pr that depending on the queue lengths and link rates,
selects, in slot, schedule/ defined as follows:

(Atore(t) = arg max {Z R 4(0)0Q, a(t }

LeLcoPE



14

We prove thatAy,pp has the largest throughput region within the cléssf the joint NC
and scheduling policies with correct NC and that do not use OL
Theorem 3:The policy A¢ypg IS throughput optimal irC;.
Proof: Since any correct NC scheme without OL can XOR two packetm ftocally
symmetric sessions only, any € C; selects schedules froicopg. Thus, from Theorem 2,

A¢opg 1S throughput optimal ir€; . u

C. Throughput gains of COPE

In general, quantifying the throughput gain achieved wit@ ¢ difficult as it depends on
many parameters that include the network topology, the nyidg Phy and MAC layers and
the relative throughput requirements of the sessions. Wealthe throughput gain by comparing
the throughput region of the set of scheduling policies Wth, and the throughput regiafy,
of policies without NC. The gain achieved by COPE for the retwof Figure 5 with a Phy
layer satisfying the Protocol model is illustrated in Fig@. There((u) is the gain in direction
u, wherew is the unit vector representing the relative throughputiregnents of the sessions
A and A’. The throughput gain is then defined asx, G(u).

In [22], [23], the authors characterize the maximum thrquglregion of 1D networks with
NC. In [15], [12], [2], upper bounds on the throughput gaions farge random networks are
derived. Characterizing the throughput gain with NC for engeneral topologies is quite chal-
lenging. However, even for an arbitrary network, one can Tiseorem 1 to characterize the
throughput region with or without NC, and numerically cortgthe throughput gain. A similar

approach is used in [25].

VI. XOR-SyM: A SIMPLIFIED NC SCHEME

In this section, we design a NC scheme that requires a mirshaige in the present network
architecture and yet provides similar performance benaft€OPE. To this aim, we enforce
the following constraint on the type of NC used in the network

C1: Decoding at Destination OnlyA packet corresponding to sessiohis decoded at

d(A) only, and not at any other node.

Many of the NC strategies proposed in the literature (e.@PE) require that packets are

decoded at each node. Thus, each node has to maintain thetpaekeived and transmitted
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successfully in the past in order to decode the packets thiaamuve in the future. Moreover,
whenever an encoded packet arrives, in order to decode igda has to perform look-up
in its buffer for all but one packets that compose the incapacket. The look-up may be
computationally expensive. We eliminate this potentiatlboeck for scalability of NC schemes
by imposing the constraint C1. Intermediate nodes can therain simple: they only need to
perform bit-wise XOR of HoL packets; the required additibfuectionality can be incorporated
without adversely affecting scalability. In the followingie propose XOR-Sym, a correct NC
scheme satisfying the constraint C1 and yet providing thinput benefits.

A. The XOR-Sym coding scheme

Figures 7 and 8 provide the pseudo codes for XOR-Sym in thescakfixed and adaptive
rate systems. The key feature of XOR-Sym is that it XORs paocgerresponding to symmetric
sessions only. Contrast this with COPE which XORs packetesponding tdocally symmetric
sessions at each node. Due to space limitations, we onlyidesE&OR-Sym for fixed rate
systems. Consider the network of Figure 5, whose Phy laylemfs the Protocol model and with
negotiated link rates all equal to 1 packet/slot (refer tguFe 7 for systems with heterogeneous
rates). If the scheduling scheme decides to serve sessionly on link (2, 3) in slot ¢, then
node 2 transmits$ (). If P, 4(t) is successfully received at node 3, then node 2 discards this
packet and replace it with a new packet at the HoL positiopin P 4(t) is queued at the end
of g3 4. If P» 4(t) is not successfully received at node 3, then it is retaineiieaHoL position
in g2, 4. Now, suppose that the scheduling scheme decides to bisizaitaKOR-ed packet from
node 2 on linkg(2,1) and (2, 3). Then, 2 broadcast® = P, 4(t) ® P, 4 (t). Three cases arise.
(i) Both 1 and 3 receive® successfully. Then, 2 discards these packets, and new tpaak@e
to the HoL positions inp 4 andgs 4. P is decoded at node 1, while it is queued at the end of
¢3.4- (i) Only one of the intended recipients, say node 3, rezei correctly. Then,P, 4(¢) is
discarded fromy, 4 and is replaced by a new packet at the HoL position.0f, while P, 4 (¢)
is retained at the HoL position ig, 4-. P is queued at the end af, 4. The case when only 1
receivesP correctly is similar. (iii) Both 1 and 3 do not receive correctly. Then, bottP, 4(¢)
and P, 4 (t) are retained at HoL positions i 4 andg, 4.

Since intermediate nodes do not decode packets, encodkdtpaan be XOR-ed again. For

example, in (i) above, the XOR-ed packetis queued ing; 4 as it is. WhenP comes to the
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HoL position ing; 4, it can be XOR-ed again with a packet frogm 4.. Thus, it is not clear

whether the destinations can decode the received packetse following lemma, we show that

XOR-Sym is correct given that: for each sessibns(A) keeps all the packets of that it has

already transmitted, an@( A) keeps all the packets of that it could correctly decode.
Lemma 1:The NC scheme XOR-Sym is correct.

B. An Optimal Scheduling for XOR-Sym

Since XOR-Sym combines packets only from symmetric sessitte set of all possible
schedulesCxor-_sym IS as follows. A scheduld € Lxor-sym IS @ Subset off x S, where
S=SuU{A® A, Ac S} Inaddition, if¢ € Lxor-sym, It satisfies the following constraints:

o if (e,A) €l then(e,Ad® A’) ¢ ¢,

o if (e, A A") €, then(e/; Ad A’) € ¢ wheree' = (i,d;(A")), and (e, A) ¢ ¢, (¢, A) ¢ L.

Now, consider the scheduling poligyy,y .., that, depending on the queue lengths and link

rates, selects, in slat scheduleZ defined as follows:

(AXOR-Sym (t) =arg max {Z R.a 8@]4: A(t) }

eeﬁXOR*Sym

Now, we prove thalAy .., has the largest throughput region within the clds®f the joint
NC and scheduling schemes with correct NC and that satisfeesdnstraint C1. Note thal,
also contains off-line policies.

Theorem 4:The policy Axog g, IS throughput optimal irCs.

In view of Theorem 2, the above result follows from the fadttany scheme i@, chooses
schedules fromCxor—sym IN €ach slot, which is a consequence of the following lemma.

Lemma 2:Consider a NC scheme satisfying the constraint C1, and asshat it XORs

packets from sessiond and B, where B # A’. Then the NC scheme is not correct.

C. Throughput gains of XOR-Sym

Note that for any networkl, C Lxor-sym € Lcoprr, Where Ly is the set of all feasible
schedules without NC. Thus)y € Axor-sym C Acopr: the throughput gain achieved with
XOR-Sym over policies that do not use NC is greater than 1,itoutay be less than that
achieved with COPE. The scalability of XOR-Sym comparedhat tof COPE is obtained at

the expense of a smaller throughput region. Note howevat,ttie maximum gain achieved by
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XOR-Sym and COPE are identical, and are achieved in the 1Ranktas described at the end of
Section V. Moreover, under XOR-Sym, the computational clexity at intermediate nodes and
the throughput gain can be traded by splitting sessionsseneral logical sessions. For example,
consider a network where packets of sessidnand B follow the routesR, = {1,2,3,4,5}
andRp = {6,4,3,2,1}. A and B are not symmetric ag(A) # s(B), but both these sessions
traverse through nodes 1, 2, 3 and 4. Now, let us split eachesfet sessions into two logical
sessions as followsd; = (1,4), A, = (4,5) and B; = (4,1), By = (6,4). Note that now
A; and B; are symmetric and their packets can be XOR-ed under XOR-Syms, splitting
sessions will provide a larger throughput region. But, nbe intermediate nod¢ has to decode
packets, increasing its complexity. Note that XOR-Sym a@PE are identical if the sessions
are split into several logical sessions, each traversiagtgxone link. A technical difficulty with
this approach is that the arrivals at the sources of the &bgessions are not i.i.d.; however,
the analysis in Section IV can be extended to this case. Iive¢ believe that creating 1-hop
logical sessions everywhere (as in COPE) is not necessamysiare optimal throughput, because
most often only few links are bottlenecks in the network. Hynbe sufficient to define logical
sessions so as to maximize the NC opportunities around thrdse The logical sessions may

also be created adaptively based on the queue length iniorma

D. Limitation of XOR-Sym

In NC schemes, to ensure decodability, the header of eadtepasntains the identities of all
the packets XOR-ed in this packet. For a packet P, & - - - P,,, we say that its packet header
size ism. Now, if two packets of header sizes andn are XOR-ed, then the header length of
the resulting packet is at most+n. With XOR-Sym, since packets are decoded at destinations
only, the header sizes can be quite large. Theoreticalig, tossible to construct an example
where the header size can become arbitrarily large evenefwwanks with simple topologies as
in Figure 5; however, as shown in Section VII, we have verifisthg simulations that in fact,
the header size remains modest unless the network becorae$/Headed. In Section VII, we

also propose some solutions to limit the header sizes.
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VII. NUMERICAL EXPERIMENTS

In this section, we present some numerical experimentdyuggi the analytical results of
the previous sections. We give the performance of XOR-Synh @nthe associated optimal
scheduling policyA% o s,,,- DUe to space limitations, we present results in the casemgile
1D networks. Refer to [4] for results on networks with mor@gel topologies.

Consider a 1D network as depicted in Figure 5 but withnodes. Interference follows the
protocol model, and we assume that the reception at a nod¢eidared by the transmission of
the 1-hop neighbors, i.e., for instance, using the notatioSection I1I-C.1,K; ;11 = {i + 2}.
The negotiated link rates are all equal to 1. It is then eagydoe (see [4]) that the throughput
regions with and without XOR-Sym are independent\dfand represented in Figure 6. In this
example, the NC gain is maximized when the arrival rates eftilo symmetric sessions are
equal,\4 = A4, and COPE and XOR-Sym provide similar throughput gains.

Figure 9 (top-left) provides the mean end-to-end packetydas a function of the session rate
for AXor_sym- The results are compared with those obtained without NEwith a throughput
optimal policy. Note that as expected, these schemes ammaximum throughput, i.e., the
mean packet delay is finite for aN, < 1/3 with XOR-Sym, and for allA\4, < 1/4 without
NC. In Figure 9 (top-right) we present the mean packet hesiderusing XOR-Sym. When the
network size is small, e.gV = 4, the mean header size remains small unless the system load
approaches the stability limit. The header size increasts .

To reduce the number of packets XOR-ed into a single packetasgociate a cost to the
XOR-ing procedure: for any schedulechosen at time slot, we denote byf(¢,t¢) the total
number of packets involved in XORs undéfe.g., if under?, only packetsP, & P, and P; are
XOR-ed, the cost is 3). Note that this cost function does trattly correspond to the framework
of Section 1V; but the latter can be readily modified to acdoian this kind of costs. Figure
9 (Bottom) presents the mean packet header size using timabgiolicy Axog g, (), for
different values ofx in a network of N = 8 nodes. The choice of allows us to tune the

trade-off between packet header size and delay.

VIII. CONCLUSION

We have investigated the use of network coding (NC) in wa=lenulti-hop networks for

unicast sessions. Surprisingly, we could build simple aalistic examples of networks where
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NC reduces the throughput performance. This happens wheMN@ schemes are greedy in
the sense that all opportunities to combine and broadcastefmare exploited. We have also
observed that if NC and scheduling are designed separ#tely,the throughput gain expected
from NC may not be achieved.

These observations have emphasized the need for adaptemes that use NC opportunities
only when they can provide performance benefits. It seenws @isical that the scheduling
choices and the NC decisions should be coupled. Hence, veedeeloped a generic framework
to design joint optimal NC and scheduling schemes. We haggeapthis framework to propose
an optimal scheduling scheme adapted to COPE, a recentiylided NC scheme. We have also
designed XOR-Sym, a new NC scheme, and its associated ¢@aheduling scheme. XOR-
Sym exhibits a lower complexity than that of COPE but yet isffeimilar performance gains.
The proposed framework can be extended to account for rarfiddimg, and also to design rate
control mechanisms to maximize certain network utility.elto the space constraints, we present

the extensions in [4].
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Fig. 1. A 3-node network topology handling two sessions, one fioto b and another frond to a. Packets for
both the sessions are routed through retayThe network is symmetric, i.e., the required throughpatssessions
from « to b and fromb to a are the same)\(packets/slot), and the rates on the lirlksm) and (m, a) ((b,m) and

(m,b), resp.) are equal t®; (¢) (R2(t), resp.) packets/slot in slat R,(t) = Rs(t) = 1 at all time¢. Because of

interference, only one of nodes b andm can transmit in a slot.

Fig. 2. An extension of the network shown in Figure 1. Here, two sessfroma; to ao andb; to by are added,
and these require throughputs f and \,, respectively. The maximum transmission rate(en as) and (bq, b2)
is 1 packet/slot in each slot. We assume tha(b;, resp.) can not transmit when(b, resp.) is either transmitting
or receiving. This interference model arises if IEEE 802MMIAC with RTS and CTS is used.

ap

m
’ Q
A A2

Fig. 3. The network shown in Figure 1 with different topology. Hetlke maximum transmission rates on all
the links is 1 packet/slot in each slot. We assume thab;, resp.) can not transmit when (b, resp.) is either

transmitting or receiving. Moreovet,;, andb; can not simultaneously transmit.
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Fig. 4. A network topology with four sessions, viz. fromto o', from b to ¢/, from a; to a; and fromb; to
bs. Paths traversed by each of the sessions is shown usingrdwedi arrows. The dashed arc between the nodes
a andd’ (b and d/, resp.) indicates that the transmissions franf, resp.) can be intercepted by (a’, resp.).
The maximum transmission rates on all the links is 1 padketis each slot. We assume thaf (b,, resp.) can

not transmit when either linka(m) or link (m,b’) ((b,m) or (m,ad’), resp.) is active. Moreover,; andb; can not
simultaneously transmit.
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Fig. 5. A 4-node linear network with symmetric sessioAsand A’. s(A) = d(A4’) = 1 ands(4’) = d(A) = 4.
At s(A) and s(A’) new packets arrive at rates and A4/, respectively. HereR4 = {1,2,3,4}, while R4 =
{4,3,2,1}. Regarding node 2 for examplei(A) = 1 anddz(A) = 3; 2 FIFO queues;, 4 andgs_ 4/, corresponding

to both sessions are maintained; packets from these quandsecXOR-ed and broadcasted to nodlend 3.

A2 Ay Acore
1/3 7
1/4 ] /u'

Gain in directionu: G(u) = §

0 4 13 M

Fig. 6. The throughput regions with or without COPE for the netwofk—gure 5 - The Phy layer follows the

Protocol model, and interfering nodes are the 1-hop neighboly.
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XOR-Sym for Fixed Rate Systems
begin

1: Assume(e, A) € ¢4 (t), wheree = (i,d; (A));

2:for j=1,...,R. do

3. TransmitP; (t);

4: if d;(A) successfully receives the packéen

5: Discard P; A (t);

6 P; a(t) is replaced by the next in line packet d; a);

7:  endif

8: end for

9: Assume(e, A @ A’) € £2(t), wheree = (i,d;(A));

10: for j =1,...,min{Re, R,/ } do

111 P« P a(t) ® P ar(t);

12: Broadcast P;

13: if Both d;(A) andd;(A’) successfully receivé® then

14: Discard P;

15: P; a(t) and P; 4/ (t) are replaced by the next in line packetsqgin, 4y andq; 4y respectively;
16: dseif Only d;(A) successfully receive® then

17: Retain P; 4/ (t) at HoL position ing(; a+y;

18: P; a(t) is replaced by the next in line packet d; );

19:  dseif Only d;(A’) successfully receive® then

20: Retain P; _4(t) at HoL position ing; 4);

21: P; 4:(t) is replaced by the next in line packet gq; 4+y;

22: ese

23: Retain both the packets at HoL positions in their respeajiveues;
24:  end if

25: end for

end

Fig. 7. Pseudo code of XOR-Sym NC scheme with schedulingcyah for fixed rate systems - These tasks are performed

in each slot.
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XOR-Sym for Adaptive Rate Systems
begin

Assume(e, A) € £2(t), wheree = (i,d; (A));
TransmitRe(¢(t)) packets fromg; 4);

. Discard all the transmitted packets;

: Assume(e, A @ A’) € £2(t), wheree = (i,d;(A));

R — min{Re(£(t)), Res (£(t))}, wheree! = (i, d; (A));
for j=1,...,Rdo

BroadcastP; A (t) @ P; a/(t) (at rate R);

Discard P; a(t) and P; 4/ (t);
P; A(t) and P; 4/(t) are replaced by the next in line packetsgin 4y andg(; a/y respectively;

© o NG R NR

10: end for

end

Fig. 8. Pseudo code of XOR-Sym NC scheme with polisyfor adaptive rate systems - These tasks are performed in each

slot.
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APPENDIX |

PROOFS OFTHEOREMS 1 AND 2

First we state the supporting lemmas that we use to proveréheol and 2. Due to space
constraints, proofs for some of the lemmas are omitted.

Lemma 3:The throughput region satisfiés; C X.

Let C denote the space of all the policies that are allowed to sdhgthnsmission frong; 4
in slot ¢ even when@; 4(t) = 0. Scheduling a transmission from an empty queue corresponds
to transmitting a pseudo packet. The pseudo packets aredrately discarded by the receiving
node. We note that we use such policies only to obtain a congpaof of the optimality ofA*,
and we do not allow policies to schedule transmissions fromptg queues. Note that, C C,.

Lemma 4:1f XA € A7, then there exists; > 0 such that for every) < § < ¢;, there exists

a = [ag -+ «g] that satisfies

L
> R () =Aa+ (k+1)5, Vi< NyandA €S
/=1

L
» a;=1, and oy > 0 for every(.

Proof: The resul%:flollows from Assumption 1, and the fact that foemvA € A7, there
existsd; > 0 and such that for ever§y < 6 < d;, A+ € A7, [ |
For rest of the section, fix anjx € X7. Also, fix 9, > 0 that satisfies the conditions in
Lemma 4. Now, we define a randomized polity() € C, as follows. Under, (6), (219 (1) =
¢ w.p. ay In every slott independent of the queue lengths and the decisions in thepsesiots.
The vectora is a solution of the following Linear Program (LP) for< § < 6;.
LP(5) :- Minimize: U(5) = S0, auf(£)
Subject to:
1) > aRea 4(0) = Aa+ (k + 1)6 for everyk < Ny and A € S
2) S ay =1, anday > 0 for every/.
Lemma 5:For everye > 0 there exists). > 0 such that for every < J, Friffrfk) > U(5) —
e wp. 1
Proof: First, we show that/(0) < FS*™ w.p. 1. LetA € C;(A). SuchA exists because

of Lemma 4. Fix any non-trivial sample path. Let denote the fraction of timé is scheduled
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by A. Clearly, by stationarity of\,

L
> v =1, and , >0 for every. 2)
/=1

Then, by stability ofA, we also know that

L

A = Y WRa,(0),Vk<Niand A€S, (3)
/=1
L

F = > wf(0). 4)
/=1

Equations (2) and (3) show that is a feasible solution fot P(0). Moreover, (4) is the

objective function for. P(0). SinceA is an arbitrary policy inC;(\), we conclude that

U0) < FEN wp. 1 (5)

Since the feasible set dfP(0) is convex and compact, anfl¢) is a bounded function, by

continuity, we conclude that(5) — U(0) asd — 0. Thus, for everye > 0 there exists), > 0
such that for every < 6., U(6) < U(0) + e. From (5), we conclude that

U©) < FEWN 46 wp. 1 (6)

Now, sinceC.(A) C C(\), the result follows. u
Note thatF"21®) = /(). Thus, Lemma 5 forges the first link between the costs underie®
in C.(A) and that unde€, (). Let us denote the drift in the backlog @f 4 in slot¢ underA

asoR; (1), ie.,

Ros  a(03(1)) = Roa 4(€2(t)) + ki # 0, N
ORpA(t) = 4 Aa(t) — Roa 4 (02 (1)) k=0
0 k= Ny.

Now, consider anyA € C, and observe that

Soalt+1) =max {Q5 4(t) + ORA(t),0}. 7)

Let €203 [(QAA1+1)" = (@4.41)] -
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With (7) and some elementary algebra, it follows that

EEAIQ] < 2423 Quada — 26E[f((4)|Q)
A

—~2E ZRAA )0Qua — K[ (62)Q] (8)

whereZ = |S|(¢* + R?,.). We have omitted for notational simplicity. Then,
Lemma 6:Given the queue lengthg\*(x) maximizes the last term in (8) among all the
policies inC.
Now, from Lemma 6 and (8), we conclude that
E[¢*|Q]
< Z+ QZQ% aAa — 2RE[f (62" )|Q)

—2E

> " Rea A(0)0Qsa — £ f(EM)|Q) 9)
kA
Since the choice of schedule is independent of the queu¢hlengderA, (§), it follows that
E [f(e*)Q] = E [f(¢41)] Zaef
E [ReQ’A(gAl(a)mQ] =3 aeRea () = Aa+ (k + 1)6.
1
Substituting the above quantities in (9), we obtain

E[¢*™|Q]

< Z=26E[f(t*)|Q] =20 " Qu, a+2kU(5). (10)
k,A

Note that the proces8R> %) (t)},>, is a Markov chain. Thus, to show stability undat (),
it suffices to show that the queue length process is posiggearrent.
Lemma 7:For every\ € X2, {Q* " (t)},>, is positive recurrent for every < oo.

Proof: Note thatE[¢2"(*)|Q] denote the expected Lyapunov drift. From (10)< oo and
finite support off(-), it follows thatE[¢2"®)|Q] < oo for every@. Moreover,E[¢2 (" |Q] < —
whenever) , , Qa4 > (Z+r£U(5)+1)/24. Thus, the positive recurrence follows from Foster’s
Theorem. [ |

Lemma 8:For all A € X2, FA"®™(X) < Z + U(5) w.p. 1.
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Proof: From Lemma 7, for ever\ € X, the queue length is stationary undet(x). Thus,
the result follows by taking the expectation in (10) withpest to stationary distribution of the
queue length process, and observing from the Renewal ReWeadrem thatE[f (/2 (%)) =
FA (X)) wp. 1 |

Now, we prove Theorems 1 and 2.

A. Proof of Theorem 1

Proof: (Theorem 1) From Lemma 77 C A28 C A, for everyk > 0. Thus, the result

follows from Lemma 3. [ ]

B. Proof of Theorem 2

Proof: (Theorem 2) From Lemma 7)*(x) is throughput optimal for every < co. Now,
we showe-optimality. Fix ¢ > 0. From Lemma 5, choos&> 0 such thatl/(§) — F£™ < ¢/2.

Also, chooses such thatZ/k = e. Now, e-optimality follows from Lemma 8 for every. > .
[

APPENDIX Il

PROOF OFLEMMAS 1 AND 2
A. Proof of Lemma 1

Proof: We sketch the proof. Le{PkA}kZl denote the ordered sequence of sessits
packets, i.e.P¢ is transmitted bys(A) before P, and afterP2 |. Let P(k) = PL®- - ® P
denote the first packet containing arriving atd(A) in slot ¢(k). Because of FIFO service,
clearly, t(k) < t(k + 1) for everyk > 1. Now, the result follows from the following claim: For
everyk > 1, there does not exist € {1,...,m(k)} andv > k such thatP* = P,. Thus, P(k)
can only contain packets from sessighor the packets transmitted befoRs'. The correctness

follows by induction onk. [ |

B. Proof of Lemma 2

Proof: Consider a NC scheme that allows XOR-ing of packets fromi@ess! and B at
nodei, whereB # A’ andi € R4 NRp. Also, without loss of generality, let(B) # d(A), and
Ra={aog,...,an,} andRp = {by, ..., by, } With a; = b; =i for somek and;. Furthermore,
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let P4 be the first packet arriving in,4) 4 at timet. Now, our aim is to construct a sequence
of valid schedules such that the first packet containhgarriving atd(A) can not be decoded
correctly. Then, the result will follow from Definition 2. Ehconstruction is as follows: First,
let ¢; 5 is empty att. Then, find the largest < j such thatg,, 5 is non-empty. If no such
exists, then do not schedule any link until a packet (8gy arrives ing,g) 5. Note that a new
packet will arrive ats(B) in finite time w.p. 1 as\z > 0. When a packet arrives i p) 5,
we can choose = 0. Once the value of; is determined, schedule’, ¢Z., and so on, one at
a time until a packet arrives ig; 5. Next, schedule a sequence of links, ... e | one at a
time so thatP, arrives ing; 4. Now, multicastP4 & Pz on ef and ejB, which is possible as NC
allows XOR-ing of these packet atFinally, scheduley',,, ... ey, _, one at a time so that the
XOR-ed packetP, @ Py arrives atd(A). Now, note that because of the FIFO servié®, is
not available ati(A). Thus, P4 can not be recovered d{A) upon its arrival. This proves the

required. [ ]



