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Abstract We study the feasibility and cost of implementing
Ω — a fundamental failure detector at the core of many al-
gorithms — in systems with weak reliability and synchrony
assumptions. Intuitively,Ω allows processes to eventually
elect a common leader.

We first give an algorithm that implementsΩ in a weak
systemS where (a) except for some unknown timely pro-
cesss, all processes may be arbitrarily slow or may crash,
and (b) only the output links ofs are eventually timely (all
other links can be arbitrarily slow and lossy). Previously
known algorithms forΩ worked only in systems that are
strictly stronger thanS in terms of reliability or synchrony
assumptions.

We next show that algorithms that implementΩ in sys-
tem S are necessarily expensive in terms of communica-
tion complexity: all correct processes (except possibly one)
must send messages forever; moreover, a quadratic number
of links must carry messages forever. This result holds even
for algorithms that tolerate at most one crash.

Finally, we show that with a small additional assumption
to systemS— the existence of some unknown correct pro-
cess whose links can be arbitrarily slow and lossy but fair
— there is a communication-efficient algorithm forΩ such
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that eventually onlyoneprocess (the elected leader) sends
messages.

Some recent experimental results indicate that two of
the algorithms forΩ described in this paper can be used
in dynamically-changing systems and work well in prac-
tice [36].

1 Introduction

Failure detectors are basic tools of fault-tolerant distributed
computing that can be used to solve fundamental problems
such as consensus, atomic broadcast, and group member-
ship. For this reason there has been growing interest in the
implementation of failure detectors [2,4,5,10,12,19,20,22,
23,27–31,35].

One failure detector of particular interest isΩ [8]. Rough-
ly speaking, withΩ every processp has a local variable,
denotedleaderp, that contains the identity of a single pro-
cess thatp currently trusts to be operational (p considers this
process to be its current leader). Initially, different processes
may have different leaders, butΩ guarantees that there is
a time after which all processes have thesame, non-faulty
leader.

Failure detectorΩ is important for both theoretical and
practical reasons: it is the weakest failure detector for solv-
ing consensus and consensus-like problems such as atomic
broadcast [8], and it is at the core of several consensus algo-
rithms that are used in practice [7, 21, 25]. It is also used in
the solution of other problems, such as non-blocking atomic
commit [14]. In this paper, we study the problem of imple-
mentingΩ in systems with weak reliability and synchrony
assumptions. We also investigate in which systems such im-
plementations can be communication-efficient.

Our starting point is a system where (a) all processes
can be arbitrarily slow and crash, but they have a maximum
execution speed, and (b) all links can be arbitrarily slow and
lossy. We denote such a system byS−. Since all messages
can be lost or arbitrarily delayed inS−, it is clear thatΩ
cannot be implemented inS−.
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Fig. 1 Processesp andq cannot communicate but must agree on the
leader amongs1, s2 ands3.

Thus, we consider a system that is slightly stronger than
S−, namely a systemS− with the following additional as-
sumption: there is at leastone process that is timely and
whoseoutputlinks are eventually timely. Roughly speaking,
this means that the process has a minimum execution speed,
and there is a boundδ and a time after which every message
sent from that process is delivered withinδ time. We call
such a process aneventually timely source, and we denote
by Sa systemS− with at least one eventually timely source.
Note that in systemSprocesses donot know the identity of
the eventually timely source(s), the time after which the out-
put links of the eventually timely source(s) become timely,
or the corresponding bounds on message delivery time.

S is a very weak type of partially synchronous system in
terms of the timeliness of processes and the timeliness and
reliability of links. In S, only the linksfrom the eventually
timely source(s) are reliable; all other links, including those
to the eventually timely source(s), can drop messages arbi-
trarily. Thus, processes cannot use eventually timely sources
as “forwarding nodes” to communicate reliably with each
other. Moreover, inS, the timeliness assumptions apply only
to the unknown eventually timely source(s) and their output
links. All other processes and links can be arbitrarily slow.

Can one implementΩ in systemS? Note thatΩ requires
that processes eventuallyagreeon a common leader, and
it is not obvious how to achieve such an agreement when
some processes cannot even communicate, as it may happen
in system S. For example, consider a systemS with 5 pro-
cesses, denoteds1, s2, s3, p andq, that behaves as follows
(see Figure 1): (a) all the processes are correct and timely,
(b) all the output links ofp andq are lossy and drop every
message thatp andq send (hencep andq cannot commu-
nicate at all), (c) all the output links ofs2 are timely, i.e.,
they are reliable and deliver all the messages sent bys2 in a
timely way (sos2 is a an eventually timely source), (d) all the
output links ofs1 are timely, except for the link froms1 to q
which loses all messages, and (e) all the output links ofs3 are
timely, except for the link froms3 to p which loses all mes-
sages. Note that for processp, the natural leader candidates
are the two processes from which it gets timely messages,
namelys1 and s2. Symmetrically, forq the natural leader
candidates ares2 ands3. Any implementation ofΩ must en-
sure thatp andq eventually agree on the same leader — a
non-trivial task here sincep andq cannot communicate with
each other (or with any other process).

Our first result is an algorithm that implementsΩ in sys-
temS. Previously known implementations ofΩ in partially
synchronous systems [2,25,28,34] require stronger reliabil-
ity or synchrony assumptions than those ofS. In fact, these
implementations assume systems that are strong enough to
support the implementation of theeventually perfect failure
detector3P .1 In contrast, it is easy to see thatSis too weak
for implementing3P .

Our algorithm that implementsΩ in systemS, however,
has a serious drawback:all the processes periodically send
messages forever. This communication overhead is undesir-
able, and a natural question is whether it can be avoided.
Intuitively, after a process becomes the common leader,2 it
must periodically send messages forever (because if it crash-
es, processes must be able to notice this failure and choose
a new leader); but thereafter no other process needs to be
monitored. Thus, after processes agree on a common leader,
no process other than the leader should have to send mes-
sages. This motivates the following definition and leads us
to a related question. An algorithm forΩ is communication-
efficientif there is a time after which only one process sends
messages. Is there a communication-efficient algorithm for
Ω in systemS?

To answer this question we investigate the communica-
tion complexity of algorithms forΩ in systemS, and we
derive two types of lower bounds: one on the number of pro-
cesses that must send messages forever, and one on the num-
ber of links that must carry messages forever. Specifically,
we show that for any algorithm forΩ in systemS, (a) in ev-
ery run all correct processes, except possibly one, must send
messages forever; and (b) in some run at least(n2− 1)/4
links must carry messages forever, wheren is the number of
processes inS. These lower bounds hold even for algorithms
that tolerate only one process crash (and even if we assume
that all the processes inS are synchronous). We conclude
that there is no communication-efficient algorithm forΩ in
S that tolerates one process crash.

We next consider how to strengthen systemS so that
communication efficiency can be achieved. Specifically,
since our complexity lower bounds are based on the lack
of reliable communication inS, we make the following ad-
ditional assumption: there is at leastone unknown correct
process such that the links to and from that process arefair.
A fair link may lose messages, but it satisfies the following
property: messages can be partitioned into types, and if mes-
sages of some type are sent infinitely often, then messages
of that type are also received infinitely often [1]. A correct
process whose input and output links are fair is called afair
hub. Note that a fair hub need not be a timely process: it can

1 Informally, 3P ensures two properties: (a) any process that
crashes is eventually suspected by every correct process, and (b) there
is a time after which correct processes are never suspected.

2 Note that processes may never know whether this has already oc-
curred.
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System Properties
S− Linkscan be arbitrarily slow and lossy

Processescan be arbitrarily slow and can crash, but they have a maximumexecution speed
S S− with at least one eventually timely source

(i.e., a timely correct process whoseoutputlinks are eventually timely)
S+ S− with at least one eventually timely sourceandat least one fair hub

(i.e., a correct process whoseinput and outputlinks are fair)
S++ S− with at least one eventually timely sourceandsuch that all the links are fair

Fig. 2 Systems considered in this paper (in increasing order of strength).

System Ω algorithm Communication-efficient
Ω algorithm

S− No No
S Yes No

S+, S++ Yes Yes

Fig. 3 Existence of algorithms and communication-efficient algo-
rithms forΩ in different systems.

be arbitrarily slow. We denote byS+ a systemSwith at least
one fair hub (whose identity is not known).3

S+ is a weak type of partially synchronous system be-
cause it does not ensure timely communication between ev-
ery pair of processes. In fact, inS+ only messages sentfrom
the eventually timely source(s) are guaranteed to be even-
tually timely. All other messages, including all those sent
to the eventually timely sources, can be arbitrarily delayed
(thus, processes cannot use eventually timely sources as in-
termediate nodes to communicate with each other in a timely
way). This is in contrast to the partially synchronous sys-
tems defined in [9, 17] in which every pair of processes is
connected by a link that is eventually timely inboth direc-
tions.

Our next result is acommunication-efficientalgorithm
for Ω in systemS+. We derive this algorithm in two stages:
we first give a simpler algorithm that works in a system de-
notedS++ that is stronger thanS+, and then modify it so
that it works inS+. SystemS++ is a systemSwhereall the
links are fair. Figures 2 and 3 summarize our results on the
existence and communication efficiency of algorithms forΩ
in systemsS−, S, S+, andS++.

In summary, we investigate the feasibility and cost of
implementations ofΩ — a fundamental failure detector at
the core of many algorithms — in systems with weak relia-
bility and synchrony assumptions. Our contributions are the
following:

1. We give the first algorithm that implementsΩ in a weak
partially synchronous system where only one unknown
correct process needs to be timely (all other processes
can be arbitrarily slow) and only the links from that pro-

3 So S+ is a systemS− with at least one eventually timely source
andat least one fair hub, whose identities are not known. Note that the
eventually timely source and the fair hub could be the same process.

cess need to be eventually reliable and timely (all other
links can be arbitrarily slow and lossy). Previous algo-
rithms for Ω required stronger reliability or synchrony
assumptions.

2. We show that algorithms forΩ in this weak system are
inherently expensive: all correct processes (except pos-
sibly one) must send messages forever; moreover, a qua-
dratic number of links must carry messages forever. This
holds even for algorithms forΩ that tolerate at most one
process crash.

3. We then show that with a small additional assumption —
the existence of some unknown correct process whose
links can be arbitrarily slow and lossy but fair — there
are efficient algorithms forΩ such that eventually only
one process (the elected leader) sends messages.

It is worth noting that the results of this paper partially
answer some questions questions posed by Keidar and Rajs-
baum in their 2002 PODC tutorial [24] (this is explained in
Section 7).

As a final remark, two of the algorithms presented in this
paper (namely, the algorithm forSgiven in Section 4 and the
one forS++ described in Section 6.1) were implemented and
evaluated in a dynamically-changing system, where applica-
tion processes may join, leave, crash or recover, and commu-
nication links may lose messages or completely disconnect
for extended periods of time [36]. Experimental results pre-
sented in [36] indicate that these algorithms work well in
practice: they are quite robust and inexpensive to run even in
dynamic systems with high processor and link failure rates.

The rest of the paper is organized as follows. We first
describe related work (Section 2). We next give an infor-
mal model of systemsS−, S, S+, andS++ (Section 3). We
then describe an algorithm forΩ in S (Section 4), and show
that algorithms forΩ in S cannot be communication effi-
cient (Section 5). We next give a communication-efficient
algorithm forΩ in a systemS++ (Section 6.1). Finally, we
modify this algorithm so that it works in a systemS+ (Sec-
tion 6.2). A brief discussion concludes the paper (Section 7).

2 Related work

Related work concerns theuse of Ω to solve agreement
problems and theimplementation ofΩ in various types of
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partially synchronous systems. Our paper is also related to
the seminal work in [15, 17] that identifies (weak) partial
synchrony assumptions under which one can solve consen-
sus. In [15, 17], however, partial synchrony assumptions are
uniform (i.e., they apply to all processes and/or all links)and
message-efficiency is not a concern.

As we mentioned earlier,Ω is necessary to solve con-
sensus and atomic broadcast [8, 9, 13, 18] and it is used in
several consensus algorithms [6, 16, 21, 25, 26, 29, 30, 32].It
is also a component of the weakest failure detector for the
non-blocking atomic commit problem [14]. .

A simple implementation ofΩ consists of implement-
ing 3P first and outputting the smallest process currently
not suspected by3P [25, 34]. However, this approach has
serious drawbacks. In particular, it requires a system thatis
strong enough to implement3P (a failure detector that is
strictly stronger thanΩ ), and it requiresall processes to send
messages forever (just to implement3P).

Several papers have focused on reducing the commu-
nication overhead of failure detector implementations. [27]
describes algorithms for several failure detectors, including
3S 4 and3P , such that in the worst-case only 2n links
carry messages forever. These algorithms, however, assume
very strong system properties, namely, that no message is
ever lost, all links are eventually timely, and all correct pro-
cesses are timely. [28] gives an algorithm forΩ such that
only n−1 links carry messages forever, but it also assumes
a strong system where no messages are lost, all links are
eventually timely, and all correct processes are timely.

[2] gives another algorithm forΩ such that onlyn−1
links carry messages forever. This algorithm works in a sys-
tem where all correct processes are timely, but only the links
to and from some (unknown) correct process need to be
eventually timely, all other links can be arbitrarily slow and
lossy. This system is stronger than the systemS+ considered
in this paper: indeed it is strong enough to allow the imple-
mentation of3P (which cannot be implemented inS+).

[31] gives an implementation ofΩ that works under an
assumption on the ordering of message replies More pre-
cisely, the implementation uses a query-response mecha-
nism, with which a process broadcasts a query message and
then waits for responses. Links are reliable and the imple-
mentation works provided that the query-response mecha-
nism satisfies the following property: there exist a correct
processp, a setSof f +1 processes (wheref is a bound on
the number of faulty processes), and a time after which, if
a processq ∈ S broadcasts a query, thenq receives a reply
from p among the firstn− f replies thatq receives.

The present paper is a revised version of an extended ab-
stract that appeared in [3]. To strengthen the algorithmic re-
sults, the partially synchronous models considered here are
slightly weaker than the ones described in [3]. Specifically,
in [3], all the correct processes are assumed to be timely; in
this paper, only one process is required to be timely. It is also

4 Informally, 3S ensures two properties: (a) any process that
crashes is eventually suspected by every correct process, and (b) there
is a time after which some correct process is never suspected.

worth noting that the algorithm that implementsΩ in system
Sgiven here is different from the one given in [3]: the new
algorithm reduces the number of messages by a factor ofn.

Since [3] was published, several papers have proposed
other algorithms forΩ that work in various types of weak
systems [4,19,22,23,30,33]. We now briefly describe these
results.

In [4], all links are fair and the algorithm forΩ works
with the following synchrony assumption: there is some cor-
rect processp with f output links that are eventually timely,
where f is a bound on the number of faulty processes (such
a process is called aneventual f -source).

In [30], all links are reliable and theΩ implementation
uses query-response mechanism with the following synchro-
ny assumption: there existδ , a correct processp and a time
after which, if p broadcasts a query thenp receives replies
from at leastf other processes withinδ time. Note that the
f processes that reply top in a timely fashion can vary over
time.

In [22], all links are fair and theΩ implementation uses a
send-to-all primitive with the following synchrony assump-
tion: there existδ , a correct processp and a time after which,
if p sends a message to all then at leastf recipients receive
the message withinδ time. Note that thef recipients may
change from message to message ofp.

In [33], all links are reliable and theΩ implementation is
based on the query-response mechanism of [31]. The imple-
mentation works under the conditions in [31]or the system
has an eventualf -source.

In [19], all links are reliable and all the correct pro-
cesses regularly broadcast anALIVE (r) message, wherer
is an increasing integer (a “round number”). The synchrony
assumption is defined in terms of theALIVE (r) messages:
there exist aδ , a correct processp, and a suitable subsetR
of integers such that, for eachr ∈ R, there is a setS(r) of f
processes such thatp 6∈ S(r) and for each processq∈ S(r),
either (1)q has crashed, or (2) theALIVE (r) message sent
by p is received byq within δ time, or (3) theALIVE (r)
message sent byp is received byq among the firstn− f
ALIVE (r) messages received byq.

Note that the algorithms forΩ described in [2, 4, 19, 22,
28,30,31,33] assume that every pair of correct processes can
communicate with each other either directly via a reliable or
fair link, or indirectly via a path of reliable or fair links.The
only algorithms that work even if some correct processes
cannot communicate with each other (i.e., even if there is no
path of reliable or fair links between them) are an algorithm
given in [3], one described in this paper (namely, the algo-
rithm for systemS), and the algorithm presented in [23] —
a paper that we now briefly describe.

In [23], processes may not know the identity of other
processes and processes communicate via a send-to-all
primitive. Links can lose or delay messages, and the algo-
rithm for Ω works with the following synchrony assump-
tion: there is a correct process that can reach all other correct
process through paths of eventually timely links.
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As a final remark, note that one can implementΩ in a
given system by first implementing3S in that system, and
then transforming3S to Ω using the algorithm in [11].
This approach, however, cannot be used to implementΩ
in systemS: this is because the transformation algorithm
in [11] requires all processes to reliably communicate with
each other (which may not be possible inS). Furthermore,
this approach does not seem to help deriving a communica-
tion-efficient algorithm forΩ in systemS+: to use it, one
must first derive a communication-efficient algorithm for
3S in S+, and it is not clear that this algorithm would be
significantly simpler than our algorithm for implementingΩ
in S+.

3 Informal model

We consider distributed systems withn≥ 2 processesΠ =
{0, . . . ,n− 1} that can communicate with each other by
sending messages through a set ofdirected links. In our
model, time values are taken from the setR+ of positive real
numbers; time interval(t1, t2] is the set of times{t ∈ R+ :
t1 < t ≤ t2}.

Processes.Processes are (finite or infinite) deterministic
automata that execute by taking steps. In each step, a process
p can do one of the following three things (according top’s
state transition function): (1)p tries to receive a message
from another process (as explained below) and then changes
state, or (2)p sends a message to another process and then
changes state, or (3)p just changes state.5 A step need not
be instantaneous, but we assume that each step takes effect
at some instantaneous moment during the execution of the
step.

A processp is correctif it executes infinitely many steps.
If p executes only a finite number of steps, we say thatp
crashes.

We assume that processes have a maximum speed, i.e.,
there is an upper bound on the rate of execution ofeverypro-
cess. More precisely, in every run every processp satisfies
the following property:

– [Maximum Rate of Execution]:There existsM1 > 0 such
that for every timet, p executes at most one complete
step during time interval(t, t +M1].

There may be a lower bound on the rate of execution of
someprocesses. More precisely, we say that a processp is
timely (in a run)if it satisfies the following property (in that
run):

– [Minimum Rate of Execution]:There existsM2 > 0 such
that for every timet, p executes at least one complete
step during time interval(t, t +M2].

Note that a timely process takes an infinite number of steps,
and hence it must be correct. If a process is not timely, it may

5 Our lower bounds also hold in a stronger model in which each pro-
cess can receive, change state, and send a message in a singleatomic
step.

be intermittently or arbitrarily slow, or it may crash. Also
note thatM1 andM2 can vary per run and are not known to
processes.

Links. Processes can send messages over a set of di-
rected links. The network is fully connected, that is, for any
two processesp 6= q, there is a directed link fromp to q. The
link from p to q, denotedp→ q, is anoutput linkof p and
an input link of q.

A messagem carries atypeT in addition to itsdata D:
m= (T,D) ∈ {0,1}∗×{0,1}∗. For each input linkq→ p of
processp and each type T,p has a message buffer, denoted
bufferp[q,T], that can hold asinglemessage of type T. Ini-
tially, bufferp[q,T] is empty, denotedbufferp[q,T] =⊥. If q
sends a messagem of type T top, and the linkq→ p does
not losem, then eventuallybufferp[q,T] is set tom. When
this happens, we say thatmessage m is delivered to p from q.
If bufferp[q,T] was already set to some previous message
from q, that message is overwritten bym.

When a processp takes a step, it may choose a pro-
cessq and a type T to read the contents ofbufferp[q,T]. If
bufferp[q,T] has a messagem 6= ⊥ then we say thatp re-
ceives message m from q, andbufferp[q,T] is automatically
reset to⊥. Otherwisep does not receive any message at that
step. In either case,p may change its state to reflect the out-
come.

Note that even if a messagem of type T is delivered
to p from q, there is no guarantee thatp will eventually re-
ceivem. First, it is possible thatp never chooses to check
bufferp[q,T]. Second, it is also possible thatbufferp[q,T] is
overwritten by a subsequent message fromq of type T be-
fore p checksbufferp[q,T]. Finally, p may crash before read-
ing the content ofbufferp[q,T].

To define link properties, it is convenient to assume that
messages are unique (this can be achieved by associating a
sequence number and sender id to each message).

Every link p→ qsatisfies the following property in every
run:

– [Integrity]: A messagem is delivered toq from p at most
once, and only ifp previously sentm to q.

Some links may satisfy additional properties which are de-
scribed below.

We say that a linkp→ q is eventually timely (in a run)
if it satisfies the following property (in that run):

– [Eventual timeliness]:There exists aδ and a timet such
that if p sends a messagem to q at a timet ′ ≥ t, thenm
is delivered toq from p by timet ′+δ .

The maximum message delayδ and the timet above can
vary per run and are not known to processes.

A link that is not eventually timely can be arbitrarily
slow and/or it can lose messages. A lossy link may satisfy
the following fairness property: if a process sends an infinite
number of messages of a type through a link then the link
delivers an infinite number of messages of that type.6

6 This kind of fairness property of links, which we call “type fair-
ness”, is new and is further discussed in [1].
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More precisely, we say that a linkp→ q is fair (in a run)
if it satisfies the following property (in that run):

– [Type Fairness]: For every type T, ifp sends infinitely
many messages of type T toq, then infinitely many mes-
sages of type T are delivered toq from p.

Eventually timely sources and fair hubs.A processp
is aneventually timely sourcein a run if in that run (1)p
is timely, and (2) the output links ofp are eventually timely.
Only the output links need to be eventually timely, hence the
word “source”. A processp is a fair hub in a run if in that
run (1) p is correct, and (2) the input and output links ofp
are fair. Note that a fair hub and its input and output links
can be arbitrarily slow.

Systems.We consider four systems, denotedS−, S, S+

andS++, which differ on the properties of their processes
and links. All these systems have the following properties:in
every run, every process satisfies the Maximum Rate of Ex-
ecution property and every link satisfies the Integrity prop-
erty. SystemS− has no other requirements. In systemS,
in every run, there is at least one eventually timely source.
In systemS+, in every run, there is at least one eventually
timely source and at least one fair hub. In systemS++, in
every run, there is at least one eventually timely source and
all the links are fair.

3.1 Failure detectorΩ

The formal definition of failure detectorΩ is given in [8,9].
Informally, Ω outputs, at each processp, a single process
denotedleaderp, such that the following property holds:7

– There is a correct processℓ and a time after which, for
every correct processp, leaderp = ℓ.

Note that, at any given time, processes do not know if
there is a commonly agreed leader; they only know that
eventually there will be a common leader.

3.2 Communication efficiency

We are interested in failure detector algorithms that mini-
mize the usage of communication links. Note that in any rea-
sonable implementation of a failure detector, some process
needs to send messages forever. However, not every process
needs to do that. We say that an implementation of failure
detectorΩ is communication-efficientif there is a time after
which only one process sends messages.

7 Henceforth, when we say that there is a time after which some
propertyC holds, we mean that there is a timet such that for every
time t ′ ≥ t, propertyC holds at timet ′.

4 Implementing Ω in systemS

We now describe an algorithm that implementsΩ in S. This
algorithm, shown in Figure 5, ensures that processes even-
tually agree on a common leader, even though most pairs of
processes may be unable to communicate with each other
(recall that inS all links can be arbitrarily slow and lossy,
except for theoutput links of some timely process whose
identity is unknown).

In all the algorithms described in this paper, processes
use local timers. In particular, each processp uses a local
timer denotedSendAliveTimerto periodically send ALIVE

messages to other processes. Moreover, for each process
q 6= p, p uses a local timer denotedtimer[q] to determine
whether it has “recently” received an ALIVE message from
processq. Processp implements its local timers as simple
count-down counters as follows. Processp can “turn on” a
local timerT by setting it to any non-negative integerk, that
is, by executing the statementT ← k, wherek ≥ 0 is the
“timeout” constant. As long asT > 0, processp periodi-
cally decrementsT by one, and it does so atp’s own pace.
So, unlessp first resetsT, the value ofT eventually reaches
0. When this occurs, we say thattimer T expires.

A naı̈ve attempt at implementingΩ is as follows. Each
process periodically (a) sends ALIVE messages to the other
processes, (b) computes the set of currently “alive” pro-
cesses, as the set of processes from which it directly received
an ALIVE message recently, and (c) selects as its leader the
process with the smallest id in this set. But this algorithm
does not work: in systemSalmost all links may suffer from
arbitrary delays and/or losses, and this gives rise to several
problems. In particular, (1) different processes may have dif-
ferent views of which processes are currently alive, and the
different views may never converge, (2) a process with a
small id may repeatedly alternate between appearing to be
alive and crashed, and continue to do so forever. Such prob-
lems complicate the task of selecting a common and perma-
nent leader: problem (1) may cause different processes to
have different leaders (forever), and problem (2) may cause
a process to repeatedly change its leader forever.

To overcome these and other similar difficulties, we use
the following ideas. First, instead of selecting the leaderac-
cording to the smallest process id, processes keep track of
(roughly) how many times each process was previously sus-
pected of having crashed, and they select as their leader the
process with the fewest number of suspicions so far (among
a set of alive processes). Second, the set of alive processes
from which each process selects its leader is constructed in
two stages. In the first stage, every processp periodically:
(1) sends an ALIVE message to the other processes, (2) re-
computes the set processes from which it directly received
an ALIVE message recently (this set is denotedactive), and
(3) selects its “local” leader, denotedlocalLeader[p], among
the processes in itsactiveset. In the second stage, every pro-
cessp periodically: (1) sends its currentlocalLeader[p] to
the other processes, (2) recomputes the setlocalLeadersof
the local leaders of the processes in itsactiveset, and (3) se-
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lects its (global) leader among the processes inlocalLeaders.
These two stages are actually done concurrently. We now ex-
plain the algorithm in more detail.

The algorithm, shown in Figure 5, is structured as a
repeat forever loop. In this loop,p first executes theup-
dateLeaderprocedure to recompute its local leader and its
(global) leader as described above. More precisely,p main-
tains a vector of “accusation” counters, denotedcounter,
wherecounter[q] is p’s rough estimate of how many times
q’s was previously suspected of having crashed. In theup-
dateLeaderprocedure,p first selects its local leader as the
processr with the smallest(counter[r], r) tuple, in lexico-
graphical order, among the processes in itsactiveset. Thenp
forms the setlocalLeadersconsisting of all the local leaders
of the processes in itsactiveset. Finally,p selects its (global)
leader as the processℓ with the smallest(counter[ℓ], ℓ) tuple
among the processes in itslocalLeadersset.

After updating its local and global leaders,p checks
whether its SendAliveTimerhas expired, i.e., whether
SendAliveTimer= 0. If it has expired, then (a)p sends an
ALIVE message to every processq 6= p (each such message
containsp’s current local leader, the counter of this local
leader according top, andp’s own counter), and (b)p resets
its SendAliveTimerto some constant integerη ≥ 1. Constant
η is a “message efficiency” parameter that controls the rate
at which p sends its ALIVE messages:p sends them once
everyη iterations of its repeat forever loop.

Then, for each processq, processp checks whether an
ALIVE message was delivered fromq, i.e., whether the cor-
responding buffer fromq is non-empty. If so,p receives this
message, it addsq to its activeset, and it stores the local
leader ofq in the variablelocalLeader[q]. Processp also
updates the counters ofq and of the local leader ofq. Fi-
nally, p resetstimer[q] by setting it totimeout[q] (intuitively,
p expects to receive the next ALIVE message fromq within
timeout[q] iterations of its repeat forever loop).

If timer[q] expires (beforep receives another ALIVE
message fromq), thenp removesq from itsactiveset, and it
sends an ACCUSATION message toq to tell q that it suspects
q of having crashed. Processp also incrementstimeout[q],
and it restartstimer[q] with this larger timeout. Intuitively,
p increases the timeout onq because it does not know the
speed of the eventually timely sources and the delay of their
output links.

Then p checks whether an ACCUSATION message was
delivered. If so,p receives it, andp increases its own accu-
sation countercounter[p]. Finally, at the end of the repeat
forever loop,p decrements by one every timer that it uses,
namely,SendAliveTimerandtimer[q] for everyq 6= p.

Note that this algorithm uses only two message types:
ALIVE and ACCUSATION.

Figure 5 describes the algorithm by giving the pseudo-
code of an (arbitrary) processp, and Figure 4 describes the
local variables ofp. Recall that in our model,p is a deter-
ministic automaton that takes steps, but it is easy to translate
the pseudo-code ofp given here into such an automaton.
Without loss of generality, we can assume that: (1) for some

integerb, each iteration of the repeat forever loop (lines 8–
29) takes at mostb automaton steps (this is because there are
no infinite loops, waiting statements, or similar constructs in
lines 9–29), and (2) each iteration of the repeat forever loop
takes at least two complete automaton steps.

We now give an intuitive outline of the algorithm’s proof
of correctness. Recall that in each run there is at least one
eventually timely sources. It is easy to see that there is
a time after which processes (a) stop timing out ons, (b)
considers to be active, and (c) stop sending ACCUSATION

messages tos. Thus, eventuallys stops increasing its own
counter. Consider the all correct processes with a counter
that stops increasing, and letℓ be the correct process with
the smallest final counter. This is the process that is even-
tually elected as leader. To see this, first note that eventu-
ally sstops timing out onℓ (otherwiseswould keep sending
ACCUSATION messages toℓ, causingℓ’s counter to increase
without bounds). Therefore, there is a time after whichscon-
sidersℓ to be active. Sinceℓ is eventually the correct process
with the smallest counter, there is a time after whichspicks
ℓ as its local leader. Sinces can communicate with all other
correct processes, eventually all correct processes learnthat
ℓ is s’s local leader. Thereafterℓ is a candidate for (global)
leadership at every correct process.

Now consider an arbitrary correct processp and any pro-
cessq that may compete withℓ for global leadership atp. We
claim thatq eventually loses this competition for one of two
reasons: either there is a time after whichp does not consider
q to be active (in this casep removesq from the competition
even ifq has a lower counter thanℓ), or p eventually realizes
thatq’s counter is larger thanℓ’s counter. So there is a time
after whichℓ becomes the leader atp.

We now give the detailed proof that the algorithm in Fig-
ure 5 implementsΩ in systemS. Henceforth, we consider an
arbitrary run of this algorithm in systemS, ands is an even-
tually timely source in this run.

In the following, the local variablevar of a processp is
denoted byvarp. The value ofvarp at timet is denoted by
vartp.8

Lemma 1 For every correct process p and every process
q 6= p, the following holds:

(a) If q ∈ activep holds infinitely often9 then p receives
ALIVE messages from q infinitely often.

(b) If q ∈ localLeadersp holds infinitely often then
p receivesALIVE messages from q infinitely often, or
p receives(ALIVE ,q,−,−) messages infinitely often.

Proof Consider two processesp andq such thatp is correct
andq 6= p.

(a) Assume thatq ∈ activep holds infinitely often. Since
q 6= p, p receives at least one ALIVE from q that causesp

8 If a step ofp takes effect at timet, thenvartp is the value ofvarp

just after this step.
9 A conditionC holds infinitely often if for every timet, there is a

time t ′ > t such thatC holds at timet ′. Note that “C holds infinitely
often” is the opposite of “there is a time after whichC does not hold”.



8 Marcos K. Aguilera et al.

Variable Intuitive description
active set of processes thatp considers to be currently alive

counter[q] p’s estimate ofq’s accusation counter
(the number of times processes previously timed out onq)

SendAliveTimer count-down timer used to send an ALIVE message everyη iterations of the repeat forever loop
timer[q] count-down timer used to determine whetherq is currently alive

(timer[q] is initialized totimeout[q] and it is decremented by one in each iteration
of the repeat forever loop; if/whent imer[q] reaches 0, it is reset totimeout[q])

timeout[q] length ofp’s timeout onq
localLeader[q] p’s estimate ofq’s local leader

(q chooses its local leader to be the processr with the smallest tuple(counter[r], r)
among all the processes inq’s activeset)

localLeaders p’s estimate of the set of local leaders of all the processes inp’s activeset
leader the leader ofp

(p chooses its leader to be the processℓ with the smallest tuple(counter[ℓ], ℓ)
among all the processes inp’s localLeadersset)

Fig. 4 Local variables of processp in the algorithm of Figure 5.

to first insertq in activep. If there is a time after whichp
does not receive ALIVE from q, then eventuallytimerp[q]
expires (i.e.,timerp[q] reaches 0),p removesq from
activep, and p never insertsq back into this set again
— a contradiction that shows part (a).

(b) Assume thatq ∈ localLeadersp holds infinitely often.
Sincep resetslocalLeadersp to {localLeaderp[u] : u ∈
activep} infinitely often (in theupdateLeaderprocedure
that p executes in line 9), there must be at least one pro-
cessr such thatlocalLeaderp[r] = q andr ∈ activep in-
finitely often. There are two possible cases:

(1) r = p. In this case,localLeaderp[p] = q infinitely
often. Sincep resetslocalLeaderp[p] infinitely often to
a process inactivep, thenq∈ activep infinitely often. By
part (a) of the lemma,p receives ALIVE messages from
q infinitely often.

(2) r 6= p. Suppose, for contradiction, that there is a
time t after whichp does not receive(ALIVE ,q,−,−)
messages. Sincer ∈ activep infinitely often andr 6=p,
by part (a) of the lemma,p receives ALIVE messages
from r infinitely often. After timet, none of these mes-
sages are(ALIVE ,q,−,−) message. So there is a time
after which localLeaderp[r] 6= q — a contradiction.
Thus, p receives(ALIVE ,q,−,−) messages infinitely
often. ⊓⊔

Observation 2 For all processes p and q, counterp[q] is
monotonically nondecreasing with time.

Lemma 3 For every two processes p6= q, if

(a) p receivesALIVE messages from q infinitely often, or
(b) p receives(ALIVE ,q,−,−) messages infinitely often

then (c) q is correct, and for every time t, there is a time after
which counterp[q]≥ countertq[q].

Proof
Part 1: (a)⇒ (c). Consider two processesp 6= q, and

suppose thatp receives ALIVE messages fromq infinitely
often. Thenq sends such messages infinitely often, and soq
is correct. Consider any timet. Eventuallyp receives a mes-
sagem= (ALIVE ,−,−,qcntr) that is sent byq after timet.
Sinceq sendsmafter timet andcounterq[q] is monotonically
nondecreasing,qcntr≥ countertq[q]. So, whenp receivesm
from q, p setscounterp[q] to a valuev≥ qcntr≥ countertq[q].
Thereafter,counterp[q] ≥ countertq[q] (becausecounterp[q]
is monotonically nondecreasing).

Part 2: (b)⇒ (c). Consider two processesp 6= q, and
suppose thatp receives(ALIVE ,q,−,−) messages infinitely
often. Then, for some processr, p receives(ALIVE ,q,−,−)
from r infinitely often. If r = q then condition (c) holds by
part 1 of this proof, and we are done.

Now assumer 6= q. Consider any timet, and letC =
countertq[q]. Note that r sends(ALIVE ,q,−,−) to p in-
finitely often. Each timer sends such a message in line 11,
localLeaderr [r] = q, and soq∈ activer at that time (this is
becauser resetslocalLeaderr [r] to a process inactiver just
beforer sends(ALIVE ,q,−,−)). Thus,q∈ activer holds in-
finitely often. Sincer 6= q, then by Lemma 1 part (a),r re-
ceives ALIVE messages fromq infinitely often. By part 1 of
this proof,q is correct and there is a time after which process
r hascounterr [q] ≥ C. So p eventually receives a message
m= (ALIVE ,q,qcntr,−) from r such thatqcntr≥C. When
p receivesm, p setscounterp[q] to a valuev≥ qcntr≥ C.
Thereafter,counterp[q] ≥ countertq[q] (becausecounterp[q]
is monotonically nondecreasing). ⊓⊔

Lemma 4 For every correct process p and every process q,
if

(a) q∈ activep holds infinitely often, or
(b) q∈ localLeadersp holds infinitely often

then (c) q is correct, and for every time t, there is a time after
which counterp[q]≥ countertq[q].
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CODE FOR EACH PROCESSp:

procedureupdateLeader()
1 localLeader[p]← r such that(counter[r], r) = min{(counter[q],q) : q∈ active}
2 localLeaders← {localLeader[q] : q∈ active}
3 leader← ℓ such that(counter[ℓ], ℓ) = min{(counter[q],q) : q∈ localLeaders}

main code

{ Initialization}

4 for eachq∈Π do counter[q]← 0 ; localLeader[q]← q
5 for eachq∈Π \{p} do timeout[q]← η +1;timer[q]← timeout[q]
6 active←{p}
7 SendAliveTimer← 0 { p setsSendAliveTimer= 0 to start sendingALIVE messages}

8 repeat forever
9 updateLeader()

10 if SendAliveTimer= 0 then
11 send(ALIVE , localLeader[p],counter[localLeader[p]],counter[p]) to every process exceptp
12 SendAliveTimer← η

13 for eachq∈Π \{p} do
14 if receive(ALIVE , r, rcntr,qcntr) from q then
15 active← active∪{q}
16 localLeader[q]← r
17 counter[q]←max{counter[q],qcntr}
18 counter[r]←max{counter[r], rcntr}
19 timer[q]← timeout[q]

20 if timer[q] = 0 then
21 send ACCUSATION to q
22 active← active−{q}
23 timeout[q]← timeout[q]+1
24 timer[q]← timeout[q]

25 if receive ACCUSATION from q then
26 counter[p]← counter[p]+1

27 if SendAliveTimer> 0 then SendAliveTimer← SendAliveTimer−1
28 for eachq∈Π \{p} do
29 if timer[q] > 0 then timer[q]← timer[q]−1

Fig. 5 Implementation ofΩ for systemS.

Proof If p = q, condition (c) holds becausep is correct and
counterp[p] is monotonically nondecreasing.

Now assume thatp 6= q. If (a) or (b) holds, then by
Lemma 1,p receives ALIVE messages fromq infinitely of-
ten, orp receives(ALIVE ,q,−,−) messages infinitely often.
By Lemma 3, condition (c) holds. ⊓⊔

Recall thats is an eventually timely source in the run
under consideration.

Lemma 5 There is a constantα > 0 such that, for all k≥ 0
and every time t, process s executes at least k complete
iterations of its repeat forever loop during time interval
(t, t +kα].

Proof The lemma follows directly from two facts: (1) there
is an integerb such that each complete iteration of the repeat

forever loop ofs takes at mostb automaton steps, and (2)s
satisfies the Minimum Rate of Execution property (because
s is a timely process). ⊓⊔

Definition 6 Let α > 0 be a constant that satisfies Lemma 5.

Recall thatη ≥ 1 is the “timeout” value ofSendAlive-
Timer(see line 12).

Definition 7 Let ∆ ′ = (η +1)α.

Lemma 8 For every process p6= s, if s sends anALIVE

message to p at some time t, then s sends anotherALIVE
message to p during time interval(t, t +∆ ′].

Proof Supposes sends an ALIVE message top 6= sat some
timet (this occurs in line 11). Then, whensexecutes line 12
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(in the same iteration of its repeat forever loop)s setsSend-
AliveTimerto η ≥ 1. SincesdecrementsSendAliveTimerby
one in each iteration of its repeat forever loop (in line 27),
s setsSendAliveTimerto 0 by the time it completesη such
iterations. By Lemma 5, this takes at mostηα units of time.
So by timet +ηα, s setsSendAliveTimerto 0. Thus, by the
time s completes one more iteration of the repeat forever
loop, i.e., by timet + ηα + α = t + ∆ ′, s executes line 10
with SendAliveTimer= 0 and sends another ALIVE message
to p. ⊓⊔

Lemma 9 For every process p6= s, there is a time t′ such
that for every t≥ t ′, s sends anALIVE message to p during
time interval(t, t +∆ ′].

Proof Let p 6= s. When s executes its initialization code
(lines 4-7),s sets itsSendAliveTimerto 0. Thus, in its first
execution of the repeat forever loop (lines 8-29),s executes
line 10 withSendAliveTimer= 0 and sends an ALIVE mes-
sage top at some timet1. By Lemma 8,s sends another
ALIVE message top at time(t1, t1+∆ ′]. The lemma follows
by repeated applications of Lemma 8. ⊓⊔

Lemma 10 There is a constant∆ and a time t∆ such that,
for all processes p, if s sends a message m to p at some time
t ≥ t∆ , then m is delivered to p from s by time t+∆ .

Proof This follows immediately from the fact thats is an
eventually timely source, and therefore all its output links
are eventually timely. ⊓⊔

Definition 11 Let ∆ be a constant that satisfies Lemma 10.

Lemma 12 For every process p6= s, there is a time t′ such
that for every t≥ t ′, there is anALIVE message delivered to
p from s during time interval(t, t +∆ ′+∆ ].

Proof Follows directly from Lemmas 9 and 10. ⊓⊔

Lemma 13 There is a constantε > 0 such that, for every
k≥ 1 and every process p, p takes at least kε time to execute
k complete iterations of its repeat forever loop.

Proof The lemma follows from the following facts: (1) each
complete iteration ofp’s repeat forever loop takes at least
two complete automaton steps, and (2)p satisfies the Maxi-
mum Rate of Execution property. We now explain this proof
in more detail.

Let k ≥ 1 and consider some processp . To execute a
complete iteration of the repeat forever loop,p takes at least
two complete automaton steps. Thus, to executek complete
iterations of the loop,p takes at least 2k complete steps. By
the Maximum Rate of Execution property, there exists a con-
stantM1 > 0 such that for every timet, p executes at most
one complete step during time interval(t, t +M1]. Thus, for
every timet and everyk≥ 1, p executes at most 2k−1 com-
plete steps during time interval(t, t +kM1]. Let ε = M1. We
conclude thatp takes at leastkM1 = kε time to executek
complete iterations of the repeat forever loop. ⊓⊔

Definition 14 Let ε be a constant that satisfies Lemma 13.

Note that, by Lemma 13,p takes at least∆ ′ + ∆ time
to execute⌈(∆ ′ + ∆ )/ε⌉ complete iterations of the repeat
forever loop.

Definition 15 Let ζ = ⌈(∆ ′+∆ )/ε⌉+2.

Lemma 16 For every correct process p6= s, there is a time
after which p receives anALIVE message from s at least
once everyζ consecutive iterations of p’s repeat forever
loop.

Proof Consider a correct processp 6= s. By Lemma 12, there
is a timet ′ such that for everyt ≥ t ′, there is an ALIVE mes-
sage delivered top from sduring time interval(t, t +∆ ′+∆ ].

Thus, there are infinitely many ALIVE messages that are
delivered top from s. Sincep is correct, it executes its re-
peat forever loop infinitely often. In each iteration of this
loop, p tries to receive an ALIVE message from every pro-
cessq 6= p (includings), sop receives ALIVE messages from
s infinitely often.

Supposep receives an ALIVE message froms at some
time t > t ′. From Lemma 12, another ALIVE message is
delivered froms during the period(t, t + ∆ ′+ ∆ ]. Thus, by
Lemma 13, this ALIVE message is delivered top beforep
completes⌈(∆ ′+∆ )/ε⌉+1 consecutive iterations of its re-
peat forever loop. Sop receives this ALIVE message by the
time it completes⌈(∆ ′+∆ )/ε⌉+2 iterations of the loop.

We conclude that there is a time after whichp receives
an ALIVE message froms at least once everyζ = ⌈(∆ ′+
∆ )/ε⌉+2 consecutive iterations of its repeat forever loop.

⊓⊔

Observation 17 For every correct process p, there is a time
after which p∈ activep.

Proof Whenp executes its initialization code, it setsactivep
to {p}. Thereafter,p never removes itself fromactivep. ⊓⊔

Lemma 18 For every correct process p, there is a time after
which s∈ activep.

Proof Let p be any correct process. Ifp= s then, by Obser-
vation 17, there is a time after whichs∈ activep. Now as-
sume thatp 6= s. By Lemma 16, there is a timet1 after which
p receives an ALIVE message froms at least once everyζ
consecutive iterations of its repeat forever loop. Each time
p receives such a message,p addss to activep. We claim
that p removess from activep only a finite number of times,
which concludes the proof. Suppose, for contradiction, that
p removess from activep infinitely often (line 22). Then,p
incrementstimeoutp[s] infinitely often (line 23), and so there
is a timet2 after whichtimeoutp[s] > ζ . We now considerp’s
execution after timet = max(t1, t2).

After time t, each timep receives an ALIVE message
from s, p resetstimerp[s] to timeoutp[s] > ζ . After each iter-
ation wheretimerp[s] is reset this way,timerp[s] can decrease
to 0 only if p completes at leastζ consecutive iterations of
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its repeat forever loop without receiving any ALIVE message
from s (in each such iterationp decreasestimerp[s] by one).
But after timet processp receives an ALIVE message froms
at least once everyζ consecutive iterations of its repeat for-
ever loop. So there is a time after whichtimerp[s] 6= 0. Note
thatp removess from activep only if it executes line 20 with
timerp[s] = 0. Thus there is a time after whichp does not
removes from activep — a contradiction. ⊓⊔

Lemma 19 counters[s] is bounded.

Proof Consider any correct processp 6= s. Each timep
sends an ACCUSATION message tos, p removess from
activep. By Lemma 18, there is a time after whichp does
not removes from activep. So there is a time after which
p does not send any ACCUSATION messages tos. More-
over, s never sends ACCUSATION messages to itself. Thus
there is a time after which no process (whether correct or
faulty) sends ACCUSATION messages tos. Sinces increases
counters[s] only when it receives such messages,counters[s]
is bounded.

Definition 20 For every processp, let cp be the largest
value of counterp[p] in the run that we consider (cp = ∞
if counterp[p] is unbounded). Letℓ be the process such that
(cℓ, ℓ) = min{(cp, p) : p is a correct process}.

By definition,ℓ is a correct process. Furthermore, by Lemma
19, counters[s] is bounded, i.e.,cs < ∞. Thus,cℓ < ∞, i.e.,
counterℓ[ℓ] is bounded.

Lemma 21 For every correct process p,

(a) if there is a time after whichℓ ∈ activep then there is a
time after which localLeaderp[p] = ℓ, and

(b) if there is a time after whichℓ∈ localLeadersp then there
is a time after which leaderp = ℓ.

Proof

(a) Let p be any correct process, and suppose that there is
a time after whichℓ ∈ activep. We claim that for ev-
ery q 6= ℓ, (i) there is a time after whichq 6∈ activep,
or (ii) there is a time after which(counterp[ℓ], ℓ) <
(counterp[q],q). From the wayp setslocalLeaderp[p]
in theupdateLeaderprocedure, this claim implies there
is a time after whichlocalLeaderp[p] = ℓ.
To show the claim, consider any processq 6= ℓ, and sup-
pose that condition (i) does not hold, i.e., suppose that
q ∈ activep holds infinitely often. We now show that
condition (ii) is satisfied. By Lemma 4 part (a),q is cor-
rect, and for every timet, there is a time after which
counterp[q]≥ countertq[q]. There are two cases:
(1) counterq[q] is bounded.In this case,cq < ∞, and so

there is a timet whencountertq[q] = cq. So there is
a time after whichcounterp[q] ≥ cq. Recall thatq
is correct andq 6= ℓ, and so by the definition ofℓ,
we have(cℓ, ℓ) < (cq,q). Sincecounterp[ℓ]≤ cℓ (al-
ways), there is a time after which(counterp[ℓ], ℓ)≤
(cℓ, ℓ) < (cq,q)≤ (counterp[q],q).

(2) counterq[q] is unbounded. In this case,counterp[q]
is also unbounded. So there is a time after which
counterp[ℓ]≤ cℓ < counterp[q].

Therefore, in both cases there is a time after which
(counterp[ℓ], ℓ) < (counterp[q],q), i.e., condition (ii)
holds.

(b) (Similar to the proof of part (a).)
Let p be any correct process, and suppose that there
is a time after whichℓ ∈ localLeadersp. We claim
that for everyq 6= ℓ, (i) there is a time after which
q 6∈ localLeadersp, or (ii) there is a time after which
(counterp[ℓ], ℓ) < (counterp[q],q). From the wayp sets
leaderp in the updateLeaderprocedure, this claim im-
plies there is a time after whichleaderp = ℓ.
To show the claim, consider any processq 6= ℓ, and sup-
pose that condition (i) does not hold, i.e., suppose that
q∈ localLeadersp holds infinitely often. We now show
that condition (ii) is satisfied. By Lemma 4 part (b),q
is correct, and for every timet, there is a time after
which counterp[q] ≥ countertq[q]. The rest of the proof
now proceeds identically to cases (1) and (2) of part (a)
above. ⊓⊔

We now proceed to show that for every correct processp
there is a time after whichℓ ∈ localLeadersp (and hence, by
the above lemma, there is a time after whichleaderp = ℓ).

Lemma 22 There is a time after whichℓ ∈ actives.

Proof If ℓ = s then, by Observation 17, there is a time after
which ℓ ∈ actives. Now supposeℓ 6= s. There are three pos-
sible cases: (1) there is a time after whichℓ ∈ actives, (2) ℓ
is added to and removed fromactives infinitely often, or (3)
there is a time after whichℓ 6∈ actives. We now show that
cases (2) or (3) cannot occur. In case (2), every times re-
movesℓ from actives, s sends an ACCUSATION message to
ℓ, and sos sends ACCUSATION messages toℓ infinitely of-
ten. In case (3), there is a time after whichsdoes not receive
ALIVE messages fromℓ. Thus, timers[ℓ] expires infinitely
often ats (this is becauses initially sets timers[ℓ] to some
positive value, and each time this timer expires,s resets it to
a positive value). Therefore,ssends ACCUSATIONmessages
to ℓ infinitely often. So, in both cases (2) and (3),s sends
ACCUSATION messages toℓ infinitely often. Since the out-
put links ofs are eventually timely, andℓ tries to receive an
ACCUSATION message froms infinitely often (specifically
once in each iteration of its repeat forever loop),ℓ receives
ACCUSATION messages froms infinitely often. Thus,ℓ in-
crementscounterℓ[ℓ] infinitely often, and socounterℓ[ℓ] is
not bounded — a contradiction. Thus, only case (1) is pos-
sible. ⊓⊔

Lemma 23 There is a time after which localLeaders[s] = ℓ.

Proof By Lemma 22, there is a time after whichℓ ∈ actives.
Therefore, by Lemma 21 part (a), there is a time after which
localLeaders[s] = ℓ. ⊓⊔

Lemma 24 For every correct process p, there is a time after
which localLeaderp[s] = ℓ.
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Proof Consider any correct processp. If p = s then the re-
sult is immediate from Lemma 23 . Now assume thatp 6= s.
In this case, from Lemma 16,p receives ALIVE messages
from s infinitely often. By Lemma 23, there is a timet af-
ter whichlocalLeaders[s] = ℓ. So after timet, all the ALIVE
messages thatssends top are of the form(ALIVE , ℓ,−,−).
Thus, there is a time after which all the ALIVE messages
that p receives froms are of the form(ALIVE , ℓ,−,−). So
there is a time after whichlocalLeaderp[s] = ℓ. ⊓⊔

Corollary 25 For every correct process p, there is a time
after whichℓ ∈ localLeadersp.

Proof From Lemmas 18 and 24, there is a time after which
s∈ activep andlocalLeaderp[s] = ℓ. Sincep repeatedly sets
localLeadersp to {localLeaderp[q] : q∈ activep}, there is a
time after whichℓ ∈ localLeadersp. ⊓⊔

Lemma 26 For every correct process p, there is a time after
which leaderp = ℓ.

Proof Immediate from Lemma 21 part (b) and Corollary 25.
⊓⊔

From Lemma 26 and the fact thatℓ is a correct process, we
have

Theorem 27 The algorithm in Figure 5 implementsΩ in
system S.

5 Impossibility of communication-efficientΩ in
systemS

We now consider the communication complexity of imple-
mentations ofΩ in systemS. Specifically we give two types
of lower bounds: one is on thenumber of processesthat send
messages forever, and the other is on thenumber of linksthat
carry messages forever. A corollary of these lower bounds is
that there is no communication-efficient implementation of
Ω in systemS. The lower bounds that we derive here hold
even if we assume that all processes inS are synchronous
(i.e., all processes have the same, constant execution speed)
andat most one process may crash.

Theorem 28 Consider any algorithmA for Ω in a system S
with n≥ 2 processes such that all processes are synchronous
and at most one process may crash.

1. In everyrun ofA , all correct processes, except possibly
one, send messages forever.

2. In somerun of A , at least⌊n2

4 ⌋ links carry messages
forever.

Proof Henceforth we consider an algorithmA that imple-
mentsΩ in a systemS with n≥ 2 processes such that all
processes are synchronous and at most one them may crash.
We first show the following

CLAIM : For any run ofA and any correct process p, if
there is a time after which p does not receive any message

from other processes, then there is a time after which the
leader of p is p.

To prove the Claim, suppose there is a runR of A , a
correct processp, and a timet after whichp does not receive
any message. Without loss of generality, we can assume that
no process crashes inR. This is because if some processf
crashes at some timet ′ (i.e., f stops taking steps after timet ′)
in R, we can modifyR to get a similar run wheref never
crashes, but all its output links crash permanently at timet ′

(i.e., they lose all the messages thatf sends after timet ′); this
modified run is indistinguishable fromR to all processes,
except for processf who is now correct.

SinceR is a run of an algorithm that implementsΩ , and
processp is correct, in runR there is a correct processq and
a time after which the leader ofp is q. We now show that
q = p (which proves the above Claim).

Suppose, for contradiction, thatq 6= p. Let R′ be a run
of A that is identical toR up to timet, and such that after
time t: (a) processq crashes, and (b) all theinput links of
p crash permanently, while theoutput links of p become
timely and stop losing messages (p is the eventually timely
source in runR′). Since processp receives exactly the same
messages at the same times inRandR′, p cannot distinguish
betweenRandR′, and so it behaves exactly the same way in
R andR′.10

Thus, in runR′ of A there is a time after which the leader
of p is q, even thoughq crashes — a contradiction that con-
cludes the proof of the Claim.

We now prove part (1) of the theorem.Let R be an arbi-
trary run of algorithmA , andcorrect(R) be the number of
correct processes inR. To prove Part (1) of the theorem, we
must show that at leastcorrect(R)−1 correct processes send
messages forever (*). To do so, consider the following two
cases:

(a)correct(R)≤ 1. In this case, (*) trivially holds.
(b) correct(R) ≥ 2. Suppose, for contradiction, that (*)

does not hold, i.e., at mostcorrect(R)−2 correct processes
send messages forever. Thus inR there are at least two dis-
tinct correct processes that donot send messages forever. In
other words, inR there are two distinct correct processesp
andq and a timet such thatp andq do not send any message
after timet.

Without loss of generality, we can assume that inR: (a)
all the output links ofp andq areeventuallytimely (and so
both p andq are eventually timely sources inR), and (b) no
process crashes (the argument is as before: we can “replace”
the crash of a process, by the simultaneous and permanent
crash of all its output links).

We first show that inR there is a time after which the
leader ofq is not p. To see this, letR′ be a run ofA that is
identical toR except thatp crashes inR′ after timet. Note
that, except forp, processes cannot distinguish between runs
R andR′, and so they behave the same inR andR′. Sincep
is faulty in R′, in R′ there is a time after which the leader of

10 Note that even if the algorithmA that p executes is non-
deterministic, we can chose runR′ such thatp behaves the same in
R′ and inR.
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q is not p; thus, inR there is a time after which the leader of
q is not p.

Now let R′′ be a run ofA that is identical toR, except
that in R′′ after timet, (1) all the output links ofp crash
permanently, and (2) all the input links ofp crash perma-
nently, except for the link fromq to p which, as in runR, is
eventually timely (soq is the eventually timely source of run
R′′). Note that, except forp, processes cannot distinguish be-
tween runsR andR′′, and so they behave the same inR and
R′′. Thus, inR′′ there is a time after which the leader ofq is
not p (as it was the case in runR). In R′′, p ceases to receive
messages, and so, by the Claim, there is a time after which
the leader ofp is p. Thus, in runR′′ of A correct processes
p andq do not reach agreement on a common leader — a
contradiction. So (*) holds, and this concludes the proof of
part (1) the theorem.

We now prove part (2) of the theorem.Partition the set of
processes ofS into setA with ⌈n

2⌉ processes, and setB with
⌊n

2⌋ processes. Consider runR of A such that: (a) all then
processes are correct, (b) all the links between processes inA
are eventually timely, (c)A has an eventually timely sources,
so all the links froms to processes inB are eventually timely,
(d) for every processr 6= s in A, all the links fromr to pro-
cesses inB are permanently crashed, and (e) all the output
links of every process inB are permanently crashed. So in
run R, any processp ∈ B can receive messages only from
processs: all messages sent by other processes top are lost.

Note that in runR, for every processq ∈ A and every
processp∈ B, there is a time after which the leader ofq is
not p. Intuitively, this is becausep may eventually crash, and
sincep’s output links are permanently crashed,q would not
be able to noticep’s crash (we omit this proof as it is similar
to one given above).

We claim that inR, every process inA sends messages
forever to every process inB. Suppose, for contradiction,
that inRsome processq∈A does not send messages forever
to some processp∈ B. We consider two possible cases.

Supposeq = s. Recall that inR, p can receive messages
only from q (= s). Since inR there is a time after whichq
does not send messages top, then eventuallyp stops receiv-
ing messages. So, by the Claim, inR there is a time after
which the leader ofp is p. Recall that inR there is a time af-
ter which the leader ofq is not p. Thus, in runRcorrect pro-
cessesp andq do not reach agreement on a common leader
— a contradiction.

Now supposeq 6= s. Let R′ be a run ofA which is sim-
ilar to R, except that the eventually timely source isq rather
thans. More precisely,R′ is like R, except that all the links
from s to processes inB are permanently crashed, and all the
links from q to processes inB are eventually timely. Since
no process inB can communicate with anyone (their output
links are permanently crashed in bothR andR′), processes
in A cannot distinguish between runsR andR′, and so they
behave the same inR andR′. Thus, inR′ (as inR) there is a
time after which (a) the leader ofq is not p, and (b)q does
not send messages top. Since the link fromq to p is the
only input link of p that is not permanently crashed inR′,

then there is a time after whichp does not receive any mes-
sage inR′. So, by the Claim, inR′ there is a time after which
the leader ofp is p. Thus, in runR′ of A correct processes
p andq do not reach agreement on a common leader — a
contradiction.

Thus we proved our claim that in runR every process in
A sends messages forever to every process inB. Since|A|=

⌈n
2⌉ and|B|= ⌊n

2⌋, this implies that at least⌈n
2⌉ · ⌊

n
2⌋= ⌊

n2

4 ⌋
links carry messages forever in runR. ⊓⊔

From Theorem 28 part (1), we immediately get the fol-
lowing result:

Corollary 29 There is no communication-efficient algo-
rithm for Ω in a system S with n≥ 3 processes, even if we
assume that all processes are synchronous and at most one
process may crash.

6 Communication-efficient implementations ofΩ

We now seek algorithms forΩ that require only one process
to send messages forever (this also implies that the num-
ber of links that carry messages forever is linear rather than
quadratic inn). In order to achieve this, Theorem 28 implies
that we must strengthen the system modelS. In this section,
we first give a communication-efficient algorithm forΩ for
systemS++ (i.e., a systemS where all links are fair), and
then we modify this algorithm so that it works in systemS+

(i.e., a systemSwhere only the links to and from some un-
known timely process are fair).

6.1 ImplementingΩ in systemS++

We now give a communication-efficient algorithm forΩ in
systemS++. Recall that inS++ there is an eventually timely
source and all the links are fair.

One simple attempt to get communication efficiency is
as follows. Each process (a) sends ALIVE messagesonly if
it thinks it is the leader, (b) maintains a set of processes,
calledactive, from which it received an ALIVE message re-
cently (an adaptive timeout is used to determine the current
set of active processes), and (c) chooses as leader the pro-
cess with smallest id in its setactive.11 Such a simple algo-
rithm would work in a system whereall correct processes are
eventually timely sources. But in systemS++, it would fail:
for example, ifS++ hasonly oneeventually timely source
and this process happens to have a large id, the leadership
could forever oscillate among the correct processes that have
a smaller id.

To fix this problem, we use a similar technique as in our
previous algorithm (in Figure 5): a process uses accusation
counters, not process ids, to select the leader among pro-
cesses in itsactiveset. More precisely, each process keeps a

11 A process always considers itself to be active, so if it does not have
recent ALIVE messages from any other process, the process picks itself
as leader.
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counter of the number of times it was previously suspected
of having crashed, and includes this counter in the ALIVE

messages that it sends. Every process keeps the most up-to-
date counter that it received from each process, and picks as
its leader the process with the smallest counter among pro-
cesses in itsactiveset (using the process ids to break ties).
If a processp times out on a processq in activep, p removes
q from activep and it sends an “accusation” message toq,
which causesq to increment its own accusation counter. The
hope here is that, as with the previous algorithm, the counter
of each eventually timely source remains bounded (because
it is timely and all its output links are eventually timely),and
so the correct process with the smallest bounded counter is
eventually selected as the leader by all.

The above algorithm, however, does not work in system
S++: is because the accusation counter of all correct pro-
cesses may keep increasing forever, causing the leadership
to keep oscillating forever. To see this, consider the follow-
ing scenario in a system withn = 2 processes, namely,p
ands. (We can extend this scenario to any number of pro-
cesses.) Processs is the eventually timely source, while pro-
cessp is correct but its output links are not always timely.
Suppose that the accusation counters ofp ands are 1 and 3,
respectively, but, becauses has not received a recent mes-
sage fromp, s considers itself to be the leader. Then,s re-
ceives an ALIVE message fromp, and sop joins s’s active
set. Sincep’s accusation counter is smaller than the counter
of s, the leader ofs becomesp. Whens gives up the leader-
ship, it stops sending ALIVE messages (for communication
efficiency). Unfortunately, this triggersp to time out ons
and sop sends an ACCUSATION message that causess to
increment its accusation counter to 4. Nowp’s ALIVE mes-
sages become slow, causing the following chain of events:
(a)s times out onp, (b) ssends an ACCUSATION to p, caus-
ing p to increment its accusation counter to 2, (c)s removes
p from its activeset, causings to consider itself to be the
leader again. Now, the accusation counters ofp ands are 2
and 4, respectively, and this scenario can repeat itself for-
ever. This results in a run where the accusation counters of
p andskeep increasing and the leader ofs keeps oscillating
betweenp ands.

To fix this problem, a processp should increment its own
accusation counter only if it receives a “legitimate” accusa-
tion, i.e., one that was caused by the delay or loss of one
of the ALIVE messages that it previously sent (and not by
the fact thatp voluntarily stopped sending them). To de-
termine whether an accusation is legitimate, each processp
keeps track of the number of times it hasvoluntarily given
up the leadership in the past — this is its currentphase num-
ber — and it includes this number in each ALIVE message
that it sends. If any processq times out onp and wants to
accusep, it must now include its own view ofp’s current
phase number in the ACCUSATION message that it sends to
p; p considers this ACCUSATION message to be legitimate
only if the phase number that it contains matches its own.
Furthermore, wheneverp gives up the leadership and stops
sending ALIVE messages voluntarily,p increments its own

phase number (and it does not communicate this new phase
number to any process): this effectively causesp to ignore all
the spurious ACCUSATIONmessages that may result if/when
p voluntarily stops sending ALIVE messages.

As we mentioned above, as long as a processp considers
itself to be the leader,p periodically sends an ALIVE mes-
sage to every process except itself. Ifp considers that some
other process is the leader, it does not send any ALIVE mes-
sages. This is done using a timer, denotedSendAliveTimer,
as follows. Wheneverp changes itsactive set or the ac-
cusation counter of a process,p recomputes its leader by
executing theupdateLeader() procedure. If the leader ofp
changes,p checks whether it has just gained or lost the lead-
ership.

1. If p gained the leadership,p turns on itsSendAliveTimer
by setting it to 0 (in line 4). Note thatp periodically
checks whetherSendAliveTimer= 0 (line 15). If it is,
thenp sends an ALIVE message to every processq 6= p,
and it resetsSendAliveTimerto η to schedule its next
sending of ALIVE messages (lines 16-17).

2. If p lost the leadership,p increases its phase number and
p turns off itsSendAliveTimerby setting it to−1 (line 7)
— this causesp to stop sending ALIVE messages.

Figure 7 describes the algorithm by giving the pseudo-
code of an (arbitrary) processp, and Figure 6 describes the
local variables ofp. It is easy to translate the pseudo-code
of p into an automaton forp. Without loss of generality, we
can assume that: (1) for some integerb, each iteration of the
repeat forever loop (lines 13–34) takes at mostb automa-
ton steps (this is because there are no infinite loops, wait-
ing statements, or similar constructs in lines 14–34), and (2)
each iteration of the repeat forever loop takes at least two
complete automaton steps.

We now give an intuitive outline of the algorithm’s proof
of correctness. Recall that in each run there is at least one
eventually timely sources. Unlike the previous algorithm
(in Figure 5), in this algorithm we cannot immediately ar-
gue that there is a time after which processes stop timing out
ons, since processes may time out onsbecausesdecides to
stop sending ALIVE messages. However, whensstops send-
ing ALIVE messages, it increments its phase number and ig-
nores any subsequent ACCUSATION messages with previous
phase numbers. Thus, eventuallys stops increasing its own
counter. Consider all the correct processes with a counter
that stops increasing, and letℓ be the correct process with
the smallest final counter. Then, there is a time after which
ℓ considers itself as leader, sinceℓ finds that other processes
either have a higher counter or are not active. Thus, there is
a time after whichℓ sends ALIVE messages periodically to
other processes. Because all links are fair, correct processes
receive ALIVE messages fromℓ infinitely often. Moreover,
eventually processes stop timing out onℓ (otherwise, they
would keep sending ACCUSATIONmessages toℓ with an up-
to-date phase number, causingℓ’s counter to increase with-
out bounds). Therefore, there is a time after which all cor-
rect processes considerℓ to be active. Since eventuallyℓ is
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Variable Intuitive description
active set of processes thatp considers to be currently competing for leadership

counter[q] p’s estimate ofq’s accusation counter
(the number of times processes previously timed out onq)

phase[q] p’s estimate of the number of times thatq voluntarily relinquished the leadership
SendAliveTimer count-down timer used to periodically send ALIVE messages

(if it is set to−1 it is deactivated)
timer[q] count-down timer used to determine whetherq is currently active

(if it is set to−1 it is deactivated)
timeout[q] length ofp’s timeout onq

leader the leader ofp
(p chooses its leader to be the processℓ with the smallest tuple(counter[ℓ], ℓ)
among all the processes inp’s activeset)

newleader temporary variable for storing a newly computed leader ofp

Fig. 6 Local variables of processp in the algorithm of Figure 7.

the correct process with the smallest counter, there is a time
after which all correct processes pickℓ as their leader. So the
algorithm implementsΩ .

The communication efficiency of the algorithm follows
from the fact that (a) after a processp 6= ℓ electsℓ as its
leader,p stops sending ALIVE messages, (b) processes even-
tually stop sending ACCUSATIONmessages toℓ, and (c) pro-
cesses eventually stop sending ACCUSATION messages to
any processp 6= ℓ because they stop receiving ALIVE mes-
sages fromp.

We now give the detailed proof that the algorithm in Fig-
ure 7 implementsΩ in systemS++ and that it is communi-
cation-efficient. Henceforth, we consider an arbitrary runof
this algorithm in systemS++, ands is an eventually timely
source in this run.

Lemma 30 For every correct process p and every process
q 6= p, if q ∈ activep holds infinitely often then p receives
ALIVE messages from q infinitely often.

Proof Identical to part (a) of the proof of Lemma 1. ⊓⊔

Observation 31 For all processes p and q, counterp[q] and
phasep[q] are monotonically nondecreasing with time.

Lemma 32 For every two processes p6= q, if p receives
ALIVE messages from q infinitely often then q is correct, and
for every time t, there is a time after which counterp[q] ≥
countertq[q] and phasep[q]≥ phasetq[q].

Proof (Similar to the proof of Lemma 3 part 1.) Consider
two processesp 6= q, and suppose thatp receives ALIVE

messages fromq infinitely often. Thenq sends such mes-
sages infinitely often, and soq is correct. Consider any
timet. Eventuallyp receives a messagem= (ALIVE ,qcntr,qph)
that is sent byq after time t. Note thatcounterq[q] and
phaseq[q] are monotonically nondecreasing. Sinceq sends
m after time t, qcntr≥ countertq[q] and qph≥ phasetq[q].
When p receivesm from q, p setscounterp[q] to a value
v≥ qcntr≥ countertq[q], andp setsphasep[q] to a valuev′ ≥

qph≥ phasetq[q]. Thereafter,counterp[q] ≥ countertq[q] and
phasep[q] ≥ phasetq[q] (becausecounterp[q] and phasep[q]
are monotonically nondecreasing). ⊓⊔

Lemma 33 For every correct process p and every process q,
if (a) q∈ activep holds infinitely often then (b) q is correct,
and for every time t, there is a time after which counterp[q]≥
countertq[q] and phasep[q]≥ phasetq[q].

Proof (Similar to the proof of Lemma 4.) Ifp = q, con-
dition (b) holds becausep is correct, andcounterp[p]
and phasep[p] are monotonically nondecreasing. Now as-
sume thatp 6= q andq ∈ activep holds infinitely often. By
Lemma 30,p receives ALIVE messages fromq infinitely of-
ten. By Lemma 32, condition (b) holds. ⊓⊔

Lemma 34 For every distinct correct processes p and q, if
p sends a message of typeT to q infinitely often, then q re-
ceives a message of typeT from p infinitely often.

Proof Let p andq be distinct correct processes, and suppose
that p sends a message of type T toq infinitely often. Since
the link p→ q is fair, a message of type T is delivered to
q from p infinitely often. Sinceq is correct,q executes an
infinite number of iterations of its repeat forever loop. In
each such iteration,q tries to receive one message of each
type from every process other thanq, includingp. Therefore,
q receives a message of type T fromp infinitely often. ⊓⊔

Recall thats is an eventually timely source in the run
under consideration.

Lemma 35 There is a constantα > 0 such that, for all
k≥ 0 and every time t, process s executes at least k com-
plete iterations of its repeat forever loop during time interval
(t, t +kα].

Proof Identical to the proof of Lemma 5. ⊓⊔

Definition 36 Let α > 0 be a constant that satisfies Lem-
ma 35.
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CODE FOR EACH PROCESSp:

procedureupdateLeader()
1 newleader← ℓ such that(counter[ℓ], ℓ) = min{(counter[q],q) : q∈ active}
2 if newleader6= leaderthen { if the leader ofp changes then}
3 if newleader= p then { if p gains the leadership then}
4 SendAliveTimer← 0 { p setsSendAliveTimer= 0 to start sendingALIVE messages}
5 if leader= p then { if p loses the leadership then}
6 phase[p]← phase[p]+1 { p increases its phase number and}
7 SendAliveTimer←−1 { p setsSendAliveTimer=−1 to stop sendingALIVE messages}
8 leader← newleader { p updates its leader variable}

main code

{ Initialization}

9 for eachq∈Π do counter[q]← 0; phase[q]← 0
10 for eachq∈Π \{p} do timeout[q]← η +1; timer[q]←−1
11 active←{p}
12 leader←⊥

13 repeat forever
14 updateLeader()

15 if SendAliveTimer= 0 then
16 send(ALIVE ,counter[p],phase[p]) to every process exceptp
17 SendAliveTimer← η

18 for eachq∈Π \{p} do
19 if receive(ALIVE ,qcntr,qph) from q then
20 active← active∪{q}
21 counter[q]←max{counter[q],qcntr}
22 phase[q]←max{phase[q],qph}
23 timer[q]← timeout[q]

24 if timer[q] = 0 then
25 send(ACCUSATION,phase[q]) to q
26 active← active−{q}
27 timeout[q]← timeout[q]+1
28 timer[q]←−1

29 if receive(ACCUSATION,ph) from q then
30 if ph= phase[p] then
31 counter[p]← counter[p]+1

32 if SendAliveTimer> 0 then SendAliveTimer← SendAliveTimer−1
33 for eachq∈Π \{p} do
34 if timer[q] > 0 then timer[q]← timer[q]−1

Fig. 7 Communication-efficient implementation ofΩ for a systemSwhere all links are fair.

Recall thatη ≥ 1 is the “timeout” value ofSendAlive-
Timer (see line 17).

Definition 37 Let ∆ ′ = (η +1)α.

Lemma 38 For every process p6= s and every k≥ 0, if s
sends an(ALIVE ,−,k) message to p at some time t then s
sends another(ALIVE ,−,k) message to p during time inter-
val (t, t +∆ ′], or phases[s] > k holds at time t+∆ ′.

Proof After s executes its initialization code (lines 9-12),s
starts its first execution of the repeat forever loop (lines 13-

34). Suppose thatssends an(ALIVE ,−,k) message to a pro-
cessp 6= sat some timet (line 16). Note thatphases[s] = k at
time t, and that in line 17 of the same iteration of its repeat
forever loop,ssetsSendAliveTimers to η ≥ 1.

Consider the first(η +1) iterations of the repeat forever
loop thatsfinishes to execute after timet (including the iter-
ation thats is executing at timet). Let t ′ be the time whens
completes the last one of these iterations. By Lemma 35, for
every timet, sexecutes at least(η +1) complete iterations of
its repeat forever loop during time interval(t, t +(η +1)α].
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And so, we havet ′ ≤ t + (η + 1)α, i.e., t ′ ≤ t + ∆ ′. Now
consider time interval[t, t ′]. There are two possible cases:

1. During [t, t ′], s does not set SendAliveTimers to −1 in
line 7 in the updateLeader procedure.In this case, it is
clear thats does not modify itsphases[s] during [t, t ′]
(this is becauses modifiesphases[s] only in line 6 in the
updateLeaderprocedure), and sophases[s] = k during
the entire time interval[t, t ′].
We claim that by the end of theη-th iteration of the
(η + 1) iterations that we are considering,s setsSend-
AliveTimers to 0. In fact, eithers does this by executing
line 4 of theupdateLeaderprocedure in one of the first
η iterations, orsdecrements itsSendAliveTimers from η
by 1 (in line 32) in each one of the firstη iterations.
In either case, by the end of theη-th iteration,s sets
SendAliveTimers ← 0.
Thus, by the end of the(η + 1)-th iteration, s finds
that SendAliveTimers = 0 (in line 15), and it sends an
(ALIVE ,−,k) message top (in line 16). This sending
must occur at least one step afters sends the
(ALIVE ,−,k) message top at timet, so, by the Maxi-
mum Rate of Execution property, it must occur after time
t. Moreover, this sending occurs by timet ′ ≤ t + ∆ ′. So
s sends an(ALIVE ,−,k) message top during interval
(t, t +∆ ′].

2. During [t, t ′], s sets SendAliveTimers to −1 in line 7 in
the updateLeader procedure.Note that during the exe-
cution of this procedure,s incrementsphases[s] in line 6.
This increment must occur at least one step afterssends
the (ALIVE ,−,k) message top at timet (because after
sending and before incrementing,s executes steps to try
to receive ALIVE and ACCUSATION messages). Thus,
by the Maximum Rate of Execution property, the incre-
menting must occur after timet. Moreover, this incre-
ment must occur by timet ′, so it happens during time
interval (t, t ′], which is contained in interval(t, t + ∆ ′].
Sincephases[s] = k at time t, phases[s] is incremented
during interval(t, t +∆ ′], and it is monotonically nonde-
creasing, we havephases[s] > k at timet +∆ ′.

From the above, it follows thats sends an(ALIVE ,−,k)
message top during interval(t, t + ∆ ′], or phases[s] > k
holds at timet +∆ ′. ⊓⊔

Lemma 39 There is a constant∆ and a time t∆ such that,
for all processes p, if s sends a message m to p at some time
t ≥ t∆ , then m is delivered to p from s by time t+∆ .

Proof This follows immediately from the fact thats is an
eventually timely source, and therefore all its output links
are eventually timely. ⊓⊔

Lemma 40 There is a constantε > 0 such that, for every
k≥ 1 and every process p, p takes at least kε time to execute
k complete iterations of its repeat forever loop.

Proof Identical to the proof of Lemma 13. ⊓⊔

Definition 41 Let ∆ , t∆ andε be constants that satisfy 39
and 40, respectively.

Definition 42 Let ζ = ⌈(∆ ′+∆ )/ε⌉+3.

We now show that at the eventually timely sources,
counters[s] is bounded. To prove this, (1) we note thats in-
crementscounters[s] only if a process times out ons, (2) we
distinguish two types of such timeouts ons, which we call
“‘proper” and “improper”, (3) we prove that proper timeouts
on s do not affectcounters[s] (so only improper timeouts on
scan causes to incrementcounters[s]), and (4) we show that
the number of improper timeouts ons is finite. We now pro-
ceed with this proof (Lemmas 44-47).

Suppose that a processp times out ons. If this timeout
was started after timet∆ and its value was at leastζ , we say
that it is “proper”; otherwise we say it is “improper”. More
precisely,

Definition 43 Suppose that

(1) a processp executes line 24 withq= sandtimerp[s] = 0
at some timete,

(2) p setstimerp[s] to timeoutp[s] in line 23 at some time
ts≤ te, and

(3) p does not settimerp[s] in line 23 during time interval
(ts, te].

We say this timeout ofp on s is proper if and only if (a)
ts≥ t∆ and (b)timeoutp[s] ≥ ζ at timets. A timeout that is
not proper isimproper.

Lemma 44 For every process p, the number of improper
timeouts of p on s is finite.

Proof Let p be any process. Ifp times out onsonly finitely
often, the lemma trivially holds. Now supposep times out on
s infinitely often, i.e.,p executes line 24 withtimerp[s] = 0
infinitely many times. Note that each time this occurs,p in-
creasestimeoutp[s] (in line 27). So there is a time after which
timeoutp[s] > ζ . Thus, there is a time after which every time-
out of p on s is proper. ⊓⊔

Definition 45 An (ACCUSATION,ph) message that is sent
to s is outdated ifph< phases[s] at the time this message is
sent.

Note that any outdated(ACCUSATION,ph) message that
s receives does not affectcounters[s]. In fact, if s re-
ceives an(ACCUSATION,ph) message that is outdated, then
phases[s] > ph at the timet this message was sent tos, so
phases[s] > phalso holds at the time whensexecutes line 30
of its code (becausephases[s] is monotonically nondecreas-
ing). Thus,sdoesnotexecute line 31, i.e., it does not modify
counters[s].

Lemma 46 Suppose a process p times out on s (in line 24).
If this timeout is proper, then the(ACCUSATION,−) mes-
sage that p sends to s as a consequence of this timeout (in
line 25) is outdated.
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Proof Suppose some processp times out ons, and that this
timeout is proper. More precisely, suppose that

(1) p executes line 24 withq = s andtimerp[s] = 0 at some
time te,

(2) p setstimerp[s] to timeoutp[s] in line 23 at some time
ts≤ te,

(3) p does not settimerp[s] in line 23 during time interval
(ts, te], and

(4) ts≥ t∆ andtimeoutp[s]≥ ζ at timets.

Suppose that the above timeout causesp to send some
(ACCUSATION,k) message tos, and letta ≥ te be the time
when this occurs (in line 25). Figure 8 shows a timeline with
timests, te, andta. We must prove that this(ACCUSATION,k)
is outdated, that is, we must show thatphases[s] > k at time
ta. Suppose, for contradiction, thatphases[s] ≤ k at timeta.
Sincephases[s] is monotonically nondecreasing andte≤ ta,
phases[s]≤ k also holds at timete.

We first note thatp executes at leastζ −1 complete it-
erations of its repeat forever loop during time interval[ts, te].
This follows from assumptions (1), (2), (3) and (4) above,
and the fact thatp decreasestimerp[s] by exactly 1 in each
repeat forever loop iteration (in line 34).

By Lemma 40,p takes at leastε(ζ −1) time to execute
(ζ −1) complete iterations of its repeat forever loop. Thus,
from the above,te≥ ts+ε(ζ−1). Sinceζ = ⌈(∆ ′+∆ )/ε⌉+
3, we havete≥ ts+∆ ′+∆ +2ε.

CLAIM 1: p does not receive any(ALIVE ,−,−) mes-
sages from s during time interval(ts, te]. To see this, note that
such a receipt would causep to settimerp[s] in line 23, and
this would happen during(ts, te] since, at timete, p executes
line 24. This would violate assumption (3).

Sincep sends an(ACCUSATION,k) message tosat time
ta in line 25,phasep[s] = k at timeta. Sophasep[s] = k also
holds at timete whenp executes line 24.

CLAIM 2: p receives at least one(ALIVE ,−,k) message
from s by time ts. Indeed, ifk > 0 then the only way forp to
havephasep[s] = k at timete is by receiving(ALIVE ,−,k)
from s by time te. By Claim 1, p must receive such a mes-
sage by timets. Fork= 0, note that by timets, p must receive
some(ALIVE ,−,k′) message froms that causesp to set
timerp[s] in line 23 at timets. Moreover,k′ cannot be greater
than 0 otherwisephasep[s] > 0 at timets, sophasep[s] > 0
at timete (sincephasep[s] is monotonically nondecreasing),
contradicting thatphasep[s] = k = 0 at timete. Thusk′ = 0.
This proves Claim 2.

From Claim 2,s sends an(ALIVE ,−,k) message top
at some timet ≤ ts. This implies thatphases[s] = k at time
t. Sincephases[s] ≤ k at time te (where te > ts ≥ t), and
phases[s] is monotonically nondecreasing, we conclude that
phases[s] = k during the entire time interval[t, te].

Thus, by repeated applications of Lemma 38 starting at
time t, it is clear that from timet and up to timete, s sends
an (ALIVE ,−,k) message top at least once every∆ ′ time;
more precisely,ssends at least one(ALIVE ,−,k) message to
p during each time interval(τ,τ + ∆ ′] contained in interval
[t, te].

Since time interval(ts, ts + ∆ ′] is contained in time in-
terval [t, te] (becauset ≤ ts and ts + ∆ ′ ≤ te), s sends an
(ALIVE ,−,k) message top during(ts, ts+∆ ′] . By assump-
tion (4), ts≥ t∆ . Thus, by Lemma 39 and the definitions of
t∆ and∆ , this(ALIVE ,−,k) message is delivered top from
sduring time interval(ts, ts+∆ ′+∆ ].

CLAIM 3: p executes at least one complete iteration of
its repeat forever loop during time interval[ts+ ∆ ′+ ∆ , te].
To see this, recall thatp executesat leastζ −1 complete it-
erations of its repeat forever loop during time interval[ts, te].
Moreover, during time interval[ts, ts+ ∆ ′+ ∆ ], p executes
at most⌈(∆ ′+ ∆ )/ε⌉ = ζ −3 complete iterations of its re-
peat forever loop (this follows from the definition ofε). This
implies Claim 3.

Since an(ALIVE ,−,k) message is delivered top from s
during time interval(ts, ts+ ∆ ′+ ∆ ], andp executes at least
one complete iteration of its repeat forever loop during time
interval [ts+ ∆ ′+ ∆ , te], we conclude thatp receives some
(ALIVE ,−,−) message froms during interval(ts, te] — a
contradiction to Claim 1. ⊓⊔

Lemma 47 counters[s] is bounded.

Proof Note that s increases itscounters[s] only if it re-
ceives an(ACCUSATION,−) message (lines 29-31). There
are two kinds of such(ACCUSATION,−) messages: (a)
those that are sent tos as a consequence of aproper time-
out on s, and (b) those that are sent tos as a conse-
quence of animproper timeout ons. By Lemma 46, all
the (ACCUSATION,−) messages of kind (a) are outdated.
As we previously observed, such messages do not affect
counters[s]. Thus only those messages of kind (b) may cause
s to incrementcounters[s]. By Lemma 44, the number of im-
proper timeouts ons is finite. Since each timeout onscauses
at most one(ACCUSATION,−) message to be sent tos, the
number of(ACCUSATION,−) messages of kind (b) is finite.
Thereforecounters[s] is bounded. ⊓⊔

Definition 48 For every processp, let cp be the largest
value of counterp[p] in the run that we consider (cp = ∞
if counterp[p] is unbounded). Letℓ be the process such that
(cℓ, ℓ) = min{(cp, p) : p is a correct process}.

By definition,ℓ is a correct process. Furthermore, by Lemma
47, counters[s] is bounded, i.e.,cs < ∞. Thus,cℓ < ∞, i.e.,
counterℓ[ℓ] is bounded.

Lemma 49 For every correct process p, if there is a time
after which ℓ ∈ activep, then there is a time after which
leaderp = ℓ.

Proof (Similar to the proof of Lemma 21.) Letp be any cor-
rect process, and suppose that there is a time after which
ℓ ∈ activep. We claim that for everyq 6= ℓ, (i) there is a
time after whichq 6∈ activep, or (ii) there is a time after
which (counterp[ℓ], ℓ) < (counterp[q],q). From the wayp
setsleaderq in the updateLeaderprocedure, this claim im-
plies there is a time after whichleaderp = ℓ.
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timet ts te ta

Fig. 8 Timeline of events in proof of Lemma 46.

To show the claim, consider any processq 6= ℓ, and
suppose that condition (i) does not hold, i.e., suppose that
q∈ activep holds infinitely often. We now show that condi-
tion (ii) is satisfied. By Lemma 33,q is correct, and for every
timet, there is a time after whichcounterp[q]≥ countertq[q].
There are two cases:

(1) counterq[q] is bounded.In this case,cq < ∞, and so
there is a timet when countertq[q] = cq. So there is a
time after whichcounterp[q] ≥ cq. Recall thatq is cor-
rect andq 6= ℓ, and so by the definition ofℓ, we have
(cℓ, ℓ) < (cq,q). Sincecounterp[ℓ]≤ cℓ (always), there is
a time after which(counterp[ℓ], ℓ) ≤ (cℓ, ℓ) < (cq,q) ≤
(counterp[q],q).

(2) counterq[q] is unbounded. In this case,counterp[q]
is also unbounded. So there is a time after which
counterp[ℓ]≤ cℓ < counterp[q].

So, in both cases, there is a time after which
(counterp[ℓ], ℓ) < (counterp[q],q), i.e., condition (ii) holds.

⊓⊔

Observation 50 For every correct process p, there is a time
after which p∈ activep.

Proof Whenp executes its initialization code, it setsactivep
to {p}. Thereafter,p never removes itself fromactivep. ⊓⊔

Corollary 51 There is a time after which leaderℓ = ℓ.

Proof By Observation 50, there is a time after whichℓ ∈
activeℓ. The result now follows from Lemma 49. ⊓⊔

Corollary 52 There is a time after which phaseℓ[ℓ] stops
changing.

Proof Note thatℓ changesphaseℓ[ℓ] only when it considers
that it lost the leadership (in lines 5-6), and each time this
occursℓ setsleaderℓ 6= ℓ (in line 8). By Corollary 51, this
can happen only a finite number of times. ⊓⊔

Definition 53 Let ℓphasebe the final value ofphaseℓ[ℓ].

Note that sincephaseℓ[ℓ] is monotonically nondecreasing,
ℓphaseis also the largest value ofphaseℓ[ℓ].

Lemma 54 For every correct process q, there is a time after
whichℓ ∈ activeq.

Proof Let q be any correct process. Ifq = ℓ then, by Corol-
lary 51, there is a time after whichℓ ∈ activeℓ. Now sup-
poseq 6= ℓ. By Corollary 51 and the definitions ofℓphase
and ℓ, ℓ sends messages of form(ALIVE ,−, ℓphase) to q

infinitely often, and these are the only messages of type
ALIVE that ℓ sends toq infinitely often. By Lemma 34,q
receives messages of type ALIVE from ℓ infinitely often.
Thus,q receives messages of form(ALIVE ,−, ℓphase) from
ℓ infinitely often. Therefore, (*) there is a time after which
q has phaseq[ℓ] = ℓphase. Moreover,q addsℓ to activeq
infinitely often. We claim thatq removesℓ from activeq
only finitely often, and so the lemma follows. Suppose, for
contradiction, thatq removesℓ from activeq infinitely of-
ten. Then,q sends(ACCUSATION,−) messages toℓ in-
finitely often. By Lemma 34,ℓ receives(ACCUSATION,−)
messages fromq infinitely often. By (*), there is a time
after which the only(ACCUSATION,−) messages thatq
sends are(ACCUSATION, ℓphase) messages. Thus,ℓ re-
ceives(ACCUSATION, ℓphase) messages fromq infinitely
often. So,ℓ eventually incrementscounterℓ[ℓ] to a value
greater thancℓ — a contradiction to the definition ofcℓ. ⊓⊔

By Lemmas 49 and 54, we have

Lemma 55 For every correct process q, there is a time after
which leaderq = ℓ.

Lemma 56 There is a time after which onlyℓ sends mes-
sages.

Proof There are only two types of messages: ALIVE and
ACCUSATION. When a processp considers that it lost the
leadership, it stops sending ALIVE messages (by setting its
SendAliveTimerto −1 in line 7). Furthermore,p resumes
sending messages only if it considers itself to be the leader
again (lines 3-4) and it setsleaderp = p (in line 8). So, by
Lemma 55, there is a time after which onlyℓ sends ALIVE
messages.

We claim that only a finite number of ACCUSATION
messages are sent. To see this, note that when a processp
sends an ACCUSATION message to a processq (in line 25),
p “turns off” timerp[q] by setting it to−1 (in line 28). Af-
ter this occurs,p can send another ACCUSATION message
to q only if p “turns on” timerp[q] again (in line 23), and
this happens only ifp receives an ALIVE message from
q (in line 19). Thus,p can send an infinite number of
ACCUSATION messages toq only if p receives an infinite
number of ALIVE messages fromq. Since there is a time
after which onlyℓ sends ALIVE messages,p can send an
infinite number of ACCUSATION messages only toℓ. But p
sends only a finite number of ACCUSATION messages toℓ:
This is because each timep sends an ACCUSATION message
to ℓ, p removesℓ from activep, and from Lemma 54, this can
happen only a finite number of times. Thus each processp
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Fig. 9 Partitioning that may occur if we run the algorithm of Figure7
in systemS+.

sends only a finite number of ACCUSATION messages to ev-
ery process. ⊓⊔

From Lemmas 55 and 56, we get the following result:

Theorem 57 The algorithm in Figure 7 implementsΩ in
system S++, and it is communication-efficient.

6.2 ImplementingΩ in systemS+

We now describe a communication-efficient algorithm for
Ω for systemS+. Recall that inS+ there is an eventually
timely source and a correct process whose input and output
links are fair.

Our starting point is the algorithm for systemS++ that
we gave in the previous section (Figure 7). We first note
that this algorithm does not work in systemS+ because in
S+ some links can experiencearbitrary message losses (in
contrast toS++ where all the links are fair). The most ob-
vious problem, and also the easiest one to solve, is that
the ACCUSATION messages sent by a processp to another
processq may never reachq, because the linkp→ q may
have crashed. The obvious solution is forp to send each
ACCUSATION of q to all processes (including the unknown
fair hub); any process that receives such a message relays it
once toq. This scheme preserves communication efficiency:
after the permanent leader emerges, there are no new accu-
sations, and so the relaying stops.

A more subtle problem, and a tougher one to solve, is
that two leader contendersp andq may partition the pro-
cesses in two setsΠp and Πq, such that processes inΠp
(including p) and those inΠq (including q) have p and q
as their permanent leader, respectively. This scenario, illus-
trated in Figure 9, can occur as follows: (a) the eventually
timely sources and the fair hubh are inΠp, and they are
distinct from p, (b) processes inΠq receive timely ALIVE
messages fromq, but they never hear fromp, (c) processes in
Πp receive timely ALIVE messages fromp, but, except forh,
they never hear fromq, and (d)h receives timely ALIVE

messages from bothp andq, but choosesp as its permanent
leader. In this scenario, nobody ever sends ACCUSATION

messages top or q. Moreover,p andq never hear from each

other. So bothp andq keep thinking of themselves as the
leader, forever.

One attempt to solve this problem is to relay all the
ALIVE messages (like the ACCUSATION messages) so that
the contenders for leadership, such asp andq in the above
scenario, can all hear from each other. Although this solution
works, it is not communication-efficient because it forcesall
processes to send messages forever: the elected leader does
not stop sending ALIVE messages, and each ALIVE is re-
layed by all.

To prevent partitioning while preserving communication
efficiency, we use the following idea: roughly speaking, if a
processr hasp as its current leader, but receives an ALIVE

message from a processq 6= p, thenr sends a CHECK mes-
sage tellingq about the existence ofp (and some other rele-
vant information aboutp). CHECK messages can be lost, but
if (a) r is the fair hubh, (b)q keeps sending ALIVE messages
to h, and (c)h continues to preferp as its leader, thenq will
eventually receive a CHECK message fromh and find out
about its “rival” p. If this happens,q “challenges” the lead-
ership ofp by sending accusations top if p does not appear
to be timely. This scheme prevents the problematic scenario
mentioned above, and it can be shown to work while pre-
serving communication efficiency: after the common leader
is elected, all the ALIVE messages come from that leader,
and so there are no more CHECK messages.

The algorithm that incorporates the above ideas is shown
in Figure 10. In this algorithm, there aren+2 message types:
ALIVE , CHECK, and ACCUSATION-p for each processp.

Figure 10 describes the algorithm by giving the pseudo-
code of an arbitrary processp, and Figure 6 describes the lo-
cal variables ofp (this algorithm has the same variables with
the same meaning in as in the previous algorithm). It is easy
to translate the pseudo-code ofp into an automaton forp.
Without loss of generality, we can assume that: (1) for some
integerb, each iteration of the repeat forever loop (lines 13–
43) takes at mostb automaton steps (this is because there are
no infinite loops, waiting statements, or similar constructs in
lines 14–43), and (2) each iteration of the repeat forever loop
takes at least two complete automaton steps.

We now give an intuitive outline of the algorithm’s proof
of correctness. Recall that in each run there is at least one
eventually timely sources. As in the previous algorithm (in
Figure 7), note that eventuallys stops increasing its own
counter (because eventually the only ACCUSATION mes-
sages thats receives are messages with old phase numbers).
Consider all the correct processes with a counter that stops
increasing, and letℓ be the correct process with the small-
est final counter. Then, there is a time after whichℓ con-
siders itself as leader, sinceℓ finds that other processes ei-
ther have a higher counter or are not active. Thus, there is
a time after whichℓ sends ALIVE messages periodically to
other processes. Unlike the previous algorithm, with this al-
gorithm we cannot argue now that correct processes receive
ALIVE messages fromℓ infinitely often, because not all links
are fair. However, recall that there exists at least one fair
hubh whose input and output links are fair, and soh receives
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CODE FOR EACH PROCESSp:

procedureupdateLeader()
1 newleader← ℓ such that(counter[ℓ], ℓ) = min{(counter[q],q) : q∈ active}
2 if newleader6= leaderthen { if the leader ofp changes then}
3 if newleader= p then { if p gains the leadership then}
4 SendAliveTimer← 0 { p setsSendAliveTimer= 0 to start sendingALIVE messages}
5 if leader= p then { if p loses the leadership then}
6 phase[p]← phase[p]+1 { p increases its phase number and}
7 SendAliveTimer←−1 { p setsSendAliveTimer=−1 to stop sendingALIVE messages}
8 leader← newleader { p updates its leader variable}

main code

{ Initialization}

9 for eachq∈Π do counter[q]← 0; phase[q]← 0
10 for eachq∈Π \{p} do timeout[q]← η +1; timer[q]←−1
11 active←{p}
12 leader←⊥

13 repeat forever
14 updateLeader()

15 if SendAliveTimer= 0 then
16 send(ALIVE ,counter[p],phase[p]) to every process exceptp
17 SendAliveTimer← η
18 for eachq∈Π \{p} do
19 if receive(ALIVE ,qcntr,qph) from q then
20 active← active∪{q}
21 counter[q]←max{counter[q],qcntr}
22 phase[q]←max{phase[q],qph}
23 timer[q]← timeout[q]
24 if q 6= leaderandp 6= leaderthen
25 send(CHECK, leader,phase[leader]) to q

26 if receive(CHECK, r, rph) from q then
27 if timer[r] =−1 then
28 phase[r]←max{phase[r], rph}
29 timer[r]← timeout[r]

30 if timer[q] = 0 then
31 send(ACCUSATION-q,phase[q]) to every process exceptp
32 active← active−{q}
33 timeout[q]← timeout[q]+1
34 timer[q]←−1

35 for each r ∈Π do
36 if receive(ACCUSATION-r,ph) from q then
37 if r = p then
38 if ph= phase[p] then
39 counter[p]← counter[p]+1
40 elsesend(ACCUSATION-r,ph) to r

41 if SendAliveTimer> 0 then SendAliveTimer← SendAliveTimer−1
42 for eachq∈Π \{p} do
43 if timer[q] > 0 then timer[q]← timer[q]−1

Fig. 10 Communication-efficient implementation ofΩ for systemS+.
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ALIVE messages fromℓ infinitely often. Moreover, eventu-
ally h stops timing out onℓ (otherwise,h would keep sending
ACCUSATION messages toℓ with an up-to-date phase num-
ber, causingℓ’s counter to increase without bounds). There-
fore, there is a time after whichh considersℓ to be active.
Since eventuallyℓ is the correct process with the smallest
counter, there is a time after whichh picksℓ as its leader.

Moreover, no process other thanℓ keeps sending ALIVE
messages forever. This is because, if some processp 6= ℓ
kept sending ALIVE messages forever thenh would receive
infinitely many such messages andh would send back in-
finitely many CHECK messages tellingp thatℓ is its leader.
These CHECK messages would causep to time out onℓ
infinitely often, andp would send ACCUSATION messages
for ℓ infinitely often. These messages would be relayed
through h to ℓ, causing the counter ofℓ to grow without
bounds.

Therefore,ℓ is the only process that keeps sending
ALIVE messages forever. Thus, for any correct process
p 6= ℓ, there is a time after which the leader ofp can be only
p or ℓ. Sincep eventually stops sending ALIVE messages,
there is a time after which the leader ofp is not p. So there
is a time after which the leader ofp is ℓ. Thus the algorithm
implementsΩ .

The communication efficiency of the algorithm follows
from the fact that (a) after a processp 6= ℓ electsℓ as its
leader,p stops sending ALIVE messages, (b) processes even-
tually stop sending CHECK messages, because after electing
ℓ as its leader, a process does not send CHECK messages
to ℓ, and it sends a CHECK message to a processp 6= ℓ
only if it receives an ALIVE message fromp, (c) processes
eventually stop generating ACCUSATION messages, because
they generate such a message only when a timer expires,
but a timer is turned on only after the receipt of an ALIVE
or CHECK message, and (d) processes relay each generated
ACCUSATION message only once.

We now give the detailed proof that the algorithm in Fig-
ure 10 implementsΩ in systemS+, and that it is communi-
cation-efficient. Henceforth, we consider an arbitrary runof
this algorithm in systemS+. Let s be an eventually timely
source andh be a fair hub, in this run.

Lemma 58 For every correct process p and every process
q 6= p, if q ∈ activep holds infinitely often then p receives
ALIVE messages from q infinitely often.

Proof Identical to part (a) of the proof of Lemma 1. ⊓⊔

Observation 59 For all processes p and q, counterp[q] and
phasep[q] are monotonically nondecreasing with time.

Lemma 60 For every two processes p6= q, if p receives
ALIVE messages from q infinitely often then q is correct, and
for every time t, there is a time after which counterp[q] ≥
countertq[q] and phasep[q]≥ phasetq[q].

Proof Identical to the proof of Lemma 32. ⊓⊔

Lemma 61 For every correct process p and every process q,
if (a) q∈ activep holds infinitely often then (b) q is correct,
and for every time t, there is a time after which counterp[q]≥
countertq[q] and phasep[q]≥ phasetq[q].

Proof (Similar to the proof of Lemma 33.) Ifp = q,
condition (b) holds becausep is correct, andcounterp[p]
and phasep[p] are monotonically nondecreasing. Now as-
sume thatp 6= q andq ∈ activep holds infinitely often. By
Lemma 58,p receives ALIVE messages fromq infinitely of-
ten. By Lemma 60, condition (b) holds. ⊓⊔

Lemma 62 For every correct process p6= h, (1) if p sends
a message of typeT to h infinitely often, then h receives a
message of typeT from p infinitely often, and (2) if h sends
a message of typeT to p infinitely often, then p receives a
message of typeT from h infinitely often.

Proof (Similar to the proof of Lemma 34.) Letp be a correct
process such thatp 6= h. (1) First, suppose thatp sends a
message of type T toh infinitely often. Sinceh is fair hub,h
is correct and linkp→ h is fair. Thus, a message of type T
is delivered toh from p infinitely often. Sinceh is correct,h
executes an infinite number of iterations of its repeat forever
loop. In each such iteration,h tries to receive one message
of each type from every process other thanh, including p.
Therefore,h receives a message of type T fromp infinitely
often.

(2) Now suppose thath sends a message of type T top
infinitely often. This case is identical to case (1) except that
we exchange the roles ofp andh. ⊓⊔

Recall thats is an eventually timely source in the run
under consideration.

Lemma 63 There is a constantα > 0 such that, for all
k≥ 0 and every time t, process s executes at least k com-
plete iterations of its repeat forever loop during time interval
(t, t +kα].

Proof Identical to the proof of Lemma 5. ⊓⊔

Definition 64 Let α > 0 be a constant that satisfies Lem-
ma 63.

Recall thatη ≥ 1 is the “timeout” value ofSendAlive-
Timer(see line 17).

Definition 65 Let ∆ ′ = (η +1)α.

Lemma 66 For every process p6= s and every k≥ 0, if s
sends an(ALIVE ,−,k) message to p at some time t then s
sends another(ALIVE ,−,k) message to p during time inter-
val (t, t +∆ ′], or phases[s] > k holds at time t+∆ ′.

Proof (Similar to the proof of Lemma 38 noting that, in
case 1 of that proof,s cannot modifyphases[s] in line 28
because no process ever sends(CHECK,s,−) to s.)

After s executes its initialization code (lines 9-12),s
starts its first execution of the repeat forever loop (lines 13-
43). Suppose thatssends an(ALIVE ,−,k) message to a pro-
cessp 6= sat some timet (line 16). Note thatphases[s] = k at
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time t, and that in line 17 of the same iteration of its repeat
forever loop,ssetsSendAliveTimers to η ≥ 1.

Consider the first(η +1) iterations of the repeat forever
loop thatsfinishes to execute after timet (including the iter-
ation thats is executing at timet). Let t ′ be the time whens
completes the last one of these iterations. By Lemma 63, for
every timet, sexecutes at least(η +1) complete iterations of
its repeat forever loop during time interval(t, t +(η +1)α].
And so, we havet ′ ≤ t + (η + 1)α, i.e., t ′ ≤ t + ∆ ′. Now
consider time interval[t, t ′]. There are two possible cases:

1. During [t, t ′], s does not set SendAliveTimers to −1 in
line 7 in the updateLeader procedure.In this case,sdoes
not modify its phases[s] during [t, t ′]: the only places
where s could possibly modifyphases[s] is in lines 6
or 28, buts does not execute line 6 during[t, t ′] since
s does not execute line 7 by assumption, ands does
not modify phases[s] in line 28 because no process ever
sends(CHECK,s,−) to s due to the check in line 24.
Therefore,phases[s] = k during the entire time interval
[t, t ′].
We claim that by the end of theη-th iteration of the
(η + 1) iterations that we are considering,s setsSend-
AliveTimers to 0. In fact, eithers does this by executing
line 4 of theupdateLeaderprocedure in one of the first
η iterations, orsdecrements itsSendAliveTimers from η
by 1 (in line 41) in each one of the firstη iterations.
In either case, by the end of theη-th iteration,s sets
SendAliveTimers ← 0.
Thus, by the end of the(η + 1)-th iteration, s finds
that SendAliveTimers = 0 (in line 15), and it sends an
(ALIVE ,−,k) message top (in line 16). This sending
must occur in a subsequent step afters sends the
(ALIVE ,−,k) message top at timet, so, by the Maxi-
mum Rate of Execution property, it must occur after time
t. Moreover, this sending occurs by timet ′ ≤ t + ∆ ′. So
s sends an(ALIVE ,−,k) message top during interval
(t, t +∆ ′].

2. During [t, t ′], s sets SendAliveTimers to −1 in line 7 in
the updateLeader procedure.Note that during the exe-
cution of this procedure,s incrementsphases[s] in line 6.
This increment must occur at least one step afterssends
the (ALIVE ,−,k) message top at timet (because after
sending and before incrementing,s executes steps to try
to receive ALIVE and ACCUSATION messages). Thus,
by the Maximum Rate of Execution property, the incre-
menting must occur after timet. Moreover, this incre-
ment must occur by timet ′, so it happens during time
interval (t, t ′], which is contained in interval(t, t + ∆ ′].
Sincephases[s] = k at time t, phases[s] is incremented
during interval(t, t +∆ ′], and it is monotonically nonde-
creasing, we havephases[s] > k at timet +∆ ′.

From the above, it follows thats sends an(ALIVE ,−,k)
message top during interval(t, t + ∆ ′], or phases[s] > k
holds at timet +∆ ′. ⊓⊔

Lemma 67 There is a constant∆ and a time t∆ such that,
for all processes p, if s sends a message m to p at some time
t ≥ t∆ , then m is delivered to p from s by time t+∆ .

Proof This follows immediately from the fact thats is an
eventually timely source, and therefore all its output links
are eventually timely. ⊓⊔

Lemma 68 There is a constantε > 0 such that, for every
k≥ 1 and every process p, p takes at least kε time to execute
k complete iterations of its repeat forever loop.

Proof Identical to the proof of Lemma 13. ⊓⊔

Definition 69 Let ∆ , t∆ andε be constants that satisfy 67
and 68 respectively.

Definition 70 Let ζ = ⌈(∆ ′+∆ )/ε⌉+3.

Lemma 71 For all processes p and r and every k≥ 0, if p
receives a(CHECK, r,k) message at some time t then r sends
an (ALIVE ,−,k) message by time t.

Proof Let p and r be processes andk≥ 0. Suppose thatp
receives a(CHECK, r,k) message at some timet. For contra-
diction, supposer does not send an(ALIVE ,−,k) message
by timet. Let r ′ be the process to first send a(CHECK, r,k)
message, and lett ′ be the time when this happens. Note that
t ′ ≤ t and, at timet ′, phaser′ [r] = k. Thenr ′ 6= r since a pro-
cess does not send a CHECK message for itself due to the
check in line 24. There are now two possibilities.

– If k> 0 then, at timet ′, phaser′ [r] = k≥ 1. There are only
two places wherer ′ can setphaser′ [r] to k: line 22 or 28.
In the first case,r ′ previously receives(ALIVE ,−,k)
from r, which contradicts the assumption thatr does not
send an(ALIVE ,−,k) message by timet. In the second
case,r ′ previously receives(CHECK, r,k), which means
some process sends(CHECK, r,k) before timet ′, which
contradicts the choice ofr ′.

– If k= 0 then, at timet ′, leaderr′ = r, and sor ′ previously
set leaderr′ to r. When this happened,r ∈ activer′ (be-
cause the leader is picked among processes inactive).
Since r ′ 6= r, r ′ previously addedr to active, and so
r ′ previously received a(ALIVE ,−,k′) message from
r for somek′. Then,k′ = 0 (otherwise upon receiving
such a messager ′ setsphase[r] > 0, and so at time
t ′, phaser′ [r] > 0, contradicting the fact that at timet ′,
phaser′ [r] = k = 0). Thus,r ′ receives a(ALIVE ,−,k)
message fromr by timet, which contradicts the fact that
r does not send an(ALIVE ,−,k) message by timet. ⊓⊔

Definition 72 Suppose that

(1) a processp executes line 30 withq= sandtimerp[s] = 0
at some timete,

(2) p setstimerp[s] to timeoutp[s] in line 23 or 29 at some
time ts≤ te, and

(3) p does not settimerp[s] in line 23 or 29 during time in-
terval(ts, te].
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We say this timeout ofp on s is proper if and only if (a)
ts≥ t∆ and (b)timeoutp[s] ≥ ζ at timets. A timeout that is
not proper isimproper.

Lemma 73 For every process p, the number of improper
timeouts of p on s is finite.

Proof Identical to the proof of Lemma 44. ⊓⊔

Definition 74 An (ACCUSATION-s,ph) message is outdat-
ed if ph< phases[s] at the time this message is sent.

Note that any outdated(ACCUSATION-s,ph) message
that s receives does not affectcounters[s]. In fact, if s re-
ceives an(ACCUSATION-s,ph) message that is outdated,
thenphases[s] > ph at the timet this message was sent tos,
so phases[s] > ph also holds at the time whens executes
line 38 of its code (becausephases[s] is monotonically non-
decreasing). Thus,sdoes not execute line 39, i.e., it does not
modify counters[s].

Lemma 75 Suppose a process p times out on s (in line 30).
If this timeout is proper, then every(ACCUSATION-s,−)
message that p sends in line 31 as a consequence of this
timeout is outdated.

Proof Suppose some processp times out ons, and that this
timeout is proper. More precisely, suppose that

(1) p executes line 30 withq = s andtimerp[s] = 0 at some
time te,

(2) p setstimerp[s] to timeoutp[s] in line 23 or 29 at some
time ts≤ te,

(3) p does not settimerp[s] in line 23 or 29 during time in-
terval(ts, te], and

(4) ts≥ t∆ andtimeoutp[s]≥ ζ at timets.

Suppose that this timeout causesp to send some
(ACCUSATION-s,k) message, and letta ≥ te be the time
when this occurs (in line 31). We must prove that this
(ACCUSATION-s,k) is outdated, that is, we must show that
phases[s] > k at time ta. Suppose, for contradiction, that
phases[s] ≤ k at time ta. Sincephases[s] is monotonically
nondecreasing andte≤ ta, phases[s]≤ k also holds at timete.

We first note thatp executes at leastζ −1 complete it-
erations of its repeat forever loop during time interval[ts, te].
This follows from assumptions (1), (2), (3) and (4) above,
and the fact thatp decreasestimerp[s] by exactly 1 in each
repeat forever loop iteration (in line 43).

By Lemma 68,p takes at leastε(ζ −1) time to execute
(ζ −1) complete iterations of its repeat forever loop. Thus,
from the above,te≥ ts+ε(ζ−1). Sinceζ = ⌈(∆ ′+∆ )/ε⌉+
3, we havete≥ ts+∆ ′+∆ +2ε.

CLAIM 1: p does not receive any(ALIVE ,−,−) mes-
sages from s, or any(CHECK,s,−) messages, during time
interval (ts, te]. To see this, note that such a receipt would
causep to settimerp[s] in line 23 or 29, and this would hap-
pen during(ts, te] since, at timete, p executes line 30. This
would violate assumption (3).

Since p sends an(ACCUSATION-s,k) message tos at
time ta in line 31,phasep[s] = k at timeta. Sophasep[s] = k
also holds at timete whenp executes line 30.

CLAIM 2: s sends at least one(ALIVE ,−,k) message at
some time t≤ ts. There are two possibilities:

– If k > 0 then the only way forp to havephasep[s] = k at
timete is by receiving(ALIVE ,−,k) from s, or receiving
(CHECK,s,k) from some process, and this must happen
by timete. From Claim 1, this receipt must actually hap-
pen by timets. If p receives(ALIVE ,−,k) from sby time
ts thenssends(ALIVE ,−,k) at some timet ≤ ts. If p re-
ceives(CHECK,s,k) from some process by timets then,
by Lemma 71,s also sends(ALIVE ,−,k) at some time
t ≤ ts.

– If k= 0 then note that initiallytimerp[s] =−1 and at time
te, timerp[s] = 0. The only way forp to changetimerp[q]
from −1 to a nonnegative value is forp to receive
(ALIVE ,−,k′) from s or (CHECK,s,k′) from some pro-
cess, for somek′. This happens by timete, and so from
Claim 1, it happens by timets. Moreover,k′ = 0, oth-
erwise upon receiving such a message,p setsphasep[s]
to a positive value by timets, and sophasep[s] 6= 0 at
time ta, a contradiction. Thus, by timets, p receives
(ALIVE ,−,0) from s or (CHECK,s,0) from some pro-
cess. In the first case,ssends(ALIVE ,−,0) at some time
t ≤ ts. In the second case, by Lemma 71,s also sends
(ALIVE ,−,0) at some timet ≤ ts.

This shows Claim 2.
Claim 2 implies thatphases[s] = k at time t. Since

phases[s]≤ k at timete (wherete > ts≥ t), andphases[s] is
monotonically nondecreasing, we conclude thatphases[s] =
k during the entire time interval[t, te].

Thus, by repeated applications of Lemma 66 starting at
time t, it is clear that from timet and up to timete, s sends
an (ALIVE ,−,k) message top at least once every∆ ′ time;
more precisely,ssends at least one(ALIVE ,−,k) message to
p during each time interval(τ,τ + ∆ ′] contained in interval
[t, te].

Since time interval(ts, ts + ∆ ′] is contained in time in-
terval [t, te] (becauset ≤ ts and ts + ∆ ′ ≤ te), s sends an
(ALIVE ,−,k) message top during(ts, ts+∆ ′] . By assump-
tion (4), ts≥ t∆ . Thus, by Lemma 67 and the definitions of
t∆ and∆ , this(ALIVE ,−,k) message is delivered top from
sduring time interval(ts, ts+∆ ′+∆ ].

CLAIM 3: p executes at least one complete iteration of
its repeat forever loop during time interval[ts+ ∆ ′+ ∆ , te].
To see this, recall thatp executesat leastζ −1 complete it-
erations of its repeat forever loop during time interval[ts, te].
Moreover, during time interval[ts, ts+ ∆ ′+ ∆ ], p executes
at most⌈(∆ ′+ ∆ )/ε⌉ = ζ −3 complete iterations of its re-
peat forever loop (this follows from the definition ofε). This
implies Claim 3.

Since an(ALIVE ,−,k) message is delivered top from s
during time interval(ts, ts+ ∆ ′+ ∆ ], andp executes at least
one complete iteration of its repeat forever loop during time
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interval [ts+ ∆ ′+ ∆ , te], we conclude thatp receives some
(ALIVE ,−,−) message froms during interval(ts, te] — a
contradiction to Claim 1. ⊓⊔

The above lemma considers ACCUSATION messages
sent in line 31. A process that receives such messages may
forward it in line 40. The next corollary says that if a timeout
is proper then any ACCUSATION that it generates (whether
in line 31 or 40) is outdated.

Corollary 76 Suppose a process p times out on s (in line 30).
If this timeout is proper, then every(ACCUSATION-s,−)
message that is sent to s (in line 31 or 40) as a consequence
of this timeout is outdated.

Proof By Lemma 75, if a processp times out on s
(in line 30) and this timeout is proper, then every
(ACCUSATION-s,−) message thatp sends to all other pro-
cesses in line 31 as a consequence of this timeout is out-
dated. Let(ACCUSATION-s,ph) be the first such message
that p sends, and lett be the time at which it is sent. Since
this message is outdated, then every(ACCUSATION-s,ph)
that is sent at timet ′ ≥ t is also outdated (this is be-
causephases[s] is monotonically non-decreasing). In par-
ticular, every (ACCUSATION-s,ph) message that is sent
by a process tos in line 40 (after receiving one of the
(ACCUSATION-s,ph) messages sent earlier byp in line 31)
is also outdated. ⊓⊔

Lemma 77 counters[s] is bounded.

Proof Note that s increases itscounters[s] only if it re-
ceives an(ACCUSATION-s,−) message (lines 35-40). There
are two kinds of such(ACCUSATION-s,−) messages: (a)
those that are sent tos as a consequence of aproper time-
out on s, and (b) those that are sent tos as a conse-
quence of animproper timeout ons. By Corollary 76, all
the(ACCUSATION-s,−) messages of kind (a) are outdated.
As we previously observed, such messages do not affect
counters[s]. Thus only those messages of kind (b) may cause
s to incrementcounters[s]. By Lemma 73, the number of im-
proper timeouts ons is finite. Since each timeout onscauses
at mostn−1 (ACCUSATION-s,−) message to be sent tos,
the number of(ACCUSATION-s,−) messages of kind (b) is
finite. Thereforecounters[s] is bounded. ⊓⊔

Definition 78 For every processp, let cp be the largest
value of counterp[p] in the run that we consider (cp = ∞
if counterp[p] is unbounded). Letℓ be the process such that
(cℓ, ℓ) = min{(cp, p) : p is a correct process}.

By definition,ℓ is a correct process. Furthermore, by Lemma
77, counters[s] is bounded, i.e.,cs < ∞. Thus,cℓ < ∞, i.e.,
counterℓ[ℓ] is bounded.

Lemma 79 For every correct process p, if there is a time
after which ℓ ∈ activep, then there is a time after which
leaderp = ℓ.

Proof This proof is identical to the proof of Lemma 49 (ex-
cept that it uses Lemma 61 instead of Lemma 33), and hence
we omit it here. ⊓⊔

Observation 80 For every correct process p, there is a time
after which p∈ activep.

Proof Whenp executes its initialization code, it setsactivep
to {p}. Thereafter,p never removes itself fromactivep. ⊓⊔

Corollary 81 There is a time after which leaderℓ = ℓ.

Proof By Observation 80, there is a time after whichℓ ∈
activeℓ. The result now follows from Lemma 79. ⊓⊔

Corollary 82 There is a time after which phaseℓ[ℓ] stops
changing.

Proof Note thatℓ changesphaseℓ[ℓ] only when it considers
that it lost the leadership (in lines 5-6), and each time this
occursℓ setsleaderℓ 6= ℓ (in line 8). By Corollary 81, this
can happen only a finite number of times. ⊓⊔

Definition 83 Let ℓphasebe the final value ofphaseℓ[ℓ].

Note that sincephaseℓ[ℓ] is monotonically nondecreasing,
ℓphaseis also the largest value ofphaseℓ[ℓ].

Lemma 84 For every correct process p, there is a time after
which if leaderp = ℓ then phasep[ℓ]≥ ℓphase.

Proof Let p be a correct process. Ifp = ℓ then the lemma
follows by the definition ofℓphase. Now supposep 6= ℓ. If
there is a time after whichleaderp 6= ℓ then the lemma fol-
lows vacuously. So, suppose thatleaderp = ℓ infinitely of-
ten. Then, by the wayleaderp is computed,ℓ ∈ activep at
the beginning of infinitely many iterations of the repeat for-
ever loop. Note that initiallyℓ 6∈ activep sinceℓ 6= p, and soℓ
is added toactivep at least once, and this happens in line 20.

We claim thatℓ is added toactivep in line 20 infinitely
often. Indeed, suppose not and consider the last time when
ℓ is added toactivep. When this happens,timerp[ℓ] is set
to timeoutp[ℓ]. Subsequently, each loop iteration decrements
timerp[ℓ], until it finally reaches 0. Then, the next loop iter-
ation removesℓ from activep and thereafterℓ is never again
in activep—a contradiction that shows the claim.

By the claim,p receives(ALIVE ,−,−) messages fromℓ
infinitely often. Note thatℓ sends only finitely many
(ALIVE ,−,x) messages withx < ℓphase. Therefore, there
is a time after which the only(ALIVE ,−,y) messages re-
ceived fromℓ are those withy≥ ℓphase. When p receives
one such message,p setsphasep[ℓ] to y ≥ ℓphase. Then,
phasep[ℓ] ≥ ℓphaseforever after, sincephasep[ℓ] is mono-
tonically nondecreasing. ⊓⊔

Lemma 85 A process p can send only finitely many
(ACCUSATION-ℓ,x) messages with x< ℓphase.
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Proof Note that (1)ℓ sends only finitely many(ALIVE ,−,x)
messages withx < ℓphase. We now claim that (2) only
finitely many (CHECK, ℓ,x) are sent withx < ℓphase. In-
deed, when some correct processq sends a(CHECK, ℓ,x)
message,leaderq = ℓ andphaseq[ℓ] = x. By Lemma 84, there
is a time after which ifleaderq = ℓ thenphaseq[ℓ]≥ ℓphase.
Thus, there is a time after which any(CHECK, ℓ,x) message
thatq sends hasx≥ ℓphase. This shows the claim.

Consider any processr. We now claim thatr sends
(ACCUSATION-ℓ,x) only finitely many times withx <
ℓphase in line 31. This claim immediately implies the
lemma, because a process can relay an ACCUSATION mes-
sage in line 40 only if another process previously sent this
message in line 31. To show the claim, suppose that pro-
cessr sends(ACCUSATION-ℓ,x) and (ACCUSATION-ℓ,x′)
in line 31 withx,x′ < ℓphaseat two different timest1 andt2.
Then, between timest1 andt2, r must settimerr [ℓ] to some
value different from−1. This can only happen in lines 23
and 29. Therefore, betweent1 andt2, r must either receive
(ALIVE ,−,x′′) from ℓ or receive(CHECK, ℓ,x′′) from some
process withx′′ < ℓphase. By (1) and (2), this can only hap-
pen finitely many times. This shows the claim. ⊓⊔

Lemma 86 No process sends(ACCUSATION-ℓ,ℓphase)
messages infinitely often in line 31.

Proof Suppose, for contradiction, that some processp
sends infinitely many(ACCUSATION-ℓ,ℓphase) messages
in line 31. Note thatp 6= ℓ, because a process never sends
ACCUSATION messages to itself. We claim thatℓ receives
such messages infinitely often, which is a contradiction be-
cause (1) every timeℓ receives such a message, it incre-
mentscounterℓ[ℓ], and so (2) eventuallycounterℓ[ℓ] becomes
greater thancℓ.

To show the claim, first assume thatp 6= h. Then
p sends (ACCUSATION-ℓ,ℓphase) to h infinitely often.
By Lemma 85, and the easy fact that no process
sends (ACCUSATION-ℓ,y) with y > ℓphase, there is a
time after which (ACCUSATION-ℓ,ℓphase) is the only
ACCUSATION-ℓ message thatp sends. This implies, by
Lemma 62, thath receives(ACCUSATION-ℓ,ℓphase) from
p infinitely often. If h = ℓ then the claim follows. Oth-
erwise, every timeh receives (ACCUSATION-ℓ,ℓphase)
from p, it sends (ACCUSATION-ℓ,ℓphase) to ℓ. So h
sends(ACCUSATION-ℓ,ℓphase) to ℓ infinitely often. By
Lemma 85, there is a time after which these are the only
ACCUSATION-ℓ messages thath sends. This implies, by
Lemma 62, thatℓ receives(ACCUSATION-ℓ,ℓphase) from
h infinitely often, which shows the claim.

The argument for the casep = h is very similar. ⊓⊔

Lemma 87 No process p adds and removesℓ to and from
its set activep infinitely often.

Proof Suppose, for contradiction, that some processp adds
and removesℓ to and fromactivep infinitely often. This
implies that (a)p receives(ALIVE ,−,−) messages fromℓ
infinitely often, and (b)p sends(ACCUSATION-ℓ,−) mes-
sages infinitely often in line 31. From (a) and the definition

of ℓphase, p eventually receives(ALIVE ,−, ℓphase) from ℓ.
So, there is a time after whichphasep[ℓ] = ℓphase. Thus,
from (b), p sends infinitely many(ACCUSATION-ℓ,ℓphase)
messages in line 31 — a contradiction to Lemma 86. ⊓⊔

Lemma 88 There is a time after whichℓ ∈ activeh and
phaseh[ℓ] = ℓphase.

Proof If h = ℓ the result follows by the definition ofℓphase
and the fact thatℓ ∈ activeℓ. Now assumeh 6= ℓ. By Corol-
lary 81 and the definition ofℓphase, ℓ sends an infinite
number of (ALIVE ,−, ℓphase) messages to all processes
except itself. Moreover,ℓ sends only a finite number of
(ALIVE ,−,y) with y 6= ℓphase. Sinceh 6= ℓ, this implies
by Lemma 62 thath receives an infinite number of these
(ALIVE ,−, ℓphase) messages fromℓ. Therefore, there is a
time after whichh hasphaseh[ℓ] = ℓphase. Moreover,h adds
ℓ to activeh infinitely often. From Lemma 87,h removesℓ
from activeh only finitely often, and so the lemma follows.

⊓⊔

By Lemmas 79 and 88, we have

Lemma 89 There is a time after which leaderh = ℓ.

Lemma 90 There is a time after which onlyℓ sendsALIVE
messages.

Proof Consider any correct processp 6= ℓ. From Lemma 87,
there are two possible cases:

1. There is a time after whichℓ ∈ activep. In this case, by
Lemma 79, there is a time after whichleaderp = ℓ. After
this time,p does not send ALIVE messages.

2. There is a time after whichℓ 6∈ activep. This implies that
(a) there is a time after whichp does not receive any
ALIVE message fromℓ and (b)p 6= h (by Lemma 88),
and (c)h 6= ℓ (because ifh = ℓ then, by Corollary 81,h
sends an infinite number ALIVE messages top, and so by
Lemma 62,p receives an infinite number of ALIVE mes-
sages fromh, which contradicts (a)). Now, suppose, for
contradiction, thatp sends ALIVE messages infinitely
often. By Lemma 62,h receives ALIVE messages from
p infinitely often. By Lemmas 88 and 89, there is a
time after whichleaderh = ℓ and phaseh[ℓ] = ℓphase.
After that time, each timeh receives an ALIVE mes-
sage fromp, h sends a(CHECK, ℓ, ℓphase) message to
p (sincep 6= ℓ andh 6= ℓ). Thus,h sends infinitely many
(CHECK, ℓ, ℓphase) messages top, and there is a
time after which (CHECK, ℓ, ℓphase) are the only
(CHECK,−,−) messages thath sends top. By Lem-
ma 62, this implies thatp receives(CHECK, ℓ, ℓphase)
from h infinitely often. Therefore, we have the follow-
ing:

(i) There is a time after whichp hasphasep[ℓ]=ℓphase,
(ii) p startstimerp[ℓ] and times out onℓ infinitely often

(because of (a)), and
(iii) p sends infinitely many(ACCUSATION-ℓ,ℓphase)

messages toℓ in line 31 — a contradiction to
Lemma 86.
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Thus, in both cases (1) and (2) there is a time after whichp
does not send ALIVE messages. ⊓⊔

Lemma 91 For every correct process p, there is a time after
which leaderp = ℓ.

Proof Let p be any correct process. From Lemma 87, there
are two possible cases:

1. There is a time after whichℓ ∈ activep. In this case, by
Lemma 79, there is a time after whichleaderp = ℓ.

2. There is a time after whichℓ 6∈ activep. Since a process
q 6= p can remain inactivep only if p keeps receiving
ALIVE messages fromq, then, by Lemma 90 and the
fact thatp∈ activep (always), there is a time after which
activep = {p}. So there is a time after whichleaderp =
p. From this time on,p repeatedly sends ALIVE forever
— a contradiction to Lemma 90.

Thus, only case (1) holds. ⊓⊔

Lemma 92 There is a time after which onlyℓ sends mes-
sages.

Proof There aren+ 2 types of messages: ALIVE , CHECK,
and ACCUSATION-q, for each processq.

1. By Lemma 90,there is a time after which onlyℓ sends
ALIVE messages.

2. Only a finite number ofCHECK messages are sent. To
see this, note that a processp sends a CHECK message to
another processq only if p receives an ALIVE message
from q at a time whenleaderp 6= q. By Lemmas 90 and
91, there is a time after which this cannot occur.

3. For any process q, only a finite number of
ACCUSATION-q messages are sent. To show this,
let q be a process. It is sufficient to prove that each
processp sends a finite number of ACCUSATION-q
messages in line 31 (this is becausep relays an
ACCUSATION-q message in line 40 only if another
process previously sent this message in line 31 of its
code).
When a processp sends an(ACCUSATION-q,−) mes-
sage in line 31,p “turns off” timerp[q] by setting it to
−1 in line 34. After this occurs,p can send another
(ACCUSATION-q,−) message in line 31 only ifp “turns
on” timerp[q] again in line 23 or line 29, and this can
happen only if (a)p receives an ALIVE message from
q (in line 19), or (b) p receives a(CHECK,−) mes-
sage (in line 26). Thus,p can send an infinite number
of (ACCUSATION-q,−) messages in line 31 only if (a)p
receives an infinite number of ALIVE messages fromq
or (b) p receives an infinite number of(CHECK,−) mes-
sages. From (1) and (2) above, we deduce thatp can send
an infinite number of(ACCUSATION-q,−) messages in
line 31 only forq = ℓ. But p sends only a finite num-
ber of(ACCUSATION-ℓ,−) in line 31, because each time
p sends such a message,p removesℓ from activep (in
line 32), and from Lemma 91, there is a time after which
ℓ∈ activep. Thus each processp sends only a finite num-
ber of(ACCUSATION-q,−) messages in line 31 for every
processq. ⊓⊔

From Lemmas 91 and 92, we get the following result:

Theorem 93 The algorithm in Figure 10 implementsΩ in
system S+, and it is communication-efficient.

7 Final remarks

In their 2002 PODC tutorial [24], Keidar and Rajsbaum pro-
pose several open problems related to the implementation
of failure detectors in partially synchronous systems. In par-
ticular, they ask what is the “weakest timing model where
3S and/orΩ are implementable but3P is not”. As a par-
tial answer to this question, we note that, in contrast toΩ ,
3P is not implementable in systemS. In fact, it is easy to
show that this holds even if we strengthenS by assuming
that (a) all the links inSare reliable (i.e., no message is ever
lost), and (b) processes know the identity of the eventually
timely source(s) inS. SoS is an example of a partially syn-
chronous system that is strong enough to implementΩ but
too weak to implement3P . Similarly,S+ is strong enough
for anefficientimplementation ofΩ , but still too weak for
implementing3P . Intuitively, this is because the level of
synchrony inSandS+ is not sufficient to get3P : in both
systems only theoutputlinks of some correct process(es) are
eventually timely. Note that if we strengthen the synchrony
of Sby assuming thatboththe input and output links of some
correct process are eventually timely, then3P becomes im-
plementable [2].

In [24], Keidar and Rajsbaum also ask: “When is build-
ing 3P more costly than3S or Ω?”. Concerning this
question, note that any implementation of3P (even in a
perfectly synchronous system) requires all alive processes
to send messages forever, whileΩ can be implemented such
that eventually only the leader sends messages (even in a
weak system such asS+).

Finally, it is also worth pointing out that the above results
provide an alternative proof that3P isstrictlystronger than
3S : this can be deduced from the fact thatΩ (and hence
3S ) is implementable in systemSbut 3P is not.

Acknowledgements The authors would like to thank the anonymous
referees for many helpful comments.

References

1. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.:
Type fairness and a comparison with other link fairness properties.
In preparation

2. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.:
Stable leader election. In: Proceedings of the 15th International
Symposium on Distributed Computing, LNCS 2180, pp. 108–122.
Springer-Verlag (2001)

3. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.:
On implementing Omega with weak reliability and synchrony as-
sumptions. In: Proceedings of the 22nd ACM Symposium on Prin-
ciples of Distributed Computing, pp. 306–314 (2003)



28 Marcos K. Aguilera et al.

4. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.:
Communication-efficient leader election and consensus with lim-
ited link synchrony. In: Proceedings of the 23rd ACM Symposium
on Principles of Distributed Computing, pp. 328–337 (2004)

5. Bertier, M., Marin, O., Sens, P.: Implementation and performance
evaluation of an adaptable failure detector. In: Proceedings of the
2002 International Conference on Dependable Systems and Net-
works, pp. 354–363 (2002)

6. Castro, M., Liskov, B.: Practical byzantine fault tolerance and
proactive recovery. ACM Transactions on Computer Systems
20(4), 398–461 (2002)

7. Chandra, T.D., Griesemer, R., Redstone, J.: Paxos made live: an
engineering perspective (invited talk). In: Proceedings of the 26th
ACM Symposium on Principles of Distributed Computing, pp.
398–407 (2007)

8. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure de-
tector for solving consensus. J. ACM43(4), 685–722 (1996)

9. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
distributed systems. J. ACM43(2), 225–267 (1996)

10. Chen, W., Toueg, S., Aguilera, M.K.: On the quality of service of
failure detectors. IEEE Transactions on computers51(5), 561–580
(2002)

11. Chu, F.: ReducingΩ to 3W. Information Processing Letters
67(6), 298–293 (1998)

12. Deianov, B., Toueg, S.: Failure detector service for dependable
computing. In: Proceedings of the 2000 International Conference
on Dependable Systems and Networks, pp. B14–B15 (2000)

13. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: Shared mem-
ory vs. message passing. Research Report IC/2003/77, EPFL
(2003)

14. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Hadzilacos,
V., Kouznetsov, P., Toueg, S.: The weakest failure detectors to
solve certain fundamental problems in distributed computing. In:
Proceedings of the 23rd ACM Symposium on Principles of Dis-
tributed Computing, pp. 338–346 (2004)

15. Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchro-
nism needed for distributed consensus. J. ACM34(1), 77–97
(1987)

16. Dutta, P., Guerraoui, R.: Fast indulgent consensus withzero degra-
dation. In: Proceedings of the 4th European Dependable Com-
puting Conference, LNCS 2485, pp. 191–208. Springer-Verlag
(2002)

17. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in thepres-
ence of partial synchrony. J. ACM35(2), 288–323 (1988)

18. Eisler, J., Hadzilacos, V., Toueg, S.: The weakest failure detec-
tor to solve nonuniform consensus. Distributed Computing19(4),
335–359 (2007)

19. Fernández, A., Raynal, M.: From an intermittent rotating star to
a leader. Tech. Rep. 1810, IRISA, Université de Rennes, France
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