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Abstract 
Text classification has been widely applied to many practical 
tasks. Inductive models trained from labeled data are the most 
commonly used technique. The basic assumption underlying 
an inductive model is that the training data are drawn from the 
same distribution as the test data. However, labeling such a 
training set is often expensive for practical applications. On 
the other hand, a large amount of labeled data, which have 
been drawn from a different distribution, is often available in 
the same application domain.  It is thus very desirable to take 
advantage of these data even though there is a discrepancy 
between their underlying distribution and that of the test set. 
This paper compares three text classification algorithms 
applied in this scenario, including two inductive Maximum 
Entropy (MaxEnt) models, one flatly initialized and the other 
initialized with a term-frequency/inverse document frequency 
(Tf*Idf) weighted vector space model, and an example-based 
learning algorithm, which assigns a class label to a text by 
learning from the labels assigned to the training data that are 
similar to the text. Experiment results show that example-
based learning has achieved more than 5% improvement in 
precisions across almost all coverage levels. 

 
Index Terms: text classification, inductive models, maximum 
entropy model, Tf*Idf vector space model, example-based 
learning. 

1. Introduction 
Text classification has been widely applied to many practical 
tasks. In spoken dialog systems, it has been used in call-
routing [1], sentiment classification [2], dialog-act tagging [3] 
and answer machine detection [4], etc. Similar to call-routing 
in speech applications, text classification has also been used 
to understand users’ intent in web search and route their 
queries to appropriate search verticals (e.g., job search, local 
search, product search, etc.)  
       Inductive models like Naïve Bayes classifier, Support 
Vector Machines (SVMs), Boosting or MaxEnt models are 
commonly used for text classification [1],3,5]. They are 
trained from labeled training data, under the assumption that 
the data are drawn from the same distribution as the test set. 
Manually labeling such a training set is often expensive for 
practical applications. It is also difficult when the label set 
contains more than a few destination classes – inter-labeler 
agreement rate is often low in this case, which leads to 
inconsistently labeled training data. On the other hand, a large 
amount of labeled data, which may have been drawn from a 
distribution that is discrepant from that of the test set, is often 
available in the same application domain. For example, data 
from email or chat support, or even from a related website, 
can be leveraged to train an IVR system to route an incoming 
call to an appropriate service department. Review data from 
the web can be used to train a sentiment classifier for spoken 
dialog systems like Voice-Rate [2], which allows callers to 
get or leave reviews for a product or service. Business or 

product listings from a database are often used to model 
users’ spoken query in voice search applications [2, 5]. In the 
vertical job search on the web, a user’s query is classified into 
its corresponding category, and only the job listings with the 
matching category will be displayed to the user. While it is 
costly and difficult to manually label users’ queries with 30+ 
categories, a large amount of listing data with labeled 
categories can be automatically harvested from job sites like 
www.careerbuilder.com. However, the listing names often 
appear different from real queries, as demonstrated by the 
exemplar listing “senior level sales– interior home products- 
product exp not req.”  
      A common practice to address training/test distribution 
discrepancy is via model adaption [3], which needs a small 
amount of labeled training data drawn from the same 
distribution as the test data. This paper looks at the problem 
from a different angle and proposes example-based learning, 
which makes classification decisions based on the class labels 
of the training samples similar to a test query. Contrary to the 
inductive learning, the training data that bear little similarity 
to a test query do not contribute much to the decisions in this 
case. For those samples that a decision is based on, their 
similarity to the test query makes them closer to the test data 
distribution. Hence it is less subject to the distribution 
discrepancy problem and does not require additional labeled 
training data. We compare its performance with two inductive 
MaxEnt models, one flatly initialized (all parameters are set to 
0 initially) and the other initialized with a Tf*Idf weighted 
vector space model. Experiment results have shown that the 
example-based algorithm consistently outperforms both 
inductive models by achieving better precisions across 
different coverage levels. 
       The paper is organized as follows. Section 2 reviews the 
three different statistical classification algorithms that we 
investigated in this paper. Section 3 describes the experiment 
setup and presents experimental results. Section 4 analyzes 
the strength of example-based learning and proposes future 
work. Section 5 concludes the paper.  

2. Text Classification 

2.1. Inductive Model –Maximum Entropy Classifier 
A MaxEnt classifier builds the probability distribution �(�|�) from a set of features ℱ, where � is a random 
variable representing the classification destinations, � is a 
random variable representing the input text to the classifier. A 
feature in ℱ is a function of � and �. The classifier picks a 
distribution �(�|�) to maximize the conditional entropy �(�|�) from a family of distributions, with the constraint 
that the expected count of a feature predicted by the 
conditional distribution equals to the empirical count of the 
feature observed in the training data:  

� ��(�)�,� �(�|�)	
 (�, �) = � ��(�, �)�,� 	
 (�, �), ∀	
 ∈ ℱ 

where �� stands for empirical distributions in a training set.  
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       The maximum entropy distribution that satisfy the above 
equation have the following exponential (log-linear) form, 
and the model parameters can be estimated by maximizing the 
conditional probability of a training set of � and � pairs [6]: 

�(�|�) = 1� (�) exp � � �
	
 (�, �)	
∈ℱ � 

here �
′ � are the model parameters, also known as the feature 
weights, and �(�) = ∑ exp�∑ �
	
(�, �)	
∈ℱ ��  is a constant 
that normalizes the conditional distribution. The model 
parameters can be estimated with an iterative procedure that 
starts from an initial parameterization and gradually updates it 
towards the optimum. We used Stochastic Gradient Ascend 
(SGA) in our experiments [7].  

2.2. MaxEnt Model Parameterization with TF*IDF 
Weighted Vector Space Model 
The TF*IDF weighted vector space model [8] measures the 
similarity between a query and a document as the cosine 
between the two vectors representing the query and the 
document. Here each element of the vectors represents the 
importance of a term (e.g., a word or a bigram). The 
importance increases proportionally to the number of times a 
term appears in a query or a document, and decreases when 
the term appears in more documents (hence becomes less 
discriminative). The term frequency (TF) tf
(�) and tf
(�) are 
the relative frequency of term 
 in � and in �, respectively. 
The inverse document frequency (IDF) is the logarithm of the 
total number of documents divided by the number of 
documents that contain 
: 

 tf
(�) = �
(�)∑ �� (�)� , tf
 (�) = �
(�)∑ �� (�)�  ,   
 idf
 = log|�| − log|{�: 
 ∈ �}| 

where �
(�) is the number of occurrences of term 
 in �, and � is the entire document collection. The weight for term 
 in a 
vector is the product of its TF and IDF score. 

       

The cosine score between � and � can be written with 
respect to each term 
: 

cos(�, �) = � ∙ �‖�‖‖�‖ = �  tf
(�) × idf
 × tf
(�) × idf
‖�‖‖�‖
∈�  

= �(�) � tf
(�) × idf
2‖�‖
∈� 	�,
(�, �)          
Here 1 ‖�‖⁄  is absorbed by K(�). The term frequency tf
(�) 
is replaced by the integer feature value 	�,
(�, �)  (number of 
occurrences of the term 
 in �) because they differ by a factor 
of |�|, which is also absorbed by K(�). This equation suggests 
that the vector space model be viewed as a linear classifier, 
where each document is a destination class, and the feature 	�,
  and its weight are 

	�,
(�, �) = !|{�: �� = 
}| if � = �0 otherwise,  � ��,
 = tf
(�) × idf
2‖�‖  

�(�) is negligible in the weight here because it does not affect 
the classification boundary. For a more typical classification 
task where multiple training sentences have the same class 
label, they can be concatenated to form a super “document” 
representing the class, and the Tf*Idf weighted vector space 
model can be used as an inductive linear classifier. 
      In [9], the weights from this linear classifier have been 

imported to initialize a MaxEnt model and used as the mean 
values of the Gaussian distributions that regularize the 
model’s parameters. It has been shown that even though a 
MaxEnt model converges to the global optimum in theory 
thanks to the convexity of its objective function, this 
initialization/parameterization scheme can still significantly 
improve classification accuracies in practice, especially when 
only a small set of training data is available. This is due to the 
fact that convergence is determined empirically, and early 
stopping of training is a common practice to avoid over-
training. The discriminative power of the Tf*Idf weighted 
vector space model, together with  its inherent weight sharing 
mechanism, enables more robust performance of the MaxEnt 
model it initialized, especially when training set is small. 

 

2.3. Example-Based Learning 
Unlike inductive learning, which produces a model from a set 
of training data and use the model to label unseen test data 
drawn from the same distribution, example-based learning is a 
learning paradigm that labels test data according to how the 
similar data in the training set are labeled. Here “label” is in a 
more general sense than classification destinations. It can be a 
sequence of labels in tasks like part-of-speech tagging or 
named entity identification; it can also be the counterpart of a 
sentence in a different language, as in the example-based 
machine translation [10]. 
       Recently there have been increasing interests in graph-
based learning in speech and language applications. Graph-
based learning is a special case of example-based learning, 
which is primarily used for semi-supervised learning. In this 
scenario, the training set is composed of a small set of labeled 
data and a large set of unlabeled data. Both labeled and 
unlabeled samples are represented in a graph. Each node in 
the graph represents a data sample; different nodes are 
connected by edges associated with a weight representing the 
similarity of the samples. Based on this graph, class labels can 
be assigned to the unlabeled nodes in the graph according to 
the labels assigned to the connected nodes in the graph and 
the weight of the connecting edges. The similarity can be the 
cosine value between two samples, as seen in the vector space 
model, or the resemblance of the click-through patterns for 
different queries in a classification task that decides if a query 
has a specific intent [11]. Graph-based learning leverages the 
similarity not only between train and test data, but also within 
the test data itself, so it can produce a model that better 
“explains” the test data. It also uses the unlabeled test data to 
find better feature representation for learning. So in [12], 
graph-based learning is applied for phonetic classification in a 
transductive framework, where an initial model is adapted 
with an unlabeled test set, such that the classification accuracy 
on this test set can be improved.  
       For those training samples that a classification decision is 
based upon in example-based learning, we believe that their 
similarity to a test query makes them less prone to the 
discrepant distribution problem. Therefore we have applied 
example-based learning for the job category classification 
task with the following algorithms, where the training data 
(job listings � and their category labels #(�)) were obtained 
from three job posting websites: 

        Input: a query �, a similarity threshold $ 
        foreach sample-label pair (�, #(�)) in the training set 

similarity = cos(�, �) 
                update score(�, #(�)) according to similarity and  $ 
        Output: argmax# (�, #) as the class label for �. 

      Three different methods are used to update the score for 
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assigning a class label # to �: 
1. Maximum: 

 score(�, #) = max� cos(�, �) δ�# = #(�)�. 
2. Majority Vote: 

 score(�, #) = ∑ δ�# = #(�)�δ(cos(�, �) > $).s  
3. Posterior: 

          score(�, #) =  ∑ δ�# = #(�)�δ(cos(�, �) > $) cos(�, �)s ∑ δ(cos(�, �) > $)cos(�, �)s  

         
Here δ(�) = 1 when � = true, and 0 otherwise. The posterior 
scoring can also be called “Sum” since the denominator is 
independent of #, so it would not affect the classification 
result.  
       In practice, inverted index can be built to locate listings 
containing a specific term, such that only the listings 
containing a term in a test query will be involved in example-
based learning. This makes the algorithm fast enough for 
online services.   

3. Experiments 

3.1. Experiment Setup 
We have applied the three learning algorithms described in 
the previous section to the task of job category classification. 
There are 33 job categories (e.g., Accounting, Healthcare, 
IT/Software, Management, etc.) in Microsoft Live Search’s 
job taxonomy. 587 job related user queries have been 
manually labeled with their categories, which were split into 
test (400) and development (187) set.  
       188,436 job listings were extracted from 3 different job 
posting web sites for model training. The job listings are 
posted under their corresponding categories, so there is no 
need to manually label the category for these listings. Instead 
an automatic mapping tool converts the category names used 
in these websites to the 33 categories in our taxonomy. The 
automatically obtained category labeling is ambiguous and 
noisy. For example, “accounting manager” is posted in both 
the “Accounting” and the “management” categories, or even 
“IT/Software” if the employer of the job is an IT/Software 
company.  

Among all the 188,436 job listing instances, there are 
76,166 unique sample types. 39,744 of them have ambiguous 
labels, which covers 126,292 sample instances – i.e., about 
2/3 of the data are ambiguously labeled. The labels for each 
sample type forms a statistical distribution over the label set. 
The average entropy of the distribution is 0.33. This implies 
that each sample type statistically has 1.26 category labels on 
average. 

It is apparent that the job listings and the actual users’ 
queries have not been drawn from the same distribution.  
Table 1 shows the first 5 IT/Software jobs in both training 
(job listing) and test (query) data. It is very unlikely for users 
to issue a query like the third and the fifth job listings in the 
table. The odds for the first two listings are higher, but they 
still sound a bit strange to be a real query. Only the fourth 
listing, “mysql dba,” appears like a real query. 

Several experiments have been conducted with the data 
sets. In the first experiment, we have attempted to 
automatically select a subset of training samples that looks 
like real queries, and built MaxEnt models on the subset. 
Different sample selection heuristics have been tried, ranging 
from sample lengths to number of special characters 
(exclamation marks, parenthesis, etc.) in a listing, which 
result in the selected subsets that contain 1/8~1/2 of the 
listings in the original training set. Unfortunately, none of 

MaxEnt models built on these subsets of training data have 
accomplished better accuracy than the model trained with the 
entire training set. This reveals that the listing data are still 
helpful in improving the classification accuracy even though 
they were drawn from a different distribution – no data is like 
more data.  

Table 1. First 5 IT/Software job listings and queries. 

Job Listings Queries 
senior engineer, 
python/ajax 

testing jobs hyd 

javascript developer (part 
time/contract) 

computer operator 
jobs 

3d graphics software 
engineer (c++) at daz 3d 

government it jobs 

mysql dba sas jobs 
lead web solutions 
engineer- gap inc. direct 

computer 
engineering jobs 

3.2. Experimental results 
The second experiment compares the three different scoring 
methods for example-based learning, as described in Section 
2.3. The similarity threshold $ in the algorithm was tuned 
separately for the three scoring methods with the development 
set. 
       Instead of comparing the classification accuracy among 
the three scoring methods, the precision-coverage curves are 
compared – in the actual application an operational point 
needs to be selected for the trade-off between the relevancy of 
the jobs shown for a query (the precision of classification) and 
the percentage of job queries that result in the showing of the 
jobs in a specific category (the coverage of classification.) 
The precision-coverage measure is closely related to the more 
common precision-recall curve. Both are obtained by varying 
the threshold for accepting the automatic classification results. 
The accuracy of classification, which was studies in [9], is the 
precision at 100% coverage level. 
               

 
Figure 1: Precision-coverage curves for three different 
scoring methods in example-based learning. X-axis 
represents coverage, y-axis represents precision. 

     Figure 1 shows the precision-coverage curves on the test 
set for the three scoring methods in example-based learning. 
Posterior scoring is a clear winner when the coverage is 
greater than 15%. For maximum and majority vote scoring, 
although they have the same accuracy, the precision-coverage 
curves are very different. Maximum scoring outperforms 
majority vote across all coverage levels, especially in the low 
coverage region. The best accuracy is at 40%, achieved by the 
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posterior scoring. The relatively low accuracy is primarily due 
to the complexity of the task (33 target classes) and 
ambiguously labeled training set.  
      The third experiment compares the performance of the 
inductive learning, including the MaxEnt models with flat 
initialization and with the Tf*Idf weighted vector space model 
initialization, and the example-based learning for job category 
classification. Here the MaxEnt model with flat initialization 
has the same accuracy as the MaxEnt model initialized with 
the imported Tf*Idf vector space model parameters. However, 
the latter has a better precision-coverage curve than the flatly 
initialized model. The example-based learning achieves the 
best precisions, which improves over the flatly initialized 
MaxEnt model by at least 5% absolutely across almost all 
coverage levels. 
 

 
Figure 2. Precision-coverage curves of the MaxEnt 
classifiers, with flat initialization and Tf*Idf weighted 
vector space model initialization, and of the example-
based learning algorithm. X-axis represents coverage, 
y-axis represents precision. 

4. Discussion and Future Work 
As we have expected, the improvement of the example-based 
learning over the inductive models can be attributed to the 
fact that it bases its decisions more on the samples that are 
similar to test data. Hence it is less subject to the problems 
caused by distribution discrepancy. This is manifested by the 
experimental result that compares the three different scoring 
methods in the example-based learning algorithm: the 
majority vote blindly treats all the training samples equally as 
long as they are above the similarity score threshold. Hence it 
is more subject to the distribution discrepancy, which results 
in poor performance. The posterior scoring, on the other hand, 
bases its decision more on the training samples with higher 
similarity score, i.e., samples that follow the similar 
distribution as the test data.  Therefore it has achieved better 
performance. The maximum scoring, when applied with 
higher similarity threshold (in the lower coverage region), 
makes classification decision according to only those highly 
similar training samples, so it has the best precisions. As the 
threshold is getting lower (coverage is getting higher), the 
similarity between the training samples and the test data 
becomes lower, which implies that they are less likely to be 
drawn from the same distribution. Therefore its performance 
is overtaken by the more robust decisions based on more 
samples with the posterior scoring method. 

 For future work, we would like to extend the example-
based learning to graph-based learning when more unlabeled 
query data become available. This can be accomplished by 
applying example-based learning to label the query data, 

which is less subject to the distribution discrepancy, and then 
train inductive models from the automatically labeled query 
data. 

5. Conclusions 
This paper has investigated the classification algorithms for 
practical tasks when the training and test data are drawn from 
different distributions. It compares two inductive learning 
algorithms, namely the MaxEnt models with flat initialization 
and the Tf*Idf weighted vector space model initialization, 
with an example-based learning algorithm. Experiment results 
have shown that the example-based learning using posterior 
scoring has achieved better precision-coverage performance 
over the inductive models. This can be attributed to the fact 
that example-based learning bases its decision more on the 
training samples that are similar to the test query. Therefore 
distribution discrepancy has less significant negative impact 
on classification performance. 
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