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ABSTRACT 

This paper proposes a novel scheme for acoustic echo 

cancellation (AEC) in multi-party, spatialized audio 

conferencing by exploring the constraints among the 

adaptive filters for each synthesized remote speaker. The 

AEC algorithm employs constrained Kalman filtering 

(CKF-AEC) that takes advantage of the uncorrelated 

reference signal from each remote channel [1], yet restricts 

the filter adaptation within the subspace determined by the 

spatialization functions used to virtualize each remote 

participant and the number of unique acoustic paths between 

the loudspeakers and microphone. In addition, the proposed 

algorithm allows the adaptation for channels without input 

signals. Experimental results show the proposed algorithm 

has much higher performance than the scheme proposed in 

[1] which uses NLMS as the adaptive filter and does not 

explore the available constraint. 

 

Index Terms— Spatial Audio, Multi-channel AEC, 

Kalman Filtering, Multi-party conferencing. 

INTRODUCTION 

Recently, the demand for better quality teleconferencing 

with remote multi-participants has risen rapidly for reducing 

travel cost and increasing productivity. It has been shown 

that spatial mapping of the remote participants’ voice 

signals in multiple virtual positions enhances the 

collaboration experience during multi-party conferencing 

[2]. It is well known that stereo AEC suffers from the mis-

convergence problem [3]. Researchers have proposed 

various ways to alleviate the problem including adding 

nonlinearities [4] or additional noise [3,5] to de-correlate the 

speaker signals. In the paper, we propose an acoustic echo 

cancellation algorithm based on the constrained Kalman 

filter (CKF-AEC) for full-duplex, multi-party, spatialized 

audio conferencing using Voice over Internet Protocol 

(VoIP) which does not distort the speaker signal. Kalman 

filtering has not been used widely for AEC except in [6] 

which directly considers the varying acoustic paths as the 

hidden state variable. The multi-party conferencing problem 

with spatialized audio was previously studied in [1], and we 

adopt the same synthetic stereophonic structure depicted in 

Fig. 1. However in [1], each canceller is adapted 

independently without realizing that the only unknown 

parameters are the room impulse responses (RIRs) between 

the loudspeakers and microphones; the method also ignores 

the fact that signals are continuously sent to each 

loudspeaker. If one remote participant has been silent for a 

long time, noticeable echo will be heard when the 

participant resumes speaking. Another disadvantage of the 

method in [1] is that it has very poor performance when 

multiple remote participants speak simultaneously; the 

authors in [1] analyzed the convergence for adapting four 

remote channels talking at the same time using white 

Gaussian noise. However in our experiments with speech 

signals, the joint NLMS-based multi-channel AEC failed.  

 

 
Fig. 1 Synthetic stereo structure with a single canceller per 

remote-channel 

The CKF-AEC algorithm proposed in this paper employs a 

constrained Kalman filtering mechanism using the signal 

from each remote channel as reference. It takes advantage 

that the signals from each remote channel are uncorrelated 

and the spatialization parameters are known. Not only does 

the algorithm adapt the per channel impulse response (CIR), 

it also resolves the RIR between each loudspeaker and 

microphone. As long as one channel is active, the RIRs and 

CIRs for the other channels are adapted simultaneously. In 

other words, if a remote participant is silent for a long time, 

the adaptation from the other channels will benefit the 

+ 

+ 

+ 

w
P 

w
2 

w
1 

𝑔11 

𝑔1𝑆  
𝑔21 

𝑔2𝑆  

𝑔𝑃1 
𝑔𝑃𝑆  

+ 
− 

− 
− 𝑑 

S

peaker 

1 

S

peaker 

S 

𝒉1 

𝒉𝑆 

Spatialization 
Input 

Mic

rophone 
A

EC 

Channel 𝑥1 

Channel 𝑥2 

Channel 𝑥𝑃 

Output 



adaptation for this participant. The CKF-AEC algorithm 

does not require channel switching as in multiple mono 

NLMS-based AEC; it even adapts with multiple remote 

participants speaking simultaneously. Finally to 

significantly reduce the CPU consumption, we propose an 

implementation to avoid the matrix inversion that is O(n
3
) 

for the standard KF. 

CONSTRAINED KALMAN FILTERING 

We describe the proposed algorithm in the frequency 

domain due to ease of the implementation since the spatial 

mapping only results in multiplication of a complex number 

in the frequency domain. The following derivation is 

conducted in each frequency sub-band.  

2.1. Problem Statement 

The superscript * denotes the complex conjugate. Column 

vectors are assumed. The superscript T is the matrix/vector 

transpose. The superscript H is the Hermitian transpose 

(complex conjugate of the transpose). The subscript t   will 

be used to indicate time instant (or frame number). Assume 

there are P remote participants/channels with audio inputs 

 𝑋𝑖 𝑖 = 1, … , 𝑃} and S loudspeakers. Each remote audio 

channel 𝑋𝑖  is spatialized across the loudspeakers with gain 

and delay modulation 𝐺 𝑖𝑠  for speaker 𝑠.  The audio played 

on speaker 𝑠 is thus 𝑌𝑠 =  𝐺 𝑖𝑠𝑋𝑖𝑃
𝑖=1 . A microphone is used 

to capture the audio in the local room, and is denoted by 𝐷. 
The captured audio includes the audio of the local 

participant and that played on the speakers. The audio 

played on speaker 𝑠 is transmitted through the RIR modeled 

by an FIR filter with 𝐿 taps, denoted by 

𝑯𝑡
𝑠 =  𝐻𝑡

𝑠 , 𝐻𝑡−1
𝑠 , … , 𝐻𝑡−𝐿−1

𝑠  𝑇 . 

Assuming that the local or near end participant is not 

talking, the audio captured by the microphone at time 𝑡, i.e., 

the echo, should be 

𝐷𝑡 =   𝐺 𝑖𝑠 𝐻𝑡
𝑠𝑋𝑡

𝑖 + 𝐻𝑡−1
𝑠 𝑋𝑡−1

𝑖 + ⋯ + 𝐻𝑡−𝐿−1
𝑠 𝑋𝑡−𝐿−1

𝑖  

𝑆

𝑠=1

𝑃

𝑖=1

=   𝐺 𝑖𝑠

𝑆

𝑠=1

𝑯𝑡
𝑠𝑇𝑿𝑡

𝑖

𝑃

𝑖=1

 

where 𝑿𝑡
𝑖 =  𝑋𝑡

𝑖 , 𝑋𝑡−1
𝑖 , … , 𝑋𝑡−𝐿−1

𝑖  
𝑇
 is speech from remote 

participant i. 

The problem is to design an echo cancellation filter 

with 𝐿 taps for each remote participant 𝑖,  

𝑾𝑡
𝑖 =  𝑊𝑡

𝑖 , 𝑊𝑡−1
𝑖 , … , 𝑊𝑡−𝐿−1

𝑖  
𝑇
 

such that the echo is cancelled. That is, determine 𝑾𝑡
𝑖 ’s so 

𝐷𝑡 −  𝑾𝑡
𝑖 𝑇𝑃

𝑖=1 𝑿𝑡
𝑖 = 0.               (1)  

It is clear that we have 

𝑾𝑡
𝑖 =  𝐺𝑖𝑠𝑯𝑡

𝑠𝑆
𝑠=1 .                   (2)  

Therefore, the echo cancellation filters are not mutually 

independent. We will leverage this constraint to update each 

echo cancellation filter simultaneously even though the 

corresponding remote participant is not talking. If the local 

participant is talking, then the system outputs the echo-

cancelled signal: 𝐷𝑡 −  𝑾𝑡
𝑖 𝑇𝑃

𝑖=1 𝑿𝑡
𝑖 . 

2.2. Kalman Filtering Formulation 

Let the state vector be a  𝑃 + 𝑆 𝐿-dimensional vector: 

𝑺𝑡 =  𝑾𝑡
1𝑇

, … , 𝑾𝑡
𝑃𝑇

, 𝑯𝑡
1𝑇

, … , 𝑯𝑡
𝑆𝑇

 
𝑇

 

= [𝑊𝑡
1 , 𝑊𝑡−1

1 , … , 𝑊𝑡−𝐿−1
1 , … , 𝑊𝑡

𝑃 , 𝑊𝑡−1
𝑃 , … , 𝑊𝑡−𝐿−1

𝑃 , 
           𝐻𝑡

1 , 𝐻𝑡−1
1 , … , 𝐻𝑡−𝐿−1

1 , … , 𝐻𝑡
𝑆 , 𝐻𝑡−1

𝑆 , … , 𝐻𝑡−𝐿−1
𝑆 ]𝑇 .   

The state is not expected to remain constant, and the state 

equation is 

𝑺𝑡 = 𝑺𝑡−1 + 𝒏𝑡  (3) 

where 𝒏𝑡  is the system noise. The parts of 𝒏𝑡  corresponding 

to the H elements model the variation due to changes in the 

acoustical environment such as the movement of the local 

participant. The observation equation is:  

𝐷𝑡 = 𝑨𝑡
𝑇𝑺𝑡 + 𝑣𝑡 ,  (4)  

where 𝑣𝑡  is the observation noise (microphone noise and 

ambient noise) and can also model the inaccuracy of the 

observation system. The vector 𝑨𝑡  is a  𝑃 + 𝑆 𝐿-

dimensional vector given by 

𝑨𝑡 =  𝑿𝑡
1𝑇

, … , 𝑿𝑡
𝑃𝑇

, 𝟎1𝑇
, … , 𝟎𝑆𝑇

 
𝑇
 

with 𝟎 being the L-dimensional zero vector. The constraint 

on the state parameters (2) is a set of PL linear equations, 

and can be written as 

𝑪𝑺𝑡 = 𝟎 (5)  

where C is a 𝑃𝐿 ×  𝑃 + 𝑆 𝐿 matrix, given by 

𝑪 =  
−𝟏

⋱
−𝟏    

𝐺11𝟏 ⋯ 𝐺1𝑆𝟏
⋮ ⋱ ⋮

𝐺𝑃1𝟏 ⋯ 𝐺𝑃𝑆𝟏 

  

with 1 being the 𝐿 × 𝐿 identity matrix, i.e., 𝟏 =
diag(1, … ,1). The state constraint can be considered as 

perfect observation. Thus, we combine the original 

observation equation and the state constraint into a new 

observation equation: 

𝒀𝑡 = 𝑩𝑡 𝑺𝑡 + 𝒗𝑡 (6)  

where  

𝒀𝑡 =  𝐷𝑡 , 0, … ,0 𝑇 , 𝑩𝑡 =  𝑨𝑡
𝑇

𝑪
 , and 𝒗𝑡 =  

𝑣𝑡

𝒖𝑡
  

with 𝒖𝑡  being the noise term for the state constraint. If the 

constraint is exact, then  𝒖𝑡 = 𝟎. 
We assume that the following conditions are satisfied: 

𝐸 𝒏𝑡 = 𝟎,  𝐸 𝒗𝑡 = 𝟎, 𝐸 𝒏𝑡𝒏𝑡
𝑇 = 𝑸𝑡  and 

𝐸 𝒗𝑡𝒗𝑡
𝑇 = 𝑹𝑡 =  

𝜎𝑡
2 𝟎𝑇

𝟎 𝚲𝑡

  



where 𝚲𝑡  is the covariance matrix of the noise term for the 

state constraint. If we indeed want to impose the constraint 

fully, then 𝚲𝑡 = 𝟎. In practice, we sometimes prefer to 

impose a soft constraint to have a more stable system on 

account of nonlinearity in loudspeakers and clock drift 

between loudspeaker and sound capture. We can also start 

𝚲𝑡  with a larger value and gradually decrease it over time. 

We can now solve the multichannel AEC problem for 

spatialized audio using the Kalman filter. We use 

superscript ―
–
‖ for the prediction, and P  for the covariance 

matrix of the error in the estimated state vector. The Kalman 

filter equations are given by: 

𝑺𝑡
− = 𝑺𝑡−1 

𝑷𝑡
− = 𝑷𝑡−1 + 𝑸𝑡  

𝑲𝑡 = 𝑷𝑡
−𝑩𝑡

𝐻 𝑩𝑡𝑷𝑡
−𝑩𝑡

𝐻 + 𝑹𝑡 
−1 

𝑺𝑡 = 𝑺𝑡
− + 𝑲𝑡(𝒀𝑡 − 𝑩𝑡  𝑺𝑡

−) 

𝑷𝑡 =  𝐈 − 𝑲𝑡𝑩𝑡 𝑷𝑡
− 

The state vector can be initialized to 0, i.e.,  𝑺0
− = 𝟎. The 

covariance matrix 𝑷0
− should be set to a large value to 

reflect that we do not have knowledge of the state vector. 

The advantages of the CKF algorithm are: 1) The 

constraint is taken care of automatically, and can be 

imposed with varying degrees, 2) All channels are taken into 

account simultaneously. Thus, overlapping far-end talking is 

not an issue, 3) The AEC for each channel is updated 

continuously because of the constraint, even if that channel 

is not active. Therefore, AEC is always up to date. 4) 

Ambient noise 𝜎𝑡
2 can be time varying. A separate noise 

tracker can be used to provide that information. 

However, we are also aware of the major drawback is 

the need to invert a  𝑃𝐿 + 1 × (𝑃𝐿 + 1) matrix, rather than 

a scalar inversion. Matrix inversion has 𝑂((𝑃𝐿 + 1)3) 

complexity. Thus there is a significant increase in 

computational cost. 

2.3. An Improved Implementation 

In our previous discussion, we added the 𝑃𝐿 constraints to 

the set of measurement equations, and the constraints are 

imposed softly by a Gaussian noise vector 𝒖𝑡  with mean 0 

and covariance matrix 𝚲𝑡 . In practice, the covariance matrix 

 𝚲𝑡  is usually set to be a diagonal matrix by assuming no 

correlation between the constraints. Thus the covariance 

matrix of the measurement noise vector 𝑹𝑡  is diagonal. 

Let 𝑣𝑡 ,𝑗  be the 𝑗-th element of the measurement noise 

vector 𝒗𝑡 , 𝑹𝑡 = diag(𝑟𝑡 ,1, … , 𝑟𝑡 ,𝑗 , … , 𝑟𝑡 ,𝑃𝐿) be the diagonal 

covariance matrix, 𝒃𝑡 ,𝑗
𝑇  be the 𝑗-th row of the measurement 

matrix 𝑩𝑡 , and 𝑌𝑡 ,𝑗  be the 𝑗-th element of the measurement 

vector 𝒀𝑡 , then the vector measurement equation (6) is 

equivalent to the following 𝑃𝐿 + 1 scalar measurement 

equations: 

𝑌𝑡 ,𝑗 = 𝒃𝑡 ,𝑗
𝑇  𝑺𝑡 + 𝑣𝑡 ,𝑗    for 𝑗 = 1, … , 𝑃𝐿 + 1  

with 𝐸 𝑣𝑡 ,𝑗  = 0 and 𝐸 𝑣𝑡 ,𝑗
2  = 𝑟𝑡 ,𝑗 . Now, we can apply the   

Kalman filter sequentially for each of the above scalar 

measurements, and inversion of a  𝑃𝐿 + 1 × (𝑃𝐿 + 1)   
matrix is avoided. The complexity is reduced from 𝑂((𝑃𝐿 +
1)3)  to 𝑂(𝑃𝐿 + 1). This substantially reduces the 

computational cost. 

In summary, the new algorithm can be described as follows: 

Prediction:                  𝑺𝑡
− = 𝑺𝑡−1     

𝑷𝑡
− = 𝑷𝑡−1 + 𝑸𝑡  

Update: Let 𝑺𝑡 ,0
− ≜  𝑺𝑡

−, and 𝑷𝑡 ,0
− ≜ 𝑷𝑡

−. 

For 𝑗 = 1, … , 𝑃𝐿 + 1, do   

                          𝑲𝑡 ,𝑗 = 𝑷𝑡 ,𝑗−1
− 𝒃𝑡 ,𝑗

∗  𝒃𝑡 ,𝑗
𝑇 𝑷𝑡 ,𝑗−1

− 𝒃𝑡 ,𝑗
∗ + 𝑟𝑡 ,𝑗  

−1
 

                             𝑺𝑡 ,𝑗
− = 𝑺𝑡

− + 𝑲𝑡 ,𝑗 (𝑌𝑡 ,𝑗 − 𝒃𝑡 ,𝑗
𝑇  𝑺𝑡 ,𝑗−1

− ) 

                                   𝑷𝑡 ,𝑗
− =  𝐈 − 𝑲𝑡 ,𝑗𝒃𝑡 ,𝑗

𝑇  𝑷𝑡 ,𝑗−1
−  

Finally, we set  𝑺𝑡 ≜ 𝑺𝑡 ,𝑃𝐿+1
−   and 𝑷𝑡 ≜ 𝑷𝑡 ,𝑃𝐿+1

− . 

If a constraint is already satisfied, then 𝑌𝑡 ,𝑗 − 𝒃𝑡 ,𝑗
𝑇  𝑺𝑡 ,𝑗−1

− = 0, 

leaving the state vector unaffected. If not, a correction is 

added by projecting to the direction 𝑲𝑡 ,𝑗 ∝ 𝑷𝑡 ,𝑗−1
− 𝒃𝑡 ,𝑗

∗ . 

EXPERIMENTAL RESULTS 

We consider four remote participants with spatialization on 

two loudspeakers with virtual positions at [-30˚, 30˚, 0˚,       

-45˚], which is the angle between the virtual speaker and the 

center line originating from the microphone, i.e., 0˚ gives an 

illusion the participant is positioned in the middle front. We 

used 16kHz speech. Each remote participant speaks for 4 

seconds. A known RIR is used to generate the microphone 

input and -20dB white Gaussian noise is added. The number 

of sub-bands is 512 with 256 samples per frame. The best 

result is achieved with 𝜎𝑡  = -20dB at the lowest bands, 𝚲𝑡 = 

1e-2 and 𝑸𝒕 = 0. Fig. 2 shows the comparison between our 

CKF-AEC and the four mono NLMS filters proposed in [1] 

(but with our frequency domain implementation). Whenever 

a new talker starts, the Error Return Loss Enhancement 

(ERLE) drops significantly in NLMS. However after the 

second talker, thanks to the constraint, the CKF-AEC 

handles new participants gracefully. In Fig. 3, we conducted 

another experiment with two participants talking 

simultaneously in consecutive positions and compared the 

CKF-AEC algorithm with the joint NLMS which adapts 

parameters for four channels simultaneously, described in 

[1]. It is shown that joint NLMS performs poorly while the 

CKF-AEC maintains good performance. The authors in [1] 

only showed convergence with white Gaussian noise input, 

but not with speech signals. Finally, we add -30dB change 

on RIRs for every 50 frames and add 𝑸𝒕 accordingly. Fig 4 

shows the case where the first channel is re-activated at the 

end of the third channel or at 12 seconds. This is to check 

whether CKF-AEC can update a canceller even when the 



corresponding channel is silent. Indeed, CKF-AEC handles 

the transition more smoothly than the four mono NLMS 

after the second participant. We repeat the same experiment 

with Kalman filtering without the constraints, glitches 

similar to NLMS happened for each transition, as shown in 

Fig 5. 

  
Fig. 2 AEC Performance between CKF and 4 mono NLMS 

 
Fig. 3 AEC Performance between CKF and joint NLMS 

 
Fig. 4 AEC performance with changing RIRs 

 
Fig 5. Performance between CKF and non-constrained KF 

To verify if the adaptive filters converge to the optimal 

solution, we calculated the mean values of misalignments 

using known  𝑺𝑡  in the frequency domain. Two data sets 

were used. Table 1 shows that CKF-AEC converges for both 

data sets. Mono NLMS also converges for each CIR, but 

without estimation of the RIRs. 

 CKF Mono NLMS 

𝑚𝑖𝑠𝑎𝑙𝑖𝑔𝑛(𝑤𝑖)                   (set 1) -22 -21 

𝑚𝑖𝑠𝑎𝑙𝑖𝑔𝑛(ℎ𝑖)                  (set 1) -19 N/A 

𝑚𝑖𝑠𝑎𝑙𝑖𝑔𝑛(𝑤𝑖)                   (set 2) -24 -18 

𝑚𝑖𝑠𝑎𝑙𝑖𝑔𝑛(ℎ𝑖)                  (set 2)  -23 N/A 

Table 1 Misalignment evaluation in dB. 

 

CONCLUSION 

 

We proposed a novel algorithm using Kalman filtering for 

multi-channel AEC during spatial audio conferencing by 

imposing constraints among each canceller during 

adaptation. The imposed constraints guide the adaptation 

toward the optimal solution. They allow for estimation of 

the RIRs as a byproduct and for adaptation for channels 

without input signals. Experimental results show that the 

algorithm outperforms the array of mono NLMS when a 

new channel starts. It also adapts when speech co-exists 

among multiple channels without need of channel switching. 

As our future work, we plan to compare our algorithm with 

stereo AEC algorithms such as the one proposed in [4]. 
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