Exo-leasing: Escrow Synchronization for Mobile Clients of
Commodity Storage Servers*

Liuba Shrira!, Hong Tian?, and Doug Terry?

! Brandeis University
2 Amazon.com
3 Microsoft Research

Abstract. FEro-leasing provides a new way to implement escrow synchronization for discon-
nected applications. A key problem facing disconnected applications is the need to coordinate
concurrent operations on shared data objects to avoid conflicts. Escrow synchronization is
a well-known technique, useful for inventory control, that avoids conflicts by taking into ac-
count the semantics of fragmentable object types. Unfortunately, current techniques cannot
be used on generic “commodity” servers because they require the servers to run the type-
specific escrow synchronization code. This is a severe limitation for systems that require
application-specific synchronization but rely on generic components to exploit economies of
scale.

Our exo-leasing method provides escrow synchronization without running any type-specific
code in the servers. Instead, escrow synchronization code runs in the client, resulting in a
modular system with the ability to use generic commodity servers. Running synchronization
code in the client provides an additional benefit. Unlike any other system, our system allows
a disconnected client to avoid conflicts by coordinating with another disconnecting client,
reducing the need to coordinate with the servers. Measurements of a prototype system indicate
that our approach achieves escrow-based conflict avoidance at moderate performance overhead
on common expected workloads.

1 Introduction

Mobile collaborators wish to continue their collaborative work wherever they go. In spite of improv-
ing network connectivity, wide-area connectivity cannot be taken for granted because of physical,
economic and energy factors. Moreover, the increasing trend towards storing data in utility data
centers is making it harder for mobile workers to share and access their data while out of the office.
It is useful, therefore, to develop techniques that enable mobile users to continue collaborative work
while disconnected and operate independently without compromising data consistency.

Disconnected access to shared data is by now commonly supported via a well understood pro-
cess [18,17]. A mobile client pre-loads objects before disconnecting and optimistically manipulates
locally-cached copies of objects, periodically reconnecting to validate the changes against a ”"master
copy” of data stored reliably at the storage server. If the validation detects conflicts, the client has
to abort the changes or reconcile them, possibly using application-specific resolvers [21, 32].

The penalty for aborts and after-the-fact conflict resolution, however, may be too high in some
applications. For example, a mobile salesman may accept customer orders based on cached, but

* This research was partially supported by NSF grant CNS-0427408. The work was done while Hong Tian
was at Brandeis University and Liuba Shrira was at Microsoft Research, Cambridge, UK.

out-of-date information only to discover, upon returning to the office, that the purchased items are
out of stock, thereby resulting in cancelled orders or unhappy customers. To avoid costly conflicts, a
mobile client, before disconnecting, can obtain reservations [30](locks) that guarantee (in-advance)
the successful completion of specific transactions while disconnected. Escrow synchronization [26]
is a well-known scheme, useful for inventory control, that provides such reservations, exploiting the
properties of fragmentable [40] object types. It allows disconnected mobile clients to avoid conflicts
while independently making changes to shared objects [30]. For example, members of a mobile sales
team can each obtain a reservation for a portion of the available sales items and independently
validate sales transactions while disconnected.

Current escrow synchronization techniques suffer from a limitation that precludes the use of
generic “commodity” servers because they require type-specific escrow synchronization code at the
servers. Most data centers will not allow customers to run unproven custom code on shared storage
system servers for performance and security reasons. This is a problem for systems that require
application-specific synchronization but rely on generic components to exploit economies of scale
(for example, “cloud computing” systems are likely to have this problem).

The contribution of our work is to fix this limitation. This paper describes a new technique
called exo-leasing that implements escrow synchronization without running type-specific code at the
servers. Instead, the type-specific code that implements escrow synchronization runs in the client.
This way, new applications using escrow and other fragmentable object types can be developed
without modifying the servers. The result is a modular system with the ability to use commodity
servers.

An additional benefit of running the synchronization code at the client is the ability to pro-
vide new functionality. Unlike any other system, our system allows to “split” escrow reservations
among disconnected clients. A disconnected mobile salesman on a sales trip can transfer some of
his reservations to a partner. Exo-leasing makes the transfer possible because the synchronization
code running at the client encapsulates the complete synchronization logic. Disconnected reserva-
tion transfer reduces the need to communicate with the servers, providing a complementary benefit
to disconnected cooperative caching [35, 5,28] that transfers data but not reservations.

We implemented MobileBuddy, an escrow synchronization system built on top of a generic
transaction system using exo-leasing, and evaluated the performance overheads introduced by our
techniques. Measurements indicate that if the client obtains reservations but does not benefit from
them, our techniques impose a moderate performance penalty. If the client benefits from conflict
avoidance, enabled by the reservation and reservation transfer, the cost is reasonable since conflict
avoidance saves work.

To summarize, this paper attacks an important insufficiently studied problem in mobile com-
puting space, namely, how a commodity storage system can support escrow synchronization so that
disconnected client applications can control shared inventory data while avoiding conflicting up-
dates that later need to be aborted or resolved. The paper makes the following contributions: 1) It
introduces exo-leasing, a new modular approach that combines escrow reservations with optimistic
concurrency control. By offloading the type-specific escrow code from the servers to the clients, it
provides the ability to use commodity servers, making escrow reservations practical in commodity
storage systems. 2) It describes an escrow reservation transfer facility enabled by exo-leasing, in-
cluding the definition of transfer semantics, and new transactional mechanisms for implementing the
semantics. 3) It describes a prototype implementation of the new techniques in the MobileBuddy
system and provides measurements of the prototype supporting our performance claims.

The rest of the paper is organized as follows. Sec. 2 and Sec. 3 discuss the basic concepts,
i.e. realization of escrow synchronization without modifications on the server side. Sec. 4 presents
in more detail the transaction system that employs these ideas. Sec. 5 describes the split and
transfer of escrow reservation without server intervention. Sec. 6 provides the MobileBuddy system
implementation details. Sec. 7 presents the results of a client-side performance overhead study.
Sec. 8 relates our approach to previous work. Sec. 9 summarizes our conclusions.

2 Owur Approach

Our goal is to provide effective support for disconnected transactions using escrow synchronization
to access shared objects in systems such as inventory control. Specifically, using the mobile sales
example, we require:

1. Ability to acquire sales reservations so that a salesman can carry out sales transactions while
disconnected and be sure the transactions will commit without conflicts.

2. A proper outcome in the absence of failures. For example, the salesman should be able to
commit only the sales he ultimately manages to finalize.

3. A proper outcome in case of failure. For example if the salesman never finalizes the sale, the
reservation should be released.

We have developed a new approach based on specialized escrow objects to support these require-
ments. Unlike earlier work, our approach requires no special processing on the storage server nodes.
This is attractive because it allows to use generic commodity nodes. Earlier work also made use
of specialized escrow data types to avoid concurrency control conflicts and developed a number of
implementations [26, 20, 40, 19]. However, all these approaches involved the use of specialized code
running at the server node. Using our approach, these earlier escrow schemes can be adapted to
use unmodified generic servers.

In our scheme, the persistent storage for objects resides on storage servers while mobile clients
cache and access local copies of these objects. A disconnected client runs top-level disconnected
transactions that contain within them special smaller revertible transactions (called in literature
open nested transactions [25,41]). The revertible transactions perform modifications to objects that
are cached on a mobile client and are used to commit changes, e.g. reservations to items in stock,
that may be cancelled later. They allow clients to coordinate their changes. Fig. 1 summarizes the
steps taken by a mobile client both when connected and disconnected from the server.

Our requirement to not run any special code at the storage nodes implies that storage nodes
do not know anything about the revertible changes. Instead, storage nodes process all commit
requests, including revertible transactions, identically. Our approach, instead, has special processing
performed at the client machines. These computations run on cached copies of data from the storage
server nodes, and these copies will reflect the changes made by other committed transactions,
including both committed top-level transactions and committed revertible transactions. Thus the
computations can observe the revertible changes of other disconnected transactions and take these
into account.

Our approach makes use of special escrow objects. Such an object provides the normal operations,
including obtaining or releasing a reservation for a resource. Additionally, these objects are prepared
to handle the changes committed by revertible transactions. When the user calls a modification
operation on such an object, the operation performs the modification and records the execution
of the operation in a log along with a lease. The lease stores the time at which the revertible

Begin top-level transaction

Obtain reservations

Loop {
Refresh/load objects into local cache
Disconnect from server
Perform local revertible transactions
Validate revertible transactions against reservations
Record transaction results
Reconnect to server
Release some reservations if desired
Renew reservations if necessary
Obtain new reservations if desired

}

Commit top-level transaction i.e.

atomically validate/abort local transactions

and release unused reservations.

Fig. 1. Mobile client steps

operation will expire. The information about the revertible modifications and their leases is part of
the representation of the object, and thus is written to the storage server when the mobile client
reconnects and the application commits the revertible transaction. Other clients, upon connecting
to the shared storage server, will observe the revertible modification on the special escrow object.

When the client reconnects and is ready to commit the top-level transaction, it must first call a
special confirm operation on all escrow objects on which it wants the revertible change to become
permanent. This operation updates the status of that change so that it no longer appears revertible.
Additionally, the transaction can call a special release operation to undo the modifications that are
no longer of interest to it. Thus when the top-level transaction commits, all of the escrow objects
whose modifications have been confirmed will be stored with those changes having really happened,
and objects whose changes have been released will have those modifications cancelled. Note that the
application need not explicitly cancel (release) the changes that are no longer needed, since these
modifications will be undone automatically when those objects are used by other transactions after
the leases expire. However, cancelling is desirable since it can release the resource earlier, before
their leases expire.

Fig. 2 depicts the structure of our system that supports applications that use escrow synchro-
nization (clients C1 and C2), without modifying the generic servers, or the applications that do not
use escrow (clients C3 and C4).

3 Exo-leasing

Consider the value of the shared object tracking the balance of in-stock items for sale in the
disconnected sales application, and consider the write/write conflicts that occur when concurrent
transactions add or remove item reservations. These conflicts are superfluous in the sense that,
as long as there remain available items for sale, no matter in what order the reservations are

Application

Escrow objects

Caching ciient Application
Ci1

Caching client

—~ C3
Application / Internet\l

Escrow objects | Datacenter e

- - r Application
Caching client

c2 \ Caching client

- C4

1=
(.

\
[

Mobile client applications I\| ‘ Mobile client applications

with escrow synchronization \ // without escrow

Generic servers
Fig. 2. Client Side Escrow Synchronization

interleaved they produce the same in-stock balance. A type-specific concurrency control scheme
called escrow [26] avoids these unneeded conflicts by exploiting the semantics of the escrow type.
An object of escrow type provides two commutative operations: split(delta) and merge(delta). A
transaction calls the split operation to make a reservation for specified (delta) escrow amount, and
calls the merge operation to return the unused escrow amount. As long as the in-stock balance is
positive, the escrow locking protocols allows concurent transactions to interleave the split and merge
operations without conflicts. The escrow type is a representative of a general class of fragmentable
objects [40]. Objects of this class have commutative operations that can be exploited by type-specific
concurrency control schemes like escrow to avoid conflicts.

Escrow is a simple and effective synchronization method that has been well-known for a long
time but has not been widely deployed in commercial systems. A principle barier to the adoption
in practice has been the need to modify the (legacy) concurrency engine since prior proposals run
escrow synchronization code in the server.

We show how to perform escrow synchronization actions at the clients yet allow the same con-
current operation inter-leavings allowed by other escrow proposals. Our disconnected client/server
system runs transactions on cached state in the client, using a generic fine-grain read/write con-
currency control scheme, and a cache coherence protocol that sends invalidation to the client if the
object cached at the client becomes stale (because another client has modifed it).

Server side synchronization Consider the server side implementation of a sales account service
using escrow synchronization. The service is implemented by an object (service object) that exports
a collection of methods. The methods include acquire, release, and expire operations that can be
overriden by different fragmentable object implementations.

The object implementation consists of the procedures implementing the operations and the
representation for the shared state they manipulate. The representation includes a set of outstanding

reservations and an internal in-stock balance object that implements the escrow operations. The
split(delta) operation is called by the acquire request to obtain the reserved escrow amount, and the
merge(delta) operation is called by the release request to return the unused escrow amount. The
merge(delta) operation is also called by the expire method that is invoked internally by the service
system when a reservation expires.

The reservation requests run as atomic transactions. The acquire request atomically commits
the modifications to the in-stock-balance object and inserts a record describing the reservation into
the reservation set. The reservation record specifies the reservation expiration time, and the actions
that need to be performed if the reservation expires. These reconciler actions are type-specific, they
perform the inverse of the operation invoked by the acquire request. The release and expire requests
atomically commit the effects of the corresponding merge operation and remove the reservation.

The synchronization code described above resembles a concurrent object with a type-specific
lock manager implemented using a monitor where monitor procedures implement the reservation
requests, and monitor state encapsulates the internal in-stock-balance object and the outstanding
reservation set. Within the monitor, the procedures use a simple mutex to serialize accesses to the
shared monitor state.

Client-side synchronization A disconnected client/server system that runs transactions on
cached state in the client, validates read/write conflicts at the server, using a cache coherence
protocol that detects stale cache entries, can run the concurrent object on the client side. This
is achieved by simply storing the persistent monitor state at the server, caching at the client the
monitor code and state, running the monitor procedures on the cached state, and replacing the
mutex synchronization with the cache coherence protocol that coordinates access to cached state
by validating read/write conflicts at the server.

When the client is connected and issues a reservation acquire request, the corresponding monitor
procedure updates the client’s cached state (the reservation set and the state of the in-stock-balance
object) to reflect the reservation and sends the modified state to the server. If the state sent to the
server is not stale, the server can commit the request making the updated state persistent. If the
cached state is stale because another client has committed a reservation request, the server aborts
the request and informs the client. The client obtains from the server the up-to-date monitor state,
re-runs the request, and re-tries the commit with the new state. Eventually the request will succeed.

Consider a client that needs to return unused reservations. The commit of the release request
is similar to the acquire request in that it may need to be retried.

Lease expiration Next consider the expire request. In the server-based scheme, the monitor code
notices an expired reservation and invokes the expire request to release and reconcile the reservation.
In the client-side scheme, the expired reservation is noticed by the monitor code at a client. Such a
client obtains from the server the monitor state for the object, notices the expired reservation, and
invokes the expire request to release the reservation. A reservation expiration may not be noticed
for a long time if no client runs a reservation request. On the other hand, the expiration is of no
interest until then. There is no problem with concurrent duplicate invocations of the expire request
for the same expired reservation at multiple clients since after the first expire request commits other
cached monitor copies become stale.

Detecting lease expiration at the client requires to make sure that a client with a fast clock
does not expire the lease too soon. Our protocol uses the server time for lease expiration (assuming
monotonic clocks). That is, a client must have received a message from the server with a timestamp
greater than the lease expiration time.

We assume the server enforces object access controls so that only clients having suitable permis-
sions are allowed to modify the monitor state. Since all escrow reservation requests require write
permission the expired reservation can be reconciled by any client that makes a reservation request.
Otherwise, the reservation reconciliation may need to wait until noticed by a client with appropriate
permissions.

We call the above client-side concurrency approach ezo-leasing (externalized leasing), and call
the object running the escrow synchronization code at the client side as the escrow leasing object,
or escrow object, for short. We showed how exo-leasing works for escrow type. The same approach
works for other fragmentable types [40]. A workshop position paper [34] by first author further
considers a general transformation for deriving client-side type-specific synchronization schemes
from server side schemes.

Constiderations Moving code to the client can adversly impact the performance of the system.
The performance impact depends on the size of the monitor object that needs to be refreshed. The
cost could become significant if the object is large and the contention is high. In general, however,
we expect the synchronization objects to be small and contention levels to be moderate.

Moving code to the client raises a security concern if servers are trusted and clients and servers
belong to different administrative domains. A rogue client could corrupt the monitor code, e.g.
expire a lease “too early”, and commmit changes that depend on the expiration request. Digital
signatures can provide accountability [42], allowing to detect a rogue client after-the-fact, but may
introduce overhead. The security concern is mitigated if a client runs in a secure appliance. A
possible general solution is to exploit the TCB extensions proposed by the A2M (attested append-
only memory) system [7] to provide “attested” escrow leasing objects. The details of the A2M-based
approach are outside the scope of this paper and considered future work.

4 Disconnected transaction system

We have designed a 2-level transaction system that provides escrow synchronization for disconnected
client transactions accessing shared objects stored in generic storage servers. Disconnected clients
can validate transactions independently of other clients, and avoid, in the normal case, the after-the-
fact conflict reconciliation. In the 2-level system, a generic base system, assumed as given, provides
disconnected client/server storage for transactions accessing persistent objects. The base system
synchronizes transactions using a read/write optimistic concurrency control scheme. Higher-level
transactions, called application transactions, correspond to activities meaningful to the application.
For example, reserving items for sale, running a disconnected sale, and then committing the sales
transaction upon reconnection, may constitute one application transaction. Application transactions
use base transactions to install durable updates. Application transactions synchronize using escrow
objects.

This section specifies the base system and describes how we use it to implement escrow objects,
to provide high-level transaction atomicity in the presence of client crashes and failures to recon-
nect, and to support disconnected high-level transaction validation. A technical report [36] further
considers the formal correctness properties of the high-level transaction system, including semantic
serializability.

Base transactions The base transaction system is based on the MX disconnected object storage
system [35], though we could use any generic client-server storage system that supports cached

transactions, e.g. SQL server replication. A disconnected mobile client runs tentative transactions,
accessing the local copies of the cached objects stored persistently in storage servers. A tentative
transaction records intention to commit and allows the client to start up a next transaction. Tenta-
tive commits lead to dependent commits [14]: transaction T; depends on T; if it uses objects modified
by T; because if T; ultimately aborts so must 7;. That is for tentative transactions T; and T},

T; depends on T; < ReadSet(T;) N WriteSet(T;) # 0

A tentative commit that is not a dependent commit, defines an independent action [9]: a transaction
T} that does not use objects modified by T; can commit even if T; aborts.

To commit a tentative transaction persistently, the client connects to the server. An optimistic
concurrency control scheme (adaptation of OCC [3]), provides efficient validation of disconnected
client transaction read and write sets using invalidations. The server accumulates the invalidations
for objects cached at a disconnected client, allowing, upon client reconnection, to validate client
transactions efficiently, including transactions accessing objects acquired from other clients while
disconnected (using disconnected cooperative caching) [35]. A transaction that passes server val-
idation is committed, and its results are stored persistently at the server (without re-executing
it).

Application transactions and escrow objects Application transactions invoke operations on
regular cached objects and encapsulated escrow objects. An application transaction runs as a top-
level transaction that contains nested base transactions (tentative or durable). Application trans-
action effects become durable when it commits a base transaction at the server.

The escrow object operations (e.g. acquire, release and expire) run as base transactions nested
inside the top-level transaction. They manipulate an escrow object representation consisting of
regular cached objects. For example, the operation to acquire an escrow reservation that reserves a
number of sales items reads the cached copy of the escrow variable to check if a sufficient amount
of sales items is available for the reservation, and updates the cached representation to reflect an
acquired amount. The base transaction that commits the acquire operation updates the durable
copy of the escrow object at the server.

The nested transaction that commits an update to an escrow object at the server, without
committing the top-level transaction, exposes the effects of the top-level transaction to other clients.
Such open nesting [41, 25] allows to synchronize top-level transactions running in concurrent clients
to avoid conflicts (e.g. another client can observe the existing reservations and reserve the remaining
sales items).

Note, that since base transactions are optimistic, the server will abort a client base transaction
if the cached escrow object state is stale, i.e. has been modified by another client. In such a case,
the first client refetches the new state of the escrow object, re-executes the nested transaction on
the fresh state, and retries the commit of the base transaction. The nested transaction is retried
without undoing the top-level transaction.

Atomicity We want to guarantee the atomicity (all-or-nothing) property for top-level transactions.
A top-level transaction that exposes its effects by committing open nested transactions (running es-
crow operations) can subsequently crash or abort. The exposed effects need to be undone (recovered)
by running escrow operations that revert the effects. The protocol that accomplishes this resembles
logical recovery for highly-concurrent data structures, e.g. ARIES recovery for indexes [12]. Like-
wise, its mechanisms, cleanup and reconcilers, resemble, respectively, logical recovery procedure and

(=) OO

— N
Start T1
e=15)
1 acquire e=5
I
_ 1
e=10 o=5
KRCEOS=Tmeros £t recLog: merge 5/ C1 Start T2
Ji 2 e = e.split (2) acquire e=3
|
e=7 e=3 e=3
recLog: merge 5/ C1 recLog: merge 5/ C1 recLog: merge 5/ C1
merge 3/ C2 merge 3/ C2
onAbort: merge 5
l 3 onCommit: merge 3
L Tommit T1
e=10 release e=3
recLog: * merge 5/C1
merge 3/C2 ‘ e

Fig. 3. Reconciler logs in escrow leasing

logical undo records. Our protocol differs because it runs on the client side, and deals with leases
rather than locks.

Cleanup runs when transactions commit or abort. The goal of the abort cleanup is to revert the
exposed effects of an open nested transaction when the top-level transaction aborts. The goal of the
commit cleanup is to ensure that the exposed effects are not reverted when the top-level transaction
commits. The cleanup actions invoke operations called reconcilers, defined by the escrow objects.
Reconcilers revert the effect of escrow operations. For example, the reconciler for an operation
that acquires an escrow lease on an item, is an escrow merge operation that returns the item.
The reconcilers are stored in the part of the escrow object representation, called the reconciler log.
A reconciler is recorded in the log when the open nested transaction runs the associated escrow
operation. A reconciler becomes durable when the open nested transaction commits at the server.
The reconciler entry in the reconciler log can be active, deactivated, or timed-out. The open nested
transaction commits an active reconciler that includes the lease expiration time.

An abort cleanup runs when a top-level transaction aborts. Abort cleanup invokes and deac-
tivates the active reconcilers recorded by its open nested transactions. An abort cleanup can also
run on a diferent client that has not created the reconciler but observes the timed-out reconciler
in the reconciler log. Such abort cleanup runs (invoking and deactivating the reconcilers) when the
top-level transaction at the observing client commits or aborts.

A commit cleanup runs when a top-level transaction commits. Commit cleanup deactivates the
active reconcilers that have been recorded by its open nested transactions (without invoking them).
The commit cleanup resembles the release of locks at transaction commit time in read/write locking
schemes but there is an important difference. Where the release of read/write locks only affects
performance, escrow leases must be removed (deactivated) atomically with the top-level commit to
maintain correctness. This is because, if the top-level transation commits and subsequently client
crashes without removing the escrow leases, the time-out of the escrow lease will revert the effects

of the lease, thus violating the all-or-nothing property of the top-level transaction whose commit
depends on the acquire of the lease.

A top-level transaction assembles the cleanup actions by registering callbacks to escrow ob-
ject handlers called cleanup handlers when open nested transactions envoke escrow operations. In
addition, validation procedures check the leases in the reconciler logs, and register handlers for
the timed-out reconcilers so that commit or abort cleanup at the observing client will invoke the
timed-out reconciler and deactivate it.

The cleanup action runs as a nested base transaction that commits (or aborts) atomically
with the top-level transaction. To commit a nested transaction as part of the top-level transaction
commit, the client simply includes the read/write sets of the nested transaction with the parent
read /write sets. If the server can not commit the joint fransaction because the escrow object was
stale, the client receives an invalidation for the escrow object, refetches the new state of the object,
and retries the joint commit without aborting the top-level transaction. Note, that if other data
(not the escrow object) was stale, the application will need to resort to after-the-fact reconciliation
for that particular data.

Example execution with escrow objects Fig. 3 shows the state of the reconciler logs at the
server and two concurrent clients C1 and C2 running top-level transactions using escrow synchro-
nization. The initial escrow object state at the server contains 15 in-stock escrow items and an
empty reconciler log. C1 runs a top-level transaction T1 acquiring a reservation for 5 items by
committing (step 1) a connected open nested transaction that updates at the server the escrow
variable e to 10 items to reflect the remaining in-stock amount, recording a leased reconciler [merge
5/C1] that will undo its effect if C1 does not reconnect in time (lease time omitted to avoid clutter).
Note, unlike for regular cached objects, after invoking acquire, the cached escrow amount at the
client and at the server are different. A concurrent client C2 runs a top-level transaction T2 that
acquires a reservation for 3 items (step 2) updating the durable escrow variable e to 7 to reflect the
remaining in-stock amount, and recording a reconciler [merge 3/C2]. C1 consumes 2 escrow items
while disconnected (running a special validated DON-transaction explained below that records ten-
tative update to the cached escrow variable) resetting cached e to 3. If T1 were to abort at this
point, the entire acquired amount has to be reconciled. If T1 were to commit, only the remaining
unconsumed amount, as indicated by the cleanup handlers onCommit and onAbort registered with
T1 (depicted within unshaded box). C1 reconnects and commits (step 3) the parent transaction
T1, releasing the unused escrow amount, and resetting the durable value of e to 10. The commit
deactivates C1’s reconciler in the durable reconciler log (deactivated is entry marked *[merge 3/
C1]). The durable reconciler log at the server still contains the active reconciler for the open nested
transaction comitted by C2. If C2 crashes, or does not reconnect in time, the reconciler will be
invoked and deactivated by another client that accesses this escrow object and observes the expired
reconciler.

Semantic serializability Top-level application transactions do not provide the read/write iso-
lation property [11] because they expose uncommitted effects. Instead, top-level transactions are
semantically serializable. We discuss this property informally, the formal treatment is outside the
scope of this paper. Fig. 4 shows the semantic serialization of the two top-level transactions T1 and
T2 run by C1 and C2 discussed above, assuming C2 reconnects in time and commits. The figure
is intended to be read with time passing from left to right. At the low level we see the sequence
of committed base transactions corresponding to the open nested transactions T1.1, T2.1, and the

T1.1: T2.1: T.2: e(3) 22
] 1 merg 3
split(5) split(3) r(T1) ..w(T1) z‘:gf{w()ﬁ)

Fig. 4. Semantic serialization

nested transactions T1.2 and T2.2, issued by top-level transaction T1 (client C1) and T2 (C2),
accessing the escrow object. In addition, T1 and T2 contain reads and writes of the regular objects
(denoted r(Ti), w(Ti)). The nested transaction T1.2 (T2.2) runs when T1 (T2) commits atomically
the effects of both escrow and regular object modifications. While in reality the reads and writes
of T1 and T2 are interleaved, the semantic serializability of the T1 and T2 requires that it be
as if the effects of T1 and T2 are isolated. Indeed, at the object level, since the split and merge
operations commute, the committed order is equivalent (semantically) to T1.1, T1.2, T2.1, T2.2.
Thus, T1 and T2, even though they are tangled together at the lower level of the base trasactions,
are semantically serializable top-level transactions.

Disconnected validation Our system supports disconnected validation [30] for top-level transac-
tions. Disconnected validation guarantees, at the cost of extra checking at tentative commit time,
that transactions will pass connected validation, provided the client reconnects in time. Validated
transactions are a useful practical abstraction that reflects the reality of disconnected computation.
For example, a “guaranteed mobile sales transaction” that performs a disconnected update to the
escrow object, runs as a validated transaction. A new variant of disconnected tentative transac-
tion we call DON (disconnected open mested) transaction supports disconnected validation. Unlike
regular tentative transactions in the base transaction system, DON transactions run protected by
the escrow lease and therefore can be validated by a disconnected client. Escrow operations runs
as DON transactions. A specialized validation procedure provided by escrow objects checks lease
expiration. Our performance evaluation in Section 7 considers the overhead of the extra checking
required to run DON transactions.

5 Lease Transfer

A disconnected salesman may want to transfer a reservation to a partner. Our system allows a
disconnected client (the requester) to acquire reservations from another client (the helper). Some
disconnected client/server systems allow one disconnected client to obtain consistent objects from
another client [5, 35, 28] but none support the transfer of reservations (locks or leases). Yet, such a
feature might be useful since it reduces the need to communicate with the servers and permits a
new pattern of collaboration within disconnected workgroups.

Ezxample Consider how reservation transfer might be used in a scenario where a team of three
traveling salesman Joe, Sally and Mary share a sales service account. Mary and Sally each obtain
a reservation (lease) to sell five items, disconnect and travel together to a sales destination where
each completes a sales transaction selling one item each. Mary finds out she needs to change her
plans and leave for a different destination. Mary would like to transfer her remaining reservations to
Sally. This would allow Sally to guarantee the additional sales transactions she hopes to accomplish
to cover for Mary. Sally acquires the remaining four reservations from Mary, completes five sales
transactions and, before leaving for another destination, transfers her remaining reservations to
Joe who arrives to replace Mary. Sally reconnects to the server and successfully commits her sales
transactions, recording the reservation transfers. The commit reflects the sales of six reserved items,
removing the appropriate reservations for the sold items and adjusting the pending reservations to
four items. Mary reconnects next, recording a reservation transfer to Sally, and commits her sales
transaction. The commit reflects the sale of one reserved item, adjusting the pending reservations to
three items. Joe gets distracted with other matters and lets the remaining reservations expire. The
expire method is invoked canceling the expired reservations and making the three reserved items
available again. At this point, to run a guaranteed sales transactions Joe would need to reconnect
and acquire new reservations. Fig. 5 summarizes the steps taken by a mobile client using reservation
transfer.

Exo-leasing makes reservation transfer possible because the escrow object that runs at the client
(rather than the server) encapsulates the complete logic of the escrow reservation manager. The
reservation transfer is implemented by a special transfer procedure defined as part of the escrow
object implementation.

Fig. 6 depicts the structure of the system that allows one application to transfer escrow reser-
vations between disconnected clients (clients C1 and C2), without modifying the generic servers, or
other applications that do not use escrow synchronization but possibly use disconnected cooperative
caching provided by the base transaction system (clients C3 and C4).

5.1 Transfer Semantics

Escrow reservation transfer has to preserve the semantic invariants of the escrow type. Such transfer
should have the same effect as if the helper never had the reservation, and the requester acquired
the reservation by interacting with the server. That is, the transfer of a part of escrow reservation
from the helper to the requester must simultaneously increase the amount of escrow in the requester
and decrease by the same amount the reserved amount in the helper.

The correctness condition for reservation transfer [36] requires that a transaction system that
commits transactions using the transferred reservations is equivalent to a system that commits the
same transactions without the transfer, where all reservations are obtained by interacting with the

Begin top-level transaction
Obtain reservations
Loop {
Refresh/load objects into local cache
Disconnect from server
Loop{
Perform local tentative transactions
Validate tentative transactions against reservations
Record transaction results
Connect to collaborator
Refresh/load objects if desired
Provide some reservations if desired
Obtain new reservations if desired

Connect to the server
Release some reservations if desired
Renew or obtain new reservations if necessary
}
Commit top-level transaction i.e.
atomically validate/abort local transactions and
release unused reservations.

Fig. 5. Client steps with reservation transfer

Application Application
Escrow objects |___| Escrow objects
T Caching client Caching client
[N | c2
/' Internet - H 3
Datacenter | _— ‘e
Applications using escrow transfer
!
!
IIII
_ b Application Application
k /-‘ Caching client Caching client
R C3 C3
Generic servers ferrres s ———— :

Applications using cooperative caching

Fig. 6. Escrow Reservation Transfer between Clients

server. Of course, any one of the disconnected clients participating in the typed lease transfer can

crash before reconnecting to the server. Moreover, the participating clients can reconnect in any
order. For example, a requester that has acquired the reservation from a helper could reconnect first,
and the helper that has supplied the reservation could crash while disconnected. The correctness
condition for reservation needs to be maintained in the presence of disconnected client crashes and
all possible participant reconnection orders.

5.2 Transfer Atomicity

We implement the reservation transfer procedure using a new kind of transaction. The new transac-
tion, called a 2DON transaction, involves two clients participating in the transfer, each client runs a
nested tentative base transaction. 2DON transaction is tentative because one or both participants
in the transfer could crash. It commits durably when one or both participants reconnect to commit
the transaction at the server.

To insure the atomicity of the transfer, the 2DON transaction has to record enough information
in the participants to enable any reconnecting participant to recover independently, if the other
participant does not reconnect in time. The reservation transfer procedure at the helper client calls
the escrow object release operation to reflect the transfer. This updates the cached escrow variable
and defines the appropriate commit and abort cleanup actions, recording the appropriate reconcilers
in the reconciler log. These steps are identical to DON transaction. In addition, the reservation
transfer procedure records the reconcilers of the other participant so that the reconciler logs at
both participants contain identical sets of reconcilers reflecting the transfer. Using the reconciler
logs the eventual cleanup actions insure that reconcilers for unused reservations are invoked (and
deactivated), and the reconcilers for used reservations are deactivated.

In a client that reconnects first, the commit cleanup for the top-level transaction containing the
transfer deactivates the durable original reconciler created when the reservation that got transferred
was first acquired, and adds the two reconcilers, generated by the transfer. The reconciler for
the amount held by the reconnecting committing client gets immediately deactivated when this
reconnecting transaction commits. The reconciler for the amount held at the other participant will
get deactivated when the second participant in the transfer reconnects (or by expiration).

Our protocol guarantees that the appropriate cleanup actions for every reconciler will be invoked
ezactly once, in all three cases that constitute the possible outcomes of the transfer: when the second
participant reconnects and commits in time, second participant fails to reconnect, or none of the
participants reconnect in time. An example illustrates the protocol steps.

Ezxample execution with transfer Fig. 7 depicts the reconciler logs reflecting escrow reservation
transfer. The execution steps are identical to the example in Figure 3, except for lease transfer in
step 2. C1 consumes 2 units and resets the cached escrow object to 3, running a validated DON
transaction. Then, C1 encounters another client and, as a helper, transfers a reservation for 3 items
to a disconnected requester C2 (step 2). The transfer procedure runs as the 2DON transaction,
resetting the escrow amount to 0 in the helper, and to 3 in the requester. The 2DON transaction
records in the reconciler logs of the participants the leased reconcilers reflecting the transfer (same
expiration time as the original helper lease). The requester transfer reconciler [merge 3/C2] accounts
for the case when the requester does not reconnect in time. Such a lost transferred amount needs to
be recovered by merging it back into the total available amount. The reconnecting helper C1 that
has participated in the transfer, and therefore contains this reconciler, will durably commit it at
the server. The expiration of this reconciler will trigger the intended cleanup. This reconciler will

SENONNG

Start T1
e =15 o
. 1 acquire e=5
I W
e =10 e=5
recLog: merge 5/ C1 recLog: merge 5/ C1
e = e. split (2)
e=3
Log: 5/C1
el Bl Start T2
e =e, split (3) | 2 acquire e=3
e=0 e=3
recLog: merge 5 /C1 recLog: merge 5/ C1
merge 3/ C2 merge 3/ C2
3 split3/C1 split3/C1
Commit T2
e =13
recLog: merge 5/C1 release e=3
* merge 3/ C2
split3/C1

Fig. 7. Reconciler logs in an escrow transfer

be deactivated by the requester C2 if it reconnects in time as part of the commit of the top-level
transaction T2 that run the 2DON transaction.

The helper transfer reconciler [split 3/C1] accounts for the situation where the helper does not
reconnect in time and therefore does not deactivate the durable reconciler [merge 5/C1] generated
by C1’s open nested transaction that obtained the original reservation. The timeout of the orig-
inal acquire reconciler could (incorrectly) merge back the entire amount not accounting for the
transferred amount. The reconnecting requester C2 participated in the transfer, and therefore con-
tains the reconciler [split 3/C1] generated by the 2DON transaction, will durably commit it at the
server. The expiration of this reconciler, together with the original acquire reconciler will trigger
the execution of both reconcilers, resulting in the cleanup that correctly adds back 2 escow units.
Both reconcilers (corresponding to acquire and transfer) would be deactivated by the helper C1 if
it reconnects on time as part of committing the top-level transaction T1.

In the example, the requester reconnects to the server first (step 3), releasing all the reservations
(assume no reservations were used up), updating the server escrow amount to 13 to reflect the
returned escrow, deactivating the requester’s transfer reconciler, and updating the server reconciler
log to include the helper’s reconciler. All of the above actions are committed atomically by a base
transaction. After the commit, the cached requester state contains no reservations (not shown).

Consider the possible ways the execution could proceed. If the helper reconnects and commits on-
time, this would not change the durable escrow value but would deactivate the helper’s reservations
and corresponding reconcilers, as explained above. Alternatively, if the helper does not reconnect,
the reconciler log at the server containing the helper’s reconcilers [merge 5/C1] and [split 3/C1]
would eventually be observed and invoked at some other client adding back 2 units. If both the
requester and helper fail to reconnect in time, some client eventually acessing the escrow object
would invoke the timed out reconciler [merge 5/C1] stored originally in the reconciler log.

6 The MobileBuddy System

We implemented MobileBuddy, a 2-level transaction system providing application transaction sys-
tem on top of the MX disconnected object storage system [35].

MX The MX system supports connected servers and mobile collaborative client groups. Servers
provide reliable and highly-available disk storage for the master versions of persistent objects. A
persistent object is owned by a single server. Since objects may be small (order of T00 bytes for
programming language objects [23]), objects on disk are clustered into physical pages. Less reliable
mobile devices run client applications that access objects on cached copies of pages. Mobile clients
either run disconnected from the servers, or connect through a high-latency WAN. The client
population is dynamic but not changing fast since access to the shared persistent storage system
requires an authenticated account. Mobile clients have efficient means to communicate with each
other and can dynamically form collaborating groups, interacting at a close range. A typical group
size does not exceed 5-10 clients, smaller groups being the common case. Before disconnecting from
the servers, a mobile client pre-loads the cache with up-to-date copies of the master versions of the
objects of interest.

A disconnected client can transfer pages to other clients using disconnected cooperative caching.
While disconnected, a mobile client runs tentative transactions accessing the local copies of the
cached objects. At any time the mobile client has access to two cached data versions: a local version
in the working cache, and a best-known master version in the clean cache. A tentative transaction
updates the working version of the cached data, and generates a standard log record containing
modified and new object values to be committed, read and write object sets used for validation,
and undo records. The undo records support low-cost fine grain roll-back to the pre-transaction
state. The best-known master versions are used in the disconnected transfer of pages (called peer-
fetching) between clients. A client peer-fetching a page from another client, re-validates its tentative
transactions if the fetched page has more recent versions of objects. A mobile client reconnects to
the servers to commit the tentative transactions (reporting peer-fetched pages if any). The server
validates the transactions using accumulated invalidations and creates new durable versions of the
modifed master copies.

MobileBuddy The MobileBuddy system implements the application transaction and exo-leasing
protocols described in Sec. 4 and Sec. 5. To support expressive applications, following Mobisnap [30],
in addition to escrow leases, MobileBuddy provides a set of additional generic leases corresponding
to the locking modes supported by SQL systems. We support value-change, value-use, and shared-
value-change leases, implemented using exo-leasing, and provide lease transfer for value-change and
shared-value-change leases. The complete leasing system description (ommited for brevity) appears
in [39].

The MobileBuddy system integrates with MX client side code. The escrow objects are imple-
mented as persistent MX objects. Escrow objects provide the acquire, release and expire operations,
and contain as part of their representation the escrow variable and the internal reconciler log. In
addition, escrow objects provide the commit and abort cleanup handlers and a reservation transfer
procedure. The transfer procedure is integrated with the MX peer fetch protocol. The cleanup ac-
tions associated with the open nested transactions (DON and 2DON), are implemented as callbacks
(to escrow object handlers) invoked by the MX transaction manager. In addition, the escrow object
provides a procedure for the disconnected DON transaction validation, checking the escrow lease

validity, invoked by the generic disconnected validation procedure (checking the generic types of
leases mentioned above).

We modified the MX client side protocol to support leased objects and nested transaction
commit as follows. When the client reconnects and receives invalidations, the invalidation received
for leased objects are intercepted and ignored as long the lease is valid and the client does not
attempt to update the escrow object, i.e. client retains the leases. Escrow object invalidations
received during commit of a transaction that updates escrow objects, causes the the client to
refetch the new escrow object state. MobileBuddy re-runs the escrow operation on the new state
invoking cleanup, and attempts to commit again. This approach is used both for the open nested
transactions that acquire escrow reservations, and the nested transactions that run during top-level
transaction commit with cleanup.

6.1 Supported leases

Different types of objects require different kinds of leases. MobileBuddy supports two basic classes of
leasing objects: generic and type-specific. The generic leases include value —change (vc), value —use
(vu), and sharedvaluechange (shvc) leases corresponding to the locking modes supported by SQL
systems. The type-specific leases support the fragmentable escrow objects (denoted e). Additional
types of leases may be needed for new types of application data, but these four are typical and
they support a rich set of common applications [30]. Typed leasing objects for additional types are
described in [39].

The implemented lease semantics are as follows:

ve: gives one client the exclusive right to change the object it leased, similar to a write lease.

vu: provides the right to use a given value for some data item despite its current value at the server.

shve: provides the guarantee that it is possible to modify the state of an existing data item at the
server. It prevents other clients from obtaining a vc lease on the same object. For a a group of
collaborators who hold the shuvc it serves as a group lease that guarantees whichever collaborator
reconnects first will be able to commit modifications.

e: provides the exclusive right to use a specified share of a partitionable resource represented by
a fragmentable object [40], often a numerical data value. It supports two operations split and
merge. A split operation on object o removes a requested amount delta from the object and
returns delta. If the requested amount is unavailable, the operation signals exception and has
no effect. The merge delta operation on object o adds the specified amount delta to object o.

The ve, vu and shvc leases apply to all types of data, while e reservations apply only to frag-
mentable objects. Different types of leases may be used in the same typed leasing object but not
all types of leases are compatible. Consider a typed leasing object providing all four lease types.
The compatibility rules (used in Mobisnap system [30]) are enforced by the leasing object imple-
mentation following the compatibility Table 1. A yes entry means two types of leases can exist on
the same object at the same time. For an escrow lease e, we also need to check if there is enough
value left to reserve.

Compatible leases enable clients to read/write the same object independently without creating
conflicts. Non-compatible typed leases, working like traditional locks, guarantee the result for the
client who holds the lease. The typed leases allow a mobile disconnected client to validate and
guarantee the final result of a tentative transaction provided the transaction only reads leased values
and the mobile client reconnects to validate the transaction before the leases expire. Therefore a

Table 1. Lease compatibility table

vc |vu| e |shvc

vc |no |yes|no| no
vu |yes|yes|yes| yes
e |no |yes|yes| no

shvc|no |yes|no | yes

successfully validated disconnected transaction that has the appropriate leases on all objects it
accesses is not affected by concurrent transactions except in the case of shvc leases because shuc
does not provide a guarantee on the value of the Ieased object.

Acquiring an e lease on an object o changes the value of the object at the server, and thus the
optimistic concurrency control protocol [35] generates invalidations for all the cached object copies.
This does not invalidate other exo-leased copies of the object because the client side exo-leasing
code ignores such invalidations.

In case the mobile client does not reconnect before a lease expires, the expired lease needs to be
released. In the case of an expired e or vu lease, the leased object becomes invalid at the client. In
addition, in the case of an e expiration, type-specific actions need to be performed, e.g. the leased
amount must be made available for others to use.

Not all kinds of leases can be transfered. We do not support transfer of a vu lease because this
kind of lease may reflect a certain value that is likely to be specific to the particular client who
obtains such a lease. It would be easy to remove this restriction if in the future we find this type of
exchange to be useful.

Lease transfer preserves the semantics of the lease. The effects of the transfer at the helper and
the requester are as follows.

1. In a transfer of a vc, the helper hands over the lease to the requester. The helper does not hold
the vc anymore.

2. In a peer-fetch of an e on object o, the helper splits value v off its own value of 0. The requester
adds the lease to its lease list setting the value of o in its working cache to w.

3. In a peer-fetch of shvc, the requester adds the lease to its lease list, the helper keeps its lease.

7 Performance Evaluation Study

Our goal is to evaluate the performance of validated DON-transactions enabled by escrow leases
and lease transfer, the novel features introduced by our system.

Ezperimental methodology and findings Leases provides two types of benefits for disconnected col-
laborators. First, the ability to obtain leases and to run validated transactions while disconnected
avoids loss of work due to conflicts and eliminates in the normal case some of the potentially
high (but not entirely avoidable) costs of external compensation actions. This benefit, determined
by the transaction workload and other application-specific costs, reduces to the general benefit of
type-specific and generic locking, and has been studied before (e.g. the results in [30] apply to our
system). Second, obtaining a lease from a nearby collaborator, instead of obtaining it by interacting
directly with the server is advantageous in a weakly connected environment when the cost of com-
municating with the server is high. This benefit reduces to the benefit of disconnected cooperative

caching and has been studied before (e.g. the results in MX system [35], and others [5, 28] apply).
Our study does not repeat the evaluation of the known benefits of escrow leases and lease transfer.
Instead, we evaluate the overhead introduced by validated DON transactions.

To gage the overhead, we consider two possible situations. In one case, MobileBuddy transactions
run while holding leases for all the objects they access and therefore can benefit from the validation.
In the other case, transactions run with insufficient leases. Our experimental findings, using a
standard benchmark, indicate that in a mobile transactional object system (many small objects),
the extra overhead imposed by enabling validated DON transactions can be high for application
transactions that do not benefit from the leases (i.e. fail validation, or do not need to be validated).
As expected, the overhead for lease transfer is offset by the cost of accessing the server when network
latency is non-negligible. Note, that MobileBuddy system incurs no additional overhead if the client
holds no leases.

Ezperimental Configuration We run MobileBuddy in a system configuration where a server and the
clients ran each on a 850MHz Intel Pentium IIT processor based PC, 256 MB of memory, and Linux
Red Hat 9.0, an obsolete version compatible with the aging MX system implementation. The ex-
periments ran in in an isolated system in the Utah experimental testbed emulab.net [1] that enables
access to older operating systems versions, on a dedicated system. The cost of the leases is indepen-
dent of the size of the collaborative group, given the small group sizes expected in MobileBuddy,
and given we do not expect high lease contention. A system configuration containing a server and
two clients is sufficient therefore for our experiment. All reported experimental measurements are
averages of three trial runs showing minimal variance with hot caches.

The 007 Benchmark Our workloads are based on the multi-user OO7 benchmark [6]; this bench-
mark is intended to capture the characteristics of complex data in many different CAD/CAM/CASE
applications, but does not model any specific application. We use OO7 because it allows us to control
the sharing of complex data and because it is a standard benchmark for measuring object storage
system performance. To study the cost of leases, we extended the OO7 database to support escrow
objects. Now each atomic part has two additional escrow objects, so the application can acquire
leases on the escrow objects. Otherwise, the database is the same as a normal OO7 database.

The cost of the leases is workload-dependent, proportional to the number of objects accessed by
a transaction. In the extended OO7 benchmark, each transaction accesses 72,182 objects.

Overheads We evaluate two kinds of overhead incurred by validated transactions, the Penalty
for transactions that do not benefit from leases, and the Cost for transactions that do. The two
overheads differ because they occur under different circumstance, as we explain below. The Penalty
is our main concern. It is due to the checks performed by the transaction validation system at the
client to determine whether a transaction uses an object while holding a lease. The Cost is the
overhead due to processing, and transferring the leases for validated transactions that use the
transferred leases, i.e. access objects protected by it. Our concern here is whether the checking cost
is reasonable.
The validation overhead occurs at three points:

1. Tentative commit: each one of the objects accessed in the tentative transaction (the read set)
is checked whether it is protected by a lease, to determine whether the tentative transaction
(and its updates) can pass disconnected validation.

2. Transfer: all tentative transactions that have accessed objects without leases before lease transfer
are re-validated using the acquired leases.

3. Durable commit at reconnect: the client runs cleanup handlers registered by transactions using
escrow objects.

Penalty Consider a mobile sales scenario discussed in Section 5. Suppose a salesperson Mary dis-
connects with leases, but her tentative transactions use objects unprotected by the leases. Assuming
Mary enables the disconnected validation checks, each time Mary commits a tentative transaction,
the transaction is validated introducing penalty Tentative, defined as the time of the check relative
to the total tentative commit time. This cost is 9% in our experiment, but is workload dependent
and is higher when the violation is detected later in the check since the check stops when violation
is detected. For example, in the worst case in our workload, if all 72,182 objects are checked, this
penalty adds 62ms per tentative commit.

In our scenario, when Mary meets with John, she further obtains some leases from John. Since
her tentatively committed transactions have not used objects protected by leases, the transfer causes
the validation of all her tentative transactions against the transferred leases resulting in penalty
Transfer (Tentative per transaction). This cost would be offset by the cost of fetching leases from
the server when the network latency is non-negligible.

When Mary reconnects to the server, the transaction commit protocol checks invalidations
and runs cleanup handlers that update the persistent copies of escrow objects, removing leases
and returning the unused amounts. We conservatively consider the worst case when Mary has
obtains leases on all escrow objects, and all her escrow objects have pending invalidations due
to John’s reservations. In this case, the client-side commit penalty DuarableCommit is 32%, in-
cluding InvalidationChecks, adding 7% extra relative the total reconnection validation time, and
CleanupHandlers, adding 25% extra to total validation time, adding extra 305ms to the total
reconnection validation time. A realistic workload is unlikely to have that many escrow leases so
the overhead will be lower.

Cost In this case, Mary disconnect with leases that are now used by her tentative transactions.
Mary’s disconnected validation succeeds each time, but to detect this, she performs the validation
at each commit checking all the objects that the transaction has accessed. This introduces the cost
Tentative, defined as the time to validate relative to the total tentative commit time. This overhead
is high, 47% in our experiment. Recall, the difference between this overhead and the corresponding
Penalty is that when Mary does not use leases, the checking procedure stops when it finds the
first unprotected access in Mary’s tentative transaction read set. In contrast, when she has enough
leases, the procedure checks the entire read set.

Table 2 summarizes the client-side overheads of validated DON transactions.

Cost Penalty
TentativeCommit|47 % 9%
Transfer - |TentativeCommit * number of transactions
DurableCommit | 32% 32%
Table 2. Overheads of validated DON transactions

There are two things to notice. First, recall the Penalty for lease transfer is incured for each
tentative transaction accessing objects without holding leases. There is no corresponding validation
Clost associated with lease transfer since in this case transactions committed before the transfer have
accessed objects while holding leases. Second, the Penalty and Cost overheads for DurableCommit
are equal. Whether client uses a lease, or not, the connected durable commit cleanup actions check
the invalidations and remove the lease, returning unused escrow amount.

Note, the client-side DurableCommit overhead is also incured to obtain the leases before dis-
connection. The server-side overhead of obtaining and removing a lease is simply the cost of an
update transaction.

Summary If the client obtains escrow leases but does use them, the penalty of validated DON
transactions are non-negligible. If the client relies on the reservations, using them to achieve dis-
connected validated transactions, then the client pays for the benefit brought by the reservations.
We consider the cost reasonable.

8 Related work

Our work blends together a number of ideas, a disconnected client/server system, cooperative
caching, escrow synchronization and multi-level transactions, into a system that attacks a spe-
cific portion of the disconnected system design space, combining conflict avoidance and optimistic
synchronization. To our best knowledge, none of the prior work has considered moving the synchro-
nization out of the server, or disconnected client-to-client synchronization.

Most disconnected client/server systems use optimistic concurrency control and handle conflicts
after-the-fact. A survey of mobile concurrency approaches can be found in [17]. The Coda discon-
nected file system [18] introduced server side automatic resolution procedure for conflicting directory
updates. The sprocket mechanism [29] provides safe server-side concurrency extensions. The Coda
system allows applications to run on the client application-specific resolvers (ASR) for conflict-
ing file updates [21], as does the Ficus system [32]. The difference between ASR and exo-leasing
is that exo-leasing avoids conflicts (in the normal case) by coordinating in advance, supporting
disconnected validation, a useful ability when the cost of after-the-fact reconciliation is high.

The MX system [35] introduced cooperative caching [8] for disconnected client/server system,
allowing to transfer consistent objects from one client to another without contacting a server.
MobileBuddy builds on MX transactions. Disconnected cooperative caching has been used in En-
semblue [28] mobile appliance system, PRACTI [5] replication framework, and work by Sailhan
et al [33]. Most peer-to-peer storage systems that transfer mutable objects among peers support
weak consistency. Lazy Replication [22] and Bayou [38] provide strong consistency for objects and
allow type-specific update merging procedures. The mobile epidemic quorum system [16] provides
multi-object transactions.

Despite a large body of literature on multi-level transactions and escrow that appeared in the
mid 80’s (most relevant approaches identified below), no commercial systems or applications that
we know about have deployed these techniques. The need to modify the concurrency engine in the
server has been the principal barier. Weikum [41] introduced multi-level client/server transactions
with open nesting in a database system with locking. Lomet [24] investigated general multi-level
recovery. Our multi-level concurency and recovery system differs from the earlier approaches be-
cause it is optimistic and deals with leases [10] rather than locks. Manon et al [25] describe an

optimistich approach using open nesting in transactional memory system [15]. The middleware im-
plementation [31] of the J2EE Activity Service [2] increases concurrency for long-running connected
transactions in a multi-level transaction system using semantic locks [12], as does the promises
system [13]. Our workshop position paper [34] discusses how to achieve a similar benefit for long-
running transactions and snapshot queries using exo-leasing in a general type-specific concurrency
scheme [37]. The CheeTah middleware system [27] generalizes multi-level client/server transactions
to a peer-to-peer system, providing on each peer server a lightweight transaction monitor.

Escrow synchronization was introduced by O’Neil [26] and extended to replicated systems by
Kumar and Stonebraker [20]. Walborn et al [40] generalizes escrow synchronization to fragmentable
and reorderable data types. Krishnakumar and Jain [19] explore the use of escrow to improve
throughput for mobile applications. The demarcation protocol [4] enforces semantic constraints to
a similar effect. The approach in Mobisnap [30] mobile client/server storage system is closest to
ours and has inspired our work. Like exo-leasing, Mobisnap combines optimistic concurrency with
lease-based conflict avoidance and supports disconnected validation. However, like other proposals,
Mobisnap implements the type-specific synchronization at the server.

9 Conclusion

This paper attacks an insufficiently studied problem in the mobile computing space, namely, how
to support escrow synchronization in practical disconnected client/server storage systems so that
disconnected clients can operate independently on shared data and validate transactions to avoid
conflicting updates that later need to be aborted or reconciled. To that effect, this paper makes
the following contributions: 1) It describes exo-leasing, a new modular approach to escrow synchro-
nization that avoids type-specific code at the server providing the ability to use commodity servers.
2) Tt describes a reservation transfer mechanism that can aid collaboration in disconnected groups
and is enabled by exo-leasing. 3) It presents MobileBuddy, a prototype escrow synchronization
and reservation transfer system based on exo-leasing, and provides measurements of the prototype,
evaluating the client-side overhead of running disconnected validated transactions.

References
1. ’emulab.net’, the Utah Network Emulation Facility. su;iported by NSF grant ANI-00-82493.
2. Jsr 95: J2ee activity service for extended transactions. Technical report, Sun Microsystems, Mar 2004.
3. A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Efficient Optimistic Concurrency Control Us-

ing Loosely Synchronized Clocks. In Proceedings of the ACM SIGMOD International Conference on

Management of Data, May 1995.
4. D. Barbara-Milld and H. Garcia-Molina. The demarcation protocol: a technique for maintaining con-

straints in distributed database systems. The VLDB Journal, 3(3):325-353, 1994.
5. N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P. Yalagandula, and J. Zheng. Practi

i(/e[plication. In Proceedings of the Useniz NSDI, April 2006.
. Carey and et al. A Status Report on the OO7 OODBMS Benchmarking Effort. October 1994.
7. B. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested append-only memory: making adver-

saries stick to their word. volume 41, New York, NY, USA, 2007. ACM.
8. M. Dahlin, R. Wang, T. E. Anderson, and D. A. Patterson. Cooperative caching: Using remote client

memory to improve file system performance. In Operating Systems Design and Implementation, pages

267-280, 1994.
9. D. Gifford and J. Donahue. Coordinating Independent Atomic Actions. In Proceedings of IEEE COM-

PCON Digest of Papers, February 1985.

10.

14.

15.
16.

17. J
18.
19. N
20. A
21.
22. R. Lad
23.

24.
25. Y
26.
27.

28.
29. D. P
30. N

31. F

32.
33.
34.

35.

. P. Greénfield, A Fekete, J. Jang, D. Kuo, , and

C. Gray and D. Cheriton. Leases: An Efficient Fault-tolerant Mechanism for Distributed File Cache
Consistency. In Proceedings of the twelfth ACM symposium on Operating systems principles (SOSP
’89), 1989.

J. Gray, P. Helland, P. O’Neil, and D. Shasha. The Dangers of Replication and a Solution. In Proceedings

of ACM SIGMQD Conference, June 1996.)
J. Gray and A. Reuter.” Transaction_Processing : Concepts and Techniques. 1993. o
g. Nepal. Isolation support for service-based applications:

A position paper. In Proceedings of Conference on Innovative Data Systems Research (CIDR’07),

Asilomar, CA, January 2007. _ . . L .
R. Gruber, F. Kaashoek, B. Liskov, and L. Shrira. Disconnected Operation in the Thor Object-

Oriented Database System. In Proceedings of the IEEE Workshop on Mobile Computing Systems and

f/{pplicat,ions, December 1994. . .
. Herlihy and J. Moss. Transactional memory: architectural support for lock-free data structures. In

Proceedings ?{ the 20th annual international %yr%wsium on Computer architecture, 1993. .
J. Holliday, R. Steinke, D. Agrawal, and A. E. Abbadi. Epidemic Quorums for Managing Replicated

Data. In Proceedings of the 19th IEEE International Conference on Performance, Computing, and

Communication, February 2000. . . L . .
Jing, A. Helal, and X Elmagarmid. Client-Server Computing in Mobile Environments. ACM

Computing Surveys, 31(2), Jun 1999. o
J. Kistler"and M. Satyanarayanan. Disconnected operation in the Coda file system. ACM TOCS,

February 1992. . . . L .
. Krishinakumar and R. Jain. Escrow Techniques for Mobile Sales and Inventory Applications. Wireless
Networks, 3:235 — 246, 1997.
. Kumar and M. Stonebraker. Semantics based transaction management techniques for replicated

data. ACM SIGMOD Record, 17(3):117-125, June 1988. . o o
P. Kumar and M. Satyanarayanan. Supporting application-specific resolution in an optimistically

replicated file system,. In Workshz()ip on_Workstation Operatifﬁ' Systems, pages 66-70, 1993. =
. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing High Availability Using Lazy Replication.

In ACM TOCS 22(3), Noyember 1992, L . . o
B. Liskov, M. Castro, L. Shrira, and A. Adya. Providing Persistent Objects in Distributed Systems.

In Proceedings of the 13th European Conference on Object-Oriented Programming (ECOOP ’99), June

1999.
D. B. Lomet. Mlr: A recovery method for multi-level systems. In In Proceedings of ACM-SIGMOD

1992 International Conference on Management of Data, 1992. .
.Ni, V. Menon, A. Adl-Tabatabai, A. Hosking, R. Hudson, E. Moss, B. Saha, and T. Shpeisman.

Open nesting in software transactional memmal. In Proceedings of the PPOP, November 2007.
P O’Neil. The escrow transaction method. ACM Transactions Database Systems, 11(4):406-430, June

1986.
G. Pardon and G. Alonso. Cheetah: a lightweight transaction server for plug-and-play internet data

management. In Proceedings of the 26th International Conference on Very Large Data Bases (VLDB

’00), 2000.
D. éeek and J. Flinn. Ensemblue: Integrating distributed storage and consumer electronics. In Pro-

ceedings (]){ the Usenix, SyB pOSium O”N Of{)eration Systems. Design and Implementation, November 2006,

eek, E. Nightingale, B. Higgins, P. Kumar, and J. Flinn. Sprockets: Safe extensions for distributed

file systems. In Proceedings oﬁj{the Usenix Technical Conference, March 2007. . . .
reguica, J. L. Martins, M. Cunha, and H. Domingos. Reservations for Conflict Avoidance in a

Mobile Database System. In The First International Conference on Mobile Systems, Applications, and

Services (MobiSys 2003),.Ma1¥/12003.)) .) .
. Prez-Sorrosal, M. Patino-Martinez, R. Jimenez-Peris, and J. Vuckovic. Highly available long run-

ning transactions and activities for j2ee applications. In Proceedings of the 26th IEEE International

Conference on Distributed Comﬁ ting Systems (ICDCS ’06), 2006. . .
P. L. Reiher, J. S. Heidemann, D. Ratnér, G. Skinner, and ‘G. J. Popek. Resolving file conflicts in the

ficus file system. In USENIX Summer, paﬁc_zs 183-195, 1994.)
F. Sailhan"and V. Issarny. Cooperative caching in ad hoc networks. In The 4th International Conference

on Mobile Data Management, January 2003. . L
L. Shrira and S. Dong. Exosnap: Exosnap: a modular approach to semantic synchronization and

snapshots. In Proceedings of the 2nd Workshop on Dependable Distributed Data Management (WDDDM

’08§hEurOSys 08, Glasgow, United Kingdom, March 2008. . .
L. Shrira and H. Tian.” MX: Mobile ject’ Exchange for Collaborative Applications. In European

Conference for Object-Oriented Programming (ECOOP ’03), July 2003.

36

37.
38. D

39.
40.
41. J
42.

L. Shrira, H. Tian, and D. Terry. ”exo-leasing: Escrow synchronization for mobile clients of commodity

storage servers”. Technical report, Microsoft Research, September 2008.)
L. Shrira and H. Xu. Snap: a non-disruptive snapshot system. In Proceedings of the 21st International

Conference on Data Engineering, Tokyo, Japan, 2005. . .
. B. Terry, M. M. Theimer, K. Petersen, A. J.'Demers, M. J. Spreitzer, and C. H. Hauser. Managing

update conflicts in Bayou, a weakly connected replicated storage system. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles (SOSP-15), Copper Mountain Resort, Colorado,

1995,

H. Tian. MX: Mobile Object Exchange for Collaborative Applications. PhD thesis, Brandeis University,
2005.

G. D. Walborn and P. K. Chrysanthis. Supporting semantics-based transaction processing in mobile
database applications, In Symposium on Reliable Distributed Systems, pages 31-40, 1995.

. Weikum. A theoretical foundation of multi-level concurrency control. In” Proceedings of ACM PODS,

1986.
A. R. Yumerefendi and J. S. Chase. Strong accountability for network storage. In Proceedings of the
5th USENIX conference on File and Storage Technologies (FAST ’07), 2007.

