
Provenance Algebra and Materialized View-based
Provenance Management

Satya S. Sahoo1,2, Roger S. Barga2, Jonathan Goldstein2, Amit P. Sheth1
1
Kno.e.sis Center, CSE Dept., Wright State University, Dayton, OH 45435;

2
Microsoft Research, One Microsoft Way,

Redmond, WA 98052
{sahoo.2, amit.sheth}@wright.edu, {barga,jongold}@microsoft.com

ABSTRACT

Provenance, from the French word „provenir‟ meaning "to come

from", describes the lineage of an entity. Provenance is critical

information in eScience to accurately interpret scientific results.

Though information provenance has been recognized as a hard

problem in computing science (British Computing Society, 2004),

many fundamental research issues in provenance have yet to be

addressed.

A common provenance model with well-defined formal semantics

to facilitate interoperability of provenance metadata from different

sources has not been defined. Another important issue is the lack

of a systematic study of provenance query characteristics across

multiple applications. A classification or taxonomy of the

provenance queries will not only help to better understand

provenance metadata, but will also enable the definition of

provenance query operators. Finally, while provenance for a user

or an application is a specific view over all available provenance

metadata, a provenance management system that supports

provenance storage as views has not been implemented.

In this paper we propose a novel provenance algebra consisting of

a common provenance model called provenir, defined in

description logic based W3C Web Ontology Language (OWL-

DL), along with a set of provenance query operators derived from

the classification of provenance queries. We also introduce a

practical provenance storage solution using materialized views

over a generic relational database system. Our approach takes

advantage of provenance query operators and well-defined indices

to efficiently process complex provenance queries over very large

datasets. To support our claims we present an evaluation of both

performance and scalability aspects of our initial implementation.

To the best of our knowledge this is the first provenance

management system that supports the complete process from a

formal provenance model and query operators to storage and

efficient queries over provenance data.

1. INTRODUCTION
The eScience paradigm is enabling scientists in multiple domains

to leverage distributed to achieve their objectives faster, more

efficiently and on an industrial scale. The eScience application

domains range from biology [1], oceanography [2] to astronomy

[3], and include distributed resources such as remote sensors,

computational tools, and data repositories. Provenance metadata,

from the French word provenir meaning "to come from"

(Wikipedia, retrieved on 06/24/08) represents the lineage or

historical information about a piece of data. Provenance is critical

information to accurately interpret scientific results, validate

experimental processes, associate trust value, and verify quality of

data. Provenance has been studied from multiple perspectives in

computer science, such as database provenance [4], [5] [6], and

scientific workflow provenance [7] [8], but many fundamental

research issues have yet to be addressed.

eScience provenance metadata is typically generated in a

distributed environment where each source may represent

provenance differently. Thus, a common model is required to

represent workflow provenance, database provenance, as well as

domain-specific details in an integrated manner. Further, the scale

of provenance metadata generated in high-throughput eScience

experiments precludes manual interpretation and requires

processing by software applications. Hence, a common

provenance model should also allow both consistent interpretation

and reasoning using entailment rules by software applications.

The description logic based Web Ontology Language (OWL-DL)

[9] represents the most expressive but decidable sub-language of

the World Wide Web (W3C) recommended OWL standard. We

propose a common semantic model of provenance called provenir

defined in OWL-DL.

Many different examples of provenance queries addressing

specific application requirements have been used in literature. But

to date, there are no studies to identify common and distinct

features of these queries. A classification or taxonomy of the

provenance queries will not only help to better understand

provenance metadata characteristics, but will also enable the

definition of operators to support such queries. In this paper, we

propose a classification scheme for provenance queries and use

the classification to define query operators. We also define formal

semantics for each operator. Together, the common provenance

model and query operators form the provenance algebra to

underpin provenance management system.

Provenance for a user or an application is a view over all available

provenance metadata, but provenance views are complex and

hence very expensive to compute repeatedly in response to

queries. Further, provenance metadata is dynamic and changes to

reflect modifications in the experimental environment, hence the

views should support efficient view maintenance. To address

these requirements, we propose the use of materialized views for

storage management of provenance.

Contributions

The following are the contributions of this paper:

 A common provenance model called provenir ontology

defined using the OWL-DL language. Provenir includes

provenance classes and explicitly models the named relations

between them. Modeling relations as first class entities

enables the provenir ontology to capture provenance details

that are closer to real world eScience experiments. The

satisfiability of provenir is also discussed.

 A classification scheme for provenance queries in eScience is

proposed for the first time, based on the classification a set of

provenance query operators are defined. The query operators

are defined in terms of the provenir ontology and mapped to

existing work in both database and workflow provenance.

 A practical provenance storage solution is implemented on a

commercial relational database system using a materialized

views-based approach. This approach demonstrates that a

provenance management system using a relational database

system is feasible for complex queries over large datasets

through implementation of well-defined provenance query

operators and using materialized views. Our initial prototype

implementation is evaluated for performance and scalability.

In the following section, we introduce a scientific workflow with

additional simulated details in the oceanography domain from the

Neptune project [2].

1.1 Oceanography eScience Scenario
The Neptune project, led by the University of Washington, [2] is

an ongoing initiative to create network of instruments widely

distributed across, above, and below the seafloor in the northeast

Pacific Ocean. We consider a simulated scenario, illustrated in

Figure 1.1, involving collection of data by ocean buoys

(containing a temperature sensor and an ocean current sensor)

which is then sent as input to a scientific workflow for creation of

a visualization chart as output. We consider the following two

scenarios and the associated provenance queries:

1. If an ocean buoy is found to be damaged through

contamination with sea water, all visualization charts

generated using data from the two sensors within this ocean

buoy should be discarded. To accurately identify

visualization charts that made use of data from either one or

both the sensors in the damaged ocean buoy requires the

analysis of provenance metadata.

This category of provenance query uses provenance metadata

beyond the perspective of a scientific workflow. The

required provenance to answer this query includes domain-

specific contextual information such as the explicit

relationship “contained in” between the two types of sensors

and the ocean buoy. This explicit modeling of relations or

properties (we use relation and property interchangeably in

this paper) with formal definition is one of the primary

characteristics of both the Resource Description Framework

(RDF) [10] and Web Ontology Language (OWL) standards.

2. Another typical provenance query involves the retrieval of all

workflow-specific provenance metadata. For example,

“given a “HyperCube” object with identifier

“HyperCube85357162234026” (illustrated in Figure 1.1),

retrieve all its provenance metadata. This query involves the

traversal of the workflow links between computational tasks

such as instances of “HyperCubeSchemaGeneratorActivity”,

input and output data, such as “NCFileName”, that were

involved in the creation of the given hypercube object.

Though many current provenance systems can answer such

queries, the scalability or performance of these systems has

not been evaluated.

In the Experiments and Results Section (Section 5), we use the

provenance data generated for this simulated oceanography

scenario and the two provenance queries to evaluate our

implementation.

1.2 Outline of paper
In Section 2, we introduce the common provenance model called

provenir, define its structure, and discuss its satisfiability. In

Section 3, we present a taxonomy of provenance queries and

define a set of provenance query operators. In Section 4, we

introduce the use of indexed materialized views for storage of

provenance. We discuss performance and scalability evaluations

of our initial implementation in Section 5 which demonstrate the

efficiency of our approach. We correlate the provenance query

operators to existing provenance work in Section 6 and present

closing remarks in Section 7.

2. SEMANTIC MODEL OF PROVENANCE
The provenir provenance model is defined in OWL-DL to

formally represent the fundamental provenance classes and

properties. An OWL-DL ontology consists of a set of classes {C1,

C2, …, Cn}, a set of properties {R1, R2, …, Rn}, and a set of

individuals {I1, I2, …, In} [11]. We use an abstract syntax

specified in a version of Extended BNF [11] to construct axioms

defining the classes and properties of provenir ontology.

The provenir ontology forms the core component of a modular

approach for our eScience provenance framework. As illustrated

by the first query in Section 1.1, domain-specific details are an

important component of provenance metadata. But, a single

monolithic provenance ontology that models all possible details

from different domains is clearly not a feasible solution. Hence,

our proposed modular provenance framework involves integrated

Figure 1.1: A simulated oceanography scenario from

Neptune Project with data from sensors used to create

chart visualizations

use of multiple ontologies, each modeling specific provenance

metadata for a particular domain (for example, ProPreO ontology

represents proteomics domain-specific provenance [12]). These

multiple ontologies will use the provenir ontology as the common

reference model, hence making it easier to interoperate with each

other. This modular framework represents a scalable, flexible and

maintainable approach that can be adapted to the specific

requirement of different domains. In the next two Sections, we

describe the classes and the properties in the provenir ontology

(Figure 2.1).

2.1 Classes
In OWL, classes represent individuals with a set of common

characteristics. To represent provenance metadata classes we use

the two well defined, primitive concepts of “occurrent” and

“continuant” from philosophical ontology [13]. Continuant is

defined as “… entities which endure, or continue to exist, through

time while undergoing different sorts of changes, including

changes of place” [13]. Occurrent is defined as “…entities that

unfold themselves in successive temporal phases” [13].

We define three base classes1 in the provenir ontology

representing the primary components of provenance, that is,

“data”, “agent” and “process”.2 The two base classes,

“data” and “agents” are defined as specialization (sub-class)

of continuant class. The third base class “process” is a

synonym of occurrent. We present the axiomatic definition of

each class:

1. data: This class models continuant entities that represent the

starting material, intermediate material, end products of a

scientific experiment, and parameters that affect the execution of a

scientific process. Data inherit the properties of continuants such

as enduring or existing while undergoing changes.

2. process: This class models the occurrent entities that affect

(process, modify, create, delete among other dynamic activities)

individuals of data.

3. agent: This class models the continuant entities that causally

affect the individuals of process.

In addition to the three base classes, five sub-classes (two direct

and three indirect) of data are defined to help define properties

in provenir ontology (defined in Section 2.2). The subclasses of

data are:

1 The following namespaces are used in the text – (a) owl:

http://www.w3.org/2002/07/owl#, (b) rdfs:
http://www.w3.org/2000/01/rdf-schema#, (c) rdf:

http://www.w3.org/1999/02/22-rdf-syntax-ns#

2 We use the courier font to denote provenir ontology classes,

relationships and individuals

a) data_collection: This class represents atomic or

composite data entities that are acted upon during a scientific

process

b) parameter: parameter is a class of individuals that

affect the behavior of scientific process in the form of constraints

and control input to agent and process classes.

There are three subclasses of parameter defined along the three

dimensions of spatial, temporal and thematic (domain-specific):

temporal_parameter: This class captures the temporal

details associated with individuals of data_collection class

(for example, the timestamp associated with a sensor reading),

process (for example, the duration of a protein analysis

process), and agent (for example, the time period during which

a sensor was working correctly).

spatial_parameter: The spatial metadata associated with

individuals of process or agent or data_collection

classes is represented by this class. For example, the geographical

location of an ocean buoy is a spatial parameter.

domain_parameter: One of the primary objectives of

provenir ontology is to be extended to model different domain-

specific provenance. The domain_parameter class will be

used to model domain-specific parameters.

2.2 Properties
The explicit modeling of property as first class entities is an

important characteristic of Semantic Web modeling languages.

For example, the RDF data model [10] is defined by a triple

<subject, predicate, object>, where the “subject” and “object” are

individuals belonging to classes or in case of “object” may be

literals (for example, a string value), and the “predicate”

represents the property that links together the subject and object.

In this Section, we define a set of foundational properties in the

provenir ontology.

Instead of defining a new set of properties, we reuse and adapt

properties defined in the Relation ontology (RO) from the Open

Biomedical Ontologies (OBO) Foundry, which is part of the US

National Institutes of Health (NIH) funded National Center for

Biomedical Ontologies (NCBO). The OBO foundry has the stated

Axiom 8:
domain_parameter ∷= ' owl:Class',
'rdfs:subClassOf (parameter)';

Axiom 7:
spatial_parameter = ' owl:Class', 'rdfs:subClassOf
(parameter)';

Axiom 6:
temporal_parameter ∷= owl:Class',
rdfs:subClassOf(parameter)';

Axiom 5:
parameter ∷= ' owl:Class', 'rdfs:subClassOf (data)';

Axiom 4:
data_collection ∷= ' owl:Class', 'rdfs:subClassOf (data)';

Axiom 3:
agent ∷='owl:Class', 'rdfs:subClassOf ('continuant')';

Axiom 2:
process ∷=' owl:Class', 'owl:equivalentClass('occurrent')';

Axiom 1:
data∷=' owl:Class', rdfs:subClassOf ('continuant')';

goal of “establishing a set of principles for ontology

development” and “interoperable reference ontologies”.

The RO defines a set of ten primitive properties with clearly

defined “domain” (classes of entities that can be “subject” of the

property) and “range” (classes of entities that can be “object” of

the property) values. We describe provenir ontology using model-

theoretic semantics of OWL.

1. ro3
:part_of – This property is defined for each of the three

base classes of provenir ontology. The restriction for this relation

is that the domain and range values belong to the same class and

do not overlap. For example, if data is defined as the

domain/range of the properties, the corresponding range/domain is

also data. This restriction is derived from extending the notion

of continuants and occurrents as non-overlapping categories [13]

to the three base classes.

As defined in the RO [13], this property satisfies the standard

axioms of mereology, that is, reflexivity, anti-symmetry, and

transitivity.

2. ro:contained_in – In provenir ontology, the

ro:contained_in is defined with similar constraints as

ro:part_of, that is, the domain and range values belong to

same class and do not overlap. The property is defined for data

and agent classes. Consistent with its definition in RO, the

property is also defined to be non-transitive.

3. ro:adjacent_to – This property is defined for disjoint

continuants in RO. In provenir ontology, it is defined only for

agent class, where the adjacent spatial location of individuals of

agent class may have an effect on scientific results. For

example, presence of a sensor generating a magnetic field may

affect the quality of observations made by another sensor that is

adjacent to it.

We note that, similar to the mereotopological relations defined in

RO [13] such as partial overlap, tangential proper part etc.,

corresponding properties can be added to extensions of provenir

ontology.

4. ro:transformation_of – RO defines the

ro:transformation_of as a property between two entities

that preserve their identity between the two transformation stages.

3 ro: represents the namespace for Relation ontology [13]

For example, if there is an individual that belongs to a sub-class

of class data, say d1 at time t1; and the individual also belonged

to another sub-class of class data, say d2 at a time t2 and t1 > t2.

If at no time instant, the individual is member of both d1 and d2

then there is a ro:transformation_of property linking the

two individuals.

5. ro:derives_from – This RO property represents the

derivation history of data entities as a chain or pathway. Unlike

ro:transformation_of property which links identical

entities, ro:derives_from links distinct individuals of data.

6. ro:preceded_by – This RO temporal property is defined

for distinct individuals of process class. Similar to its

interpretation in Smith et. al [13], in provenir ontology, more

specific types of properties, such as “immediately_preceded_by”

[13] which have more precise semantics and hence are more

useful may be defined in extensions to provenir ontology.

7. ro:has_participant – This is the primary property

linking data to process, where the individual of data class

participates in a process.

8. ro:has_agent – This is a causal property that links agent

to process and is directly responsible for the change in state of

the process. Similar to the description used in Smith et. al [13],

the provenir ontology also allows the use of this property to

“capture the directionality” of scientific experiments, for example

which agent caused the activation of a process.

9. has_parameter – This property links the spatial, temporal

and, domain-specific parameters to an individual of a

data_collection , agent, and process.

Two specialized properties describing the temporal and spatial

parameters are defined:

Axiom 17:
ro:has_parameter∷= 'owl:ObjectProperty',
'rdfs:domain(data_collection, process, agent)',
'rdfs:range(parameter)';

Axiom 16:
ro:has_agent∷='owl:ObjectProperty',
'rdfs:domain (process)', 'rdfs:range(agent)';

Axiom 15:
ro:has_participant∷='owl:ObjectProperty',
'rdfs:domain (process)', 'rdfs:range(data)';

Axiom 14:
ro:preceded_by∷= 'owl:ObjectProperty',
'rdfs:domain (process)','rdfs:range(process)';

Axiom 13:
ro:derives_from∷='owl:ObjectProperty',
'rdfs:domain (data)','rdfs:range(data)';

Axiom 12:
ro:transformation_of∷= 'owl:ObjectProperty',
'rdfs:domain (data)', 'rdfs:range(data)';

Axiom 11:
ro:adjacent_to∷='owl:ObjectProperty',
'rdfs:domain (agent)', 'rdfs:range(agent)';

Axiom 10:
ro:contained_in∷= 'owl:ObjectProperty',
'('rdfs:domain (data)','rdfs:range(data)')'|
'('rdfs:domain (agent)','rdfs:range(agent)')';

Axiom 9:
ro:part_of∷='owl:ObjectProperty',
'('rdfs:domain (data)','rdfs:range(data)')' |
'('rdfs:domain (agent)','rdfs:range(agent)')' |
'('rdfs:domain (process)','rdfs:range(process)')';

has_temporal_value – This is a specific property to assert

temporal value for individuals of data_collection,

process, and agent classes. For example, d1

has_temporal_value t1.

ro:located_in – An instance of data or agent is

associated with exactly one spatial region that is its exact location

at given instance of time. In provenir ontology, this relation has

two domain class agent and data_collection classes and

has spatial_parameter as range class.

2.3 Satisfiability
The provenir ontology, consistent with description logic,

differentiates between the schema (also called as Terminological

or TBox in description logic) and the provenance metadata

instance values (also called as Assertional or ABox in description

logic). In this Section, we discuss the satisfiability of the provenir

ontology schema.

Using the satisfiability proving technique described in Lausen et.

al [14], let P denote a provenance vocabulary and let M denote

asset of constrained provenance assertions. Recall that in OWL

1.0, the property characteristics are transitivity, symmetric,

functional, inverse, and inverse functional [15]. We say P
M

 = (P,

M) to be provenance assertion constrained by the restrictions

defined in provenir ontology such as class hierarchy, property

hierarchy, domain and range values for properties etc. We

describe the satisfiability of these constrained provenance

assertions. We say that P
M

 is satisfiable iff there exists an

interpretation I of P which satisfies M. We also define for class

E ∈ P, EI ≠ Ø and for property R ∈ P, RI ≠ Ø.

The satisfiability of constrained provenance assertions subscribing

to provenir ontology is trivial, that is, it is always guaranteed. To

illustrate, let o ∈ φI, and define EI = {o}; and let vd, vr ∈ φI and vd

∈ domain(R), vr ∈ range(R), and define RI= {(vd, vr)} for all

provenance assertions.

LEMMA 1 Let P be a provenance vocabulary, M be provenance

metadata assertions with constraints defined in provenir ontology.

There exists an interpretation I of P, such that I ╞ M.

The description logic (DL) expressivity of provenir ontology is

ALCH and we know from [16] that for DL of expressivity

ALCHIQ, the satisfiability can be decided in exponential time.

Hence, given that provenir ontology does not feature inverse roles

and number restrictions, the complexity bound for provenance

metadata assertions subscribing to provenir ontology is expected

to be exponential or better. We plan to explore the complexity of

algorithms for various DL inference problems over provenir

ontology in more detail in the future.

3. PROVENANCE QUERY CLASSIFICATION

AND QUERY OPERATORS
The provenance literature features a large variety of queries, each

addressing the specific requirements of an application under

discussion. But without a systematic classification of provenance

queries it is difficult to clearly identify the common and distinct

characteristics of these queries, and more importantly, define

query operators to support them. The provenance query operators

can be implemented by provenance storage systems to more

efficiently answer queries with query optimization techniques

similar to generic database systems.

In this paper, we identify three categories of provenance queries:

1. Querying for provenance metadata: Given a data entity,

this category of queries returns the complete set of

provenance information that influenced the current state of

the data entity. An example query, from the oceanography

scenario described Section 1.1, is to find the provenance

metadata for the “HyperCube” object with identifier

“HyperCube85357162234026”;

2. Querying for data values: A diametrically opposite

perspective to the first category of query is, given a set of

constraints defined over both provenance metadata and data,

expressed using formal context structure [17], retrieve a set

of data entities satisfying the constraints. An example query

from the oceanography scenario (described in Section 1.1) is

to find chart visualization datasets from the ocean buoy with

identifier “oceanBuoy7044” within the time period “April 21,

2003 to May 2, 2003”;

Depending on the quality of constraints specified by the

context structure, this query operator can be used to

implicitly reconcile heterogeneity among resultant datasets.

For example, if the query constraint specifies data from

temperature sensors with unit of measurement as degree

Centigrade, the resulting data values are comparable and

Axiom 19:
ro:located_in∷='owl:ObjectProperty',
'rdfs:domain(data_collection, process, agent)',
'rdfs:range(spatial_parameter)';

Axiom 18:
ro:has_temporal_parameter∷='owl:ObjectProperty',
'rdfs:domain(data_collection, process, agent)',
'rdfs:range(temporal_parameter)';

Figure 2.1: The provenir ontology schema

arithmetic operations to compute average or sum can be

applied to them without the need for semantic reconciliation;

3. Modifying provenance metadata: This category of queries

is defined over the provenance metadata itself. Example

operations include merging of provenance from different

stages of an experiment and comparison of provenance for

two datasets from different sources.

Using this query classification scheme, we introduce a set of

provenance query operators.

Conventions for query operator definition

We define the provenance query operators in terms of the provenir

ontology class and properties (introduced in Section 2) and use

denotational semantics to define the formal semantics of each

operator. We define the universal set of provenance metadata

assertions “PM” in RDF, which is a directed edge and node

labeled graph structure. If „p‟ is an individual of provenir class

process it is represented as p ∈ process. Corresponding to

RDF notation, a→x→b represent that „a‟ is the subject and „b‟ is

the object of the property „x‟.

3.1 Querying for Provenance Metadata
provenance ()- This is a closure operation on the provenance

graph. That is, the operator returns the complete set of provenance

metadata for a data entity. Let us again consider the query from

Section 1.1, “given a “HyperCube” object with identifier

“HyperCube85357162234026”, retrieve all its provenance

metadata”. As Figure 3.1 illustrates, the query operator with input

value HyperCube85357162234026 expands the provenance

metadata graph in a series of steps. The graph expansion steps are

bounded by constraints defined in terms of valid classes and

properties that can be traversed by the query operator. Formally,

This query operator is expensive to implement and is not required

in most scenarios. For example, provenance metadata generated

by a scientific workflow represents a subset of result returned by

this operator. Hence, we define a specialized form of the

provenance () operator with additional constraints, called

provenance_pathway () to retrieve workflow-specific provenance

metadata.

I) provenance_pathway (): This operator returns provenance

information of a data entity consisting of only an individual

belonging to data_collection and process classes. This

operator reflects requirements of workflow provenance,

where provenance consists of a series of “activities” (where

an “activity” is any sub-class of process) and set of “data

entities” (where a “data entity” is any subclass of

data_collection class) that form the input and output of

the processes. A set of constraints defined as an expression

over individuals belonging to data_collection, agent,

process and parameter can also be defined as part of the

input. For example, query involving workflow provenance of

ocean current values may have a time interval constraint as

April 21, 2003 to May 2, 2003.

Definition 2:
∀dc ∈ provenir: data_collection provenance (dc) =
p_data (dc) ∪ p_process (dc) ∪ p_agent (dc) ∪ p_predicate
(dc), holds ∈ DB
 p_process (dc) = {p |

p→ro:has_participant→dc+ ∪ *p |

q→ro:preceded_by→p ∧ q ∈ p_process (dc)+ ∪ *p |

q→ro:part_of→p ∧ q ∈ p_process (dc)+ ∪ *p |

p→ro:part_of→q ∧ q ∈ p_process (dc)+ ∪ *p |

q→ro:has_participant→d ∧ d ∈ p_data (dc)+ ∪
*p | p→ro:has_agent→a ∧ a∈ p_agent (dc)+.

 p_data (dc) = {d | p ∈ p_process (dc) ∧
p→ro:has_participant→d ∧ timestamp (d) ≤
timestamp (dc)+ ∪ *d | dc→ro:derives_from→d+ ∪
*d | dc→ro:transformation_of→d+ ∪ *d |
dc→ro:part_of→d+ ∪ *d | d→ro:part_of→dc+ ∪
*d | dc→ro:contained_in→d+ ∪ *d |
d→ro:contained_in→dc+ ∪ *d | p ∈ p_process (dc)
∧ p→ro:has_parameter→d+ ∪ *d | a ∈ p_agent (dc)
∧ a→ro:has_parameter→d+.

 p_agent (dc) = {a | p ∈ p_process (dc) ∧
p→ro:has_agent→a+ ∪ *a | b ∈ p_agent (dc) ∧
b→ro:part_of→a+ ∪ *a | b ∈ p_agent (dc) ∧
b→ro:contained_in→a+ ∪ *a | b ∈ p_agent (dc) ∧
b→ro:adjacent_to→a+ ∪ *a | b ∈ p_agent (dc) ∧
a→ro:part_of→b+ ∪ *a | b ∈ p_agent (dc) ∧
a→ro:contained_in→b+ ∪ *a | b ∈ p_agent (dc) ∧
a→ro:adjacent_to→b+.

 p_predicate (dc) = *r | X ∈ provenance (dc) ∧
dc→r→X ∧ X→r→dc+.

Definition 1:
PM = graph (N, E)
where,
 N ∈ provenir:data ∪ provenir:process ∪

provenir:agent
 E ∈ R, R is set of properties defined in provenir

ontology

Correlation to “where-provenance” (defined in

Buneman et. al [5]):

A restricted view of the “where provenance” is defined as,

for each database query that returns a set of results, each

piece of input data that contributes to given element of the

result set is identified. This is termed as the “derivation

basis” of the output value.

The semantics of the provenance () is comparable to

“derivation basis”. Given the successful execution of a

scientific process, where all components may be modeled as

a workflow or may also include non-computational entities,

the “where-provenance” of the data includes all the data

entities and processes that contributed to the output data. The

result of the provenance () operator is a superset of the

domain of the “where-provenance” defined in [5] in terms of

not only databases involved in the scientific processes but

also process and other data entities.

3.2 Querying for Data Value
provenance_context () - This operator has an inverse-role to the

provenance () operator, with more relaxed constraints that may

be specified as input values.

This operator uses any component of the provenance metadata

graph PM to define a context structured subgraph. Considering

our example query from the oceanography scenario (described in

Definition 4:
provenance_context (di, pj, ak, rl, pam) ≡ *dres }
where,
 di, dres ∈ provenir:data_collection;
 pj ∈ provenir:process;
 ak ∈ provenir:agent;
 pam ∈ provenir:parameter;
 rl ∈ R; and rl R is set of provenir ontology properties

linking individuals of z, for z ∈ *dres ∪ di ∪ pj ∪ ak ∪
pam}

Definition 3:
∀dc ∈ provenir: data_collection
provenance_pathway (dc) = p_process (dc) ∪ p_data
(dc) ∪ p_predicate (dc), holds ∈ DB
 p_process (dc) = *p | p→

ro:has_participant→dc+ ∪ *p | p→
ro:has_participant→d ∧ d ∈ p_data(dc)+ ∪
*p | p→ro:preceded_by→q ∧ q ∈
p_process(dc)}

 p_data (dc) = *d | p ∈ p_process(dc) ∧ p→
ro:has_participant→d ∧ timestamp (d) ≤
timestamp(dc)+ ∪ *d |
dc→ro:derives_from→d+ ∪ *d |
dc→ro:transformation_of→d+ ∪ *d | p ∈
p_process(dc) ∧ p→ro:has_parameter→d+

 p_predicate (dc) = *r | X ∈
provenance_pathway(dc) ∧ dc→r→X ∧ X→r→dc+

Figure 3.1: Provenance graph expansion steps, for input value “HyperCube85357162234026” to provenance () query operator

Section 1.1), “Find all datasets sourced from ocean buoy with

identifier “oceanBuoy7044” that was in damaged state for the

time period “April 21, 2003 to May 2, 2003”. Thus, given a set of

the output of the operator is a set of individuals belonging to

data_collection class that satisfy the constraints. This

operator is closed with respect to data_collection class.

Similar to the provenance_context () operator that returns

individuals of class data_collection, specialized operators

can be defined for individuals of process and agent classes.

I) pc_process (): For given a set of constraints retrieve all the

instances of process class that satisfy the set of constraints.

An example query from the oceanography scenario (in

Section 1.1) is “Find all invocations of a computational

process “HyperCubetoDataTable” with parameter

“InverseData” set to value = false”.

II) pc_agent (): For given a set of constraints retrieve all the

instances of agent class that satisfy the constraints.

A more detailed specification of these three query operators is

given as Appendix B at the end of the paper.

3.3 Modifying Provenance Metadata Graph
In this Section we define a third category of operators to

manipulate the provenance metadata graph itself. We note that

RDF graph representing provenance metadata subscribes to

provenir ontology (with a 1-1 mapping) hence it does not contain

any blank nodes (a ground RDF graph [18]). These operators are

adapted from the set of standard operators defined for a graph

model:

I) provenance_compare (): Accurate comparison of scientific

results requires the comparison of the associated provenance

information. For example, two ocean visualization charts are

said to be comparable if their provenance information such

as types of sensors that generated the source data, the

parameters values used in the scientific workflow to compute

over the source data etc., are identical or comparable.

We adapt the RDF graph equivalence definition [19] with the

added functionality of “coloring” the nodes and labeling the

edges using the provenir ontology class and properties to

define equivalence between two provenance graphs. If a

bijection function exists to map two provenance metadata

graph elements, the two graphs are equivalent.

II) provenance_merge (): Two sub-sections of the provenance

metadata graph for given entities or set of entities may be

combined using the RDF graph merge logic. The new

merged graph does not include any duplicates individuals.

In the next Section, we implement the provenance algebra using

materialized views defined over relational database.

4. MATERIALIZED VIEW

IMPLEMENTATION
In the world of database systems for provenance support, the need

to dynamically maintain large amounts of complex data conflicts

with the demand for subsecond query response time. Our answer

to this dilemma is materialized views and indices, both of which

precompute aggregate information. A database can utilize

materialized views to prejoin tables, presort solution sets, and

integrate semantic information. The materialized view can be set

up to automatically keep itself in synch with base data, updating

itself at predetermined intervals. The precomputed index is

created using one or more columns of the underlying database

tables, providing the basis for both rapid random lookups and

efficient access of records. Because this work is completed in

advance, it gives end users the illusion of instantaneous response

time. Materialized views are especially useful for provenance

queries, where cross-tabulations and recursive queries could take

several minutes to perform.

Definition 8:
provenance_merge (pg1, pg2 | pg1 = graph(d1,p1, a1, r1),
pg2 = graph(d2, p2, a2, r2)) ≡ *mg | mg = graph(d, p, a, r)+
where,
 d = {d1 ∪ d2}, and di, d2 ∈ provenir:data;
 p = {p1 ∪ p2}, and pi, p2 ∈ provenir:process;
 a = {a1 ∪ a2}, and ai, a2 ∈ provenir:agent;
 r ={r1 ∪ r2 ∪ r3}, given r1,r2 ∈ R (set of provenir

ontology properties) and r3 – set of properties
linking elements of {d, p, a}

Definition 7:
provenance_compare (pg1, pg2 | pg1 = graph(d1,p1, a1, r1),
pg2 = graph(d2, p2, a2, r2)) ≡ *true, false}
where, there exists a bijection M such that
 ∀d1 M(d1) = d1, and d1, d2 ∈ provenir:data;
 ∀p1 M(p1) = p1; and p1,p2 ∈ provenir:process;
 ∀a1 M(a1) = a1; and a1,a2 ∈ provenir:agent;
 ∀r1 M(r1) = r1; and r1,r2 ∈ R (set of provenir

ontology properties);
 ∃ <s, p, o> in pg1 iff <M(s), p, M(o)> exists in pg2,

given <s, p, o> is a RDF triple with s-subject, p-
predicate, o-object

Definition 6:
pc_agent (di, pj, ak, rl, pam) ≡ *ares | ares ∈ provenir: agent}
where,
 di ∈ provenir:data_collection;
 pj ∈ provenir:process;
 ak ∈ provenir:agent;
 pam ∈ provenir:parameter;
 rl ∈R; and R is set of provenir ontology properties

linking individuals of z, for z ∈ *dres ∪ di ∪ pj ∪ ak ∪
pam}

Definition 5:
pc_process (di, pj, ak, rl, pam) ≡ *pres }
where,
 di ∈ provenir:data_collection;
 pres , pj ∈ provenir:process;
 ak ∈ provenir:agent;
 pam ∈ provenir:parameter;
 rl ∈ R; and R is set of provenir ontology properties

linking individuals of z, for z ∈ *dres ∪ di ∪ pj ∪ ak ∪
pam}

The following five tables were created to store provenance data.

The first table stores information associated with the input objects

used to seed the workflow:

create table DataItems

(DataID nvarchar(50) PRIMARY KEY,

 TemperatureID nvarchar(50),

 CurrentID nvarchar(50),

 BouyID nvarchar(50)

);

The second table stores a row for each workflow entry:

create table Fact

(ActivityID nvarchar(50) PRIMARY

KEY,

 WorkflowID nvarchar(50),

 ActivityType nvarchar(100),

 ActivityStatus nvarchar(50),

 ActivityTime nvarchar(50)

);

The third table stores the set of objects associated with each

workflow entry in the fact table which processed base input

objects. Note there is a foreign key from ObjectName to
DataItems.DataID.

create table InputObjI

(ActivityID nvarchar(50),

 ObjectType nvarchar(50),

 ObjectName nvarchar(50),

 PRIMARY KEY (ActivityID,

ObjectType)

);

The fourth table stores the set of input properties associated with

each workflow entry in the fact table.

create table InputPropI

(ActivityID nvarchar(50),

 Property nvarchar(50),

 Value nvarchar(50),

 PRIMARY KEY (ActivityID, Property)

);

The fifth and final table stores the set of output properties

associated with each workflow entry in the fact table.

create table OutputPropI

(ActivityID nvarchar(50),

 Property nvarchar(50),

 Value nvarchar(50),

 PRIMARY KEY (ActivityID, Property)

);

Representation of provenance data requires nested sets, and

normalization results in five distinct tables to represent the

associated properties. As stated earlier, there is one foreign key

from InputObjI.ObjectName to DataItems.DataID. As we

discuss later, an index on input and output properties allow us to

efficiently recurse in both directions during query processing.

5. EXPERIMENTS AND RESULTS
The dataset for the evaluations was generated from the

oceanography scenario described in Section 1.1. The scientific

workflow is from the Neptune project and the simulated details

describing data collection by temperature and ocean current

sensors, both contained in an ocean buoy, were added by us. The

provenance metadata for this scenario records the events (we

assume one provenance record is generated per event) starting

with the data collection by the sensors, followed by data

processing in the scientific workflow and finally to the output in

form of visualization charts.

The scientific workflow is currently run on the Windows

Workflow Foundation-based Trident workbench [20]. We used

the log file generated by the Trident workbench with additional

details such as temperature sensors, ocean current sensors, and

ocean buoys, to create a provenance template. Using this template

we generated four provenance files corresponding to 10,000;

50,000; 100,000; 500,000 data collection (by sensors) and

workflow execution processes representing realistic provenance

metadata for our evaluations. As discussed in Section 4, the data is

stored in the normalized form in five tables.

In terms of pre-computation, all primary keys and foreign keys

had associated primary and secondary indices respectively. Note

that this is a generic choice which could be automatically done for

any provenance data cast into this provenance framework. These

indices ensured that the corresponding lookups during query

execution were performed efficiently. Note that more

sophisticated forms of pre-computation, such as materialized

views, could be used to improve performance in more complex

queries such as rollups (aggregation).

The timings reported are mean result from the last five runs out of

a total of ten runs; the variance was extremely low (<5%

difference between highest and lowest score used in average for

every case). The SQL queries for the experiments are listed in

Appendix A.

5.1 Experimental Setup
The experiments were conducted using SQL Server 2008 on a

windows server with 500MB cache, with all performance

measurements collected on a warm cache. The goal of our

experiments is to evaluate the performance and scalability gain

from implementation of provenance query operators using well-

defined indices for complex provenance queries.

5.2 Experiment I
This experiment evaluates the benefit of implementing the

provenance () query operator (described in Section 3.1), using

indices, to answer the query that retrieves all provenance metadata

associated with a data entity "HyperCube85357162234026".

As expected, the implementation of the query using indices leads

to a significant gain in performance as the dataset increases. For

the 500K dataset, the system hit the memory limit of 500MB.

Figure 5.1: Performance values for provenance () query

operator for various sized datasets

5.3 Experiment II
As discussed in Section 3.1, the provenance () query is not

required in most scenarios, hence the provenance_pathway ()

query operator was defined with additional restriction focused on

workflow provenance. In this experiment we run Experiment I

query using provenance_pathway() operator.

We used a recursive CTE (common table expression) called

“ProvenancePathway” in this query. This is a recursive query with

two parts. The first part is the seed of the recursion that selects a

row from the table 2 which has an associated output property

with value "HyperCube85357162234026”. The recursive part is

then included after a union all. It takes existing rows from

previous iterations, and joins them to the table Fact in a way

which follows the provenir schema through one edge. The

recursion is performed until no new rows are added. These results

are similar to Experiment I, but the performance for dataset size of

500K is worse than Experiment I (37 seconds vs. 32 seconds for

Experiment I) due to greater number of restrictions for this query

as compared to provenance () (discussed in Section 3.1). But, we

clearly see that query implementation with indices scales easily

with increasing dataset size.

5.4 Experiment III
This experiment evaluates the performance of

provenance_context() query operator that returns the result data

which used source data from a contaminated ocean buoy

“oceanBuoy7044” (scenario described earlier in Section 1.1). The

constraints define a provenance subgraph from which datasets

belonging to provenir data_collection class (or one of its

subclasses) are returned.

This result clearly illustrates the complexity of this query as

compared to the first two queries and the benefit from

implementing the query using indices. In addition to primary and

foreign key indices we defined two additional indices on table

DataItems columns for ocean buoy identifiers and input value

column in table InputPropI.

6. RELATED WORK
Provenance metadata has been studied from multiple perspectives

across a number of different domains. In this Section we discuss

the provenance work that is divided into two categories in

computer science literature, namely database provenance and

workflow provenance [21]. We correlate the provenance query

operators introduced in this paper to the different approaches for

creation, representation and usage of provenance in these two

categories, as illustrated in Figure 6.1.

6.1 Database Provenance
Database provenance or data provenance, often termed as “fine-

grained” provenance [21], has been extensively studied in the

database community. Early work includes the use of annotations

to associate “data source” and “intermediate source” with data

(polygen model) in a federated database environment to resolve

conflicts by Wang et al [22], and use of “attribution” for data

extracted from Web pages by Lee et al [23]. More recent work has

defined database provenance in terms of “Why provenance”,

“Where provenance” (previously in Section 3.1, we correlated the

provenance () query operator with “Where provenance”) by

Buneman et al [5]; and “How provenance” by Green et al [6].

“Why provenance” was first described in [4], and in this paper we

use the syntactic definition of “Why provenance” by Buneman et

al [5] that defines a “proof” for a data entity. The proof consists of

a query, representing a set of constraints, over a data source with

“witness” values that result in a particular data output; hence, the

semantics of provenance () query operator closely relates to “Why

provenance” [5]. To address the limitation of “Why provenance”

that includes “…set of all contributing input tuples” leading to

ambiguous provenance, Green et al [6] introduced semiring-based

“How provenance”. The provenance () query operator over a

“weighted” provenance model, to reflect the individual

contribution of each component (for example process loops or

repeated use of single source data), is comparable to “How

provenance”. The Trio project [24] considers three aspects of

lineage information of a given tuple, namely how was a tuple in

the database derived along with time value (when) and the data

sources used. A subset of queries in Trio, “lineage queries”,

Figure 5.2: Performance values for provenance_pathway ()

query operator for various sized datasets

Figure 5.3: Performance values for provenance_context ()

query operator for various sized datasets

Figure 6.1: Correlation of provenance query operators with

existing work in database and workflow provenance

discussed in [24] can be mapped to query for provenance and

contextual query operators.

The SPIDER system [25] built on top of Clio [26] is an

application that uses provenance information modeled as “routes”

(schema mappings) between source and target data to capture

aspects of both “Why provenance” and “How provenance”.

6.2 Scientific Workflow Provenance
The rapid adoption of scientific workflows to automate scientific

processes has catalyzed a large body of work in recording

provenance information for the results generated by scientific

workflows. As discussed earlier in Section 1, traditionally

workflow provenance represented the execution sequence of

computational processes, the input and output data values for

these computational processes. Simmhan et al [7] survey different

approaches for collection, representation and management of

workflow provenance. The participants in the recent provenance

challenge [8] collected provenance at different levels of

granularities such as comprehensive workflow system trace in

PASS [27], use of semantic annotations of services by Taverna

[28], recording of data value details and service invocations in

Karma [29], and workflow as well as data modeling in REDUX

[30]. Further details about the provenance challenge are available

at [8]. Recent work has also recognized the need for inclusion of

domain semantics in form of domain-specific provenance

metadata [31] with workflow provenance. The work presented in

this paper forms the theoretical foundations of the provenance

framework introduced in [31]. The Stanford Knowledge

Provenance Infrastructure (KPI) [32] provides provenance

information as explanations, including the source of data and any

reasoning or inference processes applied to the data, related to

Web data such as news feeds and other information sources. The

Vistrails project [33] is a novel project to track the provenance of

scientific workflows as they evolve through modifications to

reflect changes in scientific processes. The provenance about

workflows enables scientists to track and manage the processes

represented as workflows.

Recent initiatives such as the Open Provenance Model (OPM)

[34] are working to create a common model for provenance in the

eScience community. The concepts proposed by OPM are

equivalent to the three top-level concepts of the provenir ontology

namely, artifact, process and agent. Unlike provenir ontology

which is defined in OWL-DL, OPM has not yet decided on

representation formalism beyond the generic graph model. Hence,

the rules of reasoning proposed in OPM are easily contradicted

[35]. A detailed discussion arguing for use of W3C Semantic Web

languages formalism to represent OPM can be found in [31].

7. CONCLUSIONS
In this paper we introduce a common provenance model called

provenir ontology defined in OWL-DL, and discussed the

satisfiability of provenir. We propose a novel classification

scheme for provenance queries, and based on this classification

we define a set of provenance query operators. The semantics of

each query operator is formally defined in terms of the provenir

ontology and mapped to existing work in both database and

workflow provenance. Finally, we introduce a practical

provenance storage solution using materialized views over a

generic relational database system and present an evaluation of

performance and scalability of our initial implementation.

To the best of our knowledge this is the first provenance

management system that defines both provenance model,

consisting of algebra and operators, and efficient provenance

storage and query support based on materialized views. Our

approach supports the complete process from a formal provenance

model to the storage and efficient queries over provenance data.

8. ACKNOWLEDGMENTS
We would like to thank T.K. Prasad for his valuable inputs and

suggestions. The first author was partly funded by NIH RO1

Grant# 1R01HL087795-01A1 for this work.

9. REFERENCES
[1] "MyGrid." http://www.mygrid.org.uk/

[2] "Project Neptune." http://www.neptune.washington.edu/

[3] "The Panoramic Survey Telescope and Rapid Response

System (Pan-STARRS)." http://pan-starrs.ifa.hawaii.edu/

[4] Y. Cui, Widom, J., "Practical Lineage Tracing in Data

Warehouses," in 16th ICDE, San Diego, California, 2000.

[5] P. Buneman, Khanna , S., Tan, W.C., "Why and Where: A

Characterization of Data Provenance," in 8th International

Conference on Database Theory, 2001, pp. 316 - 330

[6] T. J. Green, Karvounarakis, G. ,Tannen, V., "Provenance

Semirings," in ACMSIGMOD-SIGACTSIGART Symposium on

Principles of database systems (PODS), 2007, pp. 675–686.

[7] Y. L. Simmhan, Plale, A.B., Gannon, A. D., "A survey of

data provenance in e-science " SIGMOD Rec. , vol. 34, pp. 31 - 36

September 2005.

[8] "IPAW 2008."

http://www.sci.utah.edu/ipaw2008/overview.html

[9] "OWL Web Ontology Language Overview," in W3C

Recommendation, D. L. McGuinness, et al., 2004.

[10] F. Manola, Miller, E.(Eds.), "RDF Primer," in W3C

Recommendation, B. McBride, Ed., 2004.

[11] P. F. Patel-Schneider, Hayes, P., Horrocks, I., "OWL Web

Ontology Language Semantics and Abstract Syntax " in W3C

Recommendation, 2004

[12] S. S. Sahoo, Thomas, C., Sheth, A., York, W. S., and Tartir,

S., "Knowledge modeling and its application in life sciences: a

tale of two ontologies," in Proceedings of the WWW '06

Edinburgh, Scotland, 2006, pp. 317-326.

[13] B. Smith, W. Ceusters, B. Klagges, J. Kohler, A. Kumar, J.

Lomax, C. Mungall, F. Neuhaus, A. L. Rector, and C. Rosse,

"Relations in biomedical ontologies," Genome Biol, vol. 6, 2005.

[14] G. Lausen, Meier, M., Schmidt, M., "SPARQLing

constraints for RDF," in EDBT'08, 2008, pp. 499-509.

[15] M. K. Smith, Welty, C., McGuinness, D.L., "OWL Web

Ontology Language Guide," in W3C Recommendation, 2004.

[16] S. Tobies, "Complexity Results and Practical Algorithms for

Logics in Knowledge Representation." Ph.D. Thesis, RWTH

Aachen, Germany, 2001.

[17] R. V. Guha, "Contexts: A Formalization and Some

Applications ": PhD Thesis, Stanford University, 1991

[18] P. Hayes, "RDF Semantics," B. McBride, Ed., 2004.

[19] G. Klyne, Carroll, J. J., "Resource Description Framework

(RDF): Concepts and Abstract Syntax," in W3C Recommendation,

2004.

[20] "Trident Workflow Workbench."

http://www.microsoft.com/mscorp/tc/trident.mspx

[21] W. C. Tan, "Provenance in Databases: Past, Current, and

Future," IEEE Data Eng. Bull., vol. 30, pp. 3 -12 2007.

[22] Y. R. Wang, Madnick, S. E., "A Polygen Model for

Heterogeneous Database Systems: The Source Tagging

Perspective," in 16th VLDB Conference, 1990, pp. 519–538.

[23] T. Lee, Bressan, S, "Multimodal Integration of Disparate

Information Sources with Attribution," in Entity Relationship

Workshop on Information Retrieval and Conceptual Modeling,

1997.

[24] J. Widom, "Trio: A System for Integrated Management of

Data, Accuracy, and Lineage," in Second Biennial Conference on

Innovative Data Systems Research (CIDR '05), 2005.

[25] B. Alexe, Chiticariu, L., Tan. W.-C., "SPIDER: a Schema

mapPIng DEbuggeR. ," in VLDB, 2006, pp. 1179–1182.

[26] L. M. Haas, Hern´andez, M. A. , Ho, H. , Popa, L., Roth, M.,

"Clio Grows Up: From Research Prototype to Industrial Tool," in

ACM SIGMOD, Baltimore, MD, 2005, pp. 805–810.

[27] D. A. Holland, Seltzer, M.I., Braun, U., Muniswamy-Reddy,

K., "PASSing the provenance challenge," Concurrency and

Control: Practice and Experience, vol. 20, pp. 531-540, 2008.

[28] J. Zhao, Goble, C., Stevens, R., Turi, D. , "Mining taverna's

semantic web of provenance," Journal of Concurrency and

Computation:Practice and Experience, 2007.

[29] Y. L. Simmhan, Plale, B., Gannon, D., " Karma2:

Provenance management for data driven workflows,"

International Journal of Web Services Research, vol. 5, 2008.

[30] R. S. Barga, Digiampietri, L. A., "Automatic capture and

efficient storage of escience experiment provenance,"

Concurrency and Computation: Practice and Experience, vol. 20,

pp. 419--429, 2008.

[31] S. S. Sahoo, Sheth, A., Henson, C., "Semantic Provenance

for eScience: Managing the Deluge of Scientific Data," IEEE

Internet Computing, vol. 12, pp. 46-54, 2008.

[32] D. L. McGuinness, Pinheiro da Silva, P., "Explaining

Answers from the Semantic Web: The Inference Web Approach,"

Journal of Web Semantics, vol. 1, pp. 397-413, October 2004.

[33] "The VisTrails Project." http://www.vistrails.org

[34] "Open Provenance Model."

http://twiki.ipaw.info/bin/view/Challenge/OPM

[35] Y. L. Simmhan, "FeedbackonOPM," 2008.

http://twiki.ipaw.info/pub/Challenge/OpenProvenanceModelWork

shop/FeedbackonOPM.pptx

APPENDIX A – Provenance Queries in SQL

Query 1

WITH ProvenancePathway (ActivityID,

WorkflowID, ActivityType, ActivityState,

ActivityTime, Level)

AS (

select Fact.ActivityID, Fact.ActivityStatus,

Fact.ActivityTime, Fact.ActivityType,

Fact.WorkflowID, 0 as Level

from dbo.Fact, dbo.OutputProp

where (Fact.ActivityID =

OutputProp.ActivityID) and

(OutputProp.Value='HyperCube85357162234026')

UNION ALL

select Fact1.ActivityID,

Fact1.ActivityStatus, Fact1.ActivityTime,

Fact1.ActivityType, Fact1.WorkflowID,

Level+1

from dbo.Fact as Fact1, ProvenancePathway as

Fact2

where EXISTS ((select IP.Value from

dbo.InputProp as IP where IP.ActivityID =

Fact2.ActivityID) intersect

 (select OP.Value from dbo.OutputProp

as OP where OP.ActivityID =

Fact1.ActivityID)))

select *

from ProvenancePathway

Query 2

WITH ProvenancePathway (ActivityID,

WorkflowID, ActivityType, ActivityState,

ActivityTime, Level)

AS (

select Fact.ActivityID, Fact.ActivityStatus,

Fact.ActivityTime, Fact.ActivityType,

Fact.WorkflowID, 0 as Level

from dbo.Fact, dbo.OutputProp

where (Fact.ActivityID =

OutputProp.ActivityID) and

(OutputProp.Value='HyperCube85357162234026')

UNION ALL

select Fact1.ActivityID,

Fact1.ActivityStatus, Fact1.ActivityTime,

Fact1.ActivityType, Fact1.WorkflowID,

Level+1

from dbo.Fact as Fact1, ProvenancePathway as

Fact2

where EXISTS ((select IP.Value from

dbo.InputProp as IP where IP.ActivityID =

Fact2.ActivityID) intersect

 (select OP.Value from dbo.OutputProp

as OP where OP.ActivityID =

Fact1.ActivityID)))

select InputObj.ActivityID,

InputObj.ObjectName, InputObj.ObjectType

from ProvenancePathway as PP, InputObj

where (PP.ActivityID = InputObj.ActivityID)

Query 3

WITH ProvenancePathway (ActivityID,

WorkflowID, ActivityType, ActivityState,

ActivityTime, Level)

AS (

select Fact.ActivityID, Fact.ActivityStatus,

Fact.ActivityTime, Fact.ActivityType,

Fact.WorkflowID, 0 as Level

from dbo.Fact, dbo.DataItems, dbo.InputObj

where (Fact.ActivityID =

InputObj.ActivityID) and

 (InputObj.ObjectName=DataItems.DataID)

and

 (DataItems.BouyID='oceanBuoy7044')

UNION ALL

Select Fact1.ActivityID,

Fact1.ActivityStatus, Fact1.ActivityTime,

Fact1.ActivityType, Fact1.WorkflowID,

Level+1

from dbo.Fact as Fact1, ProvenancePathway as

Fact2

where EXISTS ((select IP.Value from

dbo.InputProp as IP where IP.ActivityID =

Fact1.ActivityID) intersect

 (select OP.Value from dbo.OutputProp

as OP where OP.ActivityID =

Fact2.ActivityID)))

select *

from ProvenancePathway as PP

where exists (select * from dbo.OutputProp

as OP where PP.ActivityID=OP.ActivityID and

OP.Value like 'ChartData%')

APPENDIX B – Provenance Context Query

Operators

1. Provenance Context Query Operator

2. Provenance Context Process Query Operator

Definition 7:
∀d ∈ provenir: data, ∀p ∈ provenir: process, ∀a ∈
provenir: agent provenancecontext_process (pc) =
pc_data (d) ∩ pc_process (p) ∩ pc_agent (a), holds ∈ DB
 pc_data (d) = *pc | pc→ro:has_participant→d+

∪ *pc | pc→ro:has_parameter→d+ ∪ *pc |

dres→ro:derives_from→d ∧

(pc→ro:has_participant→dres∨

pc→ro:has_parameter→dres)+ ∪ *pc |

d→ro:derives_from→dres ∧

(pc→ro:has_participant→dres∨

pc→ro:has_parameter→dres)+ ∪ {pc |

d→ro:transformation_of→dres ∧

(pc→ro:has_participant→dres∨

pc→ro:has_parameter→dres)+ ∪ *pc |

dres→ro:transformation_of→d ∧

(pc→ro:has_participant→dres∨

pc→ro:has_parameter→dres)+ ∪ *pc |

dres→ro:part_of→d ∧

(pc→ro:has_participant→dres∨

pc→ro:has_parameter→dres)+ ∪ *pc |

d→ro:part_of→dres ∧

(pc→ro:has_participant→dres∨

pc→ro:has_parameter→dres)+ ∪ *pc |

dres→ro:contained_in→d ∧

(pc→ro:has_participant→dres∨

pc→ro:has_parameter→dres)+ ∪ *pc |

d→ro:contained_in→dres ∧

(pc→ro:has_participant→dres∨

pc→ro:has_parameter→dres)}

 pc_process(p) = *pc | pc→ro:preceded_by→p+ ∪

*pc | p→ro:preceded_by→pc+ ∪ *pc |

p→ro:has_part→pc + ∪ *pc |

pc→ro:has_part→p+

 pc_agent(a) = *pc | p→ro:has_agent→a+ ∪ *pc |

a→ro:contained_in→ares ∧

pc→ro:has_agent→ares+ ∪ *pc |

ares→ro:contained_in→a ∧

pc→ro:has_agent→ares+ ∪ *pc |

a→ro:part_of→ares ∧ pc→ro:has_agent→ares+ ∪

{pc | ares→ro:part_of→a ∧

pc→ro:has_agent→ares+ ∪ *pc |

a→ro:adjacent_to→ares ∧

pc→ro:has_agent→ares+ ∪ *pc |

ares→ro:adjacent_to→a ∧

pc→ro:has_agent→ares}

Definition 7:
∀d ∈ provenir: data, ∀p ∈ provenir: process, ∀a ∈
provenir: agent provenance_context (dc) = pc_data (d)
∩ pc_process (p) ∩ pc_agent (a), holds ∈ DB
 pc_data (d) = *dc | dc→ro:derives_from→d+ ∪

*dc | dc→ro:transformation_of→d+ ∪ *dc |

dc→ro:part_of→d+ ∪ *dc | d→ro:part_of→dc+ ∪

*dc | dc→ro:contained_in→d+∪ *dc |

d→ro:contained_in→dc+

 pc_process(p) = *dc | p→ro:has-

participant→dc+ ∪ *dc |

p→ro:preceded_by→pres ∧

pres→ro:has_participant→dc + ∪ *dc |

p→ro:has_part→pres ∧

pres→ro:has_participant→dc + ∪ *dc |

pres→ro:has_part→p ∧

pr→ro:has_participant→dc +

 pc_agent(a) = *dc | p→ro:has_agent→a ∧ p ∈
pc_process(p)+ ∪ *dc | a→ro:contained_in→ares ∧
p→ro:has_agent→ares ∧ p ∈ pc_process(p)+ ∪ *dc |
ares→ro:contained_in→a ∧
p→ro:has_agent→ares ∧ p ∈ pc_process(p)+ ∪ *dc |
a→ro:part_of→ares ∧ p→ro:has_agent→ares ∧ p
∈ pc_process(p)+ ∪ *dc | ares→ro:part_of→a ∧
p→ro:has_agent→ares ∧ p ∈ pc_process(p)+ ∪ *dc |
a→ro:adjacent_to→ares ∧
p→ro:has_agent→ares ∧ p ∈ pc_process(p)+ ∪ *dc |
ares→ro:adjacent_to→a ∧
p→ro:has_agent→ares ∧ p ∈ pc_process(p)+

3. Provenance Context Agent Query Operator

Definition 7:
∀d ∈ provenir: data, ∀p ∈ provenir: process, ∀a ∈
provenir: agent provenancecontext_agent (ac) =
pc_data (d) ∩ pc_process (p) ∩ pc_agent (a), holds ∈ DB
 pc_data (d) = *ac | p→ro:has_participant→d ∧

pc_process(p, ac)+ ∪ *ac |

p→ro:has_parameter→d ∧ pc_process(p, ac)+ ∪

{ac | dres→ro:derives_from→d ∧

(p→ro:has_participant→dres∨

p→ro:has_parameter→dres) ∧ pc_process(p, ac)+

∪ *ac | d→ro:derives_from→dres ∧

(p→ro:has_participant→dres∨

p→ro:has_parameter→dres) ∧ pc_process(p, ac)+

∪ *ac | d→ro:transformation_of→dres ∧

(p→ro:has_participant→dres∨

p→ro:has_parameter→dres) ∧ pc_process(p, ac)}

∪ *ac | dres→ro:transformation_of→d ∧

(p→ro:has_participant→dres∨

p→ro:has_parameter→dres) ∧ pc_process(p, ac)+

∪ *ac | dres→ro:part_of→d ∧

(p→ro:has_participant→dres∨

p→ro:has_parameter→dres) ∧ pc_process(p, ac)+

∪ *ac | d→ro:part_of→dres ∧

(p→ro:has_participant→dres∨

p→ro:has_parameter→dres) ∧ pc_process(p, ac)+

∪ *ac | dres→ro:contained_in→d ∧

(p→ro:has_participant→dres∨

p→ro:has_parameter→dres) ∧ pc_process(p, ac)+

∪ *ac | d→ro:contained_in→dres ∧

(p→ro:has_participant→dres∨

p→ro:has_parameter→dres) ∧ pc_process(p, ac)+

 pc_process(p) = *ac | p→ro:has_agent→ac+ ∪ *ac |

pres→ro:preceded_by→p ∧

pres→ro:has_agent→ac+ ∪ *ac |

p→ro:preceded_by→pres ∧

pres→ro:has_agent→ac+ ∪ *ac |

pres→ro:part_of→p ∧ pres→ro:has_agent→ac+ ∪

*ac | p→ro:part_of→pres ∧

pres→ro:has_agent→ac+

 pc_agent(a) = *ac | a→ro:contained_in→ac+ ∪

*ac | ac→ro:contained_in→a+ ∪ *ac |

a→ro:part_of→ac+ ∪ *ac | ac→ro:part_of→a+ ∪

*ac | a→ro:adjacent_to→ac+ ∪ *ac |

ac→ro:adjacent_to→a+

