
Path Feasibility Analysis for String-Manipulating
Programs

Nikolaj Bjørner1, Nikolai Tillmann1 and Andrei Voronkov2

1 Microsoft Research http://research.microsoft.com
2 University of Manchester http://www.voronkov.com

Abstract. We discuss the problem of path feasibility for programs manipulating
strings using a collection of standard string library functions. We prove results on
the complexity of this problem, including its undecidability in the general case
and decidability of some special cases. In the context of test-case generation, we
are interested in an efficient finite model finding method for string constraints.
To this end we develop a two-tier finite model finding procedure. First, an inte-
ger abstraction of string constraints are passed to an SMT (Satisfiability Modulo
Theories) solver. The abstraction is either unsatisfiable, or the solver produces a
model that fixes lengths of enough strings to reduce the entire problem to be finite
domain. The resulting fixed-length string constraints are then solved in a second
phase. We implemented the procedure in a symbolic execution framework, re-
port on the encouraging results and discuss directions for improving the method
further.

1 Introduction

Dynamic symbolic execution [8, 4, 15, 17] has recently gained attention in the context
of test-case generation. It extends static symbolic execution [12] by collecting sym-
bolic constraints from concrete execution traces obtained by monitoring the executed
instructions. In order to explore a different execution path it suffices to modify one of
the extracted symbolic traces by selecting and negating a branch condition, which we
call flipping a branch. Then a constraint solver is used to provide a satisfying assign-
ment to the modified path condition.

Strings form a fundamental data type found in most if not all general purpose pro-
gramming languages. Strings may be represented in various ways, such as a pointer
to a 0-terminated array of characters (in C), as an array object with an explicit length
(in Java and C#), or even as a singly linked list (in Haskell). Programs that manipulate
strings can often abstract from the representation and use a set of library routines to
perform common functions on strings, such as converting characters to strings, finding
characters and extracting substrings.

The problem String library routines are themselves implemented as programs, so dy-
namic symbolic execution can apply to string routines by exploring the underlying pro-
grams and solving constraints on the data types used in these programs. There is an
inherent overhead of this approach, as the general dynamic symbolic exploration en-
gine has to search the state space of the string library routines for solutions to string

constraints. We can take advantage of the fact that path constraints from common string
library routines have a mathematical abstraction rooted in word equations. This sug-
gests that we may work at the level of abstract strings and treat calls to the string library
functions as operations in a theory of strings. As we will see, the full set of constraints
that can be created from common string functions do not fall in a decidable class. On
the other hand, our objective is really to find small strings that can be supplied as unit
tests, so an incremental small and finite model-finding routine provides the right match.

The main existing way of handling strings in symbolic test-case generation tools is
to not handle them specially. For example in the current release of Pex [17], strings are
represented as arrays and string library routines are explored like any other procedure.
As a result, conceptually simple calls to library functions become programs containing
loops. Summaries [7] provide one additional layer on top of the string procedures to
allow the search on feasible paths to coalesce several traversals of the same procedure
body.

Example Consider the program shown in Figure 1. This program checks whether the
input string s is a URL encoding a query about EasyChair to either Microsoft Live
Search or Google. Essentially, such a string must start with ”http://” followed by a
domain of one of the search engines, followed by a ”/”, and after this ”/” it should
contain a substring ”EasyChair” and not contain other ”/”.

private bool IsEasyChairQuery(string str)
{
// (1) check that str contains "/" followed by anything not
// containing "/" and containing "EasyChair"
int lastSlash = str.LastIndexOf(’/’);
if (lastSlash < 0){return false;}
var rest = str.Substring(lastSlash + 1);
if (! rest.Contains("EasyChair")){return false;}
// (2) Check that str starts with "http://"
if (! str.StartsWith("http://")){return false;}
// (3) Take the string between "http://" and the last "/".
// if it starts with "www." strip the "www." off
var t = str.Substring("http://".Length,

lastSlash - "http://".Length);
if (t.StartsWith("www.")){t = t.Substring("www.".Length);}
// (4) Check that after stripping we have either "live.com"
// or "google.com"
if (t != "live.com" && t != "google.com"){return false; }
// s survived all checks
return true;

}

Fig. 1. The EasyChair Query program

We will use this program as the running example.

Example 1. Consider the following path in the program, where queries are denoted by
“?”.

lastSlash = str.LastIndexOf(’/’);
? ¬ lastSlash < 0
rest = str.Substring(lastSlash + 1);
? rest.Contains("EasyChair")
? str.StartsWith("http://")
t = str.Substring("http://".Length,lastSlash - "http://".Length);
? t.StartsWith("www.")
t = t.Substring("www.".Length);
? t = "live.com"

We are interested in checking feasibility of this path, that is, finding an input string str
so that the program run with this string as an input will follow this path.

The rest of this paper is organized as follows. Above we introduced a running exam-
ple illustrating path constraints from a simple string-manipulating program. Section 2
defines path feasibility in the context of constraints from basic .NET string library func-
tions and defines a first-order string library language corresponding to these library
functions. The resulting constraints for all but one library function are compiled into
the core language as outlined in Section 3. Section 4 discusses the decidability of the
library language. One fragment is equivalent to a long standing open problem in word
equations, another fragment is shown undecidable. This confirms the complexity of the
path feasibility problem for string library functions. We also show that a so-called fixed-
length fragment is decidable: this fact is used in our implementation. We point out that
two other decidable fragments can be obtained using results from word equations and
automatic structures. Section 5 outlines our incremental procedure for enumerating so-
lutions to core language constraints. Sections 6 and 7 describe an implementation and
its evaluation.

2 Path Feasibility and String Constraints

In this section we define a language for representing the path feasibility problem as a
constraint satisfaction problem.

The String Library Language In this section we will introduce a string library lan-
guage LL. This language is a first-order language for describing constraints involving
string library functions. The string library we are interested in is the .NET String li-
brary, however, we believe that other string libraries can be captured by similar lan-
guages and processed using the methods described in this paper.

Let C be a finite set of characters and S the set of all strings built using these
characters. By I we denote the set of all integers. The string library language LL is
a many-sorted first-order language defined as follows. The language has the following
three sorts: the character sort C, the string sort S, the integer sort I and the Boolean
sort B. It also contains a countably infinite number of variables of each sort.

function type meaning
Chars(s, i) S × I → C the character at position i in s
Compare(s1, s2) S × S → I string comparison
Concat(s1, s2) S × S → S string concatenation
Contains(s1, s2) S × S → B true if s2 is a substring of s1

Equals(s1, s2) S × S → B true if s1 = s2

IndexOf4(s1, s2, i) S × S × I → I the index of the first occurrence of s2 in s1 starting at po-
sition i or −1 if not found

LastIndexOf1(s, c) S × C → I the index of the last occurrence of c in s or−1 if not found
Length(s) S → I the length of s
Replace2(s1, s2, s3) S × S × S → S replace all occurrences of s2 in s1 with s3

StartsWith(s1, s2) S × S → B true if s1 starts with s2

Substring1(s, i) S × I → S substring of s starting at position i
Substring2(s, i1, i2) S × I × I → S substring of s starting at position i1 and having length i2
ToString(c) C → S string consisting of a single character c
ToUpper(s) S → S string obtained by converting s to upper case

Table 1. String library functions

The language LL contains constants denoting all integers, characters and strings,
and some functions on strings and integers. Table 1 contains a description of a represen-
tative subset of the .NET string library. In this description xi denotes the ith argument
of a function. Positions in strings are number from 0 so the character at the position 0
in a string is always the first character of the string.

Some functions of the .NET library are overloaded. To resolve ambiguity, we add
indexes to the names of these functions. For example, there are six different .NET func-
tions having the name IndexOf. In LL we add indexes to function names to distinguish
them (cf. IndexOf4 in the table).

To define the semantics of LL we introduce a notion of value assignment. A value
assignment for this language is a mapping of variables to C∪S∪I so that every variable
is mapped to an element of the corresponding domain, for example, variables of the
sort I are mapped to integer values. We will now extend value assignments to arbitrary
expressions and quantifier-free formulas. To this end we should take care of undefined
values since some of the library functions are partial and calling them outside of their
domain causes an exception. We will specify the exception conditions later.

Let us introduce a special undefined value ⊥ and extend value assignments to ar-
bitrary expressions of LL as follows. For every value assignment v and expression e
different from a variable we define v(e) as follows.

1. If e is a constant, then v(e) is the value of this constant, for example the value of
the integer constant 7 is the number 7.

2. Suppose that e has the form f(e1, . . . , en) where f is a function of LL and let
v1 = v(e1), . . . , vn = v(en). If for some i ∈ {1, . . . , n} we have vi = ⊥, then
v(e) = ⊥. Otherwise, let the f̂ be the function corresponding to f (see Table 1 for
the definition of these functions). If f̂ is undefined on (v1, . . . , vn), then v(e) = ⊥,
otherwise v(e) if the value f̂(v1, . . . , vn).

If v(e) = ⊥, we say that v(e) is undefined under the value assignment v.
The next step is to define the semantics of formulas. To this end we will use the

three-valued logic having the Boolean values true and false and the undefined value
⊥. In this logic, for example, a disjunction is true if at least one of its members is true;
false if all of them are false and undefined otherwise. We leave out details due to a lack
of space.

Path Feasibility Suppose that π is a path in a program using only assignments and
tests. The path feasibility problem is the problem of finding initial values of variables
which makes the path feasible, that is the values so that for the program execution
starting with this assignment satisfies all tests on the paths and raises no exceptions.
The path feasibility problem can be reduced to the following constraint satisfaction
problem for LL:

Given a finite set {L1, . . . , Ln} of literals, find a value assignment v which
makes all of these literals true.

Evidently, the path feasibility problem can be reduced in a straightforward way to the
constraint satisfaction problem for LL. We do not give full details here but restrict
ourselves to an example.

Example 2. Consider the path of Example 1. This path can be translated to the follow-
ing constraint.

i1 = LastIndexOf1(s1,’/’)
¬i1 < 0.
s2 = Substring1(s1, i1 + 1).
Contains(s2,"EasyChair").
StartsWith(s1,"http://").

i2 = Length("http://").
s3 = Substring2(s1, `, i1 − i2).
StartsWith(s3,"www.").
s4 = Substring1(s3,Length("www.")).
s4 = "live.com".

This constraint is satisfiable if and only if there exists an initial value of the variable
s1 so that the program will follow the intended path.

3 The Core String Language

In this section we will define the so-called core string language CL. This language
contains a smaller number of functions than LL but we will be interested in a larger
fragment of this language, including propositional connectives and bounded quantifiers
of a special form. This language will play the role of an intermediate language between
the string library language and an SMT solver. We will start with defining CL and giving
a translation of LL into CL. This translation will also define the semantics of the LL
functions in a strict way as opposed to a less formal description in Table 1.

Definition 1 (core string language). The core string language contains the following
functions:

1. The string functions Length and Chars. We will write `(s) instead of Length(s) and
s[i] instead of Chars(s, i).

2. The standard functions and predicates of linear integer arithmetic.
3. Some functions and predicates on characters. We do not specify the set of all these

functions but will use two of them (comparison < and ToUpper) later.

The formulas of the language are defined as follows:

1. Every atomic formula is a formula;
2. If F1 and F2 are formulas, then ¬F1, F1 ∧F2, F1 ∨F2 and F1 → F2 are formulas.
3. If F is a formula, i a variable of the sort I and e1, e2 expressions of the sort I not

containing i, then (∀i)(e1 ≤ i ∧ i ≤ e2 → F) and (∃i)(e1 ≤ i ∧ i ≤ e2 ∧ F) are
formulas.

We will write (∀i ∈ [e1 . . . e2])F and (∃i ∈ [e1 . . . e2])F respectively instead of
(∀i)(e1 ≤ i ∧ i ≤ e2 → F) and (∃i)(e1 ≤ i ∧ i ≤ e2 ∧ F). Note the following
equivalences:

¬(∀i ∈ [e1 . . . e2])F ≡ (∃i ∈ [e1 . . . e2])¬F ;
¬(∃i ∈ [e1 . . . e2])F ≡ (∀i ∈ [e1 . . . e2])¬F.

For simplicity we will usually say the library language instead of the string library
language and the core language instead of the core string language. Likewise, we will
simply say library functions and core functions.

Function exception condition
Chars(s, i) i < 0 ∨ i ≥ `(s)
IndexOf4(s1, s2, i) i < 0 ∨ `(s1) ≥ i
Replace2(s1, s2, s3) `(s2) = 0
Substring1(s, i) i < 0 ∨ i > `(s)
Substring2(s, i1, i2) i1 < 0 ∨ i2 < 0 ∨ i1 + i2 > `(s)

Table 2. Exception conditions for the library functions

Let us now define for-
mally the translation of the
library language into the
core language. We will do
this by first defining ex-
ception conditions for all
library functions and then
the library functions them-
selves using the core lan-
guage. The exception con-
ditions are given in Table 2.
Note that ` is the only non-
arithmetical core function

used in the exception conditions.
Let us introduce two abbreviations for the core language as follows.

s1[i . . . j] = s2
def= `(s2) = j − i+ 1 ∧ (∀k ∈ [i . . . j])(s1[k] = s2[k − i]). (1)

s1 v s2
def= (∃i ∈ [0 . . . `(s2)− `(s1)])s2[i . . . i+ `(s1)− 1] = s1. (2)

One can easily show that s1 v s2 is equivalent to Contains(s2, s1) and to ∃s3∃s4(s3 ·
s1 · s4 = s2). The difference is that s1 v s2 is a formula of the core language.

Let us now give a definition for every library function in the core language. This,
together with the definition of exception conditions, also provides a precise semantics

function definition
Chars(s, i) s[i]
Compare(s1, s2) = 0 s1 = s2

Compare(s1, s2) < 0 (∃i ∈ [0 . . . `(s1)− 1])(`(s2) > i ∧ s1[0 . . . i− 1] = s2[0 . . . i− 1]∧
(`(s1) = i ∨ s1[i] < s2[i]))

Compare(s1, s2) > 0 (∃i ∈ [0 . . . `(s2)− 1])(`(s1) > i ∧ s1[0 . . . i− 1] = s2[0 . . . i− 1]∧
(`(s2) = i ∨ s2[i] < s1[i]))

Concat(s1, s2) s1 · s2

Contains(s1, s2) s2 v s1

Equals(s1, s2) s1 = s2

IndexOf4(s1, s2, i1) = i0 (i0 = −1 ∧ s2 6v s1[i1 . . . `(s1)− 1])∨
(i0 ≥ i1 ∧ s1[i0 . . . i0 + `(s2)− 1] = s2∧
(∀j ∈ [i1 . . . i0 − 1])(s1[j . . . j + `(s2)− 1] 6= s2))

LastIndexOf1(s, c) = i (i = −1 ∧ (∀j ∈ [0 . . . `(s)− 1])s[j] 6= c)∨
(i ≥ 0 ∧ s[i] = c ∧ (∀j ∈ [i + 1 . . . `(s)− 1])s[j] 6= c)

Replace2(s1, s2, s3) no definition exists
StartsWith(s1, s2) (∃i ∈ [0 . . . `(s1)− `(s2)])s[0 . . . i− 1] = s2

Substring1(s, i) s[i . . . `(s)− 1]
Substring2(s, i1, i2) s[i1 . . . i1 + i2 − 1]
ToString(c) = s `(s) = 1 ∧ s[0] = c
ToUpper(s1) = s2 `(s2) = `(s1) ∧ (∀i ∈ [0 . . . `(s1)− 1])Upper(s1[i], s2[i])

Table 3. Definitions of some library predicates

for the library functions instead of the less formal explanation given in Table 1. The
definitions of the library functions are given in Table 3.

We are interested in the following fragment of the core language.

Definition 2. Let F be a formula of either the library or the core language such that (i)
the string variables occurring in F are s1, . . . , sn and (ii) F contains no free occurrences
of integer variables. The formula F is said to be a fixed-length formula if it has the form

`(s1) = i1 ∧ . . . ∧ `(sn) = in ∧ F ′,

where i1, . . . , in are concrete integer constants. The fixed-length fragment of the library
(respectively, core) language is the set of all fixed-length formulas of this language.

Theorem 1. The satisfiability problem for the fixed-length fragment of the core lan-
guage is decidable.

Proof. Since i1, . . . , in are integer constants, every value assignment that satisfies the
formula assigns to sk a string of the length ik, for all k = 1 . . . n. There exists only
a finite number of value assignments with this property, so by substituting these value
assignments the formula can be replaced by a finite disjunction of formulas with no free
variables. It remains to show that satisfiability of closed formulas of the core language
is decidable. This can be proved by induction on the depth of quantifiers in a formula
F . If the number of quantifiers in F is 0, F is a variable-free quantifier-free formula

which can simply be evaluated. Suppose now that F has at least one quantifier, we will
then show how to eliminate a quantifier in F . Take any quantified subformula G of F
that is not in the scope of another quantifier. Without loss of generality we can assume
that G is of the form (∀i ∈ [e1 . . . e2])H(i). Then e1 and e2 are variable free, so they
can be evaluated to concrete integer values k1 and k2, hence G can be replaced by the
conjunction

∧
k1≤k≤k2

H(k) having a smaller quantifier depth.

Note that this proof works for the string library with any finite number of functions
or predicates on characters, since for such functions we only need that they can be
computed. There is another, more efficient decision procedure for this fragment used in
our implementation.

As a consequence of this theorem we obtain the following result.

Theorem 2. The satisfiability problem for the fixed-length fragment of the library lan-
guage without the function Replace is decidable.

Proof. Using definitions of Table 3 one can translate any formula of the library lan-
guage without the function Replace into an equivalent formula of the core language.
Since the translation does not introduce new free variables, any fixed-length formula is
translated into a fixed-length formula. Then apply Theorem 1 on the decidability of the
fixed-length fragment of the core language.

Theorem 2 and its proof provide a foundation for our method of constraint solving.

4 Decidability and Undecidability Results for the Library
Language

In this section we consider the full (not fixed-length) library language. We will show
that constraint solving for this language is undecidable. We will also point out that the
decidability of a very large fragment of this language is equivalent to the decidability
problem of a well-known problem related to word equations. Finally, we will prove
some decidability results.

It is easy to see that several functions and predicates of the string library can be
expressed using string concatenation. Among the representative subset selected by us
these are Concat, Contains, Equals and StartsWith. Solving constraints using only such
functions and predicates can be reduced to solving word equations and so is decidable.
However, this fragment is hardly very practical.

Word Equations and Equal Length Constraints Let us call the subset of LL without
Replace, ToUpper the pure library language. It is interesting that path feasibility in the
pure library language is equivalent to a well-known extension of word equations whose
decidability is an open problem. This problem is known as word equations with the
equal length predicate. The equal length predicate, denoted by `` is true on a pair of
strings s1, s2 if and only if s1 and s2 have the same length. The decidability of word
equations with the equal length predicate is an open problem [3, 13].

Theorem 3. The path feasibility problem in the pure library language is decidable if
and only if word equations with the equal length predicate are decidable.

Proof. We will show how to reduce the two problems to each other. To this end, we will
first reformulate the constraint satisfaction problem for LL as a problem on strings. To
represent a character c as a string we will use the string consisting of this character. To
represent non-negative integers, we will use the following idea. Let us fix a letter of the
alphabet, for example, |. We will use the string | . . .| of the length n, denoted by n̂ as a
representation for the number n and call such strings numerals. To represent a negative
number −n we can use, for example, the string -| . . .| of the length n+ 1, that is -n̂.
Let us prove several facts about this representation. When we write that some relation
can be represented we mean that it can be represented using an existential formula. Note
the well-known fact [3] that inequations of words can be represented using equations,
hence we will not consider negative literals in the proof.

Using word equations one can express that a string s is a numeral. Indeed, consider
the equation s| = |s. The solutions of this equation are exactly all numerals.

Using word equations one can express the addition on integers. In our representation
the addition on non-negative integers becomes string concatenation: indeed, m̂n̂ =
m̂+ n for all non-negative integers m,n. It is not hard to represent addition on all
integers too.

One can express the equal length predicate using the length function and vice versa.
One direction is obvious since ``(s1, s2) ≡ `(s1) = `(s2). In the other direction, note
that the length of a string s is equal to n if and only if s and n̂ have equal length.

What remains to note is that for the pure library language functions both the equality
and the inequality between these functions can be represented using string concatena-
tion and the length function.

Let us now prove an undecidability result.

Theorem 4. The path feasibility problem for the library language is undecidable.

Proof. For every character c of the alphabet consider the following function `c: for
every string s, `c(s) = n̂, where n is the number of occurrences of c in n. We will use a
following result from [3]: the existential theory of words with concatenation, the equal
length predicate and functions `0, `1 is undecidable. We already proved in Theorem 3
that the equal length predicate is expressible in the string library language, it remains to
note that using `c for every character c is expressible using the library function Replace.

One can prove other decidability results about using automatic structures, we will
only briefly sketch how one can prove them here. Let us call a predicate or a function
on strings automatic if it can be represented by a finite automaton, for details see [11].
To apply this definition to integers and characters we assume that they are represented
respectively as numerals and as one-character strings. The string library contains several
automatic functions, namely Chars, Compare, Equals, Length, StartsWith, ToString,
ToUpper. Other functions are not automatic but have automatic instances when one or
more arguments are instantiated to constants. For example, for every constant string s2,
Concat(s1, s2) considered as a function of s1 is automatic. It is also automatic if we fix

the first argument s1 to be constant. It is known that the full first-order theory of every
automatic structure (structure in which all predicates and functions are automatic) is
decidable. However, this result is hardly interesting in practice for two reasons. Firstly,
using automata-based method on large alphabets is prohibitively expensive. Secondly,
the resulting decidable fragment is too narrow for applications, for example, it does not
include concatenation and integer addition.

5 Solving constraint satisfaction problems in the target language

Our algorithm for checking constraint satisfaction is described here and works as fol-
lows. First, we flatten the input constraint obtaining a flattened constraint C. After that,
we produce a so-called integer abstraction of the problem. The integer abstraction is a
quantifier-free formula I of linear arithmetic over two kinds of integer variable: those
coming from the constraint C and those denoting the lengths of string variables occur-
ring in C. After that we look for small solutions to I . If there is no such solution, then
the original constraint is unsatisfiable. If I has a solution it gives us the lengths of all
string variables in C. When we fix the length, we obtain a fixed-length formula in the
core language which can be decided by a finite domain CSP or a SAT solver. If this
formula has no solution, backtrack and try to find another solution of I .

i1 = LastIndexOf1(s1,’/’).
¬i1 < 0.
s2 = Substring1(s1, i1 + 1).
Contains(s2,"EasyChair").
StartsWith(s1,"http://").
i2 = Length("http://").
s3 = Substring2(s1, i2, i1 − i2).
StartsWith(s3,"www.").
i3 = Length("www.").
s4 = Substring1(s3, i3).
s4 = "live.com"

Flattening A constraint C is called flat if
all string library functions occur in C at the
top level, that is, for every term of formula
p(t1, . . . , tn) occurring in C, where p is differ-
ent from equality, the terms t1, . . . , tn contain
no occurrences of the string library functions.
For example, the constraint Substring1(s1, i1 +
i2) is flat while the constraint s1 = Concat
(s2, Substring1(s3, 1)) is not, since Substring1

does not occur at the top level. One can change
any constraint into a constraint all whose liter-
als are flat by introducing extra variables for sub-
terms. For example, the constraint of Example 2 will become as shown above.

Integer abstraction The integer abstraction of a literal defines necessary conditions for
the literal to be true. This implies that every solution to the literal must also be a solution
to the integer abstraction. For every literal L in a flat constraint its integer abstraction
is built as follows. First, let F e be the exception condition corresponding to the literal
L in Table 2; F e is false if there are no matching exception conditions for L. If the
literal L matches an entry in Table 4 with formula F i, then the integer abstraction of L
is given as ¬F e ∧ F i. If L is a negation ¬L′ and L′ matches an entry in Table 4, then
the abstraction is given as ¬F e; otherwise, the abstraction of L is set to L.

The flat constraint for our running example has the integer abstraction given in
Figure 2.

function abstraction
Compare(s1, s2) = c (`(s1) = 0→ c ≤ 0) ∧ (`(s2) = 0→ c ≥ 0)
Concat(s1, s2) = s `(s) = `(s1) + `(s2)
Contains(s1, s2) `(s1) ≥ `(s2)
IndexOf4(s1, s2, i1) = i i = −1 ∨ (i ≥ i1 ∧ i + `(s2) ≤ `(s1))
LastIndexOf1(s, c) = i i = −1 ∨ i < `(s)

Replace2(s1, s2, s3) = s0
(`(s2) ≥ `(s3)→ `(s1) ≥ `(s0))∧
(`(s2) ≤ `(s3)→ `(s1) ≤ `(s0))

StartsWith(s1, s2) `(s1) ≥ `(s2)
Substring1(s1, i) = s0 `(s0) = `(s1)− i
Substring2(s1, i, j) = s0 `(s0) = j ∧ `(s1) ≥ i + j
ToString(c) = s `(s) = 1
ToUpper(s1) = s0 `(s0) = `(s1)

Table 4. Integer abstraction of library predicates

i1 = LastIndexOf1(s1,’/’) i1 = −1 ∨ i1 < `(s1)
¬i1 < 0 ¬i1 < 0
s2 = Substring1(s1, i1 + 1) ¬(i1 + 1 < 0 ∨ i1 + 1 > `(s1)) ∧ `(s2) = `(s1)− i1 − 1
Contains(s2,"EasyChair") `(s2) ≥ 9
StartsWith(s1,"http://") `(s1) ≥ 7
i2 = Length("http://") i2 = 7

s3 = Substring2(s1, i2, i1 − i2)
¬(i2 < 0 ∨ i1 − i2 < 0 ∨ i2 + i1 − i2 > `(s1))∧
`(s3) = i1 − i2 ∧ `(s1) ≥ i2 + i1 − i2

StartsWith(s3,"www.") `(s3) ≥ 4
i3 = Length("www.") i3 = 4
s4 = Substring1(s3, i3) ¬(i3 < 0 ∨ i3 > `(s3)) ∧ `(s4) = `(s3)− i3
s4 = "live.com" `(s4) = 8

Fig. 2. Integer abstraction of the example program

Fixed-length constraint satisfaction problems. A constraint C is said to be fixed-
length if for every string variable s occurring in C, the constraint also contains a literal
of the form `(s) = i, where i is an integer constant. One can easily note that in this case
for every solution of C the length of s is i.

Consider any flat constraintC and its integer abstraction I . If I is unsolvable, thenC
has no solution either, Let us now take any value assignment v that solves I and consider
the constraint C ′ obtained by adding to C all constraints of the form `(s) = v(i), where
s is a string variable occurring in C and i the integer variable denoting the length of
s. One can immediately see that C ′ is a fixed-length constraint and that every solution
to C ′ is also a solution to C. Our next observation is that the satisfiability problem for
fixed-length constraints is decidable by Theorem 1.

6 Implementation and integration with an SMT solver

In Pex, Strings are represented as an abstract type String. We associate the predicate
null(s) that takes a string s and is true if the string represented by s is a null pointer.

The function length(s) results in the length of s, and the function chars(s) results
in an array, whose domain consists of 32-bit bit-vectors and the range comprises of
unicode characters (16-bit bit-vectors).

Building abstract execution paths All string library functions have implementations
in Microsoft’s .NET base class library, but many of these are in native code and therefore
not in the scope of what Pex can analyze (Pex only analyzes .NET code). Pex therefore
contains straightforward implementations of each of the string library functions written
in C#. We show the implementation of the IndexOf function as an example below.

p u b l i c s t a t i c i n t IndexOf (s t r i n g t e x t , s t r i n g key , i n t s t a r t , i n t c o u n t)
{

i f (t e x t == n u l l) throw new N u l l R e f e r e n c e E x c e p t i o n () ;
i f (key == n u l l) throw new Argumen tNu l lExcep t ion () ;
i f (s t a r t < 0 | c o u n t < 0 | s t a r t + c o u n t < 0 |

s t a r t + c o u n t > t e x t . Length)
throw new ArgumentOutOfRangeExcept ion () ;

i f (key . Length == 0) re turn s t a r t ;
i f (c o u n t < key . Length) re turn −1;
re turn IndexOfC (t e x t , key , s t a r t , c o u n t) ;

}

p r i v a t e s t a t i c i n t IndexOfC (s t r i n g t e x t , s t r i n g key , i n t s t a r t , i n t c o u n t)
{

i n t end = s t a r t + c o u n t − key . Length + 1 ;
f o r (i n t i = s t a r t ; i < end ; i ++) {

bool b = t rue ;
f o r (i n t j = 0 ; b && j < c o u n t ; j ++)

b &= t e x t [i + j] == key [j] ;
i f (b) re turn i ;

}
re turn −1;

}

The implementation contains two parts, the preamble within the body of IndexOf is
a straight-line code sequence that checks for exception conditions and boundary values.
These checks include the conditions listed in Table 2 and parts from the abstraction of
Table 4 that cover also the concrete case. Then, the portion of the string function that
we wish to abstract is encoded in IndexOfC.

At this point we can run standard dynamic symbolic execution with the string library
functions by using the instructions within IndexOf and IndexOfC for both the concrete
and symbolic execution. Our aim is however to abstract the part of IndexOfC into core
string constraints. For this purpose we introduce the uninterpreted function IndexOfA.
When executing IndexOfC in dynamic symbolic execution, we do not add constraints
to the path condition, but set the symbolic result to IndexOfA(text , key , start , count).

Functions, such as Concat and Substring, do not depend on the string tokens.
Pex encodes such functions using two primitives, Shift and Fuse, axiomatized by
Shift(a, i)[j] ' a[i+j] and Fuse(a, i, b)[j] ' if j < i then a[j] else b[j]. We can then
replace chars(ConcatA(a, b)) by Fuse(chars(a), length(a),Shift(chars(b),−length(a))),
and chars(SubstringA(a, i, j)) by Shift(chars(a), i).

Solving string constraints For each execution path, we get a path condition and per-
form multiple queries to Pex’s SMT solver, Z3:

Phase 1. Assert the path condition π, the axioms for Fuse and Shift, and the axiom
∀s . 0 ≤ length(s) < U , where U is a fresh constant. If the constraints are unsatis-
fiable, then fail; otherwise enter the second phase.

Phase 2. We are given a path constraint π that is satisfiable with respect to partial
unfoldings of the supplied axioms. Find the smallest power of two for U such that
the constraints have a model. Set N ← 0.
1. Extract values from the model that suffice to create a finite unfolding of all

quantifiers used in Table 3 for the functions: IndexOf, LastIndexOf, Con-
tains, Compare, and Equals. Thus, we assert the definitions of these func-
tions replacing all quantifiers of the form (∀i ∈ [a . . . b])ϕ(i) with a finite set
of assertions ϕ(v(a)), . . . , ϕ(v(b)).

2. Instantiate the definitions of Shift and Fuse3.
3. If the constraints are satisfiable, return the current model.
4. Fail if N or U exceed pre-configured bounds.
5. Otherwise, undo the assertions from steps 1 and 2 and force a solution with

increased lengths by asserting Σi`(si) > Σiv(`(si)) where `(si) occur in π.
6. If the new constraints are unsatisfiable, then fail.
7. Otherwise, repeat step 1 with U ← 2 · U , N ← N + 1,

Note that step 5 can prevent exploring models where string lengths add up to the
previous value, but are re-distributed in a different way. While N and U impose limits
on which models are explored, it is the case that our implementation in Pex makes
implicit use of properties of the bit-vector solver in Z3: Our solver tends to generate
models with bit-vectors assigned to as large values as possible, so the progression of
lengths tends to grow in proportion to U .

To distribute length increases fairly among strings, Pex furthermore excludes strings
whose length was increased recently, unless this exclusion would cause the constraints
to become unsatisfiable.

7 Experiments
mode time/s paths
BFS 7.90 214
DFS 3.65 51
Random 8.73 196
Default 0.83 35
Partial 0.61 30
Abstract 1.02 19

Table 5. Evaluation of string
solver on EasyChair

We applied Pex on the EasyChair4 query given in Fig-
ure 1 using different search strategies to flip branches
of already discovered execution paths (which includes
unrolling loops): breadth-first (BFS), depth-first (DFS),
flipping of Random branches, and Pex’ default strat-
egy [18] (which combines several heuristics). We com-
pare those strategies with a partial implementation of
the algorithm described above, where only Concat,
Substring, Remove and Insert are abstracted, and
the fully abstract version of the algorithm. We set the
bounds of U at 212, and N at 3. Table 5 shows the results: BFS, DFS and Random

3 While necessary for completeness, this step has not had any effect in our experiments.
4 All experiments were performed with a Intel Core 2 CPU T7400 @ 2.16 Ghz, 4GB RAM.

c 1 2 3 4 5 6
mode time paths time paths time paths time paths time paths time paths
BFS 0.14 5 4.50 140 73.34 1432 960.08 7727 timeout timeout
Random 0.26 7 0.42 9 4.93 57 16.70 108 40.55 199 154.36 541
Default 0.23 6 0.62 14 7.03 78 7.76 80 8.81 82 193.49 637
Abstract 0.15 6 0.33 8 0.99 10 2.02 12 4.44 14 6.67 16

Table 6. Evaluation of string solver on IndexOf progression

search performed clearly worse than the default and abstract strategies. The partial ab-
straction resulted in the fastest run-time and fewer explored paths than the default ex-
ploration strategy, while complete abstraction required exploring fewer paths, but took
slightly more overall time.

A different example that highlights the effectiveness of the abstraction can be con-
structed by creating a program test with a conjunction of the form s.IndexOf(s1)! =−
1&&s.IndexOf(s2)! =− 1&& . . ., where s1, s2, . . . , sc are different non-overlapping
strings with a long common prefix. The goal is to synthesize a string s that contains all
the substrings s1, s2, . . . sc. Table 6 summarizes the results of trying a progression of
c = 1, . . . , 6 such conjuncts. DFS search, not shown, does not even manage to explore
a single path, other strategies are also inferior to abstraction.

More examples are available at http://research.microsoft.com/Pex/Benchmarks/Strings/paper.aspx.

8 Conclusion

We presented a two-tier approach for generating finite models of path constraints for
string-manipulating programs. Our approach views constraints from string libraries as
extensions of the word equation problem and we identified decidable, undecidable, and
open problems in the context of word equations. Our approach was integrated with the
dynamic symbolic execution engine Pex.
Related Work. In the context of symbolic execution of programs, string abstractions
has been recently studied by Ruan et.al. [14], where an approach based on a first-order
encoding of string functions is proposed. They study C programs where strings are
zero-terminated arrays whose lengths are bounded by constants. The first-order quanti-
fiers can therefore be finitely unfolded and decided using a solver for linear arithmetic
and assignments. Shannon et.al. [16] use automata-based representations for abstracting
strings during symbolic execution of Java programs. They handle a few core methods
in the java.lang.String class, and some other related classes. They integrate a numeric
constraint solver, but apparently in a partial way. For example, string methods which
return integers, such as IndexOf, cause case-splits over all possible return values within
certain bounds. Automata-based methods have been pursued in the context of static
analysis by Christensen et.al. [5], where automata, using the Mohri-Nederhof algorithm,
represent over-approximations of possible string values. A motivation for the work is
SQL injection attacks. The same motivation also inspired Fu et.al. [6]. They first solve
Boolean and integer constraints to obtain a model and then proceed to solving string

constraints by using the obtained model to build automata for the string constraints.
To our knowledge, the mentioned automata-based methods require case analysis out-
side of their calls to their constraint solvers and automaton construction phases. In our
framework, case analysis is integrated with the constraint solver pass.
Future work. A plethora of future work is possible in the context of exploring string
manipulating programs. Regular expressions are often used by the discriminating pro-
grammer to accomplish string manipulation. In particular, our running EasyChair ex-
ample can be directly encoded using a regular expression. But real regular expression
libraries can encode side-effects and non-regular properties. Can such extensions be
handled by methods presented here? A different direction is to extend array property
fragments [2, 10] to handle common string queries. We would also like to use informa-
tion encoded in the core language to control the constraint solver programmatically. For
example, one could alternate quantifier unfolding with solving for the bounds.
Acknowledgments. We thank Wolfram Schulte for numerous early stage discussions
and Yuri Matiyasevich for his help finding related work on word equations.

References

1. S. Anand, P. Godefroid, and N. Tillmann. Demand-driven compositional symbolic execution.
In Proc. of TACAS’08, volume 4963 of LNCS, pages 367–381. Springer, 2008.

2. A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? In E. A. Emerson
and K. S. Namjoshi, editors, VMCAI, volume 3855 of LNCS, pages 427–442. Springer, 2006.

3. J. R. Büchi and S. Senger. Definability in the existential theory of concatenation. Zeitschrift
fur Mathematische Logik und Grundlagen der Mathematik, 1988.

4. C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. Exe: automatically
generating inputs of death. In CCS, pages 322–335, New York, NY, USA, 2006. ACM Press.

5. A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise analysis of string expressions.
In SAS 03, volume 2694 of LNCS, pages 1–18. Springer-Verlag, 2003.

6. X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao. A Static Analysis Framework
For Detecting SQL Injection Vulnerabilities. In COMPSAC, pages 87–96, 2007.

7. P. Godefroid. Compositional dynamic test generation. In Proc. of POPL’07, pages 47–54,
New York, NY, USA, 2007. ACM Press.

8. P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing. SIGPLAN
Notices, 40(6):213–223, 2005.

9. P. Godefroid, M. Y. Levin, and D. Molnar. Automated whitebox fuzz testing. In Proceedings
of NDSS’08 (Network and Distributed Systems Security), pages 151–166, 2008.

10. P. Habermehl, R. Iosif, and T. Vojnar. What else is decidable about integer arrays? In R. M.
Amadio, editor, FoSSaCS, volume 4962 of LNCS, pages 474–489. Springer, 2008.

11. B. Khoussainov, A. Nies, S. Rubin, and F. Stephan. Automatic structures: Richness and
limitations. In LICS, pages 44–53, 2004.

12. J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394, 1976.
13. Y. Matiyasevich. Word Equations, Fibonacci Numbers, and Hilbert’s Tenth problem. In

Workshop on Fibonacci Words, volume 43, pages 36–39, 2007.
14. H. Ruan, J. Zhang, and J. Yan. Test Data Generation for C Programs with String-Handling

Functions. Theoretical Aspects of Software Engineering, 0:219–226, 2008.
15. K. Sen and G. Agha. CUTE and jCUTE: Concolic unit testing and explicit path model-

checking tools. In CAV, pages 419–423, 2006.
16. D. Shannon, S. Hajra, A. Lee, D. Zhan, and S. Khurshid. Abstracting symbolic execution

with string analysis. In TAICPART-MUTATION, pages 13–22, Washington, DC, USA, 2007.

17. N. Tillmann and J. de Halleux. Pex - white box test generation for .NET. In Proc. of Tests and
Proofs (TAP’08), volume 4966 of LNCS, pages 134–153, Prato, Italy, April 2008. Springer.

18. T. Xie, N. Tillmann, P. de Halleux, and W. Schulte. Fitness-guided path exploration in dy-
namic symbolic execution. Technical Report MSR-TR-2008-123, Microsoft, 2008.

