GeneScription: An Information Management System for Enabling Pharmacogenomics and Drug Safety Assurance

Michael D. Kane, PhD
Associate Professor
Department of Computer & Information Technology
Purdue University
PROJECT TEAM:

John A. Springer, PhD
Assistant Professor
Department of Computer & Information Technology
Purdue University

Nicholas Iannotti, MS
Graduate Student
Department of Computer & Information Technology
Purdue University

Jon E. Sprague, PhD
Dean & Professor
Raabe College of Pharmacy
Ohio Northern University
Emerging Landscape of Clinical Genotyping & Personalized Medicine

Enabling Factors…

- Human Genome (Sequence) is Complete
- Genotyping Technologies are Available
- Confirmed Links between Allelic Variations and Clinical Outcomes is Growing

Hindrances to Implementation…

- Consumers have Valid Reservations regarding the Use of Their DNA
- Limited knowledge about the Utility of Genomics in Healthcare Professional Practices
- Cost-Benefit for Disease Prediction is Uncertain
Personalized Medicine: Using a patient’s genomic information (as well as other physiological parameters) to improve the safety and efficacy of pharmacological therapy, which is distinct from genomic screening for markers of disease predisposition/diagnostics.

Implementation of Genomics in Healthcare: Initially, People will be more willing to provide DNA samples that provide better outcomes in pharmacotherapy, while more resistant to provide DNA samples for the identification of disease predisposition, and an understanding of these differences is key to enabling therapeutic decision support in clinical genotyping (AKA Pharmacogenomics).
More than 750,000 patients die or sustain serious injury every year in U.S. hospitals from ADRs.

ADRs cost the U.S. Healthcare system over $1.5 billion per year.

An exact rate of ADRs is difficult to calculate but has been estimated at 5% of all hospital admissions.

It is estimated that 50% of serious, atypical responders to the anticoagulant drug Warfarin are due to Single Nucleotide Polymorphisms (SNPs) in the patient’s genome.
Drugs are ‘dosed’ based on an average of human parameters (volume of distribution, metabolic clearance rate)

In most cases, drugs are removed from the body through oxidative metabolism in the liver

The genes that encode the oxidative enzymes (AKA P450s) can harbor SNPs that cause an individual to metabolize a drug at a lower rate

In this case, the normal dose can reach plasma levels that exceed the minimum toxic concentration (inadvertent overdosing)

The ‘side effects’ vary from very mild to very serious symptoms
GeneScription System

- Developed as a decisions support system for the clinic, with emphasis on professional training in personalized medicine in the healthcare community.
- Designed primarily as a drug dispensing support system for the pharmacist. GeneScription contains all FDA approved drugs/doses, and all clinically-relevant SNPs.
- GeneScription can be used as:
 1. A teaching tool w/ a mock patient population
 2. A clinical decision support system
 3. A patient counseling system
Desktop version created w/ input from pharmacists and pharmacy students
Web version available free for educational purposes at www.genescription.com
Core component of the pharmacy curriculum at Ohio Northern University, used by over 400 students (to date)
Central component of continuing education program in pharmacogenomics for pharmacists