Microsoft Cloud Computing Platform

Roger Barga Dennis Gannon Wei Lu
External Research, MSR
Cloud Computing Futures, MSR
Outline

• What is Cloud Computing?
• Data Center Design Issues
• Cloud Software Infrastructure
• A Brief Introduction to Azure
 – Computation in the Cloud
 – Storage Fabric
• Looking to the Future
What is Cloud Computing?

A Definition:

– Cloud Computing means using a remote data center to manage scalable, reliable, on-demand access to applications

– Scalable means
 • Possibly millions of simultaneous users of the app
 • Exploiting thousand-fold parallelism in the app

– Reliable means on-demand means 5 “nines” available right now

– Applications span the continuum from client to the cloud.
The Current Cloud Challenge

The current driver: how do you

- Support email for 375 million users?
- Store and index 6.75 trillion photos?
- Support 10 billion web search queries/month?

And

- deliver a quality response in 0.15 seconds to millions of simultaneous users?
- never go down

The future applications of the cloud go well beyond web search

- The data explosion
The Future: an Explosion of Data

The Challenge:
Enable Discovery.
Deliver the capability to mine, search and analyze this data in near real time.
Enhance our Lives
Participate in our own health care. Augment experience with deeper understanding.

The Response:
1. A massive private sector build-out of data centers.
2. A revolution in our concept of software from isolated applications to part of the fabric.
The Data Center Landscape

Range in size from “edge” facilities to megascale.

Economies of scale

Approximate costs for a small size center (1K servers) and a larger, 50K server center.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Cost in small-sized Data Center</th>
<th>Cost in Large Data Center</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>$95 per Mbps/month</td>
<td>$13 per Mbps/month</td>
<td>7.1</td>
</tr>
<tr>
<td>Storage</td>
<td>$2.20 per GB/month</td>
<td>$0.40 per GB/month</td>
<td>5.7</td>
</tr>
<tr>
<td>Administration</td>
<td>~140 servers/Administrator</td>
<td>>1000 Servers/Administrator</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Each data center is **11.5 times** the size of a football field.
Advances in DC deployment

Conquering complexity.

- Building racks of servers and complex cooling systems all separately is not efficient.
- Package and deploy into bigger units:

Generation 4 data center video
Containers: Separating Concerns

6 ft aisle @ ea Row for column supported overhead services & tug movement below services

11 Units per row total positions available 66 ea.
Why is This not Good Ol’’ Supercomputing

• A Supercomputer is designed to scale a single application for a single user.
 – Optimized for peak performance of hardware.
 – Batch operation is not “on-demand”.
 – Reliability is secondary
 • If MPI fails, app crashes. Build checkpointing into app.
 – Most data center apps run continuously (as services)

• Yet, “in many ways, supercomputers and data centers are like twins separated at birth.”*

* Dan Reed
Making Clouds Greener

- EPA released a report saying:
 - In 2006 data centers used 61 Terawatt-hours of power
 - Total power bill: $4.5 billion
 - 7 GW peak load (15 power plants)
 - 44.4 million mt CO$_2$ (0.8% emissions)
 - This was 1.5% of all US electrical energy use
 - Expected to double by 2011

- A new challenge and a green initiative
- A deeper look and a few ideas
Data Center Design Issues

Where are the costs?

Mid-sized facility (20 containers)
- Cost of power ($/kwh): $0.07
- Cost of facility: $200,000,000 (amortize 15 years)
- Number of Servers: 50,000 (3 year life) @$2K each
- Power critical load: 15MW
- Power Usage Effectiveness (PUE): 1.7

Observe:
- Fully burdened cost of power = power consumed + cost of cooling and power distribution infrastructure

As cost of servers drops and power costs rise, power will dominate all other costs.

<table>
<thead>
<tr>
<th>Monthly Costs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Servers</td>
<td>$1,042,440</td>
</tr>
<tr>
<td>Power & Cooling Infrastructure</td>
<td>$1,296,902</td>
</tr>
<tr>
<td>Power</td>
<td>$1,296,902</td>
</tr>
<tr>
<td>Other Infrastructure</td>
<td>$284,686</td>
</tr>
</tbody>
</table>

Servers
Power & Cooling Infrastructure
Power
Other Infrastructure

3 yr server and 15 yr infrastructure amortization
What can we Do About Power Costs?

Data Centers use 1.5% of US electricity

- $4.5 billion annually
- 7 GW peak load (15 power plants)
- 44.4 million mt CO₂ (0.8% emissions)

Rethink Environmentals

- Run them in a wider range of conditions
 - Christian Belady’s “In Tent” data center experiment

Rethink UPS

- Google’s battery per server

Rethink Architecture

- Intel Atom and power states
- Marlowe Project
Marlowe and the Big Sleep

Adaptive Resource Management
- Monitor the data center and its apps
- Use rules engine and fuzzy logic to control resources

~90% idle CPU for most current workloads
- spare capacity needed for peaks and growth

Reduce energy to idle machines
- sleep/hibernate 3 – 4 watts (vs. 28 – 36 watts for Atom servers)
- 5 – 45 sec. to reactivate server

Created by Navendu Jain, CJ Williams, Dan Reed and Jim Larus
Programming the Cloud

- Cloud Apps connect **people** to
 - Insight from Information
 - Experience
 - Discovery

- Most Cloud Apps are immediate, scalable and persistent

- The Cloud is also a platform for massive data analysis
 - Not a replacement for leading edge supercomputers

- The Programming model must support scalability in two dimensions
 - Thousands of simultaneous users of the same app
 - Apps that require thousands of cores for each use
The Challenge of Large-Scale Data Analysis

Consider web search and index creation

- Over 100.1 million websites operated as of March 2008*
- As of March 2009, the indexable web contains at least 25.21 billion pages*
 Assume each page is 100KB. Total size of web is 2.5PB
- It would take 2,500 servers with 1 TB disk to store the web
- Disks fail constantly so assume 10K servers to store web with 4-way redundancy

Data analysis often takes the form of a map-reduce queries on this distributed data collection

Hadoop does MapReduce

Dryad does much more

* according to wikipedia, so who knows if it is true?
Generalizing MapReduce: DryadLINQ

LINQ: .NET Language Integrated Query
- Declarative SQL-like programming with C# and Visual Studio
- Easy expression of data parallelism
- Elegant and unified data model

LINQ query:
```
var logentries =
    from line in logs
    where !line.StartsWith("#")
    select new LogEntry(line);
```
Cloud Models

Infrastructure as a Service
- Provide a way to host virtual machines on demand
 - Amazon ec2 and S3 – you configure your VM, load and go

Platform as a Service
- You write an App to cloud APIs and release it. The platform manages and scales it for you.
- Google App engine:
 - Write a python program to access Big Table. Upload it and run it in a python cloud.
 - Hadoop and Dryad are application frameworks for data parallel analysis

Software as a Service
- Delivery of software to the desktop from the cloud
 - Stand-alone applications (Word, Excel, etc)
 - Cloud hosted capability
 - doc lives in the cloud
 - Collaborative document creation
Cloud Application Frameworks

Infrastructure as a Service

Platform as a Service

Software as a Service

Azure™ Services Platform

Windows® Azure

Live Services

. NET Services

SQL Services

SharePoint Services

Microsoft Dynamics CRM Services
What is Cloud Computing?

Cloud Computing means using a remote data center to manage scalable, reliable, on-demand access to applications and data.

- **Scalable means**
 - Possibly millions of simultaneous users of the application
 - Exploiting massive parallelism in the applications

- **Reliable, elastic and on-demand**
 - 5 “nines” available right now

Classic cloud applications

- Web search, social media, “cloud” storage, e-mail

Second generation cloud applications include

- Large scale data analysis and scientific collaboration
Azure Virtualization Architecture

Public Internet

Load Balancer

Front-end Web Role

Worker Role(s)

Azure Services (storage)

Worker Role(s)

Worker Role(s)

Worker Role(s)

Worker Role(s)
Azure Virtualization Architecture

- Public Internet
- Front-end Web Role
- Worker Role(s)
- Azure Services (storage)
- Load Balancer
- Load-balancers
- Switches
- Highly-available Fabric Controller
- In-band communication – software control
Azure Virtualization Architecture

Host Partition (VM):
- Host OS
 - Server Core
 - Virtualization Stack (VSP)
- Drivers
- VMBUS

Guest Partition (VM):
- Guest OS
 - Server Enterprise
 - Virtualization Stack (VSC)
- Applications
- VMBUS

Guest Partition (VM):
- Guest OS
 - Server Enterprise
 - Virtualization Stack (VSC)
- Applications
- VMBUS

Hardware:
- NIC
- Disk1
- Disk2
- CPU

Load Balancer
- Front-end Web Role
- Worker Role(s)

Azure Services (storage)

Public Internet
The Architecture of an Azure Application

Roles are a mostly stateless process running on a core.

- **Web Roles** provide web service access to the app by the users. Web roles generate tasks for worker roles
- **Worker Roles** do “heavy lifting” and manage data in tables/blobs
- Communication is through queues
- The number of role instances should dynamically scale with load
Web Role

Web farm that handles requests from the internet

IIS7 hosted web core

- Hosts ASP.NET
- XML based configuration of IIS7
- Integrated managed pipeline
- Supports SSL
- Windows Azure code access security policy for managed code
Worker Role

- No inbound network connections
- Can read requests from queue in storage

Windows Azure specific policy for managed code
Service Runtime API

Every role has access to APIs for common functionality needed for services

- Read configuration setting values
- Write messages to set of standard logging streams
 - "Printf" sitting on top of a lot of plumbing so logs are downloadable and archived easily
 - Critical messages generate live alerts
- Get access to unreliable local storage for caching

Defines interface for worker role
Azure Queues for Scalability and Availability

Scalability

- Queue length directly reflects how well backend processing is keeping up with overall workload
- Queues decouple different parts of the application, making it easier to scale parts of the application independently
- Flexible resource allocation, different priority queues and separation of backend servers to process different queues
Azure Queues for Scalability and Availability

Scalability

– Queue length directly reflects how well backend processing is keeping up with overall workload
– Queues decouple different parts of the application, making it easier to scale parts of the application independently
– Flexible resource allocation, different priority queues and separation of backend servers to process different queues

Decouple Front-End Roles from Back-End Roles

Handles Traffic Bursts

• Queues provide a buffer to absorb traffic bursts and reduce the impact of individual component failures

Reliable message delivery, exactly once execution
Science Example/Demo *PhyloD as an Azure Service*

- Statistical tool used to analyze DNA of HIV from large studies of infected patients
- PhyloD was developed by Microsoft Research and has been highly impactful
- Small but important group of researchers
 - 100’s of HIV and HepC researchers actively use it
 - 1000’s of research communities rely on results

Typical job, 10 – 20 CPU hours, extreme jobs require 1K – 2K CPU hours

- Very CPU efficient
- Requires a large number of test runs for a given job (1 – 10M tests)
- Highly compressed data per job (~100 KB per job)
Demo Presenter
Wei Lu, Cloud Computing Futures
PhyloD as an Azure Service

- The web role provides an interface to the clients. Worker roles perform actual computation. Web role and worker roles share information using blobs, queue and tables.
PhyloD as an Azure Service

- Web role copies input tree, predictor and target files to blob storage, enqueues INITIAL work item and updates tracking tables.
PhyloD as an Azure Service

- Worker role enqueues a COMPUTEPARTIAL work item for each partition of the input problem followed by a SUMMARIZE work item to aggregate the partial results and finally updates the tracking tables.
PhyloD as an Azure Service

- Worker role copies the input files to its local storage, computes p-values for a subset of the allele-codon pairs, copies the partial results back to blob storage and updates the tracking tables.
PhyloD as an Azure Service

- Worker role copies input files and `COMPUTEPARTIAL` outputs to local storage, computes q-values for each allele-codon pair, copies results to the blob storage and updates tracking tables.
PhyloD as an Azure Service

- Web role serves the final results from blob storage and status reports from tracking tables.
PhyloD as an Azure Service

<table>
<thead>
<tr>
<th>Workers</th>
<th>Clock Duration</th>
<th>Total running time</th>
<th>Computational running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0:12:00</td>
<td>2:19:39</td>
<td>1:49:43</td>
</tr>
<tr>
<td>16</td>
<td>0:15:00</td>
<td>2:25:12</td>
<td>1:53:47</td>
</tr>
<tr>
<td>8</td>
<td>0:26:00</td>
<td>2:33:23</td>
<td>2:00:14</td>
</tr>
<tr>
<td>4</td>
<td>0:47:00</td>
<td>2:34:17</td>
<td>2:01:06</td>
</tr>
<tr>
<td>2</td>
<td>1:27:00</td>
<td>2:31:39</td>
<td>1:59:13</td>
</tr>
</tbody>
</table>
Azure Data Storage

Two levels

1. Basic Azure storage

Three abstractions:

- Three replicas of everything
- Shared key authentication
- REST API
Azure Data Storage

Two levels

1. Basic Azure storage

Three abstractions:

- **Blobs**
 - Simple interface for storing named files along with metadata for the file
 - Up to 50GB each
 - 8KB metadata each
 - Stored in containers
 - Public or private access at container level
 - Standard REST Interface: `PutBlob`, `GetBlob`, `DeleteBlob`

- **Tables**

- **Queues**
Azure Data Storage

Two levels
1. Basic Azure storage

Three abstractions:

- Blobs
- Tables
- Queues

Tables
- provide structured storage. A table is a set of entities, which contain a set of properties;
- Non-relational;
- Partitioned for scale;
- No fixed schema;
- ADO.NET Data Services.
Partition Key and Partition

Every table has a partition key

- It is the first property (column) of your table
- All entities in table with same partition key value live in the same partition (locality for storage and efficient retrieval)
- Azure will automatically load balance partitions

<table>
<thead>
<tr>
<th>Partition Key Document Name</th>
<th>Row Key Version</th>
<th>Property 3 Modification Time</th>
<th>...</th>
<th>Property N Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example Doc</td>
<td>V1.0</td>
<td>8/2/2007</td>
<td></td>
<td>Committed version</td>
</tr>
<tr>
<td>Example Doc</td>
<td>V2.0.1</td>
<td>9/28/2007</td>
<td></td>
<td>Alice’s working version</td>
</tr>
<tr>
<td>FAQ Doc</td>
<td>V1.0</td>
<td>5/2/2007</td>
<td></td>
<td>Committed version</td>
</tr>
<tr>
<td>FAQ Doc</td>
<td>V1.0.1</td>
<td>7/6/2007</td>
<td></td>
<td>Alice’s working version</td>
</tr>
<tr>
<td>FAQ Doc</td>
<td>V1.0.2</td>
<td>8/1/2007</td>
<td></td>
<td>Sally’s working version</td>
</tr>
</tbody>
</table>
Partition Key and Partition

Every table has a partition key

- It is the first property (column) of your table
- All entities in table with same partition key value live in the same partition (locality for storage and efficient retrieval)
- Azure will automatically load balance partitions

Need to choose partitioning scheme to make data access scalable (Details beyond scope of this talk)

- See Brad Calder’s talk “Essential Cloud Storage Services”
- As well as Pablo Castro’s talk “Modeling Data For Efficient Access At Scale”
Azure Data Storage

Two levels

1. Basic Azure storage

Three abstractions:

- Blobs
- Tables
- Queues

Queues

- provide reliable storage and delivery of messages for an application
- Asynchronous message passing
- 8KB messages
- Two-phase commit
Demo: MATLAB on Azure
Demo Presenter
Wei Lu, Cloud Computing Futures
Azure Data Storage

Two levels

1. Basic Azure storage

 Three abstractions:
 - Blobs
 - Tables
 - Queues

2. SQL Azure
 - Relational storage in the cloud
Geophysical Data in Azure

IRIS is a Seattle based consortium, sponsored by the National Science Foundation to collect and distribute global seismological data

- Two Petabytes of seismic data collected
- Includes HD videos, seismograms, images, and data from major earthquakes

High research value worldwide, frequently used in academia

Consume in any language, any tool, any platform in S+S scenario
Today Is An Inflection Point

• Economic challenges
 – Research efficiency
 – Infrastructure scaling

• Technology transition
 – Cloud software + services
 – Multicore architectures, scalable storage and computation

• Opportunity to play an active role in defining the future of both education and research

• Microsoft Research is engaging the community
 – Looking for opportunities to collaborate
 – Develop cloud services for research and technical computing at scale
Questions?