
The Mailbox Problem
(Extended Abstract)

Marcos K. Aguilera1, Eli Gafni1,2, and Leslie Lamport1

1 Microsoft Research Silicon Valley
2 UCLA

Abstract. We propose and solve a synchronization problem called themailbox
problem, motivated by the interaction between devices and processor in a com-
puter. In this problem, a postman delivers letters to the mailbox of a housewife
and uses a flag to signal a non-empty mailbox. The wife must remove all letters
delivered to the mailbox and should not walk to the mailbox ifit is empty. We
present algorithms and an impossibility result for this problem.

1 Introduction

Computers typically use interrupts to synchronize communication between a processor
and I/O devices. When a device has a new request, it raises an interrupt line to get
the processor’s attention. The processor periodically checks if the interrupt line has
been raised and, if so, it interrupts its current task and executes an interrupt handler to
process unhandled device requests. The interrupt line is then cleared so that it can be
used when new requests come from the device. (This is a slightsimplification, since
there is typically an interrupt controller between the device and processor. In this case,
we consider the interrupt controller as the “device” that interrupts the processor.) It
is imperative that the processor eventually execute the interrupt handler if there are
unhandled requests. Furthermore, it is desirable to avoidspurious interrupts, in which
the processor executes the interrupt handler when there is no unhandled request. A
closely related problem occurs in multi-threaded programming, in which the processor
and the devices are separate threads and the interrupt is some type of software signal [8,
10].

In this paper, we study a theoretical synchronization problem that arises from this
setting, which we call themailbox problem. From time to time, a postman (the device)
places letters (requests) for a housewife (the processor) in a mailbox by the street.3 The
mailbox has a flag that the wife can see from her house. She looks at the flag from
time to time and, depending on what she sees, may decide to go to the mailbox to pick
up its contents, perhaps changing the position of the flag. The wife and postman can
leave notes for one another at the mailbox. (The notes cannotbe read from the house.)
We require a protocol to ensure that (i) the wife picks up every letter placed in the
mailbox and (ii) the wife never goes to the mailbox when it is empty (corresponding

3 This problem originated long ago, when all mail was delivered by men and only women stayed
at home.



to a spurious interrupt). The protocol cannot leave the wifeor the postman stuck at the
mailbox, regardless of what the other does. For example, if the wife and postman are
both at the mailbox when the postman decides to take a nap, thewife need not remain at
the mailbox until the postman wakes up. We do not require the wife to receive letters that
are still in the sleeping postman’s bag. However, we interpret condition (i) to require
that she be able to receive mail left by the postman in previous visits to the mailbox
without waiting for him to wake up.

The following simple protocol was once used in computers. The postman/device
raises the flag after he delivers a letter/request; the wife/processor goes to the mailbox
if the flag is raised and lowers the flag after emptying the mailbox. It is easy to see that
this can cause a spurious interrupt if the postman goes to themailbox while the flag
is still raised from a previous visit and falls asleep after putting a letter in the box and
before raising the flag.

There are obviously no spurious interrupts with this protocol if the postman can
deliver mail to the box and raise the flag in an indivisible atomic action, while the
wife can remove mail from the box and lower the flag in an indivisible atomic action.
Moreover, the problem is solvable if the wife and postman canleave notes for one
another, and the reading or writing of a note and the raising or lowering of the flag can
be performed atomically. Here is a simple algorithm that uses a single note written by
the postman and read by the wife. The postman stacks letters in delivery order in the
box. After delivering his letters, the postman as a single action writes the total number
of letters he has delivered so far on his note and raises the flag. When she sees the
flag up, the wife as a single action lowers the flag and reads thepostman’s note. Then,
starting from the bottom of the stack, the wife removes only enough letters so the total
number she has ever removed from the box equals the value she read on the note.

What if a single atomic action can only either read or write a note or read or write a
flag? Then, we show that there are no algorithms that use only two Boolean flags, one
writable by the wife and one by the postman. However, perhapssurprisingly, there is a
wait-free algorithm that uses two 14-valued flags, as we show. We do not know if there
is an algorithm that uses smaller flags.

The mailbox problem is an instance of a general class of problems calledbounded-
signaling problems. We give a general algorithm for any problem in this class. The
algorithm is non-blocking but not wait-free. It is an open problem whether there are
general wait-free algorithms in this case.

The paper is organized as follows. We first define the mailbox problem in Section 2.
In Section 3, we give a wait-free algorithm for the problem. To do so, we first explain
the sussusprotocol in Section 3.1. We then give a non-blocking algorithm that uses
flags with large timestamps in Section 3.2. We show how to shrink these timestamps in
Section 3.3. We then explain how to change the non-blocking algorithm into a wait-free
algorithm in Section 3.4. In Section 4, we show that there areno non-blocking (or wait-
free) algorithms that use only two Boolean flags. Next, we consider general bounded-
signaling problems in Section 5. We describe related work inSection 6. Because of
space limitations, most proofs are omitted from the paper.



2 Problem definition

We now state the mailbox problem more precisely. For simplicity, we let only one letter
at a time be delivered to or removed from the mailbox. It is easy to turn a solution to
this problem into one in which multiple letters can be delivered or removed.

We assume apostmanprocess and awife process. There are three operations: the
postman’sdeliver operation, the wife’scheck operation, which returns a Boolean value,
and herremove operation. The postman can invoke thedeliver operation at any time.
The wife can invoke theremove operation only if the last operation she invoked was
check and it returnedTRUE. We describe the execution of these operations in terms
of the mailbox metaphor—for example “checking the flag” means executing thecheck
operation. Remember thatdeliver andremove respectively delivers and removes only
a single letter.

Safety properties.We must implementdeliver , check , andremove so that in every
system execution in which the wife follows her protocol of checking and obtaining
TRUE before removing, the following safety properties hold.

If the wife and postman never execute concurrently, then thevalue returned by an
execution ofcheck is TRUE if and only if there are moredeliver thanremove executions
before this execution ofcheck . This is thesequential specification of safety.

Neither the wife nor the postman can execute multiple operations concurrently, but
the wife can execute concurrently with the postman. The allowable behaviors are spec-
ified by requiring that they act as if each operation were executed atomically at some
point between its invocation and its completion—a condition known as linearizability
[4].

Liveness properties.A process executes an operation by performing a sequence
of atomic steps. A solution should also satisfy a liveness property stating that, under
some hypothesis, a process’s operation executions complete. We now state two possible
liveness properties we can require of an algorithm. We number the two processes, letting
the wife be process 0 and the postman be process 1. Thus, for each process numberi ,
the other process number is1−i .

– (Non-blocking)For eachi , if processi keeps taking steps when executing an oper-
ation, then either that operation execution completes or process1−i completes an
infinite number of operations.

– (Wait-free)For eachi , every operation execution begun by processi completes
if i keeps taking steps—even if process1−i halts in the middle of an operation
execution [3]. The algorithm is said to bebounded wait-free[3] or loop-free[6]
if each operation completes before the process executing ithas takenN steps, for
some fixed constantN .

Process communication and state.A solution requires the two processes to com-
municate and maintain state. For that, processes haveshared variables. We assume that
there are two shared variables:Flag andNotes . It is desirable thatFlag assume only a
small number of values, butNotes can assume infinitely many values.

Operationcheck should be efficient: its execution should access a small amount of
persistent state. We consider two alternative interpretations of this requirement:



– (Weak access restriction)Operationcheck accesses at most one shared variable,
Flag, and it only accesses this variable by reading.

– (Strong access restriction)Operationcheck accesses at most one shared variable,
Flag, it only accesses this variable by reading, and it returns a value that depends
only on what it reads fromFlag.

With the weak access restriction,check can remember and use process-local state across
its executions, while with the strong access restriction,check is a memoryless operation
that is a function ofFlag alone.

We are interested in solutions in which variables are atomicregisters or arrays of
atomic registers, and an atomic step can read or write at mostone atomic register.

3 Algorithms

We now give a solution to the mailbox problem with the strong access restriction and,
a fortiori, with the weak access restriction as well. It is easy to find such a solution if
Flag can hold an unbounded number of values. For example, we can use the algorithm
mentioned in the introduction in which the postman writes his note and raises the flag
in one atomic step, except having him write his note inFlag. We now present a solution
in which Flag is an arrayFlag[0..1] with two single-writer atomic registers (a single-
writer atomic register is an atomic register writable by a single process), each of which
can assume only 14 values. We do not know if there is a solutionthat uses fewer values.

We explain our algorithm in several steps. We first present anauxiliary protocol
in Section 3.1. Then, in Section 3.2, we give a solution to themailbox problem that
is non-blocking and uses flags with unbounded timestamps. InSection 3.3, we show
how to bound the timestamps. Finally, we show how to make the algorithm wait-free in
Section 3.4.

3.1 Thesussus protocol

Thesussusprotocol is defined in terms of an operationsussus(v) that can be invoked at
most once by each processi . Intuitively, when a processi invokessussus(v) with v =
v i , the process tries to communicate valuev i to the other process and learn any value
communicated by the other process. The operation returns anoutcome and a value to
processi . This value is either⊥ or the valuev1−i with which the other process invokes
sussus . The outcome is eithersuccessor unknown. A successoutcome indicates that
processi communicates its value successfully to the other process, provided the other
process invokes operationsussus and completes it. Anunknownoutcome indicates that
processi does not know whether it communicates its value successfully. More precisely,
the protocol is bounded wait-free and satisfies the following safety properties:

– (SU1)If both processes complete their operation execution,4 then at least one ob-
tains the outcomesuccess .

4 A process may not complete the operation execution if it stops taking steps.



variablesA = [i ∈ 0 . . 1 7→ ⊥],
B = [i ∈ 0 . . 1 7→ ⊥];

(* A andB are shared arrays indexed by0 . . 1 with A[i ] = B [i ] = ⊥ for eachi *)

proceduresussus(v) (* output:outcome, outvalue *)
{

s1: A[self ] : = v ; (* self is the process id: 0 or 1*)
s2: outvalue : = A[1 − self ];

if (outvalue = ⊥)
outcome : = “success”; (* Case A *)

else{
s3: B [self ] : = “done”;
s4: if (B [1 − self ] = ⊥)

outcome : = “unknown”; (* Case B *)
elseoutcome : = “success”; (* Case C *)

};
s5: return ;

};

process(Proc ∈ 0 . . 1)
(* process−local variables *)
variablesoutcome, outvalue;

{
m1: with (v ∈ Int){ call sussus(v); }

}

Fig. 1. Thesussusprotocol.

– (SU2)For eachi , if processi completes the operation execution before process
1−i invokes the operation, then processi obtains the outcomesuccess .

– (SU3)For eachi , if both processes complete the operation execution and process
i obtains the outcomesuccess , then process1−i obtains the valuev i with which
processi invoked the operation.

Figure 1 shows the sussus protocol, written in+CAL [7]. Proceduresussus shows
the code for operationsussus , while the code at the bottom shows an invocation to
sussus with a valuev chosen non-deterministically from the setInt of all integers. The
outcome and value returned by operationsussus are placed in variablesoutcome and
outvalue, respectively. Labels in+CAL indicate the grain of atomicity: an atomic step
consists of executing all code from one label to the next. In the first step of procedure
sussus , processi sets array elementA[i ] of shared variableA to valuev . In the next
step, processi readsA[1−i ] and stores the result in local variableoutvalue. If the value
read is⊥ then processi setsoutcome to “success”. Otherwise, in a third step, process
i setsB [i ] to “done” and, in a fourth step, it readsB [1−i ]; if the result is⊥, process
i setsoutcome to “unknown”, otherwise it setsoutcome to “success”. Observe that
each atomic step accesses at most one array element of one shared variable.



To see why the protocol satisfies properties SU1–SU3, observe that there are three
possibilities for the values of variablesoutcome andoutvalue when a process com-
pletes its operation:

Case A:outcome = “success”, outvalue = ⊥
Case B:outcome = “unknown”, outvalue 6= ⊥
Case C:outcome = “success”, outvalue 6= ⊥

These cases are indicated by comments in the code.
Figure 2 shows these cases as six pairs, where each pair〈i , ρ〉 represents process

i ending up in caseρ. Beneath each such pair, we indicate the outcome that process i

obtains, withS standing forsuccess andU for unknown. Two adjacent pairs indicate
the results obtained by each process in some execution. For example, we see the adja-
cent pairs〈1,B 〉 and〈0,C 〉 and the lettersU andS beneath them. This indicates that,
in some execution, process1 ends up in caseB with outcomeunknown, while process
0 ends up in caseC with outcomesuccess . It turns out thateveryexecution in which
both processes complete their execution ofsussus corresponds to some adjacent pair
in the figure. It is easy to prove this by straightforward caseanalysis, and even easier
by model checking the+CAL code. Properties SU1–SU3 follow easily from this fact
together with the observation thatv1−i is the only value other than⊥ that processi can
possibly obtain. (Remember that each process invokes operation sussus at most once.)

〈0,A〉 〈1, B〉 〈0, C 〉 〈1,C 〉 〈0,B〉 〈1,A〉
S U S S U S

Fig. 2. Possibilities when both processes complete execution of the sussusprotocol.

3.2 Non-blocking algorithm with large flag values

We now present a solution to the mailbox problem that is non-blocking and uses flags
that keep large, unbounded timestamps. In this algorithm, the postman and wife each
keep a private counter with the number of times that they haveexecuteddeliver and
remove, respectively. To deliver or remove a letter, a process increments its counter and
executes a procedure to compare its counter with the other process’s counter (see proce-
duresdeliver andremove in Figure 3). The comparison procedure is explained in detail
below. Its effect is to write toFlag[i ] a record with two fields,Rel andTimestamp. Rel

is either “=” or “ 6=”, according to the result of the comparison.Timestamp indicates
how recent the result inRel is; this information is used elsewhere to determine which
of Flag[0] or Flag[1] has the most recent result.

The wife checks if the mailbox has letters or not by readingFlag[0] andFlag[1],
choosing the flag with highest timestamp, and verifying if that flag says “=” or “ 6=”. If
it says “=” then the wife considers the mailbox to be empty, otherwise,to be non-empty
(see procedurecheck in Figure 3).



variables (* shared variables*)
A = [k ∈ Int , i ∈ 0 . . 1 7→ ⊥], (* A is an array indexed by the integers and0 . . 1 *)
B = [k ∈ Int , i ∈ 0 . . 1 7→ ⊥],
Flag=[i ∈ 0 . . 1 7→ [Timestamp 7→0, Rel 7→“=” ]]; (* Flag is an array of records with

fieldsTimestamp andRel initialized to 1 and ”=” *)
process(proc ∈ 0 . . 1)

variables (* process-local variables*)
counter = 0, (* # times removed/delivered *)
round = 0, (* current round number *)
otherc = 0, (* last known counter of other process *)
outcome, (* output of proceduremultisussus *)
outvalue, (* output of proceduremultisussus *)
hasmail ; (* output of procedurecheck *)

{
m1: while (TRUE) {

if (self = 0) { (* wife-specific code *)
m2: call check();
m3: if (hasmail) call remove();

}
else calldeliver(); (* postman-specific code *)

} (* while *)
}

proceduredeliver(){
d1: counter : = counter + 1;
d2: call compare(counter);
d3: return ;

};
procedureremove(){

r1: counter : = counter + 1;
r2: call compare(counter);
r3: return ;

};
procedurecheck() (* output:hasmail *)

variables t f 0, t f 1; (* procedure-local variables*)
{

c1: t f 0 := Flag [0];
c2: t f 1 := Flag [1];
c3: if (t f 0.Timestamp > t f 1.Timestamp){

if (t f 0.Rel = “=”) hasmail : = FALSE;
elsehasmail : = TRUE;

} else{
if (t f 1.Rel = “=”) hasmail : = FALSE;
elsehasmail : = TRUE;

};
c4: return ;

};

Fig. 3.Non-blocking algorithm with large flag values (1/2). Top: shared and global variable defi-
nitions. Middle: starting code. Bottom: procedures.



procedurecompare(c)
{

s1: outcome : = “unknown”;
s2: while (outcome 6= “success” ) {

(* advance round *)
s6: round : = round + 1;
s7: call multisussus(round , c);
s8: if (outvalue 6= ⊥) {

otherc : = outvalue; (* rememberoutvalue *)
};

}; (* while *)
s9: if (c 6= otherc)

Flag [self ] : = [Timestamp 7→ round , Rel 7→ “6=” ];
elseFlag [self ] : = [Timestamp 7→ round , Rel 7→ “=” ];

s10: return ;
};

proceduremultisussus(rnd , v) (* output:outcome andoutvalue *)
{

ss1: A[rnd , self ] : = v ;
ss2: outvalue : = A[rnd , 1 − self ];
ss3: if (outvalue = ⊥)

outcome : = “success”;
else{

ss4: B [rnd , self ] : = “done”;
ss5: if (B [rnd , 1 − self ] = ⊥)

outcome : = “unknown”;
elseoutcome : = “success”;

};
ss6: return ;

};

Fig. 4.Non-blocking algorithm with large flag values (2/2).

In the comparison procedure, a processi executes one or more rounds numbered
1, 2, . . ., starting with the smallest round it has not yet executed. Ineach roundk , pro-
cessi executes an instance of thesussusprotocol to try to communicate the value of
its counter and, possibly, learn the value of the other process’s counter. If the outcome
of sussusis success, processi compares its counter with the most recent value that it
learned from the other process. The comparison result is written toFlag[i ] together
with timestampk , the process’s current round. The process is now done executing the
compare procedure. If, on the other hand, the outcome ofsussusis unknownthen pro-
cessi proceeds to the next roundk+1. This continues until, in some round, the outcome
of sussusis success.

The detailed code for the comparison procedure is shown in Figure 4. It invokes
a multi-instance version of thesussusprotocol in proceduremultisussus, which is a
trivial extension of the code in Figure 1. Shared variableNotes , used in the mailbox



problem definition, is not shown in the code: for clarity, we replaced it with two shared
variables,A andB . These variables should be regarded as fieldsNotes .A andNotes .B

of Notes . Procedurecheck writes its return value to process-local variablehasmail ,
since in+CAL, a procedure call has no mechanisms for returning a value.

Intuitively, the algorithm works because the rounds provide a way to order operation
executions, ensuring linearizability. Roughly speaking,we can assign each operation
execution to a round, as follows:

– An execution ofremove ordeliver by a process is assigned the first round in its ex-
ecution in which the other process learns the process’s value or the process obtains
outcomesuccessfrom sussus.

– An execution ofcheck is assigned the larger of the timestamps it reads fromFlag[0]
andFlag[1].

We now order operation executions according to their assigned round number. If two
operation executions are assigned the same round number, weorderdeliver before
remove beforecheck operations. This ordering ensures that if some operation execution
op completes before another operation executionop′ starts thenop is ordered before
op′. For example, if an execution ofdeliver by the postman completes in roundk then
a subsequent execution ofremove by the wife cannot be assigned to roundk or smaller.
This is because it is impossible for the postman to learn the wife’s new value in round
k or smaller since the postman already executed them.

Theorem 1. The algorithm in Figures 3 and 4 is a non-blocking algorithm that solves
the mailbox problem with the strong access restriction.

A fortiori, the algorithm is also a non-blocking algorithm that solves the mailbox prob-
lem with the weak access restriction.

3.3 Non-blocking algorithm with small flag values

We now give an algorithm that uses flags with small values. We do so by modifying
the algorithm in the previous section, which uses unboundedtimestamps, to use instead
timestamps that assume only 7 different values.

In the new algorithm, as in the previous one, processes execute in (asynchronous)
rounds. However, in the new algorithm, the timestamp that a process uses in roundk is
not k ; it is a value chosen dynamically at the end of roundk−1 according to what the
process sees in that round.

Let tsk ,i be the timestamp that processi uses in roundk . To understand howtsk ,i

is chosen, we consider some properties that it must have. Letus assume that thesussus
protocol in roundk returns outcomesuccessfor processi—otherwisetsk ,i does not
get written toFlag[i ] and so it is irrelevant. In the previous algorithm of Section3.2,
tsk ,i=k . Such a timestamp has the property that it is larger than any timestamps from
previous rounds. This is too strong a property to try to satisfy with bounded times-
tamps. However, closer inspection reveals that it is sufficient fortsk ,i to be larger than
previous-round timestamps that could appear inFlag[1−i ] at the same time thattsk ,i

appears inFlag[i ]. It turns out that there are only two such timestamps: the timestamp



variables (* shared variables*)
same as before except for this minor change:

Flag=[i ∈ 0 . . 1 7→ [Timestamp 7→1, Rel 7→“=” ]];

process(proc ∈ 0 . . 1)
variables (* process-local variables*)

same as before, with the following additions

ts = 1, (* current timestamp *)
nextts = 2, (* next timestamp to use *)
otherts = 1, (* last known timestamp of other process *)

{
same as before

}

proceduredeliver() same as before

procedureremove() same as before

procedurecheck()
same as before, except replace

if (t f 0.Timestamp > t f 1.Timestamp){

with

if (t f 0.Timestamp ≻ t f 1.Timestamp) {

proceduremultisussus(rnd , v) same as before

Fig. 5.Non-blocking algorithm with small flag values (1/2). This part is very similar to Figure 3.

already inFlag[1−i ] when processi ends roundk−1, and the last timestamp learned
by processi when processi ends roundk−1. Thus, at the end of roundk−1, processi
needs to picktsk ,i so that it dominates these two timestamps.

Therefore, to bound the number of timestamps, we must choosethem from a fi-
nite setTS with an antisymmetric total relation� such that, for any two elements
t1, t2∈TS , there is an elements ∈ TS that strictly dominates botht1 andt2 under�.
This would be impossible if we required the relation� to be transitive, but we do not.
A computer search reveals that the smallest set with the requisite relation� contains 7
elements. We takeTS = 1 . . 7 to be our 7-element set and define

Array
∆

= 〈〈1, 0, 1, 1, 1, 0, 0〉,
〈1, 1, 1, 0, 0, 0, 1〉,
〈0, 0, 1, 0, 1, 1, 1〉,
〈0, 1, 1, 1, 0, 1, 0〉,
〈0, 1, 0, 1, 1, 0, 1〉,
〈1, 1, 0, 0, 1, 1, 0〉,
〈1, 0, 0, 1, 0, 1, 1〉〉

v � w
∆

= (Array[v ][w ] = 1)

v ≻ w
∆

= v � w ∧ v 6= w

dominate(v ,w)
∆

= CHOOSEx ∈ 1 . . 7 : x ≻ v ∧ x ≻ w



procedurecompare(c)
{

s1: outcome : = “unknown” ;
s2: while (outcome 6= “success” ) {

(* advance round *)
s6: round : = round + 1;

∗ ts : = nextts; (* use timestamp chosen at end of last round *)

∗ s7: call multisussus(round , [Timestamp 7→ ts, Count 7→ c]);
(* record withTimestamp andCount fields set tots andc *)

s8: if (outvalue 6= ⊥) {
∗ otherts : = outvalue.Timestamp; (* remember timestamp of other process *)
∗ otherc : = outvalue.Count ; (* remember counter of other process *)

};
∗ nextts : = dominate(otherts, Flag [1 − self ].Timestamp); (* for next round *)

}; (* while *)
s9: if (c 6= otherc)

∗ Flag [self ] : = [Timestamp 7→ ts, Rel 7→ “6=” ]; (* usets as timestamp *)
∗ elseFlag [self ] : =[Timestamp 7→ ts, Rel 7→ “=” ];

s10: return ;
};

Fig. 6. Non-blocking algorithm with small flag values (2/2). Asterisks indicate changes relative
to Figure 4.

Figures 5 and 6 shows the detailed code of the algorithm sketched above. Figure 5 is
very similar to Figure 3. The significant changes to the algorithm are in Figure 6, where
asterisks indicate a difference relative to Figure 4.

Theorem 2. The algorithm in Figures 5 and 6 is a non-blocking algorithm that solves
the mailbox problem with the strong access restriction. It uses aFlag with two 14-
valued single-writer atomic registers.

3.4 Wait-free algorithm with small flag values

The algorithms of Sections 3.2 and 3.3 are non-blocking but not wait-free, because a
process completes adeliver or remove operation only when it obtains outcomesuc-
cessfrom thesussusprotocol. Thus, if the process keeps getting outcomeunknownin
every round, the process never completes its operation. Closer examination reveals this
could only happen with the wife, because of the way processesinvoke operations: if
the postman got stuck forever in adeliver execution, the wife would execute enough
remove operations for the mailbox to be empty, which would cause herto stop invoking
remove (since she invokesremove only if check returnsTRUE), and this would allow
the postman to eventually obtain outcomesuccessand complete his operation.

Therefore, the algorithm fails to be wait-free only in executions in which the post-
man executes infinitely manydeliver operations while the wife gets stuck executing



remove. But there is a simple mechanism for the wife to complete her operation. Be-
cause the postman’s counter is monotonically increasing, if the wife knows that the
postman’s counter is larger than her own, she can simply complete her operation and
leave her flag unchanged, since her flag already indicates that her counter is smaller
than the postman’s — otherwise she would not be executingremove in the first place.
This mechanism is shown in Figure 7 in the statement labeled “s3”.

max(x , y)
∆

= IF x > y THEN x ELSEy

procedurecompare(c)
variables t round , t otherround ;

{
s1: outcome : = “unknown”;
s2: while (outcome 6= “success” ) {

∗ s3: if (self = 0 ∧ c < otherc) return ; (* wife process *)

(* advance or skip round *)
∗ s4: t otherround : = Round [1 − self ];
∗ s5: t round : = max(Round [self ] + 1, t otherround − 1);
∗ s6: Round [self ] : = t round ;

ts : = nextts;
s7: call multisussus(t round , [Timestamp 7→ ts, Count 7→ c]);
s8: if (outvalue 6= ⊥) {

otherts : = outvalue.Timestamp;
otherc : = outvalue.Count ;

};
nextts : = dominate(otherts, Flag [1 − self ].Timestamp);

}; (* while *)
s9: if (c 6= otherc)

Flag [self ] : = [Timestamp 7→ ts, Rel 7→ “6=” ];
elseFlag [self ] : =[Timestamp 7→ ts, Rel 7→ “=” ];

s10: return ;
};

Fig. 7. Wait-free algorithm with small flag values:compare procedure. Asterisks indicate
changes relative to the non-blocking algorithm with small flag values.

We have also included a simple optimization in which, if processi sees that its
round r i is lagging behind the other process’s roundr1−i , then processi jumps to
roundr1−i−1. The reason it is possible to jump in this case is that processi will obtain
an outcomeunknownfrom thesussusprotocol in every round fromr i to r1−i−1. In
each of these rounds, the process would learn the value of theother process, but what it
learns in a round is subsumed by what it learns in a higher round. Therefore, the process
only needs to execute roundr1−i−1. This optimization is shown in Figure 7 in the
statements labeled “s4” through “s7”. It uses an additionalshared arrayRound [i ] that



stores the current round of processi (this used to be in process-local variableround ,
which no longer is used), where initiallyRound [i ] = 0 for i = 0, 1.

Theorem 3. The algorithm in Figures 5 and 7 is a wait-free algorithm thatsolves the
mailbox problem with the strong access restriction. It usesa Flag with two 14-valued
single-writer atomic registers.

4 Impossibility

We now show that it is impossible to solve the mailbox problemwhenFlag has only
two bits, each writable by a single process. This result holds even ifNotes can hold
unbounded values.

Theorem 4. There is no non-blocking algorithm that solves the mailbox problem with
the strong access restriction whenFlag is an array with two 2-valued single-writer
atomic registers.

Proof sketch.We show the result by contradiction: suppose there is such analgorithm
A. Let Flag[0] andFlag[1] denote the two 2-valued single-writer atomic registers. We
show how to useA to solve consensus using only registers, which is impossible [2, 9].

If Flag[0] andFlag[1] are writable by the same process, it is easy to get a contradic-
tion. Without loss of generality we can assumeFlag[0] is writable by the wife (process
0) andFlag[1] is writable by the postman (process 1).

A solo executionof an operation is one where only one process takes steps (the
other does nothing).

We define a functionC such thatC (F 0,F 1) is the value returned by a solo execu-
tion of check whenFlag[i ] = F i at the beginning of the execution. This is well-defined
because (1) with the strong access restriction, operationcheck returns a value that de-
pends only on what it reads fromFlag, and (2) in a solo execution ofcheck , the value
of Flag does not change.

Assume without loss of generality that initiallyFlag[0]=Flag[1]=0.

Claim. C (0, 0)=C (1, 1)=FALSE andC (0, 1)=C (1, 0)=TRUE.
To show this claim, note that initiallycheck returnsFALSE as no letters have been

delivered. Moreover, initiallyFlag[0]=Flag[1]=0. ThereforeC (0, 0) = FALSE.
From the initial system state, a solo execution ofdeliver by the postman must set

Flag[1] to 1 (otherwise a subsequent execution ofcheck incorrectly returnsC (0, 0) =
FALSE) and we haveC (0, 1) = TRUE.

After this solo execution ofdeliver , suppose there is a solo execution ofremove by
the wife. This execution setsFlag[0] to 1 (otherwise a subsequent execution ofcheck

incorrectly returnsC (0, 1) = TRUE) and we haveC (1, 1) = FALSE.
After these solo executions ofdeliver andremove, suppose there is a solo execution

of deliver . Then, it setsFlag[1] to 0 and we haveC (1, 0) = TRUE. This shows the
claim.

Let S be the system state after a solo execution ofdeliver from the initial state. In
stateS , Flag[0]=0 andFlag[1]=1.



We now give an algorithm that we will show solves consensus for the two processes.
Processi first writes its proposed value into a shared variableV [i ]. Then, starting from
stateS , process0 executes operationremove of algorithmA and process1 executes
operationdeliver of A. If processi ends up with a different value inFlag[i ] than when
it started, then it decides on the value ofV [0]; otherwise, it decides on the value of
V [1].

This algorithm solves consensus because (a) if process0 executes by herself then
remove flips the value ofFlag[0] so the process decides onV [0]; (b) if process1
executes by himself thendeliver leavesFlag[1] unchanged so the process decides on
V [1]; (c) if both processes execute then, after they finish, the values ofFlag[0] and
Flag[1] either both flip or both remain the same (it is not possible foronly one of them
to flip, becauseC (0, 0) = C (1, 1) = FALSE and operationcheck must returnTRUE

afterwards), and so both processes decide the same value.
This consensus algorithm uses only atomic registers and it is wait-free sinceA is

non-blocking and each process invokes at most one operationof A. This contradicts the
consensus impossibility result [2, 9].

5 Bounded-signaling problems

The mailbox problem is an instance of a broader class of problems, calledbounded-
signaling problems, which we now define. In a bounded-signaling problem, each pro-
cessi = 0, 1 has an inputv i that can vary. From time to time, a process wishes to
know the value of a finite-range functionf (v0, v1) applied to the latest values ofv0

andv1. Each inputv i could be unbounded and, when it varies, processi can access all
of shared memory. However, when a process wishes to know the latest value off , it is
limited to accessing a small amount of state.

For example, in the mailbox problem,v0 is the number of letters that the wife has
removed,v1 is the number of letters delivered by the postman, andf (v0, v1) indicates
whetherv0 = v1 or v0 6= v1. The mailbox problem places some problem-specific
restrictions on howv0 andv1 can change. For instance, they are monotonically nonde-
creasing andv0 ≤ v1 because ifcheck returnsFALSE then the wife does not execute
remove. Other bounded-signaling problems may not have restrictions of this type.

A precise statement of a bounded-signaling problem is the following. We are given
a finite-range functionf (x , y), and we must implement two operations,change(v) and
readf (). If operations never execute concurrently,readf must always return the value of
f (v0, v1) wherev i is the value in the last preceding invocation tochange(v) by process
i or v i = ⊥ if processi never invokedchange(v). The concurrent specification is
obtained in the usual way from this condition by requiring linearizability. Furthermore,
the implementation ofreadf must access a small amount of persistent state. We consider
two alternative interpretations of this requirement:

– (Weak access restriction)Operationreadf accesses at most one shared variable, of
finite range; and it accesses this variable only by reading.

– (Strong access restriction)Operationreadf accesses at most one shared variable,
of finite range; it accesses this variable only by reading; and it returns a value that
depends only on what it reads from the shared variable.



It turns out that the algorithm in Section 3.3 can be changed as follows to solve any
bounded-signaling problem with the strong access restriction. We replacedeliver and
remove with a single procedurechange(v) that setscounter to v , and we modify the
end of procedurecompare to computef with argumentsc andotherc (instead of just
comparingc andotherc), and write the result and timestamp toFlag. The resulting
algorithm is non-blocking. It is an open problem whether there exist wait-free algo-
rithms for the general problem. Our wait-free algorithm in Section 3.4 does not solve
the general problem since it relies on problem-specific restrictions on the inputsv i .

6 Related work

The mailbox problem is a type of consumer-producer synchronization problem, with
the unique feature that the consumer must determine if thereare items to consume by
looking only at a finite-range variable.

Work on bounded timestamping shows how to bound the timestamps used in certain
algorithms (e.g., [5, 1]). That work considers a fixed-length array that holds some finite
set of objects that must be ordered by timestamps. In our algorithms, it is not evident
what this set should be. However, we believe some of the binary relations devised in that
body of work could be used in our algorithms instead of the relation given byMatrix

in Section 3.3 (but this would result in much larger timestamps than the ones we use).
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