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Optimal Joint Probing and Transmission Strategy
for Maximizing Throughput in Wireless Systems

Prasanna Chaporkar and Alexandre Proutiere

Abstract— In broadcast fading channel, channel varia-
tions can be exploited through what is referred to as multi-
user diversity and opportunistic scheduling for improving
system performance. To achieve the gains promised by
this kind of diversity, the transmitter has to accurately
track the channel variations of the various receivers,
which consumes resources (time, energy, bandwidth), and
thus reduces the resources remaining for effective data
transmissions. The transmitter may decide not to acquire
or probe the channel conditions of certain receivers, ei-
ther because these receivers are presumably experiencing
severe fading, or because the transmitter wishes to spare
resources for data transmissions. It may also decide to
transmit to a receiver without probing its channel; in such
cases, the transmitter guesses the channel state, which often
results in a reduction of the transmission rate compared to
when the transmitter knows the channel state. Ultimately,
the transmitter has to decide to which receiver it should
transmit. In this paper, we identifying the joint probing
and transmission strategies realizing the optimal trade-
off between the channel state acquisition and the effective
data transmission. The objective is to maximize the system
throughput. Finally, we propose several extensions of the
proposed strategy, including a scheme to maximize the
system utility and a scheme to ensure the system stability.

Index Terms— Limited information MAC, stochastic
control, generalized optimal stopping time problem.

I. INTRODUCTION

Fading variations between the transmitter and the
receiver have traditionally been considered to have an ad-
verse impact on the performance of the communication
in wireless systems. It is well known that the capacity
of the AWGN point-to-point channel with ergodic fading
is less than that of the unfaded AWGN channel even
when the channel side information (CSI) is available
at the transmitter and the receiver [1], [2]. Recently
however, Knopp and Humblet [3] have shown that fading
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could be exploited to increase the throughput in broad-
cast systems, where a single transmitter has to send
data to several receivers with various and independent
fading conditions. There, the throughput improvement
is achieved by always transmitting to receivers with
relatively favorable channel conditions. When the num-
ber of receivers is sufficiently large, there is always,
and with high probability, a receiver whose channel
conditions are better than in average. This principle is
often termed multi-user diversity, and transmitting to
users with relatively favorable conditions is referred to
as opportunistic scheduling.

This promise of throughput gain via multi-user di-
versity instigated significant research efforts in devel-
oping theoretical and practical opportunistic scheduling
schemes. Such schemes have been designed for various
performance objectives. For example, Lyapunov-based
opportunistic scheduling schemes that can provide the
required throughput to each of the receivers when doing
so is at all possible have been proposed in [4], [5];
schemes that provide delay differentiation are proposed
in [6], [7], [8]; schemes that minimize the maximum
mean queueing delay are developed in [9]; and more re-
cently, opportunistic schedulers that maximize/minimize
certain utility while providing the required throughput
to each of the receivers have been proposed in e.g. [10],
[11], [12], [13].

In all the work mentioned above, the basic underlying
assumption is that the CSI between the transmitter and
each of the receivers are known at both ends. But, the
CSI is not automatically available, instead it has to
be acquired; and this acquisition consumes resources
like time, bandwidth and power, e.g. in CDMA/HDR
cellular systems [10], a dedicated channel for each
receiver is maintained for communicating the CSI to
the base station. Moreover, the resource consumption
is proportional to the number of receivers in the sys-
tem. Thus, one has to carefully evaluate the trade-off
between resource consumption in acquiring CSI and the
performance improvement by opportunistically using the
acquired information. In this paper, our aim is to evaluate
this trade-off and propose an optimal CSI acquisition
and transmission policy to maximize the rate at which



2

the transmitter can send data to the receivers, i.e. to
maximize the system throughput.

We motivate the problem with the following example.
Example 1: Consider a broadcast channel with two

receivers, e.g., the down-link of a cellular network or
of a wireless LAN. Time is slotted, and a slot is of
unit duration. Here, the slot is assumed to represent
the coherence time of the channels. We further assume
that the receivers experience independent and identically
distributed (i.i.d.) fading in each slot. Specifically, let
the maximum rate of transmission in any slot be 1
with probability 1/2 and 2 w.p. 1/2 independently for
each of the receivers given that CSI is known to both,
the transmitter and the receiver. Also, let β denote the
fraction of slot duration required to probe a receiver
and acquire its CSI. In this setting, we compare two
probing and transmission strategies π1 and π2. Under π1,
the transmitter probes both receivers, and then transmits
to the receiver with the best channel state. Ties are
broken arbitrarily. Under π2, the transmitter probes one
receiver at random, and transmits to it at the maximum
rate possible. Policy π1 spends 2β units of time per
slot to acquire the channel states, and transmits at an
expected rate of 7/4 in the remainder of the slot; while
π2 spends only β units of time per slot to acquire
the CSI, but transmits at a smaller expected rate of
3/2 in the remainder of the slot. Thus, the expected
throughput under π1 is 7(1 − 2β)/4, while that under
π2 is 3(1 − β)/2. Note that if β ≤ 1/8, then π1 has a
higher throughput than that of π2. But, when β > 1/8,
the throughput under π2 is higher.

The above example demonstrates that the probing
and transmission strategy should be designed by taking
into account the cost for probing, which is time in the
example. Since, the channel states change at each slot,
whose duration is the coherence time of the channels,
the CSI obtained in a given slot can not be used in
subsequent slots. Thus, if the time required for probing a
receiver consumes a significant portion of the coherence
time, then probing only a small number of receivers
may provide the optimal throughput. On the other hand,
if the time required for probing is a small fraction
of the coherence time, then probing a larger number
of receivers may be optimal as it allows to discover
receivers with high channel gains and thereby to achieve
a high throughput.

In Example 1, policy π1 can be trivially modified to
provide better throughput in the following way. If at the
first probe, π1 finds a receiver to which transmission
at rate 2 is possible, then it does not probe the second
receiver as no further improvement in the transmission
rate is possible. With this modification, π1 achieves

throughput of 7
4

(
1 − 10

7 β
)

instead of 7
4(1 − 2β). This

shows that the decision to probe further should depend
on the channel states observed in the previous probes.

Another problem in designing an optimal probing and
transmission strategy is that of deciding the order in
which the receivers should be probed. In Example 1, we
have considered i.i.d. channel states, and hence probing
sequence does not matter. But, in the following example
we demonstrate that when the channel states are not i.i.d.
across receivers, then the sequence in which receivers
are probed has a significant bearing of the achievable
throughput.

Example 2: Consider the same settings as in Exam-
ple 1, except that the channel gains are not i.i.d. across
receivers. Specifically, in each slot, let the maximum rate
to receiver R1 be 2 w.p. (k − 1)/k and k w.p. 1/k, and
for receiver R2 let it be 1 w.p. (2k − 1)/2k and 2k
w.p. 1/2k. Now, the expected transmission rates to R1

and R2 are 2(k−1)
k + 1 and 2k−1

2k + 1, respectively. Thus,
for k > 3/2, the expected rate to R1 is strictly greater
than that to R2. Fix k > 3/2. In this setting, one would
intuitively expect that probing R1 first should be optimal
as it provides a higher expected rate, but we show that
if β < 2k2

8k2−7k+2 , then probing R2 first provides a better
throughput. Specifically, we show that the optimal policy
π� is, in every slot, to probe R2 first. If the achievable
rate is 2k then transmit to R2, otherwise probe R1

and transmit to it at the appropriate rate. The expected
throughput of π� is (1 − β) + (1 − 2β)6k2−7k+2

2k2 . To
show that π� achieves the highest throughput, it suffices
to compare it with policy π1 that probes R1 and transmits
at appropriate rate, and with policy π2 that probes R1

first. If the achievable rate is k, then π2 transmits to
R1, otherwise it probes R2 and transmits to it if the
achievable rate is 2k, else it transmits to R1 at rate 2.
Note that the throughput of π1 is (1 − β)

[
2(k−1)

k + 1
]
,

while that of π2 is (1 − β) + (1 − 2β)3k2−4k+1
k2 . It is

easy to verify that throughput of π2 is always smaller
than that of π�, while the throughput of π1 is smaller
than that of π� when β < 2k2

8k2−7k+2 . Thus, probing R2

provides the optimal throughput for β < 2k2

8k2−7k+2 .
The above example demonstrates that the system

throughput depends on the order in which the receivers
are probed. The example also demonstrates that heuris-
tics like probing receivers in the order of their expected
rates may not be optimal.

Until now we have considered a case where the
transmitter transmits only to a probed receiver. But, in
practice the transmitter may decide to transmit to a re-
ceiver by guessing, instead of probing, its CSI. Guessing
saves the time required to probe the receiver, and this
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time may be used for the actual data transmission. But,
the rate of transmission to an un-probed receiver can not
be greater than the rate of this receiver averaged over its
fading conditions. Clearly, the opportunity to guess leads
to a more complicated possible trade-off: A probing and
transmission strategy has to adaptively decide whether
to (i) transmit to a probed receiver, (ii) probe a new
receiver, or (iii) guess the channel state of an un-probed
receiver and transmit to this receiver. The decision will
depend upon the fraction of the channel coherence time
required to probe a receiver, the receivers’ channel gain
distributions, and the channel gain values observed for
the probed receivers. Our aim is to obtain a probing and
transmission strategy maximizing the expected system
throughput.

Though we have motivated the problem for broadcast
fading channel, similar problem exists in other wireless
systems of practical interest. We present the following
example.

Opportunistic spectrum access in multi-channel
wireless networks: In future wireless systems, a receiver
will be able to access a large number of channels. For
example, in IEEE 802.11 based wireless LANs, three
orthogonal channels are available for communication.
Also, in other systems such as cognitive radio systems,
the transmitter has to choose the frequency band to
communicate so as to avoid interference with licensed or
unlicensed receivers. Here, to maximize its throughput,
the transmitter should use a channel with high SINR.
Thus, again, the transmitter has to probe channels to
look for the best possible and this has a cost, as it
reduces the time remaining for the effective transmission.
The problem is clearly identical to the first problem
mentioned above.

In this paper, we formulate the problem of design-
ing an optimal probing and transmission strategy as a
stochastic control problem (Section II), and explain how
this problem is different from the classical stochastic
control problems. We derive structural properties of
optimal probing and transmission strategies, and in some
special cases of practical importance, we completely
characterize these strategies (Section III). We then illus-
trate our theoretical findings through numerical results
(Section IV), and conclude the paper (Section IV) by
proposing several extensions of the work.

II. PROBLEM FORMULATION AND RELATED WORK

A. System Model and Problem Formulation

We consider a system with N receivers whose channel
conditions vary over time. Time is slotted, and the
channel conditions of the various receivers are assumed

to remain constant for the duration of one slot, i.e., the
coherence time of the channels are larger than one slot;
these conditions may change at the slot boundaries. In
other words, we consider the block fading model [2].
Denote by ci(t) the channel state of user i during slot
t. Now the transmission rate at which a user whose
channel is in state c ∈ R

+ can receive is denoted by R(c)
where R(·) is an increasing function. For example, R can
represent Shannon limit: R(c) = W log2

(
1 + Pc

WN0

)
,

where W is the channel bandwidth and P,N0 are the
transmission power and the noise power spectral density,
respectively. Here the channel state c represents the
fraction of transmission power received by the user. We
assume that the channel states are independent across
receivers, but the distributions of the channel state of
each receiver may be different. For a given receiver,
the channel states are i.i.d. across slots with cumulative
distribution function (c.d.f.) Fi(·) (Fi(a) = Pr[ci(t) ≤
a]). In the following, we denote by Ci a generic random
variable (r.v.) with c.d.f. Fi. We assume that Fi is known
to the transmitter and the receiver.

At the beginning of each time slot, the sender can
decide to probe some channels, to transmit to one of the
probed receivers, or to transmit to a receiver that has not
been probed1. We assume that probing the channel state
of a receiver takes a proportion β of the slot duration.
Hence, in a given slot, when the transmitter decides to
transmit to a receiver whose channel state is c, where c
can be either known or unknown, the throughput during
this slot is:

T = (1 − β|P|)R(c),

where P denotes the set of probed receivers in that slot,
and |P| is the cardinality of this set. We denote by P
the set {1, . . . , N} \ P.

Definition 1 (Probing Strategy): A probing strategy is
an algorithm that given the set P of probed receivers and
the channel gains for the receivers in P, decides whether
to probe a receiver in P ; and if the decision is to probe,
then it also decides which receiver should be probed.

Definition 2 (Transmission Strategy): A transmission
strategy is a rule that identifies a receiver to which the
transmitter should transmit given the set P of probed
receivers and the channel gains for the receivers in P.

We note that a transmission policy need not always
transmit to a receiver in P, but it may also decide to
guess the channel gain for a receiver in P and transmit
to it.

1Note here that transmitting to an un-probed receiver requires
advanced adaptive coding schemes, and often, it is not possible. That
is why the case where the sender has to probe a channel before using
it is quite relevant.
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Definition 3 (Joint Probing and Transmission Strategy):
A joint probing and transmission strategy π is an
algorithm that given the set P of probed receivers and
the channel gains for the receivers in P, decides among
one of the following three actions: (i) transmit to some
receiver i ∈ P, (ii) transmit to some receiver i ∈ P,
(iii) probe some receiver i ∈ P .

Definition 4 (System Throughput): Let Bπ(t) denote
the number of bits transmitted in slot t under policy π.
Then, the system throughput under π is

T π def= lim inf
t→∞

∑t
s=1 Bπ(s)

t
.

Our problem is to design a joint probing and trans-
mission strategy that maximizes the system throughput.
Such a strategy is said to be optimal. Since the system
is i.i.d. across slots, by the strong law of large num-
bers, maximizing the system throughput is equivalent to
maximizing the expected throughput in each slot. For
notational simplicity, we consider any given slot and
drop time t from the notation.

We formulate the problem of maximizing the expected
throughput in a slot as a stochastic control problem. The
formulation is as follows. Assume that the receivers in
set Pk has been already probed, where the subscript
k indicates that |Pk| = k (k users have been probed
already). Denote by u the largest channel gain among the
receivers in Pk; we say that the system is in state (Pk, u).
Note that since the system throughput is maximized by
transmitting at the highest possible rate, we only need to
maintain the maximum observed channel gain u. Then a
strategy π has the following possible control actions in
state (P, u)):

1) Transmit to the receiver with the best probed
channel. In that case, the throughput will be:
Ttr(Pk, u) = (1 − kβ)R(u).

2) Transmit to a receiver that has not been probed.
In that case, the throughput will be: Tg(Pk, u) =
(1 − kβ)maxi∈Pk

Rg(i), where Rg(i) denotes the
expected rate at which the transmitter can send
data to user i without knowing its current channel
state. The exact value of Rg(i) depends on the
advanced coding and signaling schemes used in
the system. For example, if the receiver knows
the channel state, which is the case when the
transmitter broadcasts pilot signal at the beginning
of the slot, then Rg(i) can be close to E[R(Ci)]. To
achieve the latter rate, the coding scheme should
be able to reveal the ergodic nature of the channel.
This is not always possible depending on the
system considered. Hence, it will be relevant to
study the special case where transmitting to an un-
probed user is not allowed.

3) Probe one more receiver (say i) from the set P . In
this case, the system state changes from (Pk, u)
to (Pk+1, u ∨ ci) given that the channel state of
the newly probed user is ci, and where Pk+1 =
Pk ∪ {i}. The operator ∨ is defined by a ∨ b =
max(a, b).

In cases (i) and (ii), we say that we retire. In cases (ii)
and (iii), the strategy has also to define to which receiver
to transmit and which receiver to probe, respectively. We
denote by T π(Pk, u) the average throughput achieved
by strategy π, starting from system state (Pk, u). Also
denote by T �(Pk, u) the average throughput of an op-
timal strategy starting from system state (Pk, u). Now,
T �(Pk, u) is given by the following Bellman’s equation
for all k, Pk and u.

T �(Pk, u)

= max {Ttr(Pk, u), Tg(Pk, u),

max
i∈Pk

{Ei [T �(Pk ∪ {i}, u ∨ Ci)]}}, (1)

where Ei[·] is the expectation taken w.r.t. Fi. Thus, in
each state (Pk, u), the optimal control decision cor-
responds to the term that achieves the maximum in
(1), e.g., if Ttr(Pk, u) achieves the maximum then the
optimal decision is to transmit. Note that at the beginning
of every slot, the state is (∅, 0), where ∅ denotes the
empty set. Our aim is to obtain an optimal strategy π�

in the sense that T π�

(∅, 0) = T �(∅, 0).
Before providing some properties of an optimal strat-

egy π∗, we first explain how the problem considered here
is different than all other stochastic control problems
previously analyzed.

B. Related work

The problem of identifying optimal joint probing
and transmission strategies has been addressed in the
literature recently only [14], [15], [16], [17], [18]. It falls
into the broad class of stochastic control problems [19].
However, as explained in [20], it does not correspond
to any of the existing classical control problems such as
multi-armed bandits, optimal sampling order, or optimal
stopping problems. In the various versions of the multi-
armed bandit problems [21], [22], acquiring the state
of an arm (or of a channel here) before using it is not
allowed. Optimal sampling order of random variables has
been investigated in many contexts, see e.g. [23], [24];
however, in all existing work, these variables can take 2
values only (On or Off channels here), and exploiting
a variable that has not been probed is not allowed.
Finally, in usual stopping time problems [25], one has
to select between two possible actions, proceed further
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or stop; this can be applied to our problem only when
all channels are equivalent [15], i.e., when they have
the same statistical distribution. The latter assumption is
never valid in practical scenarios. In any case, stopping
time problems are very challenging and most of them
are open [19].

We discuss now papers specifically related to optimal
joint probing and transmission strategies. In most of
these papers (see e.g., [15], [20]), a linear cost structure
is used, which means that the reward or throughput can
be written as: T = R(c) − |P|β. This considerably
simplifies the analysis, although characterizing an op-
timal strategy is an open problem, unless transmitting
to an un-probed user is not allowed [20]. In practice,
the cost structure is logarithmic, as in our model where
log T = log R(c) + log(1 − β|P|). To our knowledge,
[18] is the only paper aiming at analyzing the latter
model, but the results in [18] are very preliminary:
only rough structural properties of the optimal probing
and scheduling strategy are stated without proof. In the
present work, we provide general structural properties
of the optimal strategy, but also exactly characterize this
strategy in specific but relevant cases.

III. STRUCTURAL PROPERTIES OF THE OPTIMAL

STRATEGY

In this section, we state some structural properties
that an optimal probing and transmission strategy should
have. Specifically, when the system is in some state
(Pk, u), we will give conditions under which an optimal
strategy should either transmit to one of the probed users,
or transmit to an un-probed user, or probe another user.
These conditions do not fully characterize an optimal
strategy, as it remains to define which user to probe
next if the strategy decides to further probe. The latter
question is a much more challenging issue than deriving
the basic structural properties of an optimal strategy.
We address this question of obtaining optimal probing
strategy in certain special cases of practical interest.

We start our exploration in a special case where
guessing is not allowed, i.e., in the state (Pk, u), a joint
probing and transmission strategy can either transmit to
some i ∈ Pk or probe some j ∈ Pk. This special case
is of practical interest as already explained in Section II.
Additionally, studying this special case provides valuable
insights in designing optimal policy when guessing is
allowed, as we shall see in Section III-B.

A. Optimal Strategy when Guessing is not Allowed

When guessing is not allowed, the Bellman’s equation
(1) reduces to

T �(Pk, u)

= max{Ttr(Pk, u),

max
i∈Pk

{Ei [T �(Pk ∪ {i}, u ∨ Ci)]}} . (2)

We note that when the number of possible channel
states is finite for each user, it is indeed possible to solve
(1), and thereby obtain an optimal strategy. But, the brute
force computation has exponential (in terms of number
of users) complexity as the quantity T �(Pk, u) has to be
evaluated for every subset Pk. So, deriving properties
of optimal strategies is crucial, either to exactly charac-
terize these strategies or to reduce their computational
complexity.

Let ak
def= (1 − kβ). Define Tpr(i),tr(Pk, u) def=

ak+1Ei[R(u ∨ Ci)], for i ∈ Pk, and Tpr,tr(Pk, u) def=
ak+1 maxi∈Pk

Ei[R(u ∨ Ci)]. The quantity
Tpr(i),tr(Pk, u) is the expected throughput that can
be achieved, starting from state (Pk, u), when we probe
just one additional user i ∈ Pk and then transmit to
the best probed user. We will show that to obtain an
optimal transmission strategy, it suffices to consider
the one-step-look-ahead throughput Tpr,tr(Pk, u),
rather than T �(Pk, u) in (2). Since unlike T �(Pk, u),
Tpr,tr(Pk, u) can be computed with complexity O(N),
this considerably reduces the complexity of computing
an optimal strategy. Let π�

NG denote the optimal policy
when guessing is not allowed.

Theorem 1: Let (Pk, u) be the system state. Then,
π�

NG transmits to the receiver with the best channel gain
in Pk if and only if Ttr(Pk, u) ≥ Tpr,tr(Pk, u).

Proof: The proof is presented in Appendix I.
Theorem 1 states that π�

NG can determine when to
probe by considering one-step-look-ahead throughput
only. But, Theorem 1 does not determine which user to
probe when π�

NG decides to probe an additional receiver.
We believe that obtaining an optimal probing strategy is
much more challenging question in general settings, and
it remains open. As Example 2 demonstrates, probing a
receiver i ∈ Pk that maximizes Tpr(i),tr(Pk, u) may not
be optimal. Recall that in the example, receiver 1 max-
imizes one-step-look-ahead throughput in state (∅, 0),
but probing user 2 was optimal for certain values of β.
Nevertheless we are able to determine an optimal probing
strategy when the channels are stochastically ordered as
defined below.

Definition 5 (Stochastically Ordered Channels): The
channels of the N users are stochastically ordered if
there exists a permutation σ of {1, . . . , N} such that
for all i, j, if σ(i) ≤ σ(j), then Cσ(j) ≤st Cσ(i), where
X ≤st Y if and only if for all increasing function f
such that E[f(Y )] < +∞, E[f(X)] ≤ E[f(Y )].

Without loss of generality, when the channels are
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stochastically ordered, we assume that the permutation
σ is σ(i) = i for all i. Note that having a stochastic
order on the channels is equivalent to having a similar
order for the corresponding rates (i.e., Cj ≤st Ci iff
R(Cj) ≤st R(Ci)). An example of ordered channels is
when one can write Ci = E[Ci]Y where Y is a fixed
r.v., i.e., when the channels have similar distributions
but different means. This is a quite usual fading model in
wireless networks. In these settings, we obtain an optimal
probing strategy.

Theorem 2: If the channels are stochastically ordered,
then when Tpr,tr(Pk, u) > Ttr(Pk, u), the optimal deci-
sion is to probe the user j ∈ Pk such that for all i ∈ Pk,
Ci ≤st Cj .

Proof: The proof is presented in Appendix II.
Theorems 1 and 2 provide a full description of the

optimal probing and transmission strategy π�
NG when the

channels are stochastically ordered. Remark that even
though the results of these theorems seem quite intuitive,
as often in stochastic control problems, their proofs are
far from being trivial; and as illustrated in the two
examples presented in introduction, intuitive decisions
may sometimes be sub-optimal. The optimal strategy is
summarized in the following corollary.

Corollary 1: When the channels are stochastically
ordered, the one-step-look-ahead strategy is optimal. The
optimal one-step-look-ahead strategy is as follows: when
the system is in state (Pk, u):
(i) If Tpr,tr(Pk, u) ≥ Ttr(Pk, u), then we should probe
the stochastically largest un-probed user,
(ii) otherwise, we should transmit to the user i ∈ Pk

such that ci = u.
In the following subsection we obtain structural prop-

erties of the optimal policy π� when guessing is allowed.

B. Optimal Strategy when Guessing is Allowed

First, we show that in many states, the optimal policy
when guessing is allowed (denoted by π�) takes the same
decisions as the policy π�

NG. Specifically, we have the
following result.

Theorem 3: In every state (Pk, u) such that
Ttr(Pk, u) ≥ Tg(Pk, u), π� and π�

NG take identical
decisions. Moreover, after probing a receiver in state
(Pk, u), we also have in the new system state, say
(Pk+1, u

′), Ttr(Pk+1, u
′) ≥ Tg(Pk+1, u

′).
Proof: The proof is presented in Appendix III.

Theorem 3 states that once we have probed a receiver
with channel gain large enough to provide a greater
throughput than that we would obtain by guessing and
transmitting to any other un-probed receiver, the optimal
policy does not need to consider guessing any further.

In other words, the optimal decisions from this state is
either to transmit to the probed receiver or to probe a
new receiver, but never to guess and transmit to an un-
probed receiver. Thus, after reaching a state (Pk, u) such
that Ttr(Pk, u) ≥ Tg(Pk, u), the optimal policy π� is as
described in Corollary 1.

In view of Theorem 3, we have characterized π� ex-
cept in states (Pk, u) such that Ttr(Pk, u) < Tg(Pk, u).
Now, we provide the structural properties of π� in these
states. First, we introduce some notation. For a receiver
i, let ug(i) be a state such that R(ug(i)) = Rg(i) (ug(i)

denotes the channel state corresponding to the rate one
would obtain by guessing and transmitting to the receiver
i; without loss of generality,we assume that such state
exists). Also, let ug(Pk)

def= maxi∈Pk
{ug(i)}.

Theorem 4: In every state (Pk, u) such that
Ttr(Pk, u) < Tg(Pk, u):

1) If Tpr,tr(Pk, u) ≥ Tg(Pk, u), then π� probes some
receiver i ∈ Pk.

2) If Tpr,tr(Pk, u) < Tg(Pk, u), then π� satisfies:
a) If Tpr,tr(Pk, ug(Pk)) ≤ Ttr(Pk, ug(Pk)),

then π� guesses and transmits to j =
arg maxi∈Pk

{ug(i)}.
b) If there exists j ∈ Pk such that

Tpr(j),tr(Pk, ug(Pk∪{j})) ≥ Ttr(Pk, ug(Pk)),
then π� probes some i ∈ Pk.

Proof: The proof is presented in Appendix III.
Theorems 3 and 4 provide quite detailed structure

properties of the optimal strategy when guessing is
allowed. Furthermore, we know which user to probe next
when the system state (Pk, u) is such that Ttr(Pk, u) ≥
Tg(Pk, u). To fully characterize the optimal strategy,
one need to identify which user to probe next when
the system state is such that Ttr(Pk, u) < Tg(Pk, u).
This problem remains open even in the case where the
optimal control problem has a linear cost structure as in
[20]. Fortunately, in practical scenarios, as observed in
the next section, states such that Ttr(Pk, u) < Tg(Pk, u)
appear rarely, which simplifies the characterization of the
optimal strategy.

IV. EXTENSIONS: UTILITY AND QUEUES

A. Maximizing System Utility

In the case of the broadcast channel, one may propose
to impose fairness among receivers, i.e., to maximize a
certain notion of system utility instead of the system
throughput as we have done so far. Denote by U(·) a
concave non-decreasing utility function, and denote by
Bπ

i (t) the throughput received by user i under strategy
π in slot t. The long-term throughput of user i is then
T π

i = lim inft→∞ 1
t

∑t
s=1 Bπ

i (s). Now the objective is
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Fig. 1. Average throughput of the various strategies as the number
of users N increases - Exponential channels with different means -
β = 0.1 (upper figure), 0.05 (middle figure), 0.02 (lower figure).
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Fig. 2. Decision thresholds as a function of the set of already probed
users - β = 0.05, N = 20 users.

to maximize
∑N

i=1 U(T π
i ). Finally, let B̂π

i (t) be the
expected (with respect to the channel state distributions)
throughput received by user i. A natural candidate al-
gorithm to maximize the system utility is the following
gradient algorithm: each time slot t, choose joint probing
and transmission strategy as follows.

max
π

N∑
i=1

B̂π
i (t) × U ′(ti(t)), (3)

ti(t + 1) = (1 − η)ti(t) + ηti(t).

Note that solving (3) is equivalent to maximizing a
weighted sum of expected throughputs each time slot.
This can be done as in Section III. The above algorithm
is expected to maximize the system utility when the

parameter η tends to 0. We do not provide a detailed
analysis here, and reserve it for future work.

B. Queue Stability

Alternatively, one can also study the system with
queues corresponding to each of the receivers in which
the bits arriving from the higher layer are stored. The
problem, in these settings, is to obtain a scheduling
policy that stabilizes the system, i.e., provides the finite
expected delay to each of the users. Let Q i(t) denote
the queue length of user i in slot t. It is well known
that the max-weight policies stabilize the system if doing
so is possible [26]. We can use a similar idea here
and choose joint probing and transmission strategy that
solves maxπ{

∑N
i=1 Qi(t) × B̂π

i (t)} given the current
queue lengths. Since, Qi(t) is known, finding the max-
imum is equivalent to maximizing the weighted sum
of the throughputs, which can be done using results in
Section III. Again, a detailed analysis will be provided
in future work.

V. NUMERICAL RESULTS

In this section, we give some numerical experiments
illustrating the theoretical findings of the previous sec-
tions. We compare the following probing and transmis-
sion strategies: (a) the optimal strategy when guessing is
allowed (π∗

NG); (b) the optimal strategy when guessing
is not allowed (π∗); (c) the strategy where all channels
are probed before transmission; (d) the strategy where no
channel is probed, i.e., where the transmission is made
on the channel with the highest average state. The policy
π∗

NG is obtained using brute force computations in which
the results from the previous section have been utilized.

We consider an asymmetric fading scenario: the chan-
nel states of the various users are exponentially dis-
tributed but with different means. We further assume
that these averages are ordered, i.e., the channels are
stochastically ordered. The averages are linearly de-
creasing with the channel index i. For a given channel
state, the corresponding rate follows Shannon formula
(P = 40dBm, N0 = −100dBm, W = 1). With a path
loss exponent equal to -3.5, the user with the worst
average channel is located roughly 2 times further from
the transmitter than the user with the best channel.

In Figure 1, we present the average throughputs of
strategies (a)-(d) when the number of users grows and for
different values of β, the proportion of slot required to
probe a channel. Note that the optimal strategies with or
without guessing have very similar performance except
when the probing cost β is very large. In fact, in this
example, it turns out that the optimal strategy transmits to
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a un-probed user very rarely, and only when a lot of users
have been probed already and when the observed channel
state is still low. This observation is confirmed in Figure
2: here we consider the case where β = 0.05 and N = 20
users. The curve T(probe,transmit) represents the value
of the maximum channel state for which it is better to
further probe than transmit to an already probed user.
T(guess) shows the maximum channel state for which it
is optimal to guess and transmit to a user that has not
been probed.

VI. CONCLUSION

In exploiting multi-user diversity, there is an inherent
trade-off between the consumption of resources to probe
the channel states of the receivers, and the throughput
improvement obtained by opportunistic scheduling. We
have shown that acquiring the CSI of all the receivers can
in fact reduce the system throughput compared to that
obtained when CSI of only a few receivers are acquired.
We have proposed guidelines to the design of a joint
probing and transmission strategy that maximizes the
system throughput. Additionally, we have fully charac-
terized the optimal strategy in some specific, but relevant,
cases. We also mention how our framework can be used
to provide fairness and to ensure queue stability.
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APPENDIX

APPENDIX I
PROOF OF THEOREM 1

We prove the theorem using the following two sup-
porting lemmas.

Fix the set Pk and define Dk as follows:

Dk = {u : Ttr(Pk, u) ≥ Tpr,tr(Pk, u)}. (4)

Lemma 1: There exists umax(Pk) such that Dk = {u :
u ≥ umax(Pk)}.

Proof: Let u ∈ Dk and consider any u′ > u.

(1 − kβ)R(u) ≥ (1 − (k + 1)β)max
i∈Pk

{Ei [R(u ∨ Ci)]} ,

Now, it follows that

(1 − kβ)R(u)

≥ (1 − (k + 1)β)Ei [R(u ∨ Ci)] ∀ i ∈ Pk,

= (1 − (k + 1)β)
[
R(u)Fi(u) +

∫ ∞

u
R(x)dFi(x)

]

≥ (1 − (k + 1)β)
[
R(u)Fi(u′) +

∫ ∞

u′
R(x)dFi(x)

]
.

From above, we can conclude the following.

(1 − kβ)R(u)[1 − Fi(u′)]

≥ (1 − kβ)
∫ ∞

u′
R(x)dFi(x) − βEi [R(u ∨ Ci)] ,

⇒ (1 − kβ)R(u′)[1 − Fi(u′)]

≥ (1 − kβ)
∫ ∞

u′
R(x)dFi(x) − βEi

[
R(u′ ∨ Ci)

]
.(5)

(5) holds for every i ∈ Pk, and the lemma is proved.
Note that to obtain (5), we used the fact that R(·) and
Fi(·) are monotonically non-decreasing.

Lemma 2: Fix any sequence of sets of probed users
such that Pk+1 = Pk ∪ {i} for some i ∈ Pk for k ∈
{0, . . . , N − 1}. We have: for all k, Dk ⊆ Dk+1, or
equivalently umax(Pk) ≥ umax(Pk+1).

Proof: The proof is by contradiction. Assume that
there exist u such that u ∈ Dk, but u �∈ Dk+1. Thus,

(1 − (k + 1)β)R(u)

< (1 − (k + 2)β) max
i∈Pk+1

{Ei [R(u ∨ Ci)]} ,

⇒ (1 − kβ)R(u) − βR(u)

< (1 − (k + 1)β) max
i∈Pk+1

{Ei [R(u ∨ Ci)]}
−β max

i∈Pk+1

{Ei [R(u ∨ Ci)]} ,

⇒ Ttr(Pk, u) − βR(u)

< (1 − (k + 1)β)max
i∈Pk

{Ei [R(u ∨ Ci)]}

−β max
i∈Pk+1

{Ei [R(u ∨ Ci)]} ,

⇒ Ttr(Pk, u) − βR(u)

< Tpr,tr(Pk, u) − β max
i∈Pk+1

{Ei [R(u ∨ Ci)]} ,

⇒ Ttr(Pk, u) − Tpr,tr(Pk, u)
< βR(u) − β max

i∈Pk+1

{Ei [R(u ∨ Ci)]}

⇒ 0 <

[
R(u) − max

i∈Pk+1

{Ei [R(u ∨ Ci)]}
]

.

Note that the last relation above provides the required
contradiction as u ≤ (u ∨ Ci).

Next we prove Theorem 1.

A. Proof of Theorem 1

Fix arbitrary PN−1 ⊃ Pk, and let us assume that the
users in PN−1 are probed. Then, the resulting system
state is (PN−1,∨i∈PN−1ci). Note that ∨i∈PN−1ci ≥ u
as u = ∨i∈Pk

ci and Pk ⊂ PN−1. Thus, by Lemma 1,
∨i∈PN−1ci ∈ Dk, and by Lemma 2, ∨i∈PN−1ci ∈ DN−1.
Thus, by (4),

Ttr(PN−1,∨i∈PN−1ci)

≥ Tpr,tr(PN−1,∨i∈PN−1ci)

= max
i∈PN−1

{
E[Ttr(PN−1 ∪ {i},∨i∈PN−1ci ∨ Ci)]

}
= max

i∈PN−1

{
E[T �(PN−1 ∪ {i},∨i∈PN−1ci ∨ Ci)]

}
.

The last relation follows because after probing the last
user, the optimal decision is to transmit as it the only
decision. Now, from (2), it follows that

T �(PN−1,∨i∈PN−1ci) = Ttr(PN−1,∨i∈PN−1ci). (6)

Note that (6) holds for any PN−1 ⊃ Pk and for any
values of ci’s for i ∈ PN−1 \ Pk.

Next consider any state (PN−2,∨i∈PN−2ci) that can
appear after probing N − 2 users starting from (Pk, u).
As argued before, here also we can conclude that
∨i∈PN−2ci ∈ DN−2. Thus,

Ttr(PN−2,∨i∈PN−2ci)

≥ Tpr,tr(PN−2,∨i∈PN−2ci)

= max
i∈PN−2

{
E[Ttr(PN−2 ∪ {i},∨i∈PN−2ci ∨ Ci)]

}
= max

i∈PN−2

{
E[T �(PN−2 ∪ {i},∨j∈PN−2cj ∨ Ci)]

}
.

The last equality follows from (6) as (6) holds for any
PN−1 ⊃ Pk and for any values of ci’s for i ∈ PN−1\Pk .
But, with (2), this implies that

T �(PN−2,∨i∈PN−2ci) = Ttr(PN−2,∨i∈PN−2ci),
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for any PN−2 ⊃ Pk and for any values of ci’s for i ∈
PN−2 \ Pk.

Reproducing the above reasoning, we get the result by
induction down to k.

APPENDIX II
PROOF OF THEOREM 2

Proof: We prove the result by induction on the
number of un-probed users. When this number is equal to
1, the result holds since we can only probe this user. Now
assume the result holds when the number of un-probed
users is strictly smaller than N − k. Let us establish the
result when the number of un-probed users is exactly
equal to N −k. We use contradiction. Denote by (Pk, u)
the system state, and let the optimal policy probe receiver
i instead of stochastically largest j in P k. For brevity
define: αi = umax(Pk ∪{i}), αj = umax(Pk ∪{j}), and
α = umax(Pk ∪ {i, j}). Note that αi ≥ αj .

First, note that if u ≥ αi, then after probing i or j,
the optimal policy π∗ will transmit by Theorem 1. Thus,
it is then optimal to probe j. From now on we assume
that u ≤ αi.

We compare the expected throughputs obtained start-
ing from state (Pk, u) (a) when first probing i and then
j, and (b) when first probing j and then i.

• In scenario (a), probing i results in a channel state
xi. By induction, we know that the next user to
probe should be j. Then if xi ≥ αi, we should
not probe j and transmit. If xi < αi, we should
probe j. Denote by xj the state of channel j. If
(u ∨ xi ∨ xj) ≥ α, we should transmit; otherwise
we should probe further.

• In scenario (b), we first probe j. If xj ≥ αj , we
should transmit. Otherwise, we probe i. Then if
(u∨xi ∨xj) ≥ α, we transmit; otherwise we probe
further.

We just need to compare the expected throughput in
scenarios (a) and (b) in cases where we transmit after
probing i and/or j. This is simply due to the fact that if
we have to probe further after i and j, the systems (a)
and (b) are identical. Denote by T (a)(u) and T (b)(u) the
expected throughput in scenarios (a) and (b) when we
do not probe more users than i and j:

T (a)(u)

= ak+1

∫ ∞

αi

dFi(x)R(x)

+ak+2

∫ αi

0
dFi(x)

∫ ∞

0
dFj(y)1u∨x∨y≥αR(u ∨ x ∨ y),

T (b)(u)

= ak+1

∫ ∞

αj

dFi(x)R(x ∨ u)

+ak+2

∫ αj

0
dFj(x)

∫ ∞

0
dFi(y)1u∨x∨y≥αR(u ∨ x ∨ y),

where ak = (1 − kβ). We want to prove that G(u) =
T (b)(u)−T (a)(u) ≥ 0. We prove this using the following
two lemmas.

Lemma 3: For all u ≤ αj , we have G(u) = G(αj).
Proof: First note that when u ≤ α, then T (a) and

T (b) are independent of u, and so is G(u). Now assume
that α ≤ u ≤ αj . The first terms in T (a) and T (b) do
not depend on u. Furthermore their second terms are
respectively equal to:

ak+2

∫ αi

0
dFi(x)

∫ ∞

0
dFj(y)1x∨y≥αR(x ∨ y)

−
∫ ∫

Γ(α,u)
dFi(x)dFj(y) (R(x ∨ y) − R(u)) ,

and

ak+2

∫ αj

0
dFj(x)

∫ ∞

0
dFi(y)1x∨y≥αR(x ∨ y)

−
∫ ∫

Γ(α,u)
dFi(x)dFj(y) (R(x ∨ y) − R(u)) ,

where Γ(α, u) = {(x, y) : α ≤ x, y ≤ u}. We deduce
that indeed G(u) is independent of u when u ≤ αj .
Thus, G(u) = G(αj).

Lemma 4: For all u such that αj ≤ u ≤ αi, G(u) ≥
0.

Proof: Because of the space constraints, we prove
the result in the discrete setting. The proof is using
the perturbation approach. Without loss of generality,
let N be the channel state space. Denote by p i(l) the
probability that the channel of user i is in state l.
Observe that when Fi = Fj , the result holds. Now we
assume the result is true for Fj and show that increasing
stochastically Fj does not change this conclusion. We
use F +

j defined by: for ε > 0, for a particular l0 ∈ N

in the support of Fj , p+
j (l0) = pj(l0) − ε, p+

j (l0 + 1) =
pj(l0 + 1) + ε and for all l �= l0, l0 + 1, p+

j (l) = pj(l).
If C+

j ∼ F+
j , then Cj ≤st C+

j . ε is meant to be
chosen as small as we wish. Note that using this kind
of perturbations, we can start from Fi and modify it to
obtain Fj (it can be proved by coupling arguments). Now
it can be shown that the function G+(u) obtained with
F+

j instead of Fj is such that:

G+(u)

≥ G(u) + o(ε)

+ε × 1{l0≥u} × (R(l0 + 1) − R(l0))

×(ak+1 − ak+2Fi(αi ∨ l0)) + o(ε), (7)
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where 1A is the indicator of event A. Note that the
difference between G(u) and G+(u) may come from the
variation of Fj , which may imply a modification of αi.
The latter modification holds only in the very specific
cases where ak+2E[R(αi ∨ Cj)] = ak+1R(αi), which
simplifies the analysis.

From (7), we conclude that G+(u) ≥ 0.
Note that Lemma 4 shows that G(u) ≥ 0 for every

u ∈ [αj , αi]. Now, Lemma 3 shows that G(u) = G(αj)
for every u ∈ [0, αj ]. Thus, G(u) ≥ 0 for every u ∈
[0, αi]. This proves Theorem 2.

APPENDIX III
PROOFS FOR THE RESULTS IN SECTION III-B

A. Proof of Theorem 3

Proof: First, note that as we probe more and more
users the maximum rate at which one can transmit
increases monotonically, while the maximum rate at
which one can guess and transmit decreases monoton-
ically. To see this, consider two system state (Pk, u)
and (Pk+1, u

′), where Pk ⊂ Pk+1. Then, clearly u ≤
u′. Thus, the rate at which one can transmit in state
(Pk, u) (equals R(u)) is less than or equal to that in
state (Pk+1, u

′) (equals R(u′)). Now, the maximum rate
at which one can guess and transmits in state (Pk, u)
(equals maxi∈Pk

{Rg(i)}) is less than or equal to that in
state (Pk+1, u

′) (equals maxi∈Pk+1
{Rg(i)}). Thus, from

a state (Pk, u) satisfying Ttr(Pk, u) ≥ Tg(Pk, u), every
subsequent state that can be reached by probing a new
receiver (say (Pk+1, u

′)) also satisfies Ttr(Pk+1, u
′) ≥

Tg(Pk+1, u
′). Thus, from any such state (1) reduces

to (2). Since the decision process depends only on
the current state and the future evolution, the optimal
decision process from state (Pk, u) is exactly the same
as that when guessing is not allowed.

B. Proof of Theorem 4

Proof: Statement 1) of the theorem follows from (1)
and the fact that

Tpr,tr(Pk, u) ≤ max
i∈Pk

{Ei [T �(Pk ∪ {i}, u ∨ Ci)]} .

Now, we prove the statement 2-a) of the theorem.
Let us assume that the system state is (Pk, ug(Pk)).
Note that by definition of ug(Pk), Ttr(Pk, ug(Pk)) ≥
Tg(Pk, ug(Pk)). Thus, Theorem 3 applies. Since, by
assumption, Tpr,tr(Pk, ug(Pk)) ≤ Ttr(Pk, ug(Pk)), the
optimal decision in this state is to transmit to user
with channel state ug(Pk). But, in actual system, the
system state is (Pk, u) with u < ug(Pk) as Ttr(Pk, u) <
Tg(Pk, u). Now, note that T ∗(Pk, u) is a monoton-
ically increasing function of u. Thus, T ∗(Pk, u) ≤

T ∗(Pk, ug(Pk)) = Ttr(Pk, ug(Pk)) = Tg(Pk, u). But,
Tg(Pk, u) ≤ T ∗(Pk, u) by (1). This concludes the proof.

Finally, we prove the statement 2-b) of the theorem.
Proof is by contradiction. Assume that π∗

NG retires in
state (Pk, u). Thus, by (1) and since Ttr(Pk, u) <
Tg(Pk, u), T ∗(Pk, u) = Tg(Pk, u) = Ttr(Pk, ug(Pk)).
Now, consider another strategy π which, in state (Pk, u)
probes user j such that Tpr(j),tr(Pk, ug(Pk∪{j})) >
Ttr(Pk, ug(Pk)), and then transmits to the user with the
best channel if (u∨cj) ≥ ug(Pk∪{j}) or guesses and trans-
mit to receiver j1 such that Rg(j1) = R(ug(Pk∪{j})). Note
that T π(Pk, u) = Tpr(j),tr(Pk, ug(Pk∪{j})) > T ∗(Pk, u).
This concludes the proof.
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