Path Projection for User-Centered Static Analysis Tools

Jeff Foster University of Maryland, College Park

Joint work with YitPhangKhoo and Mike Hicks

(Not yet published, so don't steal these ideas!)

Introduction

- Many recent successes in static analysis tools for defect detection / prevention
 - Lots of progress in the research community
 - Coverity, Fortify, and others sell static analysis tools
 - Microsoft has had great success with static analysis

- Major research focus: Building tools that are...
 - "Precise enough"

Motivation

- Static analysis tools are not perfect
 - Users must triage bug reports
 - Decide whether true or false positives, and how important
 - Users must remediate true bugs

 Conclusion: successful static analysis requires cooperation between the user and the tool

 How do we build more user-centered static analyses?

Path Projection

- A new interface to help users visualize code paths
 - E.g., call stacks, control flow paths, data flow paths

- Core principles
 - Remain true to original source code
 - Fit as much on one screen at a time as possible

Contributions

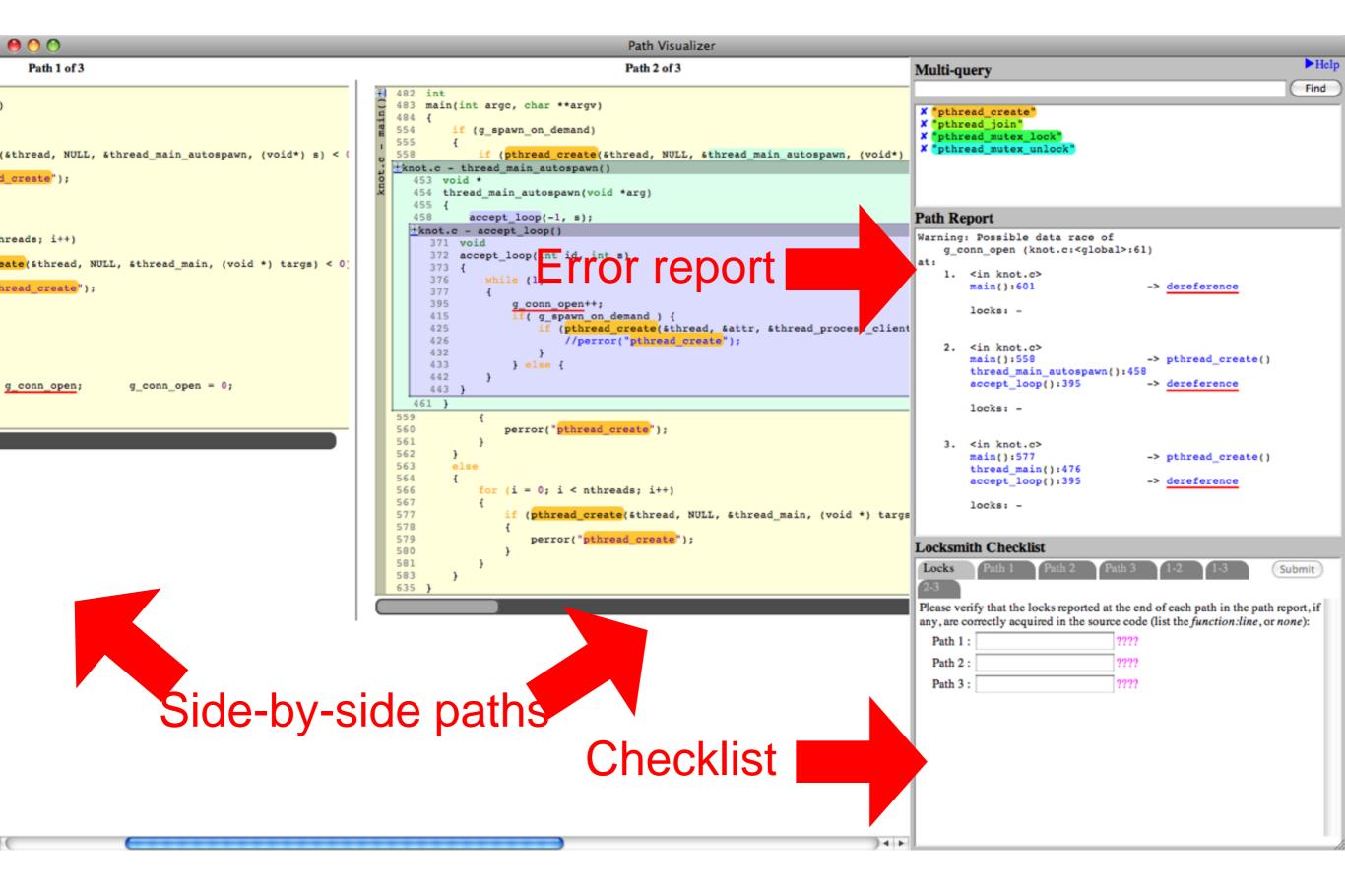
- Prototype implementation in WebKit
- Controlled user study
 - Task: Triaging Locksmith error reports
 - Compared to "standard viewer" (similar to IDEs)
- Experimental results
 - Improved performance (completion time)
 - Same accuracy
 - Qualitatively better

Sample Locksmith Error Report

```
Warning: Possible data race of
               g_conn_open (knot.c:<global>:61)
                                      Shared variable
              at:
                1. <in knot.c>
                  main():601
                                   -> dereference
                                           No locks held at deref
 Three
                  locks: -
                                     Thread creation site
possibly-
                2. <in knot.c>
 racing
                  main():558
                                   -> pthread_create()
 derefs
                  thread_main_autospawn():458
                  accept_loop():395 -> dereference
 (paths)
                  locks: -
                3. <in knot.c>
                  main():577
                                   -> pthread_create()
                  thread_main():476
                                     -> dereference
                  accept_loop():395
                  locks: -
```

6

Triaging a Locksmith Report


- Three things to check:
 - 1. Both accesses refer to same location
 - Locksmith's alias analysis may be imprecise
 - 2. Locksmith has not missed a held lock
 - Could happen at join points in cfg
 - 3. Potentially-racing accesses can occur, simultaneously
 - Both stack traces given must be simultaneously realizable

- This work: Focus on task 3
 - Leave 1 and 2 as future work

Standard Interface Demo

Challenges with Standard Interface

- Requires lots of scrolling through code
 - Hyperlinks help a little
 - Still hard to keep track of the context along the path
- Need to compare multiple paths together
 - Are both realizable?
- Need to visually switch between error report and program source code
 - Adds cognitive burden

Function call inlining

cnot.

```
utospawn, (void*) s) <
```

```
in, (void *) targs) < 0
```

Code folding (non-consecutive line numbers)

```
n = 0;
```

```
482
     int
483 main(int argc, char **argv)
484 {
         if (g spawn on demand)
554
555
558
             if (pthread create(&thread, NULL
*knot.c - thread main autospawn()
   453 void *
   454 thread main autospawn(void *arg)
   455 {
   458
            accept_loop(-1, s);
  +knot.c - accept_loop()
     371 void
          accept loop(int id, int s)
     373
              while (1)
     376
     377
     395
                   q conn open++;
     415
                   if ( g spawn on demand ) {
     425
                       if (pthread_create(&thr
                           //perror("pthread c
     426
     432
                   } else {
     433
     442
     443
   461 }
559
                 perror("pthread_create");
560
561
```

```
Path 2 of 3
                                   Multiple
argv)
                               simultaneous
nand)
                                  searches
ceate(&thread, NULL, &thread_main_autospawn, (void*)
spawn()
wn(void *arg)
8);
id, int s)
en++;
awn on demand ) {
thread create (&thread, &attr, &thread process client
//perror("pthread_create");
```

Multi-query

```
X "pthread_create"
X "pthread_join"
X "pthread_mutex_lock
X "pthread_mutex_unlock
```

Path Report

```
Warning: Possible data
g_conn_open (knot.
at:

1. <in knot.c>
main():601

locks: -
```

2. <in knot.c>
 main():558
 thread_main_au
 accept_loop():

locker -

Path Projection Demo

Informational Visualization Strategies

- Increase user's memory and processing resources, and reduce the search for information
 - Make important lines of code visible on screen
 - Place related lines of code close together
- Use visual representation to enhance pattern matching
 - Put function definition in colored boxes
 - Format/color code to reveal program structure
- Encode information in a manipulable medium
 - Allow users to search/highlight

User Study: Overview

- Standard Viewer (SV) vs. Path Projection (PP)
- Task: Triage a Locksmith error report
 - Decide whether it is a false positive or not
- Measurements
 - Completion time for the task
 - Qualitative feedback from users
 - Observations of user behavior

Locksmith Task Details

- All trials from Locksmith benchmarks
 - E.g., web server, ftp client, etc.
 - Roughly 1,500 lines each
 - Unfamiliar to participants

- One warning per trial
 - No need to manage warnings

Locksmith Task Details (cont'd)

- No potential aliasing issues
 - All shared variables and locks are global
 - (Just a property of these particular warnings)

- Semantics-preserving simplifications:
 - Made local static variables global
 - Changed wait()/signal() to join()
 - Deleted #if 0 or other conditional macros
 - Converted some goto/switch statements to if

Within-subjects Design

- Two possible schedules for a participant
 - Same problems in same order

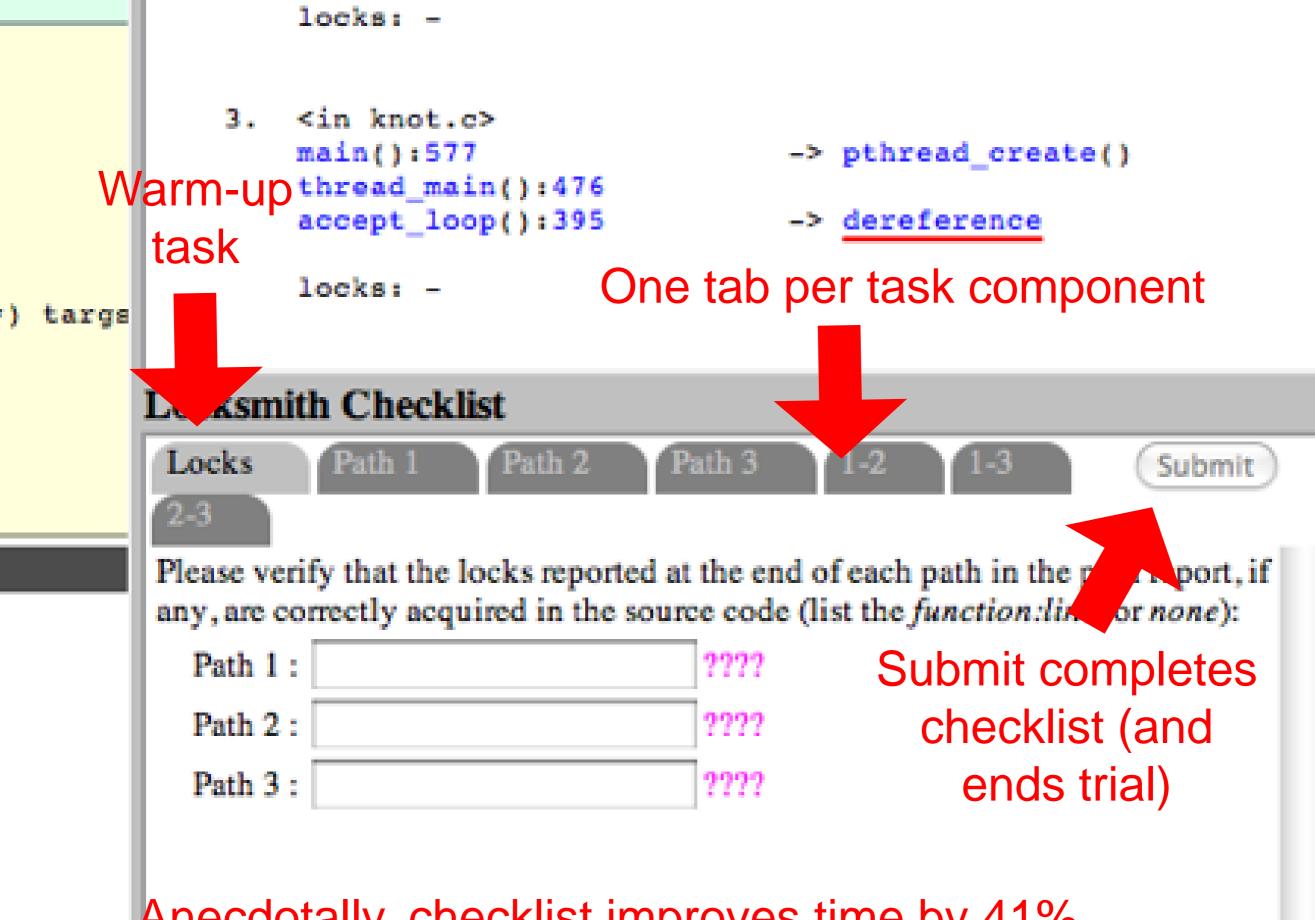
	Session 1 Session 2			
Group 1	PP (1.1, 1.2, 1.3)	SV (2.1, 2.2, 2.3)		
Group 2	SV (1.1, 1.2,	PP (2.1, 2.2,		

•Pros:

- Participants dan directly compare both interfaces
- Fewer problems due to individual variances

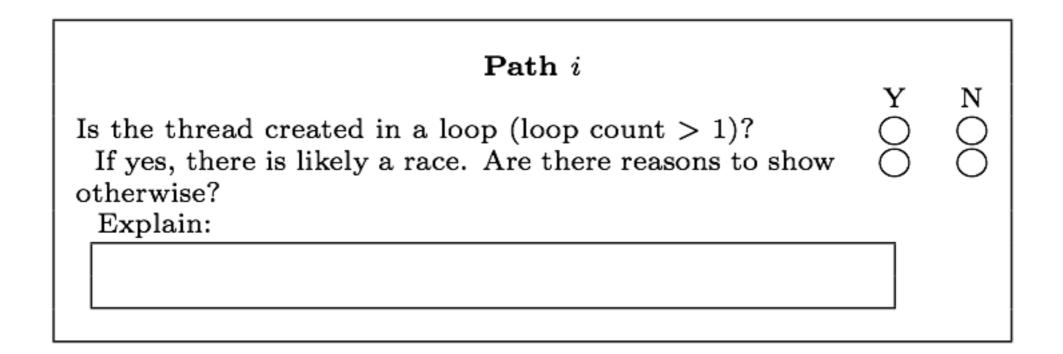
•Cons:

- Order effect: may prefer first interface
- Learning effect: may become better at task over time


Experimental Procedure

- Pre-questionnaire (background/demographic)
- Each session
 - Tutorials on data races, Locksmith, the interface
 - One practice trial
 - Three measured trials
 - First, complete task; measure time
 - Then, repeat same task and explain aloud
 - Helps users learn faster, and gives us some insights
 - We do not tell users whether their reasoning is correct

The Learning Effect


Triaging a possible data race is hard!

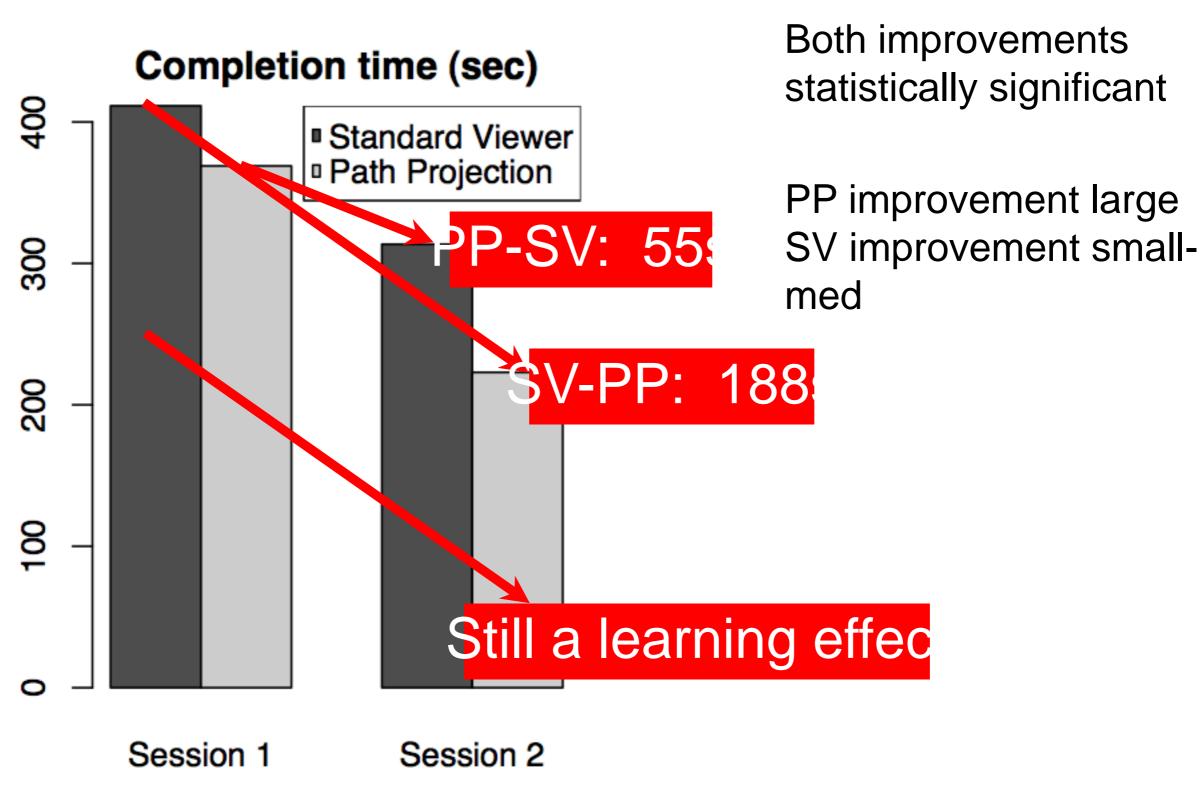
- Participants
 - Did not have a lot of experience with this
 - Were unfamiliar with Locksmith (except one user)
 - Tended to get side-tracked during the task
- Two solutions
 - Extensive pre-experiment tutorials
 - A checklist to guide the user

Anecdotally, checklist improves time by 41%

Tab for a Unprotected Access

- Deference with no locks held
 - May race with itself if called from multiple threads
 - while(1) { fork { *p++ } }
 - One special case to look for (only case in trials)
- Questions only enabled as appropriate

Tab for Two Accesses

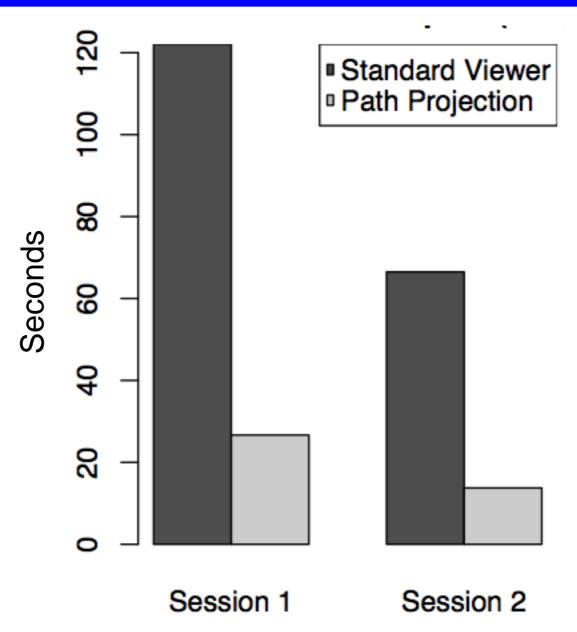

For threads leading to dereferences in Paths i and j :							
Are they parent-child (or child-parent), or child-child? Or Parent-child / Or Child-child							
Parent-child (or child-parent) threads. Does the parent's dereference occur after the child is spawned?	Y	N O					
Before its dereference, does the parent wait (via	\circ	\circ					
pthread_join()) for the child? If no, there is likely a race. Are there reasons to show otherwise?	\circ	\circ					
Explain:							
Child-child threads. Are the children mutually exclusive (i.e., only one can be spawned by their common parent/ancestor)?	Y	N O					
If no, there is likely a race. Are there reasons to show otherwise?	\circ	\circ					
Explain:							

Participants and Equipment

- 8 student participants
 - 3 undergraduates, 5 graduates
 - Prior experience in C, multithreading (not necc. C)
 - Self-rated experience: 3 to 4
 - Scale of 1: no experience to 5: very experienced
 - 2 participants had experience in Locksmith and Eraser
- Apparatus
 - 24" 1920-by-1200 LCD
 - Mac OS X 10.5.2

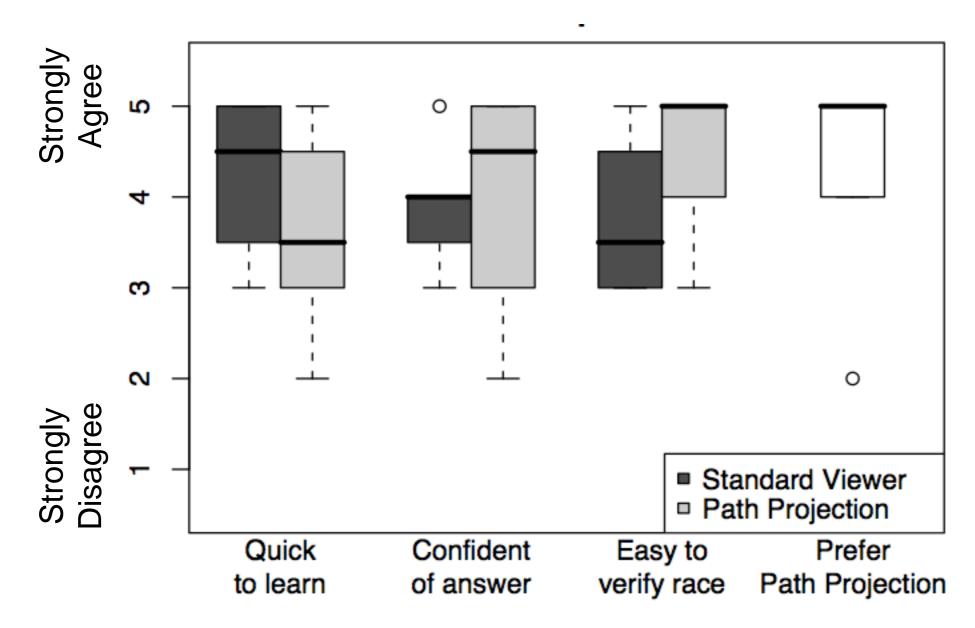
- All shortcuts disabled except for cut/copy/paste/find/find-next

Mean Time for All Participants

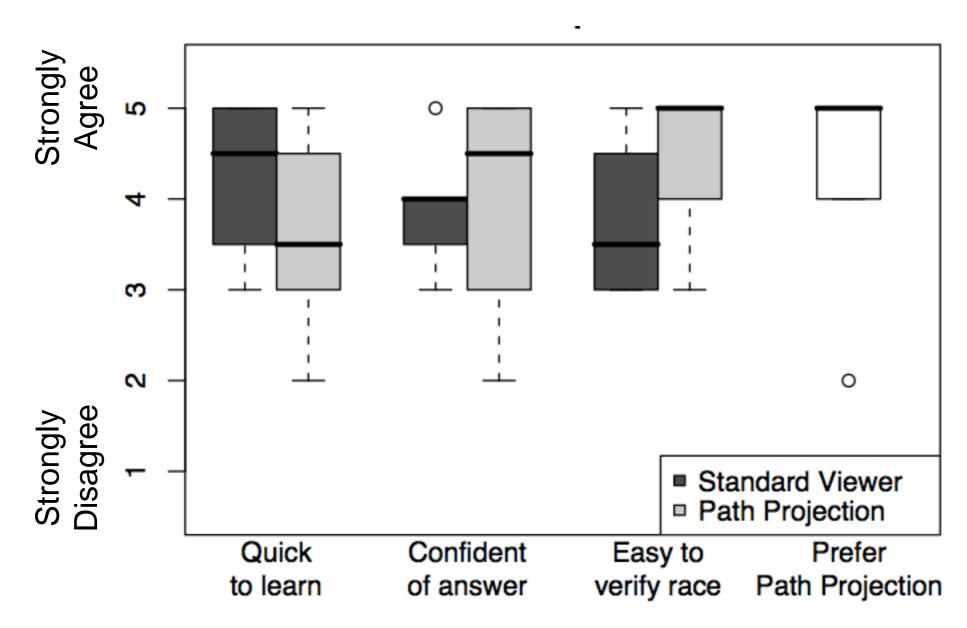

Accuracy and Detailed Times

Completion times and accuracy for each trial								
	Session 1				Session 2			
Trial	1.1	1.2	1.3	mean	2.1	2.2	2.3	mean
User		SV			PP			
1	8:36	14:14	9:44	10:51	7:07	4:48	4:02	5:19
2	5:07	3:10	5:50	4:42	4:16	2:29	2:10	2:58
5	7:46	2:34	5:38	5:20	5:13	3:43	1:18	3:25
7	5:40	6:23	7:35	6:33	3:05	3:53	2:32	3:10
				6:51				3:43
$_{ m User}$		PP			SV			
0	6:27	6:09	8:32	7:03	9:42	5:16	3:11	6:03
3	6:38	7:18	8:35	7:30	11:18	6:21	3:39	7:06
4	8:21	2:11	4:43	5:05	$5:26^{*}$	4:27	2:46	4:13
6	7:11	2:52	4:50	4:57	4:33	4:06	1:58	3:32
				6:09				5:14
# Tabs	3	2	6		6	3	3	

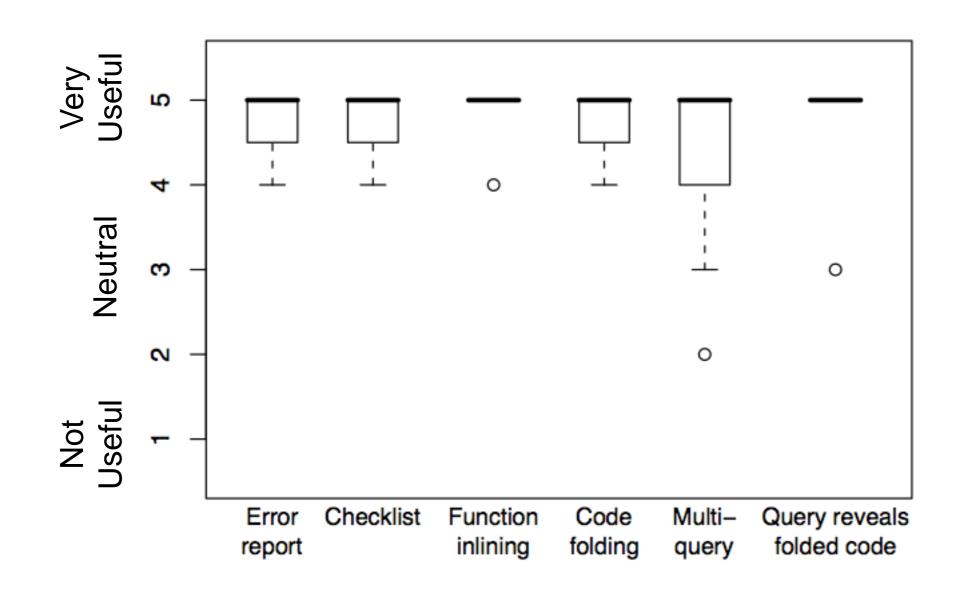
^{*} one incorrectly answered tab in the checklist


- Similar # of mistakes: 10 PP (10.9%), 9 SV (9.8%)
- Mistakes in 2.2, 2.3 due to common, unrealizable sub-path

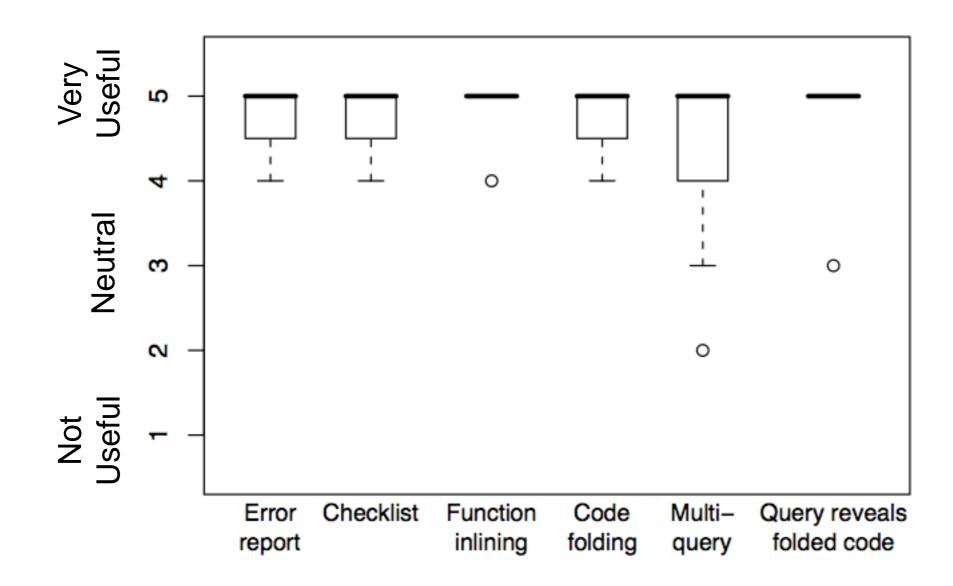
Mouse Hover Time in Error Report


- 20s on average for PP, compared to 1:34 for SV
 - Little need to use hyperlinks under PP

Overall Impression (Qualitative)


- Boxplot
 - Centerline = median Box extent = quartiles
 - Whiskers = min/max Dots = outliers

Overall Impression (Qualitative)


- No statistically significant differences in answers
 - Small sample? Limited exposure?
- All but one preferred PP

PP Feature Ratings (Qualitative)

- All statistically significant vs. neutral response
- Generally favorable towards PP features

PP Feature Ratings (Qualitative)

- Surprisingly, liked code folding/function inlining
 - Code folding was "the best feature" or "my favorite feature"

PP Feature Ratings (Qualitative)

- Checklist: "saved me from having to memorize rules"
- Two participants did not favor multi-query
 - But forgot multi-guery had 4 default items

Threats to Validity

- Results may not generalize
 - Small population, students, not data race experts
 - Small set of programs
 - Learning effect still present
- Changes to programs to make task easier
 - Task in experiments is very focused
 - Understanding error reports generally requires wider range of activities
- SV interface is not production quality
 - Deliberate choice, to avoid giving any advantages

Summary

- Introduced Path Projection, a new interface
 - Side-by-side display of paths
 - Function call inlining
 - Code folding
 - In general, tries to follow InfoViz principles
- Experimental results suggest PP
 - Improves completion times
 - Is liked by users
- Lots more to do on this topic!