
Linear Time Approximation Schemes for the Gale-Berlekamp Game

and Related Minimization Problems

Marek Karpinski∗ and Warren Schudy†

Abstract

We design a linear time approximation scheme for the Gale-Berlekamp Switching Game
and generalize it to a wider class of dense fragile minimization problems including the Nearest
Codeword Problem (NCP) and Unique Games Problem. Further applications include, among
other things, finding a constrained form of matrix rigidity and maximum likelihood decoding
of an error correcting code. As another application of our method we give the first linear
time approximation schemes for correlation clustering with a fixed number of clusters and its
hierarchical generalization. Our results depend on a new technique for dealing with small
objective function values of optimization problems and could be of independent interest.

∗marek@cs.uni-bonn.de. Dept. of Computer Science, University of Bonn. Part of this work was done while visiting
Microsoft Research.

†ws@cs.brown.edu. Dept. of Computer Science, Brown University. Part of this work was done while visiting
University of Bonn.

1 Introduction

The Gale-Berlekamp Switching Game (GB Game) was introduced independently by Elwyn Berlekamp
[10, 23] and David Gale [23] in the context of coding theory. This game is played using of a m by m
grid of lightbulbs. The adversary chooses an arbitrary subset of the lightbulbs to be initially “on.”
Next to every row (resp. column) of lightbulbs is a switch, which can be used to invert the state of
every lightbulb in that row (resp. column). The protagonist’s task is to minimize the number of lit
lightbulbs (by flipping switches). This problem was proven very recently to be NP-hard [21]. Let
Φ = {−1, 1} ⊂ R. For matrices M,N let d(M,N) denote the number of entries where M and N
differ. It is fairly easy to see that the GB Game is equivalent to the following natural problems: [21]

• Given matrix M ∈ Φm×m find column vectors x, y ∈ Φm minimizing d(M,xyT).

• Given matrix M ∈ Φm×m find rank-1 matrix N ∈ Φm×m minimizing d(M,N).

• Given matrix M ∈ F
m×m
2 find x, y ∈ F

m
2 minimizing

∑

ij 11 (Mij 6= xi ⊕ yj) where F2 is the
finite field over two elements with addition operator ⊕.

• Given matrix M ∈ Φm×m find column vectors x, y ∈ Φm maximizing xT My.

We focus on the equivalent minimization versions and prove existence of linear-time approxi-
mation schemes for them.

Theorem 1. For every ǫ > 0 there is a randomized 1 + ǫ-approximation algorithm for the Gale-
Berlekamp Switching Game (its minimization version) with runtime O(m2) + 2O(1/ǫ2).

In order to achieve the linear-time bound of our algorithms, we introduce two new techniques:
calling the additive error approximation algorithm at the end of our algorithm and greedily refining
the random sample used by the algorithm. These new methods could also be of independent interest.

A constraint satisfaction problem (CSP) consists of n variables over a domain of constant-size d
and a collection of arity-k constraints (k constant). The objective of MIN-kCSP (MAX-kCSP) is to
minimize the number of unsatisfied (maximize the number of satisfied) constraints. An (everywhere)
dense instance is one where every variable is involved in at least a constant times the maximum
possible number of constraints, i.e. Ω(nk−1). For example, the GB Game is a dense MIN-2CSP
since each of the n = 2m variables is involved in precisely m = n/2 constraints. It is natural to
consider generalizing Theorem 1 to all dense MIN-CSPs, but unfortunately many such problems
have no PTASs unless P=NP [7] so we must look at a restricted class of MIN-CSPs. A constraint
is fragile if modifying any variable in a satisfied constraint makes the constraint unsatisfied. A
CSP is fragile if all of its constraints are. Clearly the GB Game can be modeled as a fragile dense
MIN-2CSP. Our results generalize to all dense fragile MIN-kCSPs.

We now formulate our general theorem.

Theorem 2. For every ǫ > 0 there is a randomized 1+ ǫ-approximation algorithm for dense fragile
MIN-kCSPs with runtime O(nk) + 2O(1/ǫ2).

Any approximation algorithm for MIN-kCSP must read (by adversary argument) the entire
input to distinguish between instances with optimal value of 1 and 0 and hence the O(nk) term
of the runtime cannot be improved. It is fairly easy to see that improving the second term (to
2o(1/ǫ2)) would imply a O(n2) + 2o(1/ǫ2)-time PTAS for average-dense max cut. Over a decade
worth of algorithms [5, 6, 16, 2, 20] for MAX-kCSP all have dependence on ǫ of at best 2O(1/ǫ2), so
any improvement to the runtime of Theorem 2 would be surprising.

1

We begin exploring applications of Theorem 2 by generalizing the Gale-Berlekamp game to
higher dimensions k (k-ary GB) and then to arbitrary k-ary equations. Given n variables xi ∈ F2

and m linear equations of the form xi1 ⊕ xi2 ⊕ . . . ⊕ xik = 0 (or = 1), the k-ary Nearest Codeword
Problem (NCP) consists of finding an assignment minimizing the number of unsatisfied equations.
As the name suggests, the Nearest Codeword Problem can be interpreted as maximum likelihood
decoding for linear error correcting codes. The Nearest Codeword Problem has fragile constraints
so Theorem 2 implies a linear-time PTAS for the k-ary GB problem and the dense k-ary Nearest
Codeword Problem.

The Unique Games Problem (UGP) [12, 18] consists of solving MIN-2CSPs where the constraints
are permutations over a finite domain D of colors; i.e. a constraint involving variables xu and xv is
satisfied iff xu = πuv(xv) for permutation πuv. These constraints are clearly fragile, so Theorem 2
implies also a linear-time PTAS for the dense Unique Game Problem (with a constant number of
colors).

The multiway cut problem, also known as MIN-dCUT, consists of coloring an undirected graph
with d colors, such that each of d terminal nodes ti is colored with color i, minimizing the number
of bichromatic edges. The requirement that the terminal nodes must be colored particular colors
does not fit in our dense fragile MIN-CSP framework, so we use a work-around: let the constraint
corresponding to an edge be satisfied only if it is monochromatic and the endpoint(s) that are
terminals (if any) are colored correctly.

As another application, consider MIN-kSAT, the problem of minimizing the number of satisfied
clauses of a boolean expression in conjunctive normal form where each clause has k variables (some
negated). We consider the equivalent problem of minimizing the number of unsatisfied conjunctions
of a boolean expression in disjunctive normal form. A conjunction can be represented as a fragile
constraint indicating that all of the negated variables within that constraint are false and the
remainder are true, so Theorem 2 applies to MIN-kSAT as well.

Finally we consider correlation clustering with a fixed number of clusters [17, 1]. The input to
the correlation clustering problem consists of a complete graph where each edge is labeled either “+”
or “-”. The objective is to color the vertices with d colors minimizing the number of bichromatic
“+” edges plus the number of monochromatic “-” edges. Correlation clustering with two clusters
is equivalent to the following symmetric variant of the Gale-Berlekamp game: given a symmetric
matrix M ∈ Φm×m find a column vector x ∈ Φm minimizing d(M,xxT). Like the GB game,
correlation clustering with 2 clusters is fragile and Theorem 2 gives a linear-time approximation
scheme. For d > 2 correlation clustering is not fragile but has properties allowing for a PTAS
anyway. We also solve a generalization of correlation clustering called hierarchical clustering [1].
We prove the following theorem.

Theorem 3. For every ǫ > 0 there is a randomized 1 + ǫ-approximation algorithm for correlation
clustering and hierarchical clustering with fixed number of clusters d with running time n22O(d6/ǫ2).

The above results improves on the running time O(n9d/ǫ2) log n = O(n9d/ǫ2) of the previous
PTAS for correlation clustering by Giotis and Guruswami [17] in two ways: first the polynomial is
linear in the size of the input and second the exponent is polynomial in d rather than exponential.
Our result for hierarchical clustering with a fixed number of clusters is the first PTAS for that
problem.

We prove Theorem 2 in Sections 2 and 3 and Theorem 3 in Sections 4 and 5.

2

Related Work

Elwyn Berlekamp built a physical model of the GB game with either m = 8 or m = 10 [10, 23] at
Bell Labs in the 1960s motivated by the connection with coding theory and the Nearest Codeword
Problem. Several works [15, 10] investigated the cost of worst-case instances of the GB Game; for
example the worst-case instance for m = 10 has cost 35 [10]. Roth and Viswanathan [21] showed
very recently that the GB game is in fact NP-hard. They also give a linear-time algorithm if the
input is generated by adding random noise to a cost zero instance. Replacing Φ with R in the third
formulation of the GB Game yields the problem of computing the 1-rigidity of a matrix. Lower
bounds on matrix rigidity have applications to circuit and communication complexity [19].

The Nearest Codeword Problem is hard to approximate in general [4, 11] better than nΩ(1/ log log n).
It is hard even if each equation has exactly 3 variables and each variable appears in exactly 3 equa-
tions [9]. There is a O(n/ log n) approximation algorithm [8, 3].

Over a decade ago two groups [6, 13] independently discovered polynomial-time approximation
algorithms for MAX-CUT achieving additive error of ǫn2, implying a PTAS for average-dense MAX-
CUT instances. The fastest algorithms [2, 20] have constant runtime 2O(1/ǫ2) for approximating
the value of any MAX-kCSP over a binary domain D. This can be generalized to an arbitrary
domain D. To see this, note that we can code D in binary and correspondingly enlarge the arity of
the constraints to k⌈log |D|⌉. A random sample of Õ(1/ǫ4) variables suffices to achieve an additive
approximation [2, 20, 22]. These results extend to MAX-BISECTION [14].

Arora, Karger and Karpinski [6] introduced the first PTASs for dense minimum constraint
satisfaction problems. They give PTASs with runtime nO(1/ǫ2) [6] for min bisection and multiway
cut (MIN-d-CUT). Bazgan, Fernandez de la Vega and Karpinski [7] designed PTASs for MIN-
SAT and the nearest codeword problem with runtime nO(1/ǫ2). Giotis and Guruswami [17] give

a PTAS for correlation clustering with d clusters with runtime O(n9d/ǫ2). We give linear-time
approximation schemes for all of the problems mentioned in this paragraph except for the MIN-
BISECTION problem.

2 Fragile-dense Algorithm

2.1 Intuition

Consider the following scenario. Suppose that our nemesis, who knows the optimal solution to
the Gale-Berlekamp problem shown in Figure 1, gives us a constant size random sample of it to
tease us. How can we use this information to construct a good solution? One reasonable strategy
is to set each variable greedily based on the random sample. Throughout this section we will
focus on the row variables; the column variables are analogous. For simplicity our example has
the optimal solution consisting of all of the switches in one position, which we denote by α. For
row v, the greedy strategy, resulting in assignment x(1), is to set switch v to α iff b̂(v, α) < b̂(v, β),
where b̂(v, α) (resp. b̂(v, β)) denotes the number of light bulbs in the intersection of row v and the
sampled columns that would be lit if we set the switch to position α (resp. β).

With a constant size sample we can expect to set most of the switches correctly but a constant
fraction of them will elude us. Can we do better? Yes, we simply do greedy again. The greedy
prices analogous to b̂ are shown in the columns labeled with b in the middle of Figure 1. For
the example at hand, this strategy works wonderfully, resulting in us reconstructing the optimal
solution exactly, as evidenced by the b(x(1), v, α) < b(x(1), v, β) for all v. In general this does not
reconstruct the optimal solution but provably gives something close.

Some of the rows, e.g. the last one, have b(x(1), v, α) much less than b(x(1), v, β) while other

3

Sampled variables

1 2

1 2

1 2

0 3

2 1

0 3

2 4

1 5

1 5

1 5

2 4

1 5

α

α

α

α

α

α

α α α α α α α α α α α α

α

α

α

α

β

α

x* (Optimum) x
(1)

b(x (1),v,α)

b(x (1),v,β)

b(v,α)

b(v,β)

Figure 1: An illustration of our algorithmic ideas on the Gale-Berlekamp Game.

rows, such as the first, have b(x(1), v, α) and b(x(1), v, β) closer together. We call variables with
|b(x(1), v, α) − b(x(1), v, β)| > Θ(n) clearcut. Intuitively, one would expect the clearcut rows to be
more likely correct than the nearly tied ones. In fact, we can show that we get all of the clearcut
ones correct, so the remaining problem is to choose values for the rows that are close to tied.
However, those rows have a lot of lightbulbs lit, suggesting that the optimal value is large, so it is
reasonable to run an additive approximation algorithm and use that to set the remaining variables.

Finally observe that we can simulate the random sample given by the nemesis by simply taking
a random sample of the variables and then doing exhaustive search of all possibly assignments of
those variables. We have just sketched our algorithm.

Our techniques differ from previous work [7, 6, 17] in two key ways:

1. Previous work used a sample size of O((log n)/ǫ2), which allowed the clearcut variables to be
set correctly after a single greedy step. We instead use a constant-sized sample and run a
second greedy step before identifying the clearcut variables.

2. Our algorithm is the first one that runs the additive error algorithm after identifying clearcut
variables. Previous work ran the additive error algorithm at the beginning.

The same ideas apply to all dense fragile CSPs. In the remainder of the paper we do not
explicitly discuss the GB Game but present our ideas in the abstract framework of fragile-dense
CSPs.

2.2 Model

We now give a formulation of MIN-kCSP that is suitable for our purposes. For non-negative
integers n, k, let

(n
k

)

= n!
k!(n−k)! , and for a given set V let

(V
k

)

denote the set of subsets of V of size

k (analogous to 2S for all subsets of S). There is a set V of n variables, each of which can take any
value in constant-sized domain D. Let xv ∈ D denote the value of variable v in the assignment x.

4

Consider some I ∈
(V

k

)

. There may be many constraints over these variables; number them
arbitrarily. Define p(I, ℓ, x) to be 1 if the ℓth constraint over I is unsatisfied in assignment x and
zero otherwise. For I ∈

(V
k

)

, we define pI(x) = 1
η

∑

ℓ p(I, ℓ, x), where η is a scaling factor to ensure

0 ≤ pI(x) ≤ 1 (e.g. η = 2k for MIN-kSAT). For notational simplicity we write pI as a function
of a complete assignment, but pI(x) only depends on xu for variables u ∈ I. For I 6∈

(V
k

)

define
pI(x) = 0.

Definition 4. On input V, p a minimum constraint satisfaction problem (MIN-kCSP) is a problem
of finding an assignment x minimizing Obj(x) =

∑

I∈(V
k) pI(x).

Let Rvi(x) be an assignment over the variables V that agrees with x for all u ∈ V except for

v where it is i; i.e. Rvi(x)u =

{

i if u = v
xu otherwise

. We will frequently use the identity Rvxv (x) = x.

Let b(x, v, i) =
∑

I∈(V
k):v∈I pI(Rvi(x)) be the number of unsatisfied constraints v would be in if xv

were set to i (divided by η).
We say the ℓth constraint over I is fragile if p(I, ℓ,Rvi(x)) + p(I, ℓ, (Rvj(x)) ≥ 1 for all v ∈ I

and i 6= j ∈ D.

Definition 5. A Min-kCSP is fragile-dense if b(x, v, i) + b(x, v, j) ≥ δ
(

n
k−1

)

for some constant
δ > 0 and for all assignments x, variables v and distinct values i and j.

Lemma 6. An instance where every variable v ∈ V participates in at least δη
(n
k−1

)

fragile con-
straints for some constant δ > 0 is fragile-dense (with the same δ).

Proof. By definitions:

b(x, v, i) + b(x, v, j) =
∑

I∈(V
k):v∈I

(pI(Rvi(x)) + pI(Rvj(x)))

=
∑

I∈(V
k):v∈I

1

η

∑

ℓ

(p(I, ℓ,Rvi(x)) + p(I, ℓ,Rvj(x)))

≥
∑

I∈(V
k):v∈I

1

η
· (The number of fragile constraints over I)

≥
δη

η

(

n

k − 1

)

= δ

(

n

k − 1

)

We will make no further mention of individual constraints, η or fragility; our algorithms and
analysis use pI and the fragile-dense property exclusively.

2.3 Algorithm

We now describe our linear-time algorithms. The main ingredients of the algorithm are new iterative
applications of additive error algorithms and a special greedy technique for refining random samples
of constant size.

Let s = 18 log(480|D|k/δ)
δ2 and S1, S2, . . . , Ss be a multiset of independent random samples of

k − 1 variables from V . One can estimate b(x∗, v, i) using the unbiased estimator b̂(v, i) =
(n

k−1
)

s

∑s
j=1 pSj∪{v}(Rvi(x̂∗)) (see Lemma 13 for proof). One can determine the necessary x∗

v by
exhaustively trying each possible combination.

5

Algorithm 1 Our algorithm for dense-fragile MIN-kCSP

1: Run a ǫ
1+ǫδ

2/72k
(

n
k

)

additive approximation algorithm.

2: if Obj(answer) ≥
(n
k

)

δ2/72k then

3: Return answer.
4: else

5: Let s = 18 log(480|D|k/δ)
δ2

6: Draw S1, S2, . . . , Ss randomly from
(V
k−1

)

with replacement.

7: for Each assignment x̂∗ of the variables in
⋃s

j=1 Sj do

8: For all v and i let b̂(v, i) =
(n

k−1
)

s

∑s
j=1 pSj∪{v}(Rvi(x̂∗))

9: For all v ∈ V let x
(1)
v = arg mini b̂(v, i)

10: For all v ∈ V let x
(2)
v = arg mini b(x

(1), v, i)

11: Let C = {v ∈ V : b(x(1), v, x
(2)
v) < b(x(1), v, j) − δ

(n
k−1

)

/6 for all j 6= x
(2)
v }.

12: Find x(3) of cost at most ǫ|V \C|δ
3n

(n
k−1

)

+ min [Obj(x)] using an additive approximation

algorithm, where the minimum ranges over x such that xv = x
(2)
v ∀v ∈ C.

13: end for

14: Return the best assignment x(3) found.
15: end if

3 Analysis of Algorithm 1

We use one of the known additive error approximation algorithms for MAX-kCSP problems.

Theorem 7. [20] For any MAX-kCSP (or MIN-kCSP) and any ǫ′ > 0 there is a randomized
algorithm which returns an assignment of cost at most OPT + ǫ′nk in runtime O(nk) + 2O(1/ǫ′2).

Throughout the rest of the paper let x∗ denote an optimal assignment.
First consider Algorithm 1 when the “then” branch of the “if” is taken. Choose constants

appropriately so that the additive error algorithm fails with probability at most 1/10 and assume
it succeeds. Let xa denote the additive-error solution. We know Obj(xa) ≤ Obj(x∗) + ǫ

1+ǫP

and Obj(xa) ≥ P where P =
(n
k

)

δ2/72k. Therefore Obj(x∗) ≥ P (1 − ǫ
1+ǫ) = P

1+ǫ and hence
Obj(xa) ≤ Obj(x∗) + ǫ

1+ǫ(1 + ǫ)Obj(x∗) = (1 + ǫ)Obj(x∗). Therefore if the additive approximation
is returned it is a 1 + ǫ-approximation.

The remainder of this section considers the case when Algorithm 1 takes the “else” branch.
Define γ so that Obj(x∗) = γ

(n
k

)

. We have Obj(x∗) ≤ Obj(xa) <
(n
k

)

δ2/72k so γ ≤ δ2/72k. We

analyze the x̂∗ where we guess x∗, that is when x̂∗
v = x∗

v for all v ∈
⋃s

i=1 Si. Clearly the overall cost
at most the cost of x(3) during the iteration when we guess correctly.

Lemma 8. b(x∗, v, x∗
v) ≤ b(x∗, v, j) for all j ∈ D.

Proof. Immediate from definition of b and optimality of x∗.

Lemma 9. For any assignment x,

Obj(x) =
1

k

∑

v∈V

b(x, v, xv)

6

Proof. By definitions,

b(x, v, xv) =
∑

I∈(V
k):v∈I

pI(Rvxv (x)) =
∑

I∈(V
k):v∈I

pI(x).

Write Obj(x) =
∑

I∈(V
k) pI(x) =

∑

I∈(V
k)

pI(x)
[
∑

v∈I
1
k

]

and reorder summations.

Definition 10. We say variable v in assignment x is corrupted if xv 6= x∗
v.

Definition 11. Variable v is clear if (x∗, v, x∗
v) < b(x∗, v, j) − δ

3

(

n
k−1

)

for all j 6= x∗
v. A variable is

unclear if it is not clear.

Clearness is the analysis analog of the algorithmic notion of clear-cut vertices sketched in Sec-
tion 2.1. Comparing the definition of clearness to Lemma 8 further motivates the terminology
“clear.”

Lemma 12. The number of unclear variables t satisfies

t ≤ 3(n − k + 1)γ/δ) ≤
δn

24k
.

Proof. Let v be unclear and choose j 6= x∗
v minimizing b(x∗, v, j). By unclearness, b(x∗, v, x∗

v) ≥
b(x∗, v, j)− (1/3)δ

(

n
k−1

)

. By fragile-dense, b(x∗, v, x∗
v) + b(x∗, v, j) ≥ δ

(

n
k−1

)

. Adding these inequal-
ities we see

b(x∗, v, x∗
v) ≥

1 − 1/3

2
δ

(

n

k − 1

)

=
1

3
δ

(

n

k − 1

)

(1)

By Lemma 9 and (1),

OPT = γ

(

n

k

)

= 1/k
∑

v

b(x∗, v, x∗
v) ≥ 1/k

∑

v:unclear

δ

3

(

n

k − 1

)

=
δ

3k

(

n

k − 1

)

t.

Therefore t ≤ γ
(n
k

)

3k
δ(n

k−1
)

= 3γ
δ (n − k + 1).

For the second bound observe 3nγ/δ ≤ 3n
δ

δ2

72k = δn
24k .

Lemma 13. The probability of a fixed clear variable v being corrupted in x(1) is bounded above by
δ

240k .

Proof. First we show that b̂(v, i) is in fact an unbiased estimator of b(x∗, v, i) for all i. By definitions
and particular by the assumption that pI = 0 when |I| < k, we have for any 1 ≤ j ≤ s:

E
[

pSj∪{v}(Rvi(x
∗))
]

=
1

(n
k−1

)

∑

J∈(V
k−1

)

pJ∪{v}(Rvi(x
∗))

=
1

(n
k−1

)

∑

I∈(V
k):v∈I

pI(Rvi(x
∗))

=
1

(n
k−1

)bvi(x
∗)

Therefore E
[

b̂(v, i)
]

= s
(n

k−1
)

s E
[

pS1∪{v}(Rvi(x
∗))
]

= b(x∗, v, i).

7

Recall that 0 ≤ pI(x) ≤ 1 by definition of p, so by Azuma-Hoeffding,

Pr





∣

∣

∣

∣

∣

∣

s
∑

j=1

pSj∪{v}(Rvi(x
∗)) −

s
(n
k−1

)b(x∗, v, i)

∣

∣

∣

∣

∣

∣

≥ λs



 ≤ 2e−2λ2s

hence

Pr

[

|b̂(v, i) − b(x∗, v, i)| ≥ λ

(

n

k − 1

)]

≤ 2e−2λ2s

Choose λ = δ/6 and recall s = 18 log(480|D|k/δ)
δ2 , yielding.

Pr

[

|b̂(v, i) − b(x∗, v, i)| ≥
δ

6

(

n

k − 1

)]

≤
δ

240|D|k

By clearness we have b(x∗, v, j) > b(x∗, v, x∗
v)+δ

(n
k−1

)

/3 for all j 6= x∗
v. Therefore, the probability

that b̂(v, x∗
v) is not the smallest b̂(v, j) is bounded by |D| times the probability that a particular

b̂(v, j) differs from its mean by at least δ
(n
k−1

)

/6. Therefore Pr
[

x1
v 6= x∗

v

]

≤ |D| δ
240|D|k = δ

240k .

Let E1 denote the event that the assignment x(1) has at most δn/12k corrupted variables.

Lemma 14. Event E1 occurs with probability at least 1 − 1/10.

Proof. We consider the corrupted clear and unclear variables separately. By Lemma 12, the number
of unclear variables, and hence the number of corrupted unclear variables, is bounded by δn

24k .

The expected number of clear corrupted variables can be bounded by δn
240k using Lemma 13, so

by Markov bound the number of clear corrupted variables is less than δn
24k with probability at least

1 - 1/10.
Therefore the total number of corrupted variables is bounded by δn

24k + δn
24k = δn

12k with probability
at least 9/10.

We henceforth assume E1 occurs. The remainder of the analysis is deterministic.

Lemma 15. For assignments y and y′ that differ in the assignment of at most t variables, for all
variables v and values i, |b(y, v, i) − b(y′, v, i)| ≤ t

(

n
k−2

)

.

Proof. Clearly pI(Rvi(y)) is a function only of the variables in I excluding v, so if I − {v} consists
of variables u where yu = y′u, then pI(Rvi(y)) − pI(Rvi(y

′)) = 0. Therefore b(y, v, i) − b(y′, v, i)
equals the sum, over I ∈

(V
k

)

containing v and at least one variable u other than v where yu 6= y′u,
of [pI(Rvi(y)) − pI(Rvi(y

′))]. For any I, |pI(Rvi(y))−pI(Rvi(y
′))| ≤ 1, so by the triangle inequality

a bound on the number of such sets suffices to bound |b(y, v, i) − b(y′, v, i)|. The number of such
sets can trivially be bounded above by t

(n
k−2

)

.

Lemma 16. Let C = {v ∈ V : b(x(1), v, x
(2)
v) < b(x(1), v, j)− δ

(n
k−1

)

/6 for all j 6= x
(2)
v } as defined

in Algorithm 1. If E1 then:

• x
(2)
v = x∗

v for all v ∈ C.

• |V \ C| ≤ 3nγ
δ .

8

Proof. Assume E1 occurred. From the definition of corrupted, event E1 and Lemma 15 for suffi-
ciently large n (so that n−k+1

k−1 ≥ n
k) for any v, i:

|b(x(1), v, i) − b(x∗, v, i)| ≤
δn

12k

(

n

k − 2

)

≤
δ

12

(

n

k − 1

)

. (2)

For the first, if v ∈ C then using (2)

b(x∗, v, x(2)
v) ≤ b(x(2), v, x(2)

v) +
δ

12

(

n

k − 1

)

< b(x(2), v, j) −
δ

6

(

n

k − 1

)

+
δ

12

(

n

k − 1

)

≤ b(x∗, v, j) +

(

−
δ

6
+ 2

δ

12

)(

n

k − 1

)

= b(x∗, v, j).

So by Lemma 8, x∗
v = x

(2)
v .

For any u that is clear, using (2) again:

b(x(2), v, x∗
v) ≤ b(x∗, v, x∗

v) +
δ

12

(

n

k − 1

)

< b(x∗, v, j) −
δ

3

(

n

k − 1

)

+
δ

12

(

n

k − 1

)

≤ b(x(2), v, j) +

(

−
δ

3
+ 2

δ

12

)(

n

k − 1

)

= b(x(2), v, j) −
δ

6

(

n

k − 1

)

.

so by definition of C, u ∈ C. Therefore the conclusion follows from Lemma 12.

Now we give the details of the computation of x(3). Let T = V \ C. We call C the clear-cut
vertices and T the tricky vertices. We assume that |T | ≥ k; if not simply consider every possible
assignment to the variables in T . With the variables in C fixed, those variables can be substituted
into the pI and eliminated. To restore a uniform arity of k we pad the pI of arity less than k
with irrelevant variables from T . To ensure none of the resulting pI has excessive weight we use a
uniform mixture of all possibilities for the padding vertices.

If y is an assignment to the variables in T let RTy(x
∗) =

{

yv If v ∈ T
x∗

v Otherwise
, a natural general-

ization of the Rvi(x) notation. For K ∈
(T

k

)

and y ∈ D|T | define

qK(y) =

k
∑

j=1

∑

J∈(K
j)

∑

L∈(C
k−j)

pJ∪L(RTy(x
(2)))

(

|T | − j

k − j

)−1

It is easy to see that qK(y) is a function only of yv for v ∈ K and is hence a cost function analogous
to pI (though not properly normalized).

Lemma 17. For any y ∈ D|T | we have

Obj(RTy(x
(2))) =

∑

K∈(T
k)

qK(y) +
∑

I∈(C
k)

pI(x
(2))

Proof. Let x = RTy(x
(2)). By definition

∑

K∈(T
k)

qI(y) =
∑

K∈(T
k)

k
∑

j=1

∑

J∈(K
j)

∑

L∈(C
k−j)

pJ∪L(x)

(

|T | − j

k − j

)−1

(3)

9

Compare to

Obj(x) −
∑

I∈(C
k)

pI(x
(2)) =

∑

I∈(V
k):I 6⊆C

pI(x) (4)

Fix I ∈
(

V
k

)

and study the weight of pI(x) in the right-hand-sides of (3) and (4). Note there are

unique j ≥ 0, J ∈
(T

j

)

and L ∈
(C
k−j

)

such that I = J ∪ L. If j = 0 then pI(x) has weight 0 in (3)

and in (4). If j ≥ 1 then pI(x) appears once in (3) for each K ∈
(

T
k

)

such that K ⊇ J . There are
(|T |−j

k−j

)

of those and each has weight
(|T |−j

k−j

)−1
so pI(x) has an overall weight of 1 in (3). Clearly

j ≥ 1 implies I 6⊆ C hence the weight of pI(x) in (4) is 1 as well.

Lemma 18.

0 ≤ qK(y) ≤ O

(

(

|C|

|T |

)k−1
)

Proof. Recalling that 0 ≤ pI(y) ≤ 1 and k = O(1):

qK(y) ≤

k
∑

j=1

(

k

j

)(

|C|

k − j

)

· 1 ·

(

|T | − j

k − j

)−1

=

k
∑

j=1

O

(

|C|k−j

|T |k−j

)

= O

(

|C|k−1

|T |k−1

)

Lemma 18 and Theorem 7 with an error parameter of ǫ′ = Θ(ǫ) yields an additive error
of O(ǫ|T |k(|C|/|T |)k−1) = O(ǫ(|T |/|C|)nk) for the problem of minimizing

∑

K∈(T
k)

qK(y). Using

Lemma 16 we further bound the additive error O(ǫ(|T |/|C|)nk) by O(ǫγnk). By Lemma 17 this
is also an additive error O(ǫγnk) for Obj(RTy(x

(2))). Lemma 16 implies that x∗ = RTy(x
(2)) for

some y, so this yields an additive error O(ǫγnk) = ǫOPT for our original problem of minimizing
Obj(x) over all assignments x.

4 Correlation Clustering and Hierarchical Clustering Algorithm

4.1 Intuition

As we noted previously in Section 1, correlation clustering constraints are not fragile for d >
2. Indeed, the constraint corresponding to a pair of vertices that are connected by a “-” edge
can be satisfied by any coloring of the endpoints as long as the endpoints are colored differently.
Fortunately there is a key observation in [17] that allows for the construction of a PTAS. Consider
the cost-zero clustering shown on the left of Figure 2. Note that moving a vertex from a small
cluster to another small one increases the cost very little, but moving a vertex from a large cluster
to anywhere else increases the cost a lot. Fortunately most vertices are in big clusters so, as in
[17], we can postpone processing the vertices in small clusters. We use the above ideas, which
are due to [17], the fragile-dense ideas sketched above, plus some additional ideas, to analyze our
correlation clustering algorithm.

To handle hierarchical clustering (c.f. [1]) we need a few more ideas. Firstly we abstract the
arguments of the previous paragraph to a CSP property rigidity. Secondly, we note that the number
of trees with d leaves is a constant and therefore we can safely try them all. We remark that all
fragile-dense problems are also rigid.

10

C
1

C
2

C
3

C
1

C
2

C
3

|C
1
|-1

Figure 2: An illustration of correlation clustering and the rigidity property.

4.2 Reduction to Rigid MIN-2CSP

We now define hierarchical clustering formally (following [1]). For integer M ≥ 1, an M -level
hierarchical clustering of n objects V is a rooted tree with the elements of V as the leaves and
every leaf at depth (distance to root) exactly M + 1. For M = 1, a hierarchical clustering has
one node at the root, some “cluster” nodes in the middle level and all of X in the bottom level.
The nodes in the middle level can be identified with clusters of V . We call the subtree induced by
the internal nodes of a M -level hierarchical clustering the trunk. We call the leaves of the trunk
clusters. A hierarchical clustering is completely specified by its trunk and the parent cluster of each
leaf.

For a fixed hierarchical clustering and clusters i and j, let f(i, j) be the distance from i (or j)
to the lowest common ancestor of i and j. For example when M = 1, f(i, j) = 11 (i = j).

We are given a function F from pairs of vertices to {0, 1, ...M}.1 The objective of hier-
archical clustering is to output a M -level hierarchical clustering minimizing

∑

u,v
1
M |F (u, v) −

f(parent(u), parent(v))|. Hierarchical clustering with d clusters is the same except that we restrict
the number of clusters (recall that equals number of nodes whose children are leaves) to at most
d. It is easy to see that the special case of hierarchical clustering with M = 1 is equivalent to the
correlation clustering problem described in the introduction.

Lemma 19. The number of possible trunks is at most d(M−1)d.

Proof. The trunk can be specified by giving the parent of all non-root nodes. There are at most d
nodes on each of the M − 1 non-root levels so the lemma follows.

We now show how to reduce hierarchical clustering with a constant number of clusters to the
solution of a constant number of min-2CSPs. We use notation similar to, but not identical to,
the notation used in Sections 2 and 3. For vertices u, v and values i, j, let pu,v(i, j) be the cost of
putting u in cluster i and v in cluster j. This is the same concept as pI for the fragile case, but
this notation is more convenient here. Define b(x, v, i) =

∑

u∈V,u 6=v pu,v(xu, i), which is identical to
b of the fragile-dense analysis but expressed using different notation.

1[1] chose {1, 2, , ...M + 1} instead; the difference is merely notational.

11

Definition 20. A MIN-2CSP is rigid if for some δ > 0, all v ∈ V and all j 6= x∗
v

b(x∗, v, x∗
v) + b(x∗, v, j) ≥ δ|{u ∈ V : x∗

u = x∗
v}|

Observe that |{u ∈ V : x∗
u = x∗

v}| ≤ |V | =
(|V |
2−1

)

hence any fragile-dense CSP is also rigid.

Lemma 21. If the trunk is fixed, hierarchical clustering can be expressed as a 1/M -rigid MIN-2CSP
with |D| = d.

Proof. (C.f. Figure 2) Choose δ = 1/M . Let D be the leaves of the trunk (clusters). It is easy to
see that choosing

pu,v(i, j) =
1

M
|f(i, j) − F (u, v)|

yields the correct objective function. To show rigidity, fix vertex v, define i = x∗
v and Ci = {u ∈

V : x∗
u = i}. Fix j 6= i and u ∈ Ci \ {v}. Clearly |f(i, i)− f(i, j)| ≥ 1, hence by triangle inequality

|F (u, v) − f(i, i)| + |F (u, v) − f(i, j)| ≥ 1, hence pu,v(i, i) + pu,v(i, j) ≥ 1/M . Summing over u ∈ Ci

we see

b(x∗, v, x∗
v) + b(x∗, v, j) ≥

1

M
|Ci \ {v}| ≈

1

M
|Ci| = δ|{u ∈ V : x∗

u = x∗
v}|

Sweeping the “≈” under the rug this proves the Lemma.2

Lemmas 21 and 19 suggest a technique for solving hierarchical clustering: guess the trunk and
then solve the rigid MIN-2CSP. We now give our algorithm for solving rigid MIN-2CSPs.

4.3 Algorithm for Rigid MIN-2CSP

Algorithm 2 solves rigid MIN-2CSPs by identifying clear-cut variables, fixing their value, and then
recursing on the remaining “tricky” variables T . The recursion terminates when the remaining
subproblem is sufficiently expensive for an additive approximation to suffice.

5 Analysis of Algorithm 2

5.1 Runtime

Theorem 22. For any T, y, an assignment of cost at most ǫ′|T |2 + minx:xv=yv∀v∈V \T [Obj(x)] can

be found in time n22O(1/ǫ′2).

Proof. The problem is essentially a CSP on T vertices but with an additional linear cost term
for each vertex. It is fairly easy to see that Algorithm 1 from Mathieu and Schudy [20] has error
proportional to the misestimation of b and hence is unaffected by arbitrarily large linear cost terms.
On the other hand, the more efficient Algorithm 2 from [20] needs to estimate the objective value
from a constant-sized sample as well and hence does not seem to work for this type of problem.

In this subsection O(·) hides only absolute constants. Algorithm 2 has recursion depth at
most |D| + 1 and branching factor |D|s, so the number of recursive calls is at most (|D|s)|D|+1 =

2s(|D|+1) log |D| = 2Õ(|D|5/δ4). Each call spends O(|D|n2) time on miscellaneous tasks such as comput-
ing the objective value plus time required to run the additive error algorithm, which is n22O(|D|6/ǫ2δ6)

2There are inelegant ways to remove this approximation. For example, assume that all d clusters of x∗ are
non-empty and consider one vertex from Cj as well.

12

Algorithm 2 Approximation Algorithm for Rigid MIN-2CSPs.

Return CC(V , blank assignment, 0)

CC(tricky vertices T , assignment y of V \ T , recursion depth depth):

1: Find assignment of cost at most ǫ
1+ǫ ·

δ3|T |2

6·722|D|3
+ minx:xv=yv∀v∈V \T [Obj(x)] using an additive

approximation algorithm.

2: if Obj(answer) ≥ δ3|T |2

6·722|D|3
or depth ≥ |D| + 1 then

3: Return answer.
4: else

5: Let s = 4322|D|4 log(1440|D|3/δ)
2δ4

6: Draw v1, v2, . . . , vs randomly from T with replacement.
7: for Each assignment x̂∗ of the variables {v1, v2, . . . , vs} do

8: For all v ∈ T and i let b̂(v, i) = |T |
s

∑s
j=1 pvj ,v(x̂∗

vj
, i) +

∑

u∈V \T pu,v(yu, i)

9: For all v ∈ V let x
(1)
v =

{

yv If v ∈ V \ T

arg mini b̂(v, i) Otherwise

10: For all v ∈ T let x
(2)
v = arg mini b(x

(1), v, i)

11: Let C = {v ∈ T : b(x(1), v, x
(2)
v) < b(x(1), v, j) − δ|T |

12|D| for all j 6= x
(2)
v }.

12: Let T ′ = T \ C

13: Define assignment y′ by y′v =







yv If v ∈ V \ T

x
(2)
v If v ∈ C

Undefined If v ∈ T \ C

.

14: If CC(T ′, y′, depth + 1) is the best clustering so far, update best.
15: end for

16: Return the best clustering found.
17: end if

by Theorem 22. Therefore the runtime of Algorithm 2 is n22O(
|D|6

ǫ2δ6
), where the 2Õ(|D|5/δ4) from the

size of the recursion tree got absorbed into the 2O(
|D|6

ǫ2δ6
) from Theorem 22. For hierarchical cluster-

ing, δ = 1/M yields a runtime of n22O(|D|6M6

ǫ2
) · |D|(M−1)|D| = n22O(|D|6M6

ǫ2
).

As noted in the introduction this improves on the runtime of n
O

„

9
|D|

ǫ2

«

of [17] for correlation
clustering in two ways: the degree of the polynomial is independent of ǫ and |D|, and the dependence
on |D| is singly rather than doubly exponential.

5.2 Approximation

We fix optimal assignment x∗. We analyze the path through the recursion tree where we always
guess x̂∗ correctly, i.e. x̂∗

v = x∗
v for all v ∈ {v1, v2, . . . , vs}. We call this the principal path.

We will need the following definitions.

Definition 23. Vertex v is m-clear if b(x∗, v, x∗
v) < b(x∗, v, j)−m for all j 6= x∗

v. We say a vertex
is clear if it is m-clear for m obvious from context. A vertex is unclear if it is not clear.

Definition 24. A vertex is obvious if it is in cluster C in OPT and it is δ|C|/3-clear.

Definition 25. A cluster C of OPT is finished w.r.t. T if T ∩ C contains no obvious vertices.

13

Lemma 26. With probability at least 8/10, for any (T, y, depth) encountered on the principle path,

1. yv = x∗
v for all v ∈ V \ T and

2. The number of finished clusters w.r.t. T is at least depth.

Before proving Lemma 26 let us see why it implies Algorithm 2 has the correct approximation
factor.

Proof. Study the final call on the principal path, which returns the additive approximation clus-
tering. The second part of Lemma 26 implies that depth ≤ |D|, hence we must have terminated

because Obj(answer) ≥ δ3|T |2

6·722|D|3
. By the first part of Lemma 26 the additive approximation gives

error at most
ǫ

1 + ǫ
·

δ3|T |2

6 · 722|D|3
+ OPT.

so the approximation factor follows from an easy calculation.

Now we prove Lemma 26 by induction. Our base case is the root, which vacuously satisfies the
inductive hypothesis since V \ T = {} and depth = 0. We show that if a node (T, y, depth) (in the
recursion tree) satisfies the invariant then its child (T ′, y′, depth + 1) does as well. We hereafter
analyze a particular (T, y, depth) and assume the inductive hypothesis holds for them. There is
only something to prove if a child exists, so we hereafter assume the additive error answer is not
returned from this node. We now prove a number of Lemmas in this context, from which the fact
that T ′, y′, depth + 1 satisfies the inductive hypothesis will trivially follow.

Lemma 27. The number of δ2|T |/216D2-clear variables that are corrupted in x(1) is at most
δ|T |/72|D| with probability at least 1 − 1/10|D|.

Proof. Essentially the same proof as for fragile MIN-kCSP, and the recursion invariant, shows b̂(v, i)
is an unbiased estimator of b(x∗, v, i).

This time Azuma-Hoeffding yields

Pr
[

|b̂(v, i) − b(x∗, v, i)| ≥ λ|T |
]

≤ 2e−2λ2s

Choose λ = δ2

432|D|2
and recall s = 4322|D|4 log(1440|D|3/δ)

2δ4 , yielding.

Pr
[

|b̂(v, i) − b(x∗, v, i)| ≥ δ2|T |/432|D|2
]

≤
δ

720|D|3

By clearness we have b(x∗, v, j) > b(x∗, v, x∗
v) + δ2|T |/216|D|2 for all j 6= x∗

v. Therefore, the
probability that b̂(v, xv) is not the smallest b̂(v, j) is bounded by |D| times the probability that

a particular b̂(v, j) differs from its mean by at least δ2|T |/432|D|2. Therefore Pr
[

x
(1)
v 6= x∗

v

]

≤

|D| δ
720|D|3

= δ
720|D|2

. Therefore, by Markov bound, with probability 1 − 1/10|D| the number of

corrupted δ2|T |/216D2-clear variables is at most δ|T |/72|D|.

There are two types of bad events: the additive error algorithm failing and our own random
samples failing. We choose constants so that each of these events has probability at most 1/10|D|.
This path has length at most |D|, so the overall probability of a bad event is at most 2/10. We
hereafter assume no bad events occur.

14

Lemma 28. The number of δc/3-unclear variables in clusters of size at least c is at most 6OPT
δc .

Let confusing variable refer to a δc/3-unclear variable in a cluster of size at least c. Let v be
such a variable, in cluster C in OPT. By unclearness,

Proof.
b(x∗, v, x∗

v) ≥ b(x∗, v, j) − δc/3

for appropriate j 6= x∗
v and by rigidity

b(x∗, v, x∗
v) + b(x∗, v, j) ≥ δ|C|.

Adding these inequalities we see b(x∗, v, x∗
v) ≥ δc/3.

OPT = 1/2
∑

v b(x∗, v, x∗
v) ≥ 1/2

∑

v confusing δc/3 = |{v ∈ T : v confusing}|δc/6 so |{v ∈

T : v confusing}| ≤ 6OPT
δc .

Lemma 29. For all v, i, |b(x(1), v, i) − b(x∗, v, i)| ≤ δ|T |
24|D|

Proof. First we show bounds on three classes of corrupted variables:

1. The number of δ2|T |/216D2-clear corrupted vertices is bounded by δ|T |/72|D| using Lemma 27

2. The number of vertices in clusters of size at most δ|T |/72|D|2 is bounded by δ|T |/72|D|.

3. The number of δ2|T |/216D2-unclear corrupted vertices in clusters of size at least δ|T |/72|D|2

is bounded by, using Lemma 28, 6OPT
δ

72|D|2

δ|T | ≤ δ3|T |2

6·722|D|3
· 6·72|D|2

δ2|T |
= δ|T |

72|D| .

Therefore the total number of corrupted variables in x(1) is at most δ|T |
72|D| + δ|T |

72|D| + δ|T |
72|D| = δ|T |

24|D| .

The easy observation that |b(x(1), v, i)−b(x∗, v, i)| is bounded by the number of corrupted variables
in x(1) proves the Lemma.

Lemma 30. There exists an obvious vertex in T that is in a cluster of size at least |T |/2|D|.

Proof. Simple counting shows there are at most |T |/2 vertices of T in clusters of size less than
|T |/2|D|.

We say a vertex v is confusing’ if it is non-obvious and its cluster in OPT has size at least
|T |/2|D|. By Lemma 28

|{v ∈ T : v confusing’}| ≤
12|D|

δ|T |
OPT ≤

12|D|

δ|T |

δ3|T |2

6 · 722|D|3
< |T |/2

Therefore by counting there must be an obvious vertex in a big cluster of OPT.

Lemma 31. The number of finished clusters w.r.t. T ′ strictly exceeds the number of finished
clusters w.r.t. T .

Proof. Let v be the vertex promised by Lemma 30 and Ci its cluster in OPT. For any obvious
vertex u in Ci note that u is δ|Ci|/3 ≥ δ|T |/6|D|-clear, so Lemma 29 implies

b(x(1), u, i) ≤ b(x∗, u, i) +
δ|T |

24|D|
< b(x∗, u, j) +

δ|T |

24|D|
−

δ|T |

6|D|

≤ b(x(1), u, j) + 2
δ|T |

24|D|
−

δ|T |

6|D|
= b(x(1), u, j) −

δ|T |

12|D|

hence u ∈ C. Therefore, no obvious vertices in Ci are in T ′ so Ci is finished w.r.t. T ′. The existence
of v implies Ci is not finished w.r.t. T , so Ci is newly finished. To complete the proof note that
T ′ ⊆ T so finished is a monotonic property.

15

Lemma 32. (T ′, y′) satisfy the invariant v ∈ V \ T ′ → y′v = x∗
v.

Proof. Fix v ∈ V \T ′. If v ∈ T the conclusion follows from the invariant for (T, y). If v ∈ T \T ′ = C
we need to show y′v = x∗

v.
Let i = y′v. For any j 6= i, use Lemma 29 to obtain

b(x∗, v, i) ≤ b(x(1), v, i)+
δ|T |

24|D|
< b(x(1), v, j)+

δ|T |

24|D|
−

δ|T |

12|D|
≤ b(x∗, v, j)+2

δ|T |

24|D|
−

δ|T |

12|D|
= b(x∗, v, j)

so by optimality of x∗ we have the Lemma.

Lemmas 31 and 32 complete the inductive proof of Lemma 26.

Acknowledgements

We would like to thank Claire Mathieu and Joel Spencer for raising a question on approximability
status of the Gale-Berlekamp game and Alex Samorodintsky for interesting discussions.

References

[1] N. Ailon and M. Charikar. Fitting tree metrics: Hierarchical clustering and phylogeny. In
Procs. 46th IEEE FOCS, pages 73–82, 2005.

[2] N. Alon, W. Fernandez de la Vega, R. Kannan, and M. Karpinski. Random Sampling and
Approximation of MAX-CSP Problems. In 34th ACM STOC, pages 232–239, 2002. journal
version in J. Comput. System Sciences 67 (2003), pp. 212-243.

[3] N. Alon, R. Panigrahy, and S. Yekhanin. Deterministic Approximation Algorithms for the
Nearest Codeword Problem. Technical report, Elec. Coll. on Comp. Compl., ECCC TR08-
065, 2008.

[4] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The Hardness of Approximate Optima in
Lattices, Codes, and Systems of Linear Equations. In Foundations of Computer Science,
pages 724–733, Nov 1993.

[5] S. Arora, A. Frieze, and H. Kaplan. A New Rounding Procedure for the Assignment Prob-
lem with Applications to Dense Graph Arrangement Problems. In Foundations of Computer
Science, pages 21–30, Oct 1996.

[6] S. Arora, D. Karger, and M. Karpinski. Polynomial Time Approximation Schemes for Dense
Instances of NP-Hard Problems. In 27th ACM STOC, pages 284–293, 1995. journal version
in J. Comput. System Sciences 58 (1999), pp. 193-210.

[7] C. Bazgan, W. Fernandez de la Vega, and M. Karpinski. Polynomial Time Approximation
Schemes for Dense Instances of the Minimum Constraint Satisfaction Problem. Random Struc-
tures and Algorithms, 23(1):73–91, 2003.

[8] P. Berman and M. Karpinski. Approximating Minimum Unsatisfiability of Linear Equations.
In Procs. 13th ACM-SIAM SODA, pages 514–516, 2002.

[9] P. Berman and M. Karpinski. Approximation Hardness of Bounded Degree MIN-CSP and
MIN-BISECTION. In Procs. 29th ICALP, LNCS 2380, pages 623–632. Springer, 2002.

16

[10] J. Carlson and D. Stolarski. The Correct Solution to Berlekamp’s Switching Game. Discrete
Mathematics, 287(1–3):145–150, 2004.

[11] I. Dinur, G. Kindler, R. Raz, and S. Safra. Approximating CVP to Within Almost-Polynomial
Factors is NP-Hard. Combinatorica, 23(2):205–243, 2003.

[12] U. Feige and L. Lovasz. Two prover one round proof systems: Their power and their problems.
In Procs. 24th STOC, pages 733–741, 1992.

[13] W. Fernandez de la Vega. MAX-CUT has a Randomized Approximation Scheme in Dense
Graphs. Random Struct. Algorithms, 8(3):187–198, 1996.

[14] W. Fernandez de la Vega, R. Kannan, and M. Karpinski. Approximation of Global MAX–CSP
Problems. Technical Report TR06-124, Electronic Colloquim on Computation Complexity,
2006.

[15] P. C. Fishburn and N. J. Sloane. The Solution to Berlekamp’s Switching Game. Discrete
Math., 74(3):263–290, 1989.

[16] A. M. Frieze and R. Kannan. Quick Approximation to Matrices and Applications. Combina-
torica, 19(2):175–220, 1999.

[17] I. Giotis and V. Guruswami. Correlation clustering with a fixed number of clusters. Theory
of Computing, 2(1):249–266, 2006.

[18] A. Gupta and K. Talvar. Approximating unique games. In Procs. 17th ACM-SIAM SODA,
pages 99–106, 2006.

[19] S. V. Lokam. Spectral Methods for Matrix Rigidity with Applications to Size-Depth Tradeoffs
and Communication Complexity. In 36th IEEE FOCS, pages 6–15, 1995.

[20] C. Mathieu and W. Schudy. Yet Another Algorithm for Dense Max Cut: Go Greedy. In Procs.
19th ACM-SIAM SODA, pages 176–182, 2008.

[21] R. Roth and K. Viswanathan. On the Hardness of Decoding the Gale-Berlekamp Code. IEEE
Transactions on Information Theory, 54(3):1050–1060, March 2008.

[22] M. Rudelson and R. Vershynin. Sampling from large matrices: An approach through geometric
functional analysis. J. ACM, 54(4):21, 2007.

[23] J. Spencer. Ten Lectures on the Probabilistic Method. SIAM, second edition, 1994.

17

	Introduction
	Fragile-dense Algorithm
	Intuition
	Model
	Algorithm

	Analysis of Algorithm 1
	Correlation Clustering and Hierarchical Clustering Algorithm
	Intuition
	Reduction to Rigid MIN-2CSP
	Algorithm for Rigid MIN-2CSP

	Analysis of Algorithm 2
	Runtime
	Approximation

