Some Vignettes from Learning Theory

Robert Kleinberg
Cornell University

Microsoft Faculty Summit, 2009
Prelude: Tennis or Boxing?

You’re designing a sporting event with n players of unknown quality.

Spectators want to see matches between the highest-quality players.

No preference for variety or for seeing upsets.

Tennis solution: single-elimination tournament

Boxing solution: players challenge the current champion until he/she is defeated.

Which is optimal? Or is a third alternative better?
Online Learning

Algorithms that make decisions with uncertain consequences, guided by past experience

```
rsk:~$ dig microsoft.com
; <<>> DiG 9.3.6-P  <<>> microsoft.com
; global options: printcmd
; Got answer:
; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 65539
; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 5, ADDITIONAL: 5

;; QUESTION SECTION:
microsoft.com.            IN       A

;; ANSWER SECTION:
nicoya.com. 3583 IN A 207.46.232.182
nicoya.com. 3583 IN A 207.46.197.32

;; AUTHORITY SECTION:
nicoya.com. 3153 IN NS ns2.msft.net.
nicoya.com. 3153 IN NS ns5.msft.net.
nicoya.com. 3153 IN NS ns1.msft.net.
nicoya.com. 3153 IN NS ns3.msft.net.
nicoya.com. 3153 IN NS ns4.msft.net.

;; ADDITIONAL SECTION:
ns2.msft.net. 140615 IN A 65.55.37.62
ns2.msft.net. 140615 IN A 64.4.59.173
ns3.msft.net. 140615 IN A 213.199.262.77
ns4.msft.net. 140615 IN A 207.46.66.126
ns5.msft.net. 140615 IN A 65.55.226.140

;; Query time: 5 msec
;; SERVER: 271.64.7.99#53(271.64.7.99)
;; WHEN: Fri Jul 10 12:49:02 2009
;; MSG SIZE  recv: 241
```
Multi-armed Bandits

- Decision maker picks one of k actions (slot machines) in each step, observes random payoff

- Try to minimize “regret”

- Opportunity cost of not knowing the best action a priori
Multi-armed Bandits

Studied for more than 50 years, but the theory is experiencing a renaissance influenced by the Web
Example: Learning to Rank

- You have many different ranking functions for constructing a list of search results
- Interactively learn which is best for a user or population of users
- Elicit quality judgments using “interleaving experiments.” (Radlinski, Korup, Joachims, CIKM’08)
Example: Learning to Rank

Much more reliable than other ways of detecting retrieval quality from “implicit feedback”

- E.g. abandonment rate, query reformulation rate, position of the clicked links

This is like multi-armed bandits, but with a twist: you can compare two slot machines, but you can’t just pick one and observe its payoff
Interleaved Filter

Choose arbitrary “incumbent”
Interleaved Filter

- Choose arbitrary “incumbent”
- Play matches against all other players in round-robin fashion...
 (noting mean, confidence interval)
Interleaved Filter

- Choose arbitrary “incumbent”
- Play matches against all other players in round-robin fashion…
 (noting mean, confidence interval)
- … until a challenger is better with high confidence
Interleaved Filter

- Choose arbitrary “incumbent”
- Play matches against all other players in round-robin fashion…
 (noting mean, confidence interval)
- … until a challenger is better with high confidence
- Eliminate old incumbent and all empirically worse players
- Repeat process with new incumbent…
Interleaved Filter

- Choose arbitrary “incumbent”
- Play matches against all other players in round-robin fashion…
 (noting mean, confidence interval)
- … until a challenger is better with high confidence
- Eliminate old incumbent and all empirically worse players
- Repeat process with new incumbent…
- … until only one player is left
Interleaved Filter

- This algorithm is information theoretically optimal
- Boxing is better than tennis!
Interleaved Filter

- This algorithm is information theoretically optimal

- Boxing is better than tennis!

- Thank you, Microsoft!
 Yisong Yue, the lead student on the project, is supported by a Microsoft Graduate Research Fellowship
Vignette #2: Learning with Similarity Information

- Recall the multi-armed bandit problem
- Can we use this for web advertising?
- Slot machines are banner ads, which one should I display on my site?
Recall the multi-armed bandit problem
Can we use this for web advertising?
Slot machines are banner ads, which one should I display on my site?
Scalability issue: there are 10^5 bandits, not 3!
On the other hand, some ads are similar to others, and this should help
Solution: The Zooming Algorithm

- The set of alternatives (ads) are a metric space.

- We designed a bandit algorithm for metric spaces, that starts out exploring a “coarse” action set and “zooms in” on regions that are performing well.
Solution: The Zooming Algorithm

- The set of alternatives (ads) are a metric space.
- We designed a bandit algorithm for metric spaces, that starts out exploring a “coarse” action set and “zooms in” on regions that are performing well.
Thank you, Microsoft!!

One of many collaborations with MSR over six years ... a major influence on my development as a computer scientist

Alex Slivkins
What Next?

Often, the systems we want to analyze are composed of many interacting learners. How does this influence the system behavior? Answering these questions requires combining:

- Game theory
- Learning theory
- Analysis of algorithms
Thank you, Microsoft!!!

Joining our team next year…
- Katrina Ligett (Ph.D. CMU, 2009)
- Shahar Dobzinski (Ph.D. Hebrew U., 2009)

…the top graduates this year in online learning theory and algorithmic game theory
An unprecedented postdoc recruiting success for myself and Cornell
Brought to you by the Microsoft Research New Faculty Fellowship!