SenseWeb: Wikipedia of Sensors

Aman Kansal
Liqian Luo, Suman Nath, Feng Zhao
Microsoft Research
1. Share *data*
 - Swivel, Sloan sky survey, Fluxdata.org, BWC Data Server

2. Deploy macro-scopes
 - Addresses few domains

3. Share all *instrumentation*: SenseWeb
SenseWeb Example

Scientists in Alaska (NASA, NOAA, UAS)
SenseWeb Example

Scientists in Alaska (NASA, NOAA, UAS)

Scientists in Swiss Alps (EPFL, ETH, WSL, NF)
Scientists in Alaska (NASA, NOAA, UAS)

Scientists in Swiss Alps (EPFL, ETH, WSL, NF)

Swiss Snow and Avalanche Info (SLF)
System Design
SenseWeb: System Design
SenseWeb: Front-end

- In situ data analysis
- Discover correlations, dependencies, and distributions
 - Comparison chart, Contour maps, temporal exploration

http://atom.research.microsoft.com/sensormap/
Design Challenges

Heterogeneity
- Capability: bandwidth, power, computation
- Willingness to share
- Measurement accuracy

Scalability
- Streaming all raw data from all sensors to all applications not feasible

Security and Privacy

Data Verifiability, Trust
Minimize Sensor Probes

- Consider value of probing sensors
 - **Information value** (collapse uncertainty)
 - **Demand** (usage: “utilitarian” impact)
- Sensor availability
 - **Predict** based on history
- Preferences
 - **Abide by preferences** (Eg. Privacy)

Streaming Multiple Sensors to Multiple Applications

- Detect overlap
 - In sensors used
 - In computation performed on streams
 - Including intermediate steps

Details:
Mobile Contributors in SenseWeb

+ More coverage
- Hard for application to track relevant devices

• **Solution**: data centric abstraction
 – Location based indexing
 • using GPS, cell-tower triangulation, content based location
Using Data Centric Abstraction

Tests run on real world dataset (Bellevue street traffic).

N/Z: number of sensors per zone
Note: For similar coverage, the number of sensors needed is much less with data centric abstraction

Details:
Other Technical Challenges

• Enhance visualization performance in SensorMap
 – Details: ACM GIS 2008

• Tasking sensors efficiently
 – Share probing load by sensor quality, resource availability, and application tolerance (in submission)

• Preserve query response accuracy
 – Ensure gateway has included all sensors available in its calculation
SenseWeb: Collaborative R&D
Collaborative Engagements

- 11 universities funded through Microsoft External Research Request for Proposals
- Additional universities and scientific/government agencies involved through SenseWeb usage
Nanyang Technological University: NWS

• National Weather Study: mini weather stations in schools throughout Singapore
Harvard: CitySense

• Large scale urban monitoring
• Network health sensing
• Urban environment sensing
U. Melbourne: Great Barrier Reef

- coral reef ecosystems: early indicators of climate change and human influence
Debris flow sensing

• 921 earthquake in 1999 caused land collapse
• Crevices formed in rocks and soil: typhoons and surface runoff causes debris flows
• Debris flows cause severe damage to the land, property, and life.
Ohio State U: Kansei

- Sense mobility in urban campus-area habitats
- Sense health/availability of equipment in a test bed
UIUC: ActionWeb

- Monitor mobile activities
- First person activities (Eg. Patient lifestyle change)
U Virginia: MetroNet

- Sensors at storefront windows in Charlottesville
- Count people passing store/enter store
 - Analyze effects of advertising, window displays, weather, events on pedestrian business
U Washington: Indoor Events

- Define sophisticated high-level events over the low-level sensor data
- Gracefully handle input data errors
- Uses RFID sensors
Urban air pollution monitored using car mounted mobile sensors
Advantages to Users

- Re-use spatio-temporal visualization and analysis tools
- Data sharing
- Get mapping UI, VE imagery, terrain data
- Get indexing, database features
- Get more similar and related sensors
- Ease of management of sensors

Advantage to Researchers

- Understand app needs: data analysis, visualization
- Prototype applications: environmental, urban, scientific
- New types of sensors: vector sensors
- New capabilities: mobility, semantic web, wiki access
- Work without own deployment
- Get access to variety of hardware

SenseWeb Collaboration Experience
Tools for Sensor Sharing

http://research.microsoft.com/nec/senseweb

• Internet gateway for sensors
 – Open web service API
 • Supports several sensor types via semantic hierarchy
• Tools available for download
 – Tutorials available online
Action Items

• Seed Applications
 – Immediate use to prompt rapid deployment

• Community involvement
 – Tools and platforms to ease sharing

PEOPLE/PRIVATE
Flooded road image from cell-phones

GOVT.
Govt. deployed stream sensors

SCIENTISTS
Scientist deployed soil moisture sensor
Thank You
Applications of Shared SN’s

Community Fitness and Recreation

- Runners: Where are sidewalks broken? Construction finished on 24th St?
- Mountain Bikers: Average biker heart rate at Adams Pass on trail 320? [SlamXR]
- Surfer: What is the wave level and wind speed at Venice Beach now?

Real Time Information

- Public initiated instant news coverage

Science

- Continent scale phenomenon study using sensors deployed by multiple labs

Business

- What are people doing tonight? Restaurant waiting times in midtown?
- Mall visitor activity and parking usage across franchise outlets worldwide
Example: Rainstorm Management

SENSOR CONTRIBUTORS

- Govt. deployed stream sensors (Eg. USGS)
- Geo-stamped flooded road image from cellphones (Eg. SensorPlanet)
- Scientist deployed soil moisture sensor network (Eg. LifeUnderYourFeet)
- Data from home weather stations (Eg. Wunderground)

SENSING APPLICATIONS

- Road flooding aware cab dispatch
- City road route management and repairs
- Tourist day planner
- Landscape maintenance scheduling and inventory
- Mountain bike router
SensorMap Usage

Experiment Planning
To view sensor layout and visualize measurements in real-time to decide the placement of sensors

Deployment Monitoring
To inspect real-time output of sensors, and to discover and fix broken sensors

Data Analysis
To visualize dependencies among different measurements and correlations with topological terrains

- Large deviations! Concentrate more stations here.
- Temperature Vs terrain?
- Temperature Vs humidity?
Tasking Heterogeneous Sensors

- Select uniformly rather than overloading the best sensors
- Leverage lower capability sensors when usable for a query
- Learn and adapt to sensor characteristics: availability, bandwidth
- Weighted reservoir sampling
 - Weighted random selection, with desired number of sensors

Sensors
- Involvement in different apps

SenseWeb Sensor Selection

Applications
- Tolerance in task execution
Accept sensor registration

Accept query and sensor list from COLR-tree

Learn sensor availability and initialize characterization metric

Assign involvement based weights for given query application group

Assign query tolerance based weights

Select r_i sensors from list using reservoir sampling, access data

Satisfactory response?

Select additional sensors and access data

Return sampled data

Update sensor characterization metrics
Tasking Algorithm Performance

- Test on USGS stream water sensors
 - Random selection vs. Weighted reservoir sampling