
Provenance Algebra and Materialized View-based 
Provenance Management 

Satya S. Sahoo1,2, Roger S. Barga2, Jonathan Goldstein2, Amit P. Sheth1 
1
Kno.e.sis Center, CSE Dept., Wright State University, Dayton, OH 45435; 

2
Microsoft Research, One Microsoft Way, 

Redmond, WA 98052  
{sahoo.2, amit.sheth}@wright.edu, {barga,jongold}@microsoft.com

  
 

 
 

ABSTRACT 

Provenance, from the French word „provenir‟ meaning "to come 

from", describes the lineage of an entity. Provenance is critical 

information in eScience to accurately interpret scientific results. 

Though information provenance has been recognized as a hard 

problem in computing science (British Computing Society, 2004), 

many fundamental research issues in provenance have yet to be 

addressed. 

A common provenance model with well-defined formal semantics 

to facilitate interoperability of provenance metadata from different 

sources has not been defined. Another important issue is the lack 

of a systematic study of provenance query characteristics across 

multiple applications. A classification or taxonomy of the 

provenance queries will not only help to better understand 

provenance metadata, but will also enable the definition of 

provenance query operators. Finally, while provenance for a user 

or an application is a specific view over all available provenance 

metadata, a provenance management system that supports 

provenance storage as views has not been implemented. 

In this paper we propose a novel provenance algebra consisting of 

a common provenance model called provenir, defined in 

description logic based W3C Web Ontology Language (OWL-

DL), along with a set of provenance query operators derived from 

the classification of provenance queries. We also introduce a 

practical provenance storage solution using materialized views 

over a generic relational database system.  Our approach takes 

advantage of provenance query operators and well-defined indices 

to efficiently process complex provenance queries over very large 

datasets. To support our claims we present an evaluation of both 

performance and scalability aspects of our initial implementation.  

To the best of our knowledge this is the first provenance 

management system that supports the complete process from a 

formal provenance model and query operators to storage and 

efficient queries over provenance data. 

1. INTRODUCTION 
The eScience paradigm is enabling scientists in multiple domains 

to leverage distributed to achieve their objectives faster, more 

efficiently and on an industrial scale. The eScience application 

domains range from biology [1], oceanography [2] to astronomy 

[3],  and include distributed resources such as remote sensors, 

computational tools, and data repositories. Provenance metadata, 

from the French word provenir meaning "to come from" 

(Wikipedia, retrieved on 06/24/08) represents the lineage or 

historical information about a piece of data. Provenance is critical 

information to accurately interpret scientific results, validate 

experimental processes, associate trust value, and verify quality of 

data. Provenance has been studied from multiple perspectives in 

computer science, such as database provenance [4], [5] [6], and 

scientific workflow provenance [7] [8], but many fundamental 

research issues have yet to be addressed. 

eScience provenance metadata is typically generated in a 

distributed environment where each source may represent 

provenance differently. Thus, a common model is required to 

represent workflow provenance, database provenance, as well as 

domain-specific details in an integrated manner. Further, the scale 

of provenance metadata generated in high-throughput eScience 

experiments precludes manual interpretation and requires 

processing by software applications. Hence, a common 

provenance model should also allow both consistent interpretation 

and reasoning using entailment rules by software applications. 

The description logic based Web Ontology Language (OWL-DL) 

[9] represents the most expressive but decidable sub-language of 

the World Wide Web (W3C) recommended OWL standard. We 

propose a common semantic model of provenance called provenir 

defined in OWL-DL. 

Many different examples of provenance queries addressing 

specific application requirements have been used in literature. But 

to date, there are no studies to identify common and distinct 

features of these queries. A classification or taxonomy of the 

provenance queries will not only help to better understand 

provenance metadata characteristics, but will also enable the 

definition of operators to support such queries. In this paper, we 

propose a classification scheme for provenance queries and use 

the classification to define query operators. We also define formal 

semantics for each operator.  Together, the common provenance 

model and query operators form the provenance algebra to 

underpin provenance management system.  

Provenance for a user or an application is a view over all available 

provenance metadata, but provenance views are complex and 

hence very expensive to compute repeatedly in response to 

queries. Further, provenance metadata is dynamic and changes to 

reflect modifications in the experimental environment, hence the 

views should support efficient view maintenance. To address 

these requirements, we propose the use of materialized views for 

storage management of provenance. 

Contributions 

The following are the contributions of this paper: 

 A common provenance model called provenir ontology 

defined using the OWL-DL language. Provenir includes 

provenance classes and explicitly models the named relations 

between them. Modeling relations as first class entities 

enables the provenir ontology to capture provenance details 

that are closer to real world eScience experiments. The 

satisfiability of provenir is also discussed. 



 A classification scheme for provenance queries in eScience is 

proposed for the first time, based on the classification a set of 

provenance query operators are defined. The query operators 

are defined in terms of the provenir ontology and mapped to 

existing work in both database and workflow provenance.  

 A practical provenance storage solution is implemented on a 

commercial relational database system using a materialized 

views-based approach. This approach demonstrates that a 

provenance management system using a relational database 

system is feasible for complex queries over large datasets 

through implementation of well-defined provenance query 

operators and using materialized views. Our initial prototype 

implementation is evaluated for performance and scalability.  

In the following section, we introduce a scientific workflow with 

additional simulated details in the oceanography domain from the 

Neptune project [2]. 

1.1 Oceanography eScience Scenario 
The Neptune project, led by the University of Washington, [2] is 

an ongoing initiative to create network of instruments widely 

distributed across, above, and below the seafloor in the northeast 

Pacific Ocean. We consider a simulated scenario, illustrated in 

Figure 1.1, involving collection of data by ocean buoys 

(containing a temperature sensor and an ocean current sensor) 

which is then sent as input to a scientific workflow for creation of 

a visualization chart as output. We consider the following two 

scenarios and the associated provenance queries:  

1. If an ocean buoy is found to be damaged through 

contamination with sea water, all visualization charts 

generated using data from the two sensors within this ocean 

buoy should be discarded. To accurately identify 

visualization charts that made use of data from either one or 

both the sensors in the damaged ocean buoy requires the 

analysis of provenance metadata.  

This category of provenance query uses provenance metadata 

beyond the perspective of a scientific workflow. The 

required provenance to answer this query includes domain-

specific contextual information such as the explicit 

relationship “contained in” between the two types of sensors 

and the ocean buoy. This explicit modeling of relations or 

properties (we use relation and property interchangeably in 

this paper) with formal definition is one of the primary 

characteristics of both the Resource Description Framework 

(RDF) [10] and Web Ontology Language (OWL) standards. 

2. Another typical provenance query involves the retrieval of all 

workflow-specific provenance metadata. For example, 

“given a “HyperCube” object with identifier 

“HyperCube85357162234026” (illustrated in Figure 1.1), 

retrieve all its provenance metadata. This query involves the 

traversal of the workflow links between computational tasks 

such as instances of “HyperCubeSchemaGeneratorActivity”, 

input and output data, such as “NCFileName”, that were 

involved in the creation of the given hypercube object. 

Though many current provenance systems can answer such 

queries, the scalability or performance of these systems has 

not been evaluated.  

In the Experiments and Results Section (Section 5), we use the 

provenance data generated for this simulated oceanography 

scenario and the two provenance queries to evaluate our 

implementation. 

 

 

 

 

1.2 Outline of paper  
In Section 2, we introduce the common provenance model called 

provenir, define its structure, and discuss its satisfiability. In 

Section 3, we present a taxonomy of provenance queries and 

define a set of provenance query operators. In Section 4, we 

introduce the use of indexed materialized views for storage of 

provenance. We discuss performance and scalability evaluations 

of our initial implementation in Section 5 which demonstrate the 

efficiency of our approach. We correlate the provenance query 

operators to existing provenance work in Section 6 and present 

closing remarks in Section 7. 

2. SEMANTIC MODEL OF PROVENANCE 
The provenir provenance model is defined in OWL-DL to 

formally represent the fundamental provenance classes and 

properties. An OWL-DL ontology consists of a set of classes {C1, 

C2, …, Cn}, a set of properties {R1, R2, …, Rn},  and a set of 

individuals {I1, I2, …, In} [11]. We use an abstract syntax 

specified in a version of Extended BNF [11] to construct axioms 

defining the classes and properties of provenir ontology.  

The provenir ontology forms the core component of a modular 

approach for our eScience provenance framework. As illustrated 

by the first query in Section 1.1, domain-specific details are an 

important component of provenance metadata. But, a single 

monolithic provenance ontology that models all possible details 

from different domains is clearly not a feasible solution. Hence, 

our proposed modular provenance framework involves integrated 

Figure 1.1: A simulated oceanography scenario from 

Neptune Project with data from sensors used to create 

chart visualizations 



use of multiple ontologies, each modeling specific provenance 

metadata for a particular domain (for example, ProPreO ontology 

represents proteomics domain-specific provenance [12]). These 

multiple ontologies will use the provenir ontology as the common 

reference model, hence making it easier to interoperate with each 

other. This modular framework represents a scalable, flexible and 

maintainable approach that can be adapted to the specific 

requirement of different domains. In the next two Sections, we 

describe the classes and the properties in the provenir ontology 

(Figure 2.1). 

2.1 Classes 
In OWL, classes represent individuals with a set of common 

characteristics. To represent provenance metadata classes we use 

the two well defined, primitive concepts of “occurrent” and 

“continuant” from philosophical ontology [13]. Continuant is 

defined as “… entities which endure, or continue to exist, through 

time while undergoing different sorts of changes, including 

changes of place” [13]. Occurrent is defined as “…entities that 

unfold themselves in successive temporal phases” [13].  

We define three base classes1 in the provenir ontology 

representing the primary components of provenance, that is, 

“data”, “agent” and “process”.2 The two base classes, 

“data” and “agents” are defined as specialization (sub-class) 

of continuant class. The third base class “process” is a 

synonym of occurrent. We present the axiomatic definition of 

each class:  

1. data: This class models continuant entities that represent the 

starting material, intermediate material, end products of a 

scientific experiment, and parameters that affect the execution of a 

scientific process. Data inherit the properties of continuants such 

as enduring or existing while undergoing changes. 

 

2. process: This class models the occurrent entities that affect 

(process, modify, create, delete among other dynamic activities) 

individuals of data. 

 

3. agent: This class models the continuant entities that causally 

affect the individuals of process. 

 

In addition to the three base classes, five sub-classes (two direct 

and three indirect) of data are defined to help define properties 

in provenir ontology (defined in Section 2.2). The subclasses of 

data are: 

                                                                 

1 The following namespaces are used in the text – (a) owl: 

http://www.w3.org/2002/07/owl#, (b) rdfs: 
http://www.w3.org/2000/01/rdf-schema#, (c) rdf:  

http://www.w3.org/1999/02/22-rdf-syntax-ns# 

2 We use the courier font to denote provenir ontology classes, 

relationships and individuals 

a) data_collection: This class represents atomic or 

composite data entities that are acted upon during a scientific 

process 

 

b) parameter: parameter is a class of individuals that 

affect the behavior of scientific process in the form of constraints 

and control input to agent and process classes.  

 

There are three subclasses of parameter defined along the three 

dimensions of spatial, temporal and thematic (domain-specific): 

temporal_parameter: This class captures the temporal 

details associated with individuals of data_collection class 

(for example, the timestamp associated with a sensor reading), 

process (for example, the duration of a protein analysis 

process), and agent (for example, the time period during which 

a sensor was working correctly). 

 

spatial_parameter: The spatial metadata associated with 

individuals of process or agent or data_collection 

classes is represented by this class. For example, the geographical 

location of an ocean buoy is a spatial parameter. 

 

domain_parameter: One of the primary objectives of 

provenir ontology is to be extended to model different domain-

specific provenance. The domain_parameter class will be 

used to model domain-specific parameters. 

 

2.2 Properties 
The explicit modeling of property as first class entities is an 

important characteristic of Semantic Web modeling languages. 

For example, the RDF data model [10] is defined by a triple 

<subject, predicate, object>, where the “subject” and “object” are 

individuals belonging to classes or in case of “object” may be 

literals (for example, a string value), and the “predicate” 

represents the property that links together the subject and object. 

In this Section, we define a set of foundational properties in the 

provenir ontology.  

Instead of defining a new set of properties, we reuse and adapt 

properties defined in the Relation ontology (RO) from the Open 

Biomedical Ontologies (OBO) Foundry, which is part of the US 

National Institutes of Health (NIH) funded National Center for 

Biomedical Ontologies (NCBO). The OBO foundry has the stated 

Axiom 8: 
domain_parameter ∷= ' owl:Class',  
'rdfs:subClassOf (parameter)'; 

Axiom 7: 
spatial_parameter = ' owl:Class', 'rdfs:subClassOf 
(parameter)'; 

Axiom 6: 
temporal_parameter ∷= owl:Class',  
rdfs:subClassOf(parameter)'; 

Axiom 5: 
parameter ∷= ' owl:Class', 'rdfs:subClassOf (data)'; 

Axiom 4: 
data_collection ∷= ' owl:Class', 'rdfs:subClassOf (data)'; 

Axiom 3: 
agent ∷='owl:Class', 'rdfs:subClassOf ('continuant' )'; 

Axiom 2: 
process ∷=' owl:Class', 'owl:equivalentClass('occurrent')'; 

Axiom 1: 
data∷=' owl:Class', rdfs:subClassOf ('continuant' )'; 



goal of “establishing a set of principles for ontology 

development” and “interoperable reference ontologies”.  

The RO defines a set of ten primitive properties with clearly 

defined “domain” (classes of entities that can be “subject” of the 

property) and “range” (classes of entities that can be “object” of 

the property) values. We describe provenir ontology using model-

theoretic semantics of OWL. 

1. ro3
:part_of – This property is defined for each of the three 

base classes of provenir ontology. The restriction for this relation 

is that the domain and range values belong to the same class and 

do not overlap. For example, if data is defined as the 

domain/range of the properties, the corresponding range/domain is 

also data. This restriction is derived from extending the notion 

of continuants and occurrents as non-overlapping categories [13] 

to the three base classes. 

As defined in the RO [13], this property satisfies the standard 

axioms of mereology, that is, reflexivity, anti-symmetry, and 

transitivity. 

 

2. ro:contained_in – In provenir ontology, the 

ro:contained_in is defined with similar constraints as 

ro:part_of, that is, the domain and range values belong to 

same class and do not overlap. The property is defined for data 

and agent classes. Consistent with its definition in RO, the 

property is also defined to be non-transitive.  

 

3. ro:adjacent_to – This property is defined for disjoint 

continuants in RO. In provenir ontology, it is defined only for 

agent class, where the adjacent spatial location of individuals of 

agent class may have an effect on scientific results. For 

example, presence of a sensor generating a magnetic field may 

affect the quality of observations made by another sensor that is 

adjacent to it.  

We note that, similar to the mereotopological relations defined in 

RO [13] such as partial overlap, tangential proper part etc., 

corresponding properties can be added to extensions of provenir 

ontology. 

 

4. ro:transformation_of – RO defines the 

ro:transformation_of as a property between two entities 

that preserve their identity between the two transformation stages. 

                                                                 

3 ro: represents the namespace for Relation ontology [13] 

For example, if there is an individual that  belongs to a sub-class 

of class data, say d1 at time t1; and the individual also belonged 

to another sub-class of class data, say d2 at a time t2 and t1 > t2. 

If at no time instant, the individual is member of both d1 and d2 

then there is a ro:transformation_of property linking the 

two individuals. 

  

5. ro:derives_from – This RO property represents the 

derivation history of data entities as a chain or pathway. Unlike 

ro:transformation_of property which links identical 

entities, ro:derives_from links distinct individuals of data. 

 

6. ro:preceded_by – This RO temporal property is defined 

for distinct individuals of process class. Similar to its 

interpretation in Smith et. al [13], in provenir ontology, more 

specific types of properties, such as “immediately_preceded_by” 

[13] which have more precise semantics and hence are more 

useful may be defined in extensions to provenir ontology. 

 

7. ro:has_participant – This is the primary property 

linking data to process, where the individual of data class 

participates in a process. 

 

8. ro:has_agent – This is a causal property that links agent 

to process and is directly responsible for the change in state of 

the process. Similar to the description used in Smith et. al [13], 

the provenir ontology also allows the use of this property to 

“capture the directionality” of scientific experiments, for example 

which agent caused the activation of a process. 

  

9. has_parameter – This property links the spatial, temporal 

and, domain-specific parameters to an individual of a 

data_collection , agent, and process. 

 

Two specialized properties describing the temporal and spatial 

parameters are defined: 

Axiom 17: 
ro:has_parameter∷= 'owl:ObjectProperty', 
'rdfs:domain(data_collection, process, agent)', 
'rdfs:range(parameter)'; 

Axiom 16: 
ro:has_agent∷='owl:ObjectProperty', 
'rdfs:domain (process)', 'rdfs:range(agent)'; 

Axiom 15: 
ro:has_participant∷='owl:ObjectProperty', 
'rdfs:domain (process)',  'rdfs:range(data)'; 

Axiom 14: 
ro:preceded_by∷=  'owl:ObjectProperty', 
'rdfs:domain (process)','rdfs:range(process)'; 

Axiom 13: 
ro:derives_from∷='owl:ObjectProperty', 
'rdfs:domain (data)','rdfs:range(data)'; 

Axiom 12: 
ro:transformation_of∷= 'owl:ObjectProperty', 
'rdfs:domain (data)',   'rdfs:range(data)'; 
 

Axiom 11: 
ro:adjacent_to∷='owl:ObjectProperty', 
'rdfs:domain (agent)',   'rdfs:range(agent)'; 

Axiom 10: 
ro:contained_in∷= 'owl:ObjectProperty', 
'('rdfs:domain (data)','rdfs:range(data)')'| 
'('rdfs:domain (agent)','rdfs:range(agent)')'; 

Axiom 9: 
ro:part_of∷='owl:ObjectProperty', 
'('rdfs:domain (data)','rdfs:range(data)')' | 
'('rdfs:domain (agent)','rdfs:range(agent)')' | 
'('rdfs:domain (process)','rdfs:range(process)')'; 



has_temporal_value – This is a specific property to assert 

temporal value for individuals of data_collection, 

process, and agent classes. For example, d1 

has_temporal_value t1. 

 

ro:located_in – An instance of data or agent is 

associated with exactly one spatial region that is its exact location 

at given instance of time. In provenir ontology, this relation has 

two domain class agent and data_collection classes and 

has spatial_parameter as range class. 

   

2.3 Satisfiability 
The provenir ontology, consistent with description logic, 

differentiates between the schema (also called as Terminological 

or TBox in description logic) and the provenance metadata 

instance values (also called as Assertional or ABox in description 

logic). In this Section, we discuss the satisfiability of the provenir 

ontology schema.  

Using the satisfiability proving technique described in Lausen et. 

al [14], let P denote a provenance vocabulary and let M denote 

asset of constrained provenance assertions. Recall that in OWL 

1.0, the property characteristics are transitivity, symmetric, 

functional, inverse, and inverse functional [15]. We say P
M

 = (P, 

M) to be provenance assertion constrained by the restrictions 

defined in provenir ontology such as class hierarchy, property 

hierarchy, domain and range values for properties etc. We 

describe the satisfiability of these constrained provenance 

assertions. We say that P
M

 is satisfiable iff there exists an 

interpretation I of P which satisfies M. We also define for class 

E ∈ P, EI ≠ Ø and for property R ∈ P, RI ≠ Ø.  

The satisfiability of constrained provenance assertions subscribing 

to provenir ontology is trivial, that is, it is always guaranteed. To 

illustrate, let o ∈ φI, and define EI = {o}; and let vd, vr ∈ φI and vd 

∈ domain(R), vr ∈ range(R), and define RI= {(vd, vr)} for all 

provenance assertions.  

LEMMA 1 Let P be a provenance vocabulary, M be provenance 

metadata assertions with constraints defined in provenir ontology. 

There exists an interpretation I of P, such that I ╞ M.   

The description logic (DL) expressivity of provenir ontology is 

ALCH and we know from [16] that for DL of expressivity 

ALCHIQ, the satisfiability can be decided in exponential time. 

Hence, given that provenir ontology does not feature inverse roles 

and number restrictions, the complexity bound for provenance 

metadata assertions subscribing to provenir ontology is expected 

to be exponential or better. We plan to explore the complexity of 

algorithms for various DL inference problems over provenir 

ontology in more detail in the future.  

 

 

3. PROVENANCE QUERY CLASSIFICATION 

AND QUERY OPERATORS 
The provenance literature features a large variety of queries, each 

addressing the specific requirements of an application under 

discussion. But without a systematic classification of provenance 

queries it is difficult to clearly identify the common and distinct 

characteristics of these queries, and more importantly, define 

query operators to support them. The provenance query operators 

can be implemented by provenance storage systems to more 

efficiently answer queries with query optimization techniques 

similar to generic database systems.  

In this paper, we identify three categories of provenance queries: 

1. Querying for provenance metadata: Given a data entity, 

this category of queries returns the complete set of 

provenance information that influenced the current state of 

the data entity. An example query, from the oceanography 

scenario described Section 1.1, is to find the provenance 

metadata for the “HyperCube” object with identifier 

“HyperCube85357162234026”; 

2. Querying for data values: A diametrically opposite 

perspective to the first category of query is, given a set of 

constraints defined over both provenance metadata and data, 

expressed using formal context structure [17], retrieve a set 

of data entities satisfying the constraints. An example query 

from the oceanography scenario ( described in Section 1.1) is 

to find chart visualization datasets from the ocean buoy with 

identifier “oceanBuoy7044” within the time period “April 21, 

2003 to May 2, 2003”; 

Depending on the quality of constraints specified by the 

context structure, this query operator can be used to 

implicitly reconcile heterogeneity among resultant datasets. 

For example, if the query constraint specifies data from 

temperature sensors with unit of measurement as degree 

Centigrade, the resulting data values are comparable and  

Axiom 19: 
ro:located_in∷='owl:ObjectProperty', 
'rdfs:domain(data_collection, process, agent)', 
'rdfs:range(spatial_parameter)'; 

Axiom 18: 
ro:has_temporal_parameter∷='owl:ObjectProperty', 
'rdfs:domain(data_collection, process, agent)', 
'rdfs:range(temporal_parameter)'; 

Figure 2.1: The provenir ontology schema 

 

 



arithmetic operations to compute average or sum can be 

applied to them without the need for semantic reconciliation; 

3. Modifying provenance metadata: This category of queries 

is defined over the provenance metadata itself. Example 

operations include merging of provenance from different 

stages of an experiment and comparison of provenance for 

two datasets from different sources. 

Using this query classification scheme, we introduce a set of 

provenance query operators. 

Conventions for query operator definition 

We define the provenance query operators in terms of the provenir 

ontology class and properties (introduced in Section 2) and use 

denotational semantics to define the formal semantics of each 

operator. We define the universal set of provenance metadata 

assertions “PM” in RDF, which is a directed edge and node 

labeled graph structure. If „p‟ is an individual of provenir class 

process it is represented as p ∈ process. Corresponding to 

RDF notation, a→x→b represent that „a‟ is the subject and „b‟ is 

the object of the property „x‟. 

 

3.1 Querying for Provenance Metadata 
provenance ( )- This is a closure operation on the provenance 

graph. That is, the operator returns the complete set of provenance 

metadata for a data entity. Let us again consider the query from 

Section 1.1, “given a “HyperCube” object with identifier 

“HyperCube85357162234026”, retrieve all its provenance 

metadata”. As Figure 3.1 illustrates, the query operator with input 

value HyperCube85357162234026 expands the provenance 

metadata graph in a series of steps. The graph expansion steps are 

bounded by constraints defined in terms of valid classes and 

properties that can be traversed by the query operator. Formally, 

 

This query operator is expensive to implement and is not required 

in most scenarios. For example, provenance metadata generated 

by a scientific workflow represents a subset of result returned by 

this operator. Hence, we define a specialized form of the 

provenance ( ) operator with additional constraints, called 

provenance_pathway ( ) to retrieve workflow-specific provenance 

metadata. 

I)  provenance_pathway ( ): This operator returns provenance 

information of a data entity consisting of only an individual 

belonging to data_collection and process classes. This 

operator reflects requirements of workflow provenance, 

where provenance consists of a series of “activities” (where 

an “activity” is any sub-class of process) and set of “data 

entities” (where a “data entity” is any subclass of 

data_collection class) that form the input and output of 

the processes. A set of constraints defined as an expression 

over individuals belonging to data_collection, agent, 

process and parameter can also be defined as part of the 

input. For example, query involving workflow provenance of 

ocean current values may have a time interval constraint as 

April 21, 2003 to May 2, 2003. 

Definition 2: 
∀dc ∈ provenir: data_collection provenance (dc) = 
p_data (dc) ∪ p_process (dc) ∪ p_agent (dc) ∪ p_predicate 
(dc), holds ∈ DB 
 p_process (dc) = {p | 

p→ro:has_participant→dc+ ∪ *p | 

q→ro:preceded_by→p ∧ q ∈ p_process (dc)+ ∪ *p | 

q→ro:part_of→p ∧ q ∈ p_process (dc)+ ∪ *p | 

p→ro:part_of→q ∧ q ∈ p_process (dc)+ ∪ *p | 

q→ro:has_participant→d ∧ d ∈ p_data (dc)+ ∪ 
*p | p→ro:has_agent→a ∧ a∈ p_agent (dc)+. 

 p_data (dc) = {d | p ∈ p_process (dc) ∧ 
p→ro:has_participant→d ∧ timestamp (d) ≤ 
timestamp (dc)+ ∪ *d | dc→ro:derives_from→d+ ∪ 
*d | dc→ro:transformation_of→d+ ∪ *d | 
dc→ro:part_of→d+ ∪ *d | d→ro:part_of→dc+ ∪ 
*d | dc→ro:contained_in→d+ ∪ *d | 
d→ro:contained_in→dc+ ∪ *d | p ∈ p_process (dc) 
∧ p→ro:has_parameter→d+ ∪ *d | a ∈ p_agent (dc) 
∧ a→ro:has_parameter→d+. 

 p_agent (dc) = {a | p ∈ p_process (dc) ∧ 
p→ro:has_agent→a+ ∪ *a | b ∈ p_agent (dc) ∧ 
b→ro:part_of→a+ ∪ *a | b ∈ p_agent (dc) ∧ 
b→ro:contained_in→a+ ∪ *a | b ∈ p_agent (dc) ∧ 
b→ro:adjacent_to→a+ ∪ *a | b ∈ p_agent (dc) ∧ 
a→ro:part_of→b+ ∪ *a | b ∈ p_agent (dc) ∧ 
a→ro:contained_in→b+ ∪ *a | b ∈ p_agent (dc) ∧ 
a→ro:adjacent_to→b+. 

 p_predicate (dc) = *r | X ∈ provenance (dc) ∧ 
dc→r→X ∧ X→r→dc+. 

 

Definition 1: 
PM = graph (N, E)  
where, 
 N ∈ provenir:data ∪ provenir:process ∪ 

provenir:agent 
 E ∈ R, R is set of properties defined in provenir 

ontology 



 

 

 

 

Correlation to “where-provenance” (defined in 

Buneman et. al [5]):  

A restricted view of the “where provenance” is defined as, 

for each database query that returns a set of results, each 

piece of input data that contributes to given element of the 

result set is identified. This is termed as the “derivation 

basis” of the output value.  

The semantics of the provenance () is comparable to 

“derivation basis”. Given the successful execution of a 

scientific process, where all components may be modeled as 

a workflow or may also include non-computational entities, 

the “where-provenance” of the data includes all the data 

entities and processes that contributed to the output data. The 

result of the provenance () operator is a superset of the 

domain of the “where-provenance” defined in [5] in terms of 

not only databases involved in the scientific processes but 

also process and other data entities. 

3.2 Querying for Data Value 
provenance_context ( ) - This operator has an inverse-role to the 

provenance ( ) operator, with more relaxed constraints that may 

be specified as input values.  

 

This operator uses any component of the provenance metadata 

graph PM to define a context structured subgraph. Considering 

our example query from the oceanography scenario (described in 

Definition 4: 
provenance_context (di, pj, ak, rl, pam) ≡ *dres } 
where, 
 di, dres ∈ provenir:data_collection; 
 pj ∈ provenir:process;  
 ak ∈ provenir:agent; 
 pam ∈ provenir:parameter; 
 rl ∈ R; and rl R is set of provenir ontology properties 

linking individuals of z, for z ∈ *dres ∪ di ∪ pj ∪ ak ∪ 
pam} 

Definition 3: 
∀dc ∈ provenir: data_collection 
provenance_pathway (dc) = p_process (dc) ∪ p_data 
(dc) ∪ p_predicate (dc), holds ∈ DB  
 p_process (dc) = *p | p→ 

ro:has_participant→dc+ ∪ *p | p→ 
ro:has_participant→d ∧ d ∈ p_data(dc)+ ∪ 
*p | p→ro:preceded_by→q ∧ q ∈ 
p_process(dc)} 

 p_data (dc) = *d | p ∈ p_process(dc) ∧ p→ 
ro:has_participant→d ∧ timestamp (d) ≤ 
timestamp(dc)+ ∪ *d | 
dc→ro:derives_from→d+ ∪ *d | 
dc→ro:transformation_of→d+ ∪ *d | p ∈ 
p_process(dc) ∧ p→ro:has_parameter→d+ 

 p_predicate (dc) = *r | X ∈ 
provenance_pathway(dc) ∧ dc→r→X ∧ X→r→dc+ 

Figure 3.1: Provenance graph expansion steps, for input value “HyperCube85357162234026” to provenance () query operator  



Section 1.1), “Find all datasets sourced from ocean buoy with 

identifier “oceanBuoy7044” that was in damaged state for the 

time period “April 21, 2003 to May 2, 2003”. Thus, given a set of 

the output of the operator is a set of individuals belonging to 

data_collection class that satisfy the constraints. This 

operator is closed with respect to data_collection class. 

Similar to the provenance_context ( ) operator that returns 

individuals of class data_collection, specialized operators 

can be defined for individuals of process and agent classes.  

I) pc_process (): For given a set of constraints retrieve all the 

instances of process class that satisfy the set of constraints. 

An example query from the oceanography scenario (in 

Section 1.1) is “Find all invocations of a computational 

process “HyperCubetoDataTable” with parameter 

“InverseData” set to value = false”.  

 

II) pc_agent (): For given a set of constraints retrieve all the 

instances of agent class that satisfy the constraints. 

 
 
A more detailed specification of these three query operators is 

given as Appendix B at the end of the paper. 
 

3.3 Modifying Provenance Metadata Graph 
In this Section we define a third category of operators to 

manipulate the provenance metadata graph itself. We note that 

RDF graph representing provenance metadata subscribes to 

provenir ontology (with a 1-1 mapping) hence it does not contain 

any blank nodes (a ground RDF graph [18]). These operators are 

adapted from the set of standard operators defined for a graph 

model: 

I) provenance_compare ( ): Accurate comparison of scientific 

results requires the comparison of the associated provenance 

information. For example, two ocean visualization charts are 

said to be comparable if their provenance information such 

as types of sensors that generated the source data, the 

parameters values used in the scientific workflow to compute 

over the source data etc., are identical or comparable.  

We adapt the RDF graph equivalence definition [19] with the 

added functionality of “coloring” the nodes and labeling the 

edges using the provenir ontology class and properties to 

define equivalence between two provenance graphs. If a 

bijection function exists to map two provenance metadata 

graph elements, the two graphs are equivalent.  

 

II) provenance_merge ( ): Two sub-sections of the provenance 

metadata graph for given entities or set of entities may be 

combined using the RDF graph merge logic. The new 

merged graph does not include any duplicates individuals. 

 

In the next Section, we implement the provenance algebra using 

materialized views defined over relational database. 

4. MATERIALIZED VIEW 

IMPLEMENTATION 
In the world of database systems for provenance support, the need 

to dynamically maintain large amounts of complex data conflicts 

with the demand for subsecond query response time.  Our answer 

to this dilemma is materialized views and indices, both of which 

precompute aggregate information.  A database can utilize 

materialized views to prejoin tables, presort solution sets, and 

integrate semantic information. The materialized view can be set 

up to automatically keep itself in synch with base data, updating 

itself at predetermined intervals.  The precomputed index is 

created using one or more columns of the underlying database 

tables, providing the basis for both rapid random lookups and 

efficient access of records. Because this work is completed in 

advance, it gives end users the illusion of instantaneous response 

time. Materialized views are especially useful for provenance 

queries, where cross-tabulations and recursive queries could take 

several minutes to perform. 

Definition 8:  
provenance_merge (pg1, pg2 | pg1 = graph(d1,p1, a1, r1), 
pg2 = graph(d2, p2, a2, r2)) ≡ *mg | mg = graph(d, p, a, r)+ 
where, 
 d = {d1 ∪ d2}, and di, d2 ∈ provenir:data; 
 p = {p1 ∪ p2}, and pi, p2 ∈ provenir:process; 
 a = {a1 ∪ a2}, and ai, a2 ∈ provenir:agent; 
 r ={r1 ∪ r2 ∪ r3}, given r1,r2 ∈ R (set of provenir 

ontology properties) and r3 – set of properties 
linking elements of {d, p, a} 

Definition 7:  
provenance_compare (pg1, pg2 | pg1 = graph(d1,p1, a1, r1), 
pg2 = graph(d2, p2, a2, r2)) ≡ *true, false} 
where, there exists a bijection M such that 
 ∀d1 M(d1) = d1, and d1, d2 ∈ provenir:data; 
 ∀p1 M(p1) = p1; and p1,p2 ∈ provenir:process; 
 ∀a1 M(a1) = a1; and a1,a2 ∈ provenir:agent; 
 ∀r1 M(r1) = r1; and r1,r2 ∈ R (set of provenir 

ontology properties); 
 ∃ <s, p, o> in pg1 iff <M(s), p, M(o)> exists in pg2, 

given <s, p, o> is a RDF triple with s-subject, p-
predicate, o-object 

Definition 6:  
pc_agent (di, pj, ak, rl, pam) ≡ *ares | ares ∈ provenir: agent} 
where, 
 di ∈ provenir:data_collection; 
 pj ∈ provenir:process;  
 ak ∈ provenir:agent; 
 pam ∈ provenir:parameter; 
 rl  ∈R; and R is set of provenir ontology properties 

linking individuals of z, for z ∈ *dres ∪ di ∪ pj ∪ ak ∪ 
pam} 

Definition 5:   
pc_process (di, pj, ak, rl, pam) ≡ *pres } 
where, 
 di ∈ provenir:data_collection; 
 pres , pj ∈ provenir:process;  
 ak ∈ provenir:agent; 
 pam ∈ provenir:parameter; 
 rl ∈ R; and R is set of provenir ontology properties 

linking individuals of z, for z ∈ *dres ∪ di ∪ pj ∪ ak ∪ 
pam} 



The following five tables were created to store provenance data. 

The first table stores information associated with the input objects 

used to seed the workflow: 

create table DataItems 

(  DataID nvarchar(50) PRIMARY KEY, 

   TemperatureID nvarchar(50), 

   CurrentID nvarchar(50), 

   BouyID nvarchar(50) 

); 

The second table stores a row for each workflow entry: 

create table Fact 

(  ActivityID nvarchar(50) PRIMARY 

KEY, 

   WorkflowID nvarchar(50), 

   ActivityType nvarchar(100), 

   ActivityStatus nvarchar(50), 

   ActivityTime nvarchar(50) 

); 

The third table stores the set of objects associated with each 

workflow entry in the fact table which processed base input 

objects. Note there is a foreign key from ObjectName to 
DataItems.DataID. 

create table InputObjI 

(  ActivityID nvarchar(50), 

   ObjectType nvarchar(50), 

   ObjectName nvarchar(50), 

   PRIMARY KEY (ActivityID, 

ObjectType) 

); 
 

The fourth table stores the set of input properties associated with 

each workflow entry in the fact table. 

create table InputPropI 

(  ActivityID nvarchar(50), 

   Property nvarchar(50), 

   Value nvarchar(50), 

   PRIMARY KEY (ActivityID, Property) 

); 

The fifth and final table stores the set of output properties 

associated with each workflow entry in the fact table. 

create table OutputPropI 

(  ActivityID nvarchar(50), 

   Property nvarchar(50), 

   Value nvarchar(50), 

   PRIMARY KEY (ActivityID, Property) 

); 

Representation of provenance data requires nested sets, and 

normalization results in five distinct tables to represent the 

associated properties.  As stated earlier, there is one foreign key 

from InputObjI.ObjectName to DataItems.DataID. As we 

discuss later, an index on input and output properties allow us to 

efficiently recurse in both directions during query processing. 

5. EXPERIMENTS AND RESULTS 
The dataset for the evaluations was generated from the 

oceanography scenario described in Section 1.1. The scientific 

workflow is from the Neptune project and the simulated details 

describing data collection by temperature and ocean current 

sensors, both contained in an ocean buoy, were added by us. The 

provenance metadata for this scenario records the events (we 

assume one provenance record is generated per event) starting 

with the data collection by the sensors, followed by data 

processing in the scientific workflow and finally to the output in 

form of visualization charts.  

The scientific workflow is currently run on the Windows 

Workflow Foundation-based Trident workbench [20]. We used 

the log file generated by the Trident workbench with additional 

details such as temperature sensors, ocean current sensors, and 

ocean buoys, to create a provenance template. Using this template 

we generated four provenance files corresponding to 10,000; 

50,000; 100,000; 500,000 data collection (by sensors) and 

workflow execution processes representing realistic provenance 

metadata for our evaluations. As discussed in Section 4, the data is 

stored in the normalized form in five tables.  

In terms of pre-computation, all primary keys and foreign keys 

had associated primary and secondary indices respectively. Note 

that this is a generic choice which could be automatically done for 

any provenance data cast into this provenance framework. These 

indices ensured that the corresponding lookups during query 

execution were performed efficiently. Note that more 

sophisticated forms of pre-computation, such as materialized 

views, could be used to improve performance in more complex 

queries such as rollups (aggregation). 

The timings reported are mean result from the last five runs out of 

a total of ten runs; the variance was extremely low (<5% 

difference between highest and lowest score used in average for 

every case). The SQL queries for the experiments are listed in 

Appendix A. 

5.1 Experimental Setup 
The experiments were conducted using SQL Server 2008 on a 

windows server with 500MB cache, with all performance 

measurements collected on a warm cache. The goal of our 

experiments is to evaluate the performance and scalability gain 

from implementation of provenance query operators using well-

defined indices for complex provenance queries.  

5.2 Experiment I 
This experiment evaluates the benefit of implementing the 

provenance () query operator (described in Section 3.1), using 

indices, to answer the query that retrieves all provenance metadata 

associated with a data entity "HyperCube85357162234026". 

 

 

 

As expected, the implementation of the query using indices leads 

to a significant gain in performance as the dataset increases. For 

the 500K dataset, the system hit the memory limit of 500MB.  

Figure 5.1: Performance values for provenance () query 

operator for various sized datasets 



5.3 Experiment II 
As discussed in Section 3.1, the provenance () query is not 

required in most scenarios, hence the provenance_pathway () 

query operator was defined with additional restriction focused on 

workflow provenance. In this experiment we run Experiment I 

query using provenance_pathway() operator.  

 

 

 

We used a recursive CTE (common table expression) called 

“ProvenancePathway” in this query. This is a recursive query with 

two parts. The first part is the seed of the recursion that selects a 

row from the table 2 which has an associated output property 

with value "HyperCube85357162234026”. The recursive part is 

then included after a union all. It takes existing rows from 

previous iterations, and joins them to the table Fact in a way 

which follows the provenir schema through one edge. The 

recursion is performed until no new rows are added. These results 

are similar to Experiment I, but the performance for dataset size of 

500K is worse than Experiment I (37 seconds vs. 32 seconds for 

Experiment I) due to greater number of restrictions for this query 

as compared to provenance () (discussed in Section 3.1). But, we 

clearly see that query implementation with indices scales easily 

with increasing dataset size. 

5.4 Experiment III 
This experiment evaluates the performance of 

provenance_context() query operator that returns the result data 

which used source data from a contaminated ocean buoy 

“oceanBuoy7044” (scenario described earlier in Section 1.1). The 

constraints define a provenance subgraph from which datasets 

belonging to provenir data_collection class (or one of its 

subclasses) are returned. 

 

 

 

This result clearly illustrates the complexity of this query as 

compared to the first two queries and the benefit from 

implementing the query using indices. In addition to primary and 

foreign key indices we defined two additional indices on table 

DataItems columns for ocean buoy identifiers and input value 

column in table InputPropI. 

6. RELATED WORK 
Provenance metadata has been studied from multiple perspectives 

across a number of different domains. In this Section we discuss 

the provenance work that is divided into two categories in 

computer science literature, namely database provenance and 

workflow provenance [21]. We correlate the provenance query 

operators introduced in this paper to the different approaches for 

creation, representation and usage of provenance in these two 

categories, as illustrated in Figure 6.1. 

 

 

 

6.1 Database Provenance 
Database provenance or data provenance, often termed as “fine-

grained” provenance [21], has been extensively studied in the 

database community. Early work includes the use of annotations 

to associate “data source” and “intermediate source” with data 

(polygen model) in a federated database environment to resolve 

conflicts by Wang et al [22], and use of “attribution” for data 

extracted from Web pages by Lee et al [23]. More recent work has 

defined database provenance in terms of “Why provenance”, 

“Where provenance” (previously in Section 3.1, we correlated the 

provenance () query operator with “Where provenance”) by 

Buneman et al [5]; and “How provenance” by Green et al [6].  

“Why provenance” was first described in [4], and in this paper we 

use the syntactic definition of “Why provenance” by Buneman et 

al [5] that defines a “proof” for a data entity. The proof consists of 

a query, representing a set of constraints, over a data source with 

“witness” values that result in a particular data output; hence, the 

semantics of provenance () query operator closely relates to “Why 

provenance” [5]. To address the limitation of “Why provenance” 

that includes “…set of all contributing input tuples” leading to 

ambiguous provenance, Green et al [6] introduced semiring-based 

“How provenance”. The provenance () query operator over a 

“weighted” provenance model, to reflect the individual 

contribution of each component (for example process loops or 

repeated use of single source data), is comparable to “How 

provenance”. The Trio project [24] considers three aspects of 

lineage information of a given tuple, namely how was a tuple in 

the database derived along with time value (when) and the data 

sources used. A subset of queries in Trio, “lineage queries”, 

Figure 5.2: Performance values for provenance_pathway () 

query operator for various sized datasets 

Figure 5.3: Performance values for provenance_context () 

query operator for various sized datasets 

Figure 6.1: Correlation of provenance query operators with 

existing work in database and workflow provenance 



discussed in [24] can be mapped to query for provenance and 

contextual query operators.  

The SPIDER system [25] built on top of Clio [26] is an 

application that uses provenance information modeled as “routes” 

(schema mappings) between source and target data to capture 

aspects of both “Why provenance” and “How provenance”. 

6.2 Scientific Workflow Provenance 
The rapid adoption of scientific workflows to automate scientific 

processes has catalyzed a large body of work in recording 

provenance information for the results generated by scientific 

workflows. As discussed earlier in Section 1, traditionally 

workflow provenance represented the execution sequence of 

computational processes, the input and output data values for 

these computational processes. Simmhan et al [7] survey different 

approaches for collection, representation and management of 

workflow provenance. The participants in the recent provenance 

challenge [8] collected provenance at different levels of 

granularities such as comprehensive workflow system trace in 

PASS [27], use of semantic annotations of services by Taverna 

[28], recording of data value details and service invocations in 

Karma [29], and workflow as well as data modeling in REDUX 

[30]. Further details about the provenance challenge are available 

at [8]. Recent work has also recognized the need for inclusion of 

domain semantics in form of domain-specific provenance 

metadata [31] with workflow provenance. The work presented in 

this paper forms the theoretical foundations of the provenance 

framework introduced in [31]. The Stanford Knowledge 

Provenance Infrastructure (KPI) [32] provides provenance 

information as explanations, including the source of data and any 

reasoning or inference processes applied to the data, related to 

Web data such as news feeds and other information sources. The 

Vistrails project [33] is a novel project to track the provenance of 

scientific workflows as they evolve through modifications to 

reflect changes in scientific processes. The provenance about 

workflows enables scientists to track and manage the processes 

represented as workflows. 

Recent initiatives such as the Open Provenance Model (OPM) 

[34] are working to create a common model for provenance in the 

eScience community. The concepts proposed by OPM are 

equivalent to the three top-level concepts of the provenir ontology 

namely, artifact, process and agent. Unlike provenir ontology 

which is defined in OWL-DL, OPM has not yet decided on 

representation formalism beyond the generic graph model. Hence, 

the rules of reasoning proposed in OPM are easily contradicted 

[35]. A detailed discussion arguing for use of W3C Semantic Web 

languages formalism to represent OPM can be found in [31].  

7. CONCLUSIONS 
In this paper we introduce a common provenance model called 

provenir ontology defined in OWL-DL, and discussed the 

satisfiability of provenir. We propose a novel classification 

scheme for provenance queries, and based on this classification 

we define a set of provenance query operators. The semantics of 

each query operator is formally defined in terms of the provenir 

ontology and mapped to existing work in both database and 

workflow provenance. Finally, we introduce a practical 

provenance storage solution using materialized views over a 

generic relational database system and present an evaluation of 

performance and scalability of our initial implementation.   

To the best of our knowledge this is the first provenance 

management system that defines both provenance model, 

consisting of algebra and operators, and efficient provenance 

storage and query support based on materialized views.  Our 

approach supports the complete process from a formal provenance 

model to the storage and efficient queries over provenance data.  
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APPENDIX A – Provenance Queries in SQL 
 

Query 1 

WITH ProvenancePathway (ActivityID, 

WorkflowID, ActivityType, ActivityState, 

ActivityTime, Level) 

AS ( 

select Fact.ActivityID, Fact.ActivityStatus, 

Fact.ActivityTime, Fact.ActivityType, 

Fact.WorkflowID, 0 as Level 

from dbo.Fact, dbo.OutputProp 

where (Fact.ActivityID = 

OutputProp.ActivityID) and 

(OutputProp.Value='HyperCube85357162234026') 

UNION ALL 

select Fact1.ActivityID, 

Fact1.ActivityStatus, Fact1.ActivityTime, 

Fact1.ActivityType, Fact1.WorkflowID, 

Level+1 

from dbo.Fact as Fact1, ProvenancePathway as 

Fact2 

where EXISTS ((select IP.Value from 

dbo.InputProp as IP where IP.ActivityID = 

Fact2.ActivityID) intersect 

       (select OP.Value from dbo.OutputProp 

as OP where OP.ActivityID = 

Fact1.ActivityID)) ) 

select * 

from ProvenancePathway 
 

Query 2 

WITH ProvenancePathway (ActivityID, 

WorkflowID, ActivityType, ActivityState, 

ActivityTime, Level) 

AS ( 

select Fact.ActivityID, Fact.ActivityStatus, 

Fact.ActivityTime, Fact.ActivityType, 

Fact.WorkflowID, 0 as Level 

from dbo.Fact, dbo.OutputProp 

where (Fact.ActivityID = 

OutputProp.ActivityID) and 

(OutputProp.Value='HyperCube85357162234026') 

UNION ALL 

select Fact1.ActivityID, 

Fact1.ActivityStatus, Fact1.ActivityTime, 

Fact1.ActivityType, Fact1.WorkflowID, 

Level+1 

from dbo.Fact as Fact1, ProvenancePathway as 

Fact2 

where EXISTS ((select IP.Value from 

dbo.InputProp as IP where IP.ActivityID = 

Fact2.ActivityID) intersect 

       (select OP.Value from dbo.OutputProp 

as OP where OP.ActivityID = 

Fact1.ActivityID))  ) 

select InputObj.ActivityID, 

InputObj.ObjectName, InputObj.ObjectType 

from ProvenancePathway as PP, InputObj 

where (PP.ActivityID = InputObj.ActivityID) 
 

Query 3 

WITH ProvenancePathway (ActivityID, 

WorkflowID, ActivityType, ActivityState, 

ActivityTime, Level) 

AS ( 

select Fact.ActivityID, Fact.ActivityStatus, 

Fact.ActivityTime, Fact.ActivityType, 

Fact.WorkflowID, 0 as Level 

from dbo.Fact, dbo.DataItems, dbo.InputObj 

where (Fact.ActivityID = 

InputObj.ActivityID) and 

      (InputObj.ObjectName=DataItems.DataID) 

and 

      (DataItems.BouyID='oceanBuoy7044') 

UNION ALL 

Select Fact1.ActivityID, 

Fact1.ActivityStatus, Fact1.ActivityTime, 



Fact1.ActivityType, Fact1.WorkflowID, 

Level+1 

from dbo.Fact as Fact1, ProvenancePathway as 

Fact2 

where EXISTS ((select IP.Value from 

dbo.InputProp as IP where IP.ActivityID = 

Fact1.ActivityID) intersect 

       (select OP.Value from dbo.OutputProp 

as OP where OP.ActivityID = 

Fact2.ActivityID)) ) 

select * 

from ProvenancePathway as PP 

where exists (select * from dbo.OutputProp 

as OP where PP.ActivityID=OP.ActivityID and 

OP.Value like 'ChartData%') 

 

APPENDIX B – Provenance Context Query 

Operators 

 
1. Provenance Context Query Operator 

 

 
 

 

 

2. Provenance Context Process Query Operator 

 

 

 

Definition 7:  
∀d ∈ provenir: data, ∀p ∈ provenir: process, ∀a ∈ 
provenir: agent provenancecontext_process (pc) = 
pc_data (d) ∩ pc_process (p) ∩ pc_agent (a), holds ∈ DB 
 pc_data (d) = *pc | pc→ro:has_participant→d+ 

∪ *pc | pc→ro:has_parameter→d+ ∪ *pc | 

dres→ro:derives_from→d ∧ 

(pc→ro:has_participant→dres∨ 

pc→ro:has_parameter→dres)+ ∪ *pc | 

d→ro:derives_from→dres ∧ 

(pc→ro:has_participant→dres∨ 

pc→ro:has_parameter→dres)+ ∪ {pc | 

d→ro:transformation_of→dres ∧ 

(pc→ro:has_participant→dres∨ 

pc→ro:has_parameter→dres)+ ∪ *pc | 

dres→ro:transformation_of→d ∧ 

(pc→ro:has_participant→dres∨ 

pc→ro:has_parameter→dres)+ ∪ *pc | 

dres→ro:part_of→d ∧ 

(pc→ro:has_participant→dres∨ 

pc→ro:has_parameter→dres)+ ∪ *pc | 

d→ro:part_of→dres ∧ 

(pc→ro:has_participant→dres∨ 

pc→ro:has_parameter→dres)+ ∪ *pc | 

dres→ro:contained_in→d ∧ 

(pc→ro:has_participant→dres∨ 

pc→ro:has_parameter→dres)+ ∪ *pc | 

d→ro:contained_in→dres ∧ 

(pc→ro:has_participant→dres∨ 

pc→ro:has_parameter→dres)} 

 pc_process(p) = *pc | pc→ro:preceded_by→p+ ∪ 

*pc | p→ro:preceded_by→pc+ ∪ *pc | 

p→ro:has_part→pc + ∪ *pc | 

pc→ro:has_part→p+ 

 pc_agent(a) = *pc | p→ro:has_agent→a+ ∪ *pc | 

a→ro:contained_in→ares ∧ 

pc→ro:has_agent→ares+ ∪ *pc | 

ares→ro:contained_in→a ∧ 

pc→ro:has_agent→ares+ ∪ *pc | 

a→ro:part_of→ares ∧ pc→ro:has_agent→ares+ ∪ 

{pc | ares→ro:part_of→a ∧ 

pc→ro:has_agent→ares+ ∪ *pc | 

a→ro:adjacent_to→ares ∧ 

pc→ro:has_agent→ares+ ∪ *pc | 

ares→ro:adjacent_to→a ∧ 

pc→ro:has_agent→ares} 

Definition 7:  
∀d ∈ provenir: data, ∀p ∈ provenir: process, ∀a ∈ 
provenir: agent provenance_context (dc) = pc_data (d) 
∩ pc_process (p) ∩ pc_agent (a), holds ∈ DB 
 pc_data (d) = *dc | dc→ro:derives_from→d+ ∪ 

*dc | dc→ro:transformation_of→d+ ∪ *dc | 

dc→ro:part_of→d+ ∪ *dc | d→ro:part_of→dc+ ∪ 

*dc | dc→ro:contained_in→d+∪ *dc | 

d→ro:contained_in→dc+ 

 pc_process(p) = *dc | p→ro:has-

participant→dc+ ∪ *dc | 

p→ro:preceded_by→pres ∧ 

pres→ro:has_participant→dc + ∪ *dc | 

p→ro:has_part→pres ∧ 

pres→ro:has_participant→dc + ∪ *dc | 

pres→ro:has_part→p ∧ 

pr→ro:has_participant→dc + 

 pc_agent(a) = *dc | p→ro:has_agent→a ∧ p ∈ 
pc_process(p)+ ∪ *dc | a→ro:contained_in→ares ∧ 
p→ro:has_agent→ares ∧ p ∈ pc_process(p)+ ∪ *dc | 
ares→ro:contained_in→a ∧ 
p→ro:has_agent→ares ∧ p ∈ pc_process(p)+ ∪ *dc | 
a→ro:part_of→ares ∧ p→ro:has_agent→ares ∧ p 
∈ pc_process(p)+ ∪ *dc | ares→ro:part_of→a ∧ 
p→ro:has_agent→ares ∧ p ∈ pc_process(p)+ ∪ *dc | 
a→ro:adjacent_to→ares ∧ 
p→ro:has_agent→ares ∧ p ∈ pc_process(p)+ ∪ *dc | 
ares→ro:adjacent_to→a ∧ 
p→ro:has_agent→ares ∧ p ∈ pc_process(p)+ 

 



3. Provenance Context Agent Query Operator 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Definition 7:  
∀d ∈ provenir: data, ∀p ∈ provenir: process, ∀a ∈ 
provenir: agent provenancecontext_agent (ac) = 
pc_data (d) ∩ pc_process (p) ∩ pc_agent (a), holds ∈ DB 
 pc_data (d) = *ac | p→ro:has_participant→d ∧ 

pc_process(p, ac)+ ∪ *ac | 

p→ro:has_parameter→d ∧ pc_process(p, ac)+ ∪ 

{ac | dres→ro:derives_from→d ∧ 

(p→ro:has_participant→dres∨ 

p→ro:has_parameter→dres) ∧ pc_process(p, ac)+ 

∪ *ac | d→ro:derives_from→dres ∧ 

(p→ro:has_participant→dres∨ 

p→ro:has_parameter→dres) ∧ pc_process(p, ac)+ 

∪ *ac | d→ro:transformation_of→dres ∧ 

(p→ro:has_participant→dres∨ 

p→ro:has_parameter→dres) ∧ pc_process(p, ac)} 

∪ *ac | dres→ro:transformation_of→d ∧ 

(p→ro:has_participant→dres∨ 

p→ro:has_parameter→dres) ∧ pc_process(p, ac)+ 

∪ *ac | dres→ro:part_of→d ∧ 

(p→ro:has_participant→dres∨ 

p→ro:has_parameter→dres) ∧ pc_process(p, ac)+ 

∪ *ac | d→ro:part_of→dres ∧ 

(p→ro:has_participant→dres∨ 

p→ro:has_parameter→dres) ∧ pc_process(p, ac)+ 

∪ *ac | dres→ro:contained_in→d ∧ 

(p→ro:has_participant→dres∨ 

p→ro:has_parameter→dres) ∧ pc_process(p, ac)+ 

∪ *ac | d→ro:contained_in→dres ∧ 

(p→ro:has_participant→dres∨ 

p→ro:has_parameter→dres) ∧ pc_process(p, ac)+ 

 pc_process(p) = *ac | p→ro:has_agent→ac+ ∪ *ac | 

pres→ro:preceded_by→p ∧ 

pres→ro:has_agent→ac+ ∪ *ac | 

p→ro:preceded_by→pres ∧ 

pres→ro:has_agent→ac+ ∪ *ac | 

pres→ro:part_of→p ∧ pres→ro:has_agent→ac+ ∪ 

*ac | p→ro:part_of→pres ∧ 

pres→ro:has_agent→ac+ 

 pc_agent(a) = *ac | a→ro:contained_in→ac+ ∪ 

*ac | ac→ro:contained_in→a+ ∪ *ac | 

a→ro:part_of→ac+ ∪ *ac | ac→ro:part_of→a+ ∪ 

*ac | a→ro:adjacent_to→ac+ ∪ *ac | 

ac→ro:adjacent_to→a+ 


