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Consider a pollster who wishes to collect private, sensitive data from a number of distrustful
individuals. How might the pollster convince the respondents that it is trustworthy? Alternately,
what mechanism could the respondents insist upon to ensure that mismanagement of their data
is detectable and publicly demonstrable?

We detail this problem, and provide simple data submission protocols with the properties that
a) leakage of private data by the pollster results in evidence of the transgression and b) the evi-
dence cannot be fabricated without breaking cryptographic assumptions. With such guarantees,
a responsible pollster could post a “privacy-bond,” forfeited to anyone who can provide evidence of
leakage. The respondents are assured that appropriate penalties are applied to a leaky pollster,
while the protection from spurious indictment ensures that any honest pollster has no disincentive
to participate in such a scheme.
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1. INTRODUCTION

We study the problem of a pollster who wishes to collect private information
from individuals of a population. Such information can have substantial value
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to the pollster, but the pollster is faced with the problem that participation
levels and accuracy of responses drop as the subject matter becomes increas-
ingly sensitive. Individuals are, understandably, unwilling to provide accurate
sensitive data to an untrustworthy pollster who is unable to make concrete
privacy assurances.

The same problem affects individuals who are compelled to provide sensitive
data to an untrusted party. Examples such as the census and medical data
highlight cases where individuals are compelled to accuracy, either through
law or the threat of poor treatment, but the absence of “privacy oversight”
leaves many uncomfortable. What mechanisms can be used to assure individ-
uals that poor privacy discipline can be caught and publicly demonstrated?

We stress that this problem is different from the question of how the pollster
or data collector can manage data to preserve privacy. Privacy preserving data
mining research has blossomed of late and gives many satisfying answers to
this question [Agrawal and Srikant 2000]. Instead, the problem we consider is
that individuals may not trust the pollster to apply quality privacy protection,
either because the pollster has poor privacy discipline, poor security, or simply
because it is selling data on the side. Published research on privacy preserv-
ing data mining demonstrates techniques for use by a benevolent pollster, but
gives no assurances to individuals who are not convinced of the benevolence of
the pollster.

The focus of this article is a mechanism for submitting data to an untrust-
worthy pollster, such that a) leakage of private data can be caught and publicly
demonstrated, and b) if private data are not leaked, the probability of present-
ing evidence of a leak is arbitrarily small. We stress that both of these proper-
ties are critical; the individuals must be protected from a bad pollster as much
as the pollster must be protected from fraudulent accusations.

We make a distinction between individual data, and aggregate data (for
example, a noisy average of respondents’ data). Our schemes ensure that leak-
age of individual data by the pollster is detected (and punished). But some of
our schemes allow the pollster to publish aggregated data provided it does not
enable the inference of individual data. This is not a limitation of our schemes,
but rather a useful feature, since publication of nonidentifying aggregated data
is typically permitted and useful. Formal definitions of individual and aggre-
gate data are given in Section 2.

1.1 Overview of Existing Solutions

Much research has gone into the design of data analysis mechanisms that
attempt to minimize the amount of sensitive information leaked. However
compelling these solutions may be, their value is greatly diminished in the
absence of any guarantee that they are being applied properly. They do give
substantial value when the pollster is trusted, for example, when the pollster
and individuals from whom data are collected belong to the same organization,
or when the pollster has legal rights to the data of the individuals.

There are several techniques to address the problem of an untrustworthy
pollster, with varying features and drawbacks. Randomized response [Warner
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1965; Ambainis et al. 2004] is a method in which respondents presanitize their
own data by randomly altering it before submission. For example, when asked
to reveal their gender, an individual could flip a coin with bias p < 1/2 and
alter her response if the coin comes up heads. So long as the parameters of the
presanitization (p, and any additional details of the presanitization process)
are understood, many analyses accommodate this sort of perturbation. How-
ever, the noise levels introduced can be quite substantial. In some contexts,
such as medical histories, the introduction of noise is simply a nonoption; a
peanut allergy, for example, must always be reported truthfully.

Another approach is the use of trusted third parties, and their emula-
tion through secure function evaluation [Yao 1982; Goldreich et al. 1987].
In this case, the data are collected by a trusted third party, and the un-
trusted pollster is only permitted to ask the trusted party certain questions
of the data. The drawback of this approach is that the existence of a trusted
third party is a substantial assumption, and the computational overhead in-
volved in removing this assumption through secure function evaluation can be
significant.

A third approach is to anonymize the data before submission, so that
one cannot correlate sensitive features with individual identities. Mix net-
works [Chaum 1981; Ogata et al. 1997] allow respondents to submit data to
the pollster anonymously. Unfortunately, anonymity is not feasible in many
practical contexts. Mix networks can only be used to submit data that do not
contain personally identifiable information (PII), so that the data themselves
do not disclose information about the identity of the submitter. Whether a par-
ticular datum serves as PII depends entirely on the context, and it is rarely
safe to assume that a particular parcel of data will not be disclosive when pre-
sented publicly.

In addition, or as an alternative to the deployment of privacy-preserving
techniques, one may consider methods of detecting or discouraging leaks of
sensitive information. This self-enforcement approach has been explored in
the literature, mostly in the context of digital rights management [Boldyreva
and Jakobsson 2003; Chor et al. 2000; Dwork et al. 1996; Jakobsson et al. 2002;
Margolin et al. 2004]. The cryptographic schemes proposed in these articles
deter a user, or a coalition of users, from sharing access to digital content by
making such behavior traceable or by conditioning shared access to content on
sharing some sensitive data, such as credit card numbers.

Finally, one might draw a comparison between our work and the process of
tainting data, wherein submitters introduce an identifiable tracer into their
submissions. One primitive example would be to encode a nonce into the least
significant bits of a submission. Should the submitter see this tracer attached
to their data again, they are assured that the information must have origi-
nated from the pollster. However convincing such a scheme might be to the
individual, who may now severe communications with the pollster, it does
little to convince the public that the pollster has done anything wrong. A
public demonstration of the tainted data only confirms that either the poll-
ster or the individual leaked the data, and does not preclude the possibility
that the individual is setting up the pollster.
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Existing schemes to watermark or fingerprint data [Boneh and Shaw 1998;
Agrawal et al. 2003], including a publicly verifiable scheme [Pfitzmann and
Schunter 1996], are designed for a setting where one data-holder manages
access to its information, which is typically some large relational database or
a digital movie. These techniques are not applicable in a distributed scenario,
where the data are contributed by many individual participants.

1.2 Overview of Our Techniques

At the heart of our approach is the assumed presence of opportunistic third
parties that we will call the bounty hunters, who listen for leaks of private
information and assemble a case against the pollster. The bounty hunters
participate in the data collection, pretending to be simple respondents (in
fact, they may be). However, rather than following the cryptographic protocol
for data submission, they submit “baits,” whose decrypted contents provably
cannot be determined without access to a secret held by the pollster. A bounty
hunter herself does not know the contents of the data she submits. Since
the pollster is the only individual capable of decrypting and examining the
submitted bit, any report of the actual data in this message must come from
the pollster, and thereby incriminates the pollster of leaking private data.
Collaboration between bounty hunters is allowed, but not necessary. A sin-
gle bounty hunter can produce evidence that incriminates a dishonest pollster
who leaks private data.

The technical details we must discuss are the data submission process that
allows respondents to submit data to the pollster, and the indictment process,
in which a case is made by one or several bounty hunters against a pollster who
leaked private data. There are several desirable properties of the indictment
process, foremost that leakage of private data, even probabilistically, results
in a viable case and that non-leakage cannot result in a viable case with high
probability. These details are examined in Section 5.

1.3 Article Outline

We begin in Section 2 with a discussion of the model and several preliminary
definitions and assumptions that will form the basis of our approach. More-
over, we detail several cryptographic primitives and the properties we take
advantage of. In Section 3 we describe a simple approach for the case where
the pollster uses the data collected from respondents only for internal con-
sumption, and need not be able to publish any information about it (not even
sanitized nonidentifying information). Section 4 outlines a submission proto-
col based on randomized response, which adds the property that every submis-
sion serves as bait but introduces some uncertainty into the submitted data.
Sections 5 and 6 describe approaches that allow submission of precise data,
but introduce the need for an interactive indictment process. Schemes from
Sections 4, 5, and 6 permit limited public disclosure of analysis of the pollster’s
data if the pollster follows specific sanitization policies. Section 7 compares
the privacy properties of our schemes for various parameter settings. Finally,
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Fig. 1. The pollster collects data from respondents. A number of bounty hunters, hidden among
the respondents, submit baits. The pollster cannot distinguish baits from the data submitted by
respondents. A privacy breach, or leak, occurs if the pollster releases private data. Baits allow
bounty hunters to offer publicly verifiable evidence of a privacy breach.

in Section 8 we conclude with a summary of the results, as well as promising
directions for future investigation.

2. MODEL

We start by introducing some terminology and describing the players in our
data collection processes (see Figure 1). First, there is a pollster, who is inter-
ested in collecting bits from a large collection of respondents. The pollster may
also publish aggregated poll results, as long as doing so does not compromise
the privacy of any respondent.

The respondents have a vested interest in the privacy of their bits, and are
assumed interested in participating in a protocol that enforces privacy. To this
end, the pollster offers some form of bounty, which it must forfeit if a privacy
violation is uncovered. The bounty could be explicit in the form of a bond, or
implicit in the form of penalties imposed if privacy is violated.

Lurking among the respondents are some number of bounty hunters,
who masquerade as one or more respondents and attempt to ensnare the poll-
ster in a privacy violation. The bounty hunters submit baits, which the pollster
cannot distinguish from legitimate data, and hope to learn from the pollster
specific information about their baits that will constitute evidence of a privacy
violation. If a bounty hunter uncovers a privacy violation, this evidence can
be presented to claim the bounty. We say that our scheme offers self-enforcing
privacy, since it is in the best interest of the pollster to preserve the privacy of
the data collected from respondents.

2.1 Defining Privacy

A self-enforcing data collection scheme ensures that a pollster who publishes
sensitive data must forfeit a bounty. At the same time, the data collection
scheme would ideally allow the pollster to publish aggregated poll results, as
long as these results do not compromise the privacy of any respondent. Un-
fortunately, we do not know how to define and enforce these properties in a
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strictly complementary way, that is, in such a way that any publication of the
pollster is classified as either safe or helping the bounty hunter. Instead, we
introduce two notions of privacy:

2.1.1 Privacy breach. A privacy breach, formally defined below along the
lines of a classical compromise [Kenthapadi et al. 2005] is a clear violation of
privacy. It amounts to the pollster releasing information that makes it possible
to guess the sensitive bits confided by the respondents with a success probabil-
ity non-negligibly greater than 1/2 without using any auxiliary information.
A privacy breach can be thought of as a lower-bound on the privacy that the
pollster must offer the respondents. We will prove that our schemes ensure
that a privacy breach with certain parameters allows a bounty hunter to claim
the bounty.

2.1.2 Differential privacy [Dwork 2006]. Differential privacy is a quan-
tifiable definition of privacy-preserving functionality. We will show that our
schemes ensure that a pollster who preserves differential privacy for some
range of parameters cannot lose his bounty.

As noted above, there exists a “gap” between a privacy breach and differen-
tial privacy. In other words, the pollster may release data that violate differ-
ential privacy, but do not lead to a privacy breach.

2.2 Privacy Breach

It is important to formally describe what we mean by a breach of privacy,
so that we can argue that we protect against such breaches. One appealing
definition is that the pollster should not release specific information about
respondents to other entities. However, such breaches will not generally be
detectable, as the pollster could easily release the sensitive information to
parties that will not themselves pass on the information, and the breach will
not be detectable without their help. Instead, we will focus on breaches that
are detectable, that is, breaches for which the information released by the poll-
ster finds its way back to the individuals who submitted that information, or
agents acting on their behalf. Our focus on detectable breaches is justified by
our assumption that the bounty hunters play an active role in monitoring the
pollster and looking for data leaks. Naturally, the pollster should not be able to
tell the bounty hunters from other agents interested in obtaining the pollster’s
data.

It will be critical that the respondents are able to identify a privacy breach
as such. One example would be seeing one’s private data made available,
though less direct observations, such as for example being contacted on one’s
cell phone by a solicitor, can lead to similar conclusions.

Formally, we consider a model where the data received by the pollster are
encoded as an n-bit vector v = {v1, . . . , vn}. Note that the values received by the
pollster may not be known by the respondents.

Definition 2.1. A (ℓ, ǫ)-privacy breach exists when ℓ indices i1, . . . , iℓ
are identified such that any assignment of vi1 ,. . . ,viℓ consistent with the

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 9, Pub. date: December 2008.



Data Collection with Self-Enforcing Privacy · 9: 7

information published by the pollster agrees with v on at least 1/2 + ǫ-fraction
of the entries.

2.3 Differential Privacy

A natural question that arises in the presence of a posted privacy bond is
whether the pollster can analyze and release any properties of the private
data collected from respondents. Might it be that all useful functions reveal
too much about the structure of baits so that the bond must be forfeited as
soon as the pollster publishes any information at all about the data collected?

In this section, we introduce ǫ-differential privacy, a natural definition of
privacy proposed in Dwork et al. [2006] and Dwork [2006]. We argue that
the pollster can publish the results of any analysis that preserves differential
privacy, without incurring a substantial risk of having to forfeit the bounty.
Indeed, the chance of producing evidence of a privacy breach against a pollster
is exponentially small if the pollster releases only information that preserves
differential privacy.

Definition 2.2. A randomized function f over data sets gives ǫ-differential

privacy if for any two data sets X1 and X2, which differ in at most one point,
and S ⊆ Range( f ),

Pr[ f (X1) ∈ S] ≤ exp(ǫ) × Pr[ f (X2) ∈ S].

In our application, the output of the function f is the information that the
pollster releases about the data. The definition of differential privacy ensures
that this information is not substantially affected by a respondent’s presence in
(or absence from) the data. Intuitively, if all the information published by the
pollster preserves differential privacy, a bounty hunter cannot learn the data
of any respondent and thus can also not learn information about any bait. We
will use this property to show that publication of the results of analyses that
preserve ǫ-differential privacy do not give bounty hunters enough information
about baits to successfully claim the bounty with non-negligible probability.

Differential privacy is discussed in more detail in Dwork et al. [2006] and
Dwork [2006], in which methods are presented for performing several common
data analyses in a way that preserves differential privacy. Examples include
histogram computations such as OLAP, as well as more algorithmic analyses
such as Principal Components Analysis, k-means clustering, perceptron clas-
sification, and ID3 decision trees construction.

We stress that our data collection schemes are not bound to ǫ-differential
privacy. This definition of privacy was chosen only to demonstrate that the pri-
vacy of our mechanisms can coexist with nontrivial data analyses. Differential
privacy is among the stronger definitions of privacy, and is therefore easier to
accommodate. Differential privacy is applied in Sections 4 and 5.

2.4 Cryptographic Building Blocks

The approaches we present make use of cryptography to ensure that certain
information is concealed from respondents, and that other information can be
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presented irrefutably. We now detail some of the cryptographic primitives that
we use and their properties.

2.4.1 Secure channels. In our schemes, respondents will submit to the poll-
ster data encrypted with homomorphic public-key encryption schemes, such as
ElGamal or RSA. These encryption schemes naturally do not provide chosen-
ciphertext security. It is thus imperative that these public-key ciphertexts be
submitted over a secure channel, such as TLS. In fact, it is easy to demonstrate
that the security of respondents’ submissions is compromised if our schemes
were used without an additional layer of (symmetric-key) encryption.

2.4.2 ElGamal cryptosystem. ElGamal is a randomized public-key encryp-
tion scheme. Let G be a group, and let g ∈ G be a generator of a multiplicative
subgroup Gq of order q where the Decisional Diffie-Hellman problem is hard.
The secret key is an element x chosen at random from Z q. The corresponding
public key is the value y = gx. The encryption of a plaintext m ∈ Gq is a pair
(gr, myr) for a value r chosen at random in Z q. To decrypt a ciphertext (A , M),
the value m = M/Ax is computed. We will use two important properties of
ElGamal:

—Multiplicative homomorphism: Consider two ElGamal ciphertexts C1 =
(gr, m1yr) and C2 = (gs, m2ys) for plaintexts m1 and m2. The component-wise
product C1.C2 = (gr+s, m1m2yr+s) is an ElGamal ciphertext for m1m2.

—Re-encryption. Let (gr, myr) denote an encryption of a plaintext m. Let
s be a random value in Zq. The pair (gr+s, myr+s) is also an encryption of
m. The new pair is called a re-encryption of the first ciphertext. Note that
a ciphertext can be re-encrypted without knowledge of m or of the secret
key x.

2.4.3 Proof of plaintext knowledge (KPT). Let E(m) = (gr, myr) be an en-
cryption generated by a prover. The prover can prove to a verifier that she
knows the plaintext m by proving that she knows logg(gr). This can be done
with a protocol by Schnorr [Schnorr 1991]. The protocol can be made noninter-
active with the Fiat-Shamir heuristic. We denote an instance of this protocol
for an ElGamal ciphertext C as K PT(C).

2.4.4 Proof of correct decryption (PCD) [Chaum and Pedersen 1993]. A
prover proves to an honest verifier that an ElGamal ciphertext (C, M) decrypts
to a plaintext m. The proof consists of showing that logg(y) = logC(M/m) = x

without leaking any information about the secret key x. We denote an in-
stance of this protocol to prove correct decryption of an ElGamal ciphertext C

as PCD(C).

2.4.5 Proof of correct re-encryption (PCR) [Chaum and Pedersen 1993]. A
prover proves to an honest verifier that an ElGamal ciphertext (gs, mys) is a
re-encryption of a ciphertext (gr, myr) without leaking any other information.
The proof consists of showing that logg(gs/gr) = logy((mys)/(myr)) = s − r, with-
out leaking any information about the value s − r. The computational cost of
this protocol is two modular exponentiations for the prover and four modular
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exponentiations for the verifier. We denote an instance of this protocol to prove
that an ElGamal ciphertext C2 is a re-encryption of C1 as PCR(C1  C2).

2.4.6 Discrete logarithm proof systems [Camenisch and Stadler 1997]. An
efficient zero-knowledge proof can be constructed for any monotone boolean for-
mula whose atoms consist of the protocols to prove plaintext knowledge (KPT),
correct decryption (PCD), or correct re-encryption (PCR).

2.4.7 Verifiable mixing [Groth 2002; Neff 2001]. Let L = {(A i, Mi)} and
L′ = {(A ′

i, M′
i)} be two lists of ElGamal ciphertexts. A verifiable mixing protocol

allows a prover to prove to an honest verifier the existence of a permutation π

and a sequence of exponents γ j such that (A ′
j, M′

j) = (Aπ ( j)g
γ j, Mπ ( j) y

γ j), without
leaking any information about π or the values γ j. Given n input ciphertexts,
the computational cost of the most efficient verifiable mixing protocol [Groth
2002] is 6n modular exponentiations for the prover and 6n modular exponenti-
ations for the verifier.

3. SELF-ENFORCING PRIVACY WITH NO RELEASE OF DATA

In this section, we present a scheme that allows the pollster to collect data
from respondents, but not to release any information about the data collected.

The scheme is structured as follows. The pollster commits to a secret bi-
nary string by publishing encryptions of the bits of the secret string under a
randomized public-key encryption scheme, such as ElGamal, which is homo-
morphic and allows for re-encryption of ciphertexts. Each time a respondent
submits a bit, she has a choice of either submitting an encrypted bit of her
own data or preparing a bait by re-encrypting any of the pollster’s secret bits.
The pollster decrypts all the ciphertexts received and thus recovers the data
submitted by respondents. Since the pollster cannot distinguish baits from
regular submissions, some baits will unavoidably be decrypted if the pollster
leaks a substantial fraction of the data. Decrypted baits reveal some of the bits
of the pollster’s secret string. Once enough of the secret bits are known to the
injured parties, they can claim the bounty by proving knowledge of the secret
string.

In this section and throughout the article, we assume that respondents are
labelled with unique identifiers P1, . . . , Pn.

3.1 Setup

The pollster outputs public parameters for a public-key encryption scheme E

that is semantically secure under re-encryption and has a multiplicative ho-
momorphism. In what follows, we use ElGamal. The public parameters are a
group G and a generator g ∈ G of a multiplicative subgroup Gq of order q in
which the Decisional Diffie-Hellman problem is hard.

3.2 Commitment to the Bounty

Let k be a security parameter (e.g., k = 160). The pollster chooses a k-bit secret
value β = b1 . . . bk. The pollster outputs E(gb i) for i = 1, . . . , k and proves that
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these ciphertexts are well-formed by showing that each ciphertext decrypts
either to g0 or g1. This is done with a (disjunctive) discrete logarithm proof
system consisting of two proofs of correct decryption (see Section 2.4). Using
the multiplicative homomorphism of E, the pollster computes

∏k
i=1 E(gb i)2i

=
E(gβ ). The pollster then decrypts this value, proves correct decryption with the
protocol PCD(E(gβ )) described in Section 2.4, and outputs the commitment gβ .
A bounty is then offered to anyone who recovers the secret value β.

3.3 Data Submission

In the data submission step, a respondent sends to the pollster either one true
bit of data or a bait.

3.3.1 Sending one true bit of data. To send a bit b ∈ {0, 1} to the pollster,
a respondent Pi computes the randomized ciphertext E(gb ) and sends the re-
sulting value to the pollster over a secure channel (e.g., using TLS).

3.3.2 Sending a bait. To send a bait to the pollster, the respondent chooses
a random index r ∈ {1, . . . , k}, re-encrypts the ciphertext E(gb r) and sends the
re-encrypted ciphertext to the pollster over a secure channel.

3.4 Data Collection

The pollster receives ElGamal ciphertexts from respondents. Since ElGamal is
semantically secure under re-encryption, the pollster cannot distinguish true
bits from baits. The pollster then decrypts all ciphertexts C = E(gb i) and recov-
ers the corresponding plaintexts. Only well-formed plaintexts (i.e., those that
decrypt to g0 or g1) are tallied. Malformed plaintexts are discarded.

3.5 Claiming the Bounty

3.5.1 Honest pollster. This scheme does not allow the pollster to publish
anything about the data collected. We show first that corrupt respondents can-
not fraudulently claim the bounty of an innocent pollster. If the pollster leaks
no information about data collected from respondents, claiming the bounty
is equivalent to recovering the value β from the commitment gβ . Since the
discrete logarithm problem is assumed hard in the group G generated by g,
this problem is computationally intractable. Thus corrupt respondents cannot
wrongly claim the bounty of an innocent pollster.

3.5.2 Dishonest pollster. We consider next a dishonest pollster, and show
that the bounty can be recovered if the pollster publishes data that result in
a privacy breach. Let us start with a simple example. If the pollster leaks
ℓ < k baits, respondents can recover the secret β in time 2(k−ℓ)/2 using the tech-
nique of Pollard [1978] and present β as evidence of the pollster’s misbehavior
to claim the bounty. Note that the verification process is noninteractive: the
correctness of β is verified against the commitment gβ , without communicat-
ing with the pollster. The correctness of the bounty is also publicly verifiable
without the involvement of the pollster.
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More generally, let us consider a pollster who publishes data that result in
a privacy breach. For example, the pollster may leak the data collected from
respondents with noise added. The following proposition shows that a privacy
breach allows bounty hunters to recover all the bits of the pollster’s secret with
high probability.

PROPOSITION 3.1. Consider a pollster who commits a (ℓ, ǫ)-privacy breach.

Recall that k denotes the size of the pollster’s secret. Let 0 < α < 1 denote the

fraction of baits among the bits submitted by respondents and bounty hunters.

If ℓ > k/(αǫ2), the bounty hunters can (with high probability) reconstruct the

secret β with no computational effort.

PROOF. Let us denote the data received by the pollster as an n-bit vector
v = {v1, . . . , vn}. By definition, an (ℓ, ǫ)-privacy breach means that a set of ℓ

indices i1, . . . , iℓ is identified such that any assignment of vi1 ,. . . ,viℓ consistent
with the information published by the pollster agrees with v on at least 1/2+ǫ-
fraction of the entries.

Among the values vi1 ,. . . ,viℓ , the number of baits is αℓ. Now let us consider
a bit b i of the pollster’s secret β. The number of baits in vi1 ,. . . ,viℓ that are
re-encryptions of the bit b i is αℓ/k. By definition of a privacy breach, each of
these baits is correct with probability greater than 1/2 + ǫ. If a majority of
these αℓ/k values are 0, we conclude that b i = 0 (and otherwise b i = 1).

Let X be a random variable defined by the sum of the αℓ/k baits that are
re-encryptions of the bit b i. According to the Chernoff bound,

Pr[X < αℓ/(2k)] < e−(αℓ/k)(1/2+ǫ)(1−1/(1+2ǫ))2 /2.

The probability of error is thus small if ℓ = O(k/(αǫ2)). This concludes the
proof.

Let us consider a numerical example. If the pollster commits to a 160-bit
secret (k = 160) and leaks correct bits with probability 1/2 + ǫ, where ǫ = 1/4,
and if the respondents submit a bait with probability α = 10%, then 12, 800
bits are required to recover β with modest computational effort (240 modular
exponentiations).

We stress that this scheme is secure for the pollster only if it releases no
information whatsoever about the data collected. The following example illus-
trates the danger for the pollster of releasing even seemingly innocuous data.

Consider a pollster who intends to publish the noisy gender majority for
each ZIP code in the survey. For appropriately chosen parameters of the noise,
this information can be disclosed without a privacy breach. Still, the scheme
described in this section does not allow for the safe release of this information.

Indeed, an unscrupulous bounty hunter may create sufficiently many false
identities in a given ZIP code area, and let all these identities submit as baits
re-encryptions of the same secret bit of the pollster’s secret. The bounty hunter
may succeed in biasing the results of the poll so that the noisy majority will be
equal to the value of this secret bit with high probability. Repeating this attack
will eventually allow the bounty hunter to learn all the bits of the pollster’s
secret and claim the bounty.
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In the rest of this article, we propose improved schemes that will allow the
pollster to safely release sanitized nonidentifying information about the data
collected.

4. SELF-ENFORCING PRIVACY AND RANDOMIZED RESPONSE

The scheme described in the previous section requires different processes for
submitting true answers and baits. It calls for proactive bounty hunters, who
may have an incentive to create multiple fake identities that crowd out real
contributors and compromise the poll’s validity.

In this section, we propose a different scheme based on the concept of ran-
domized response, where each response is a bait and the role of bounty hunters
in the survey is strictly passive.

4.1 Basic Scheme with Randomized Response

4.1.1 Setup. The pollster outputs public parameters for an ElGamal en-
cryption scheme denoted E. As in Section 3, we denote g ∈ G the generator of
a multiplicative subgroup Gq of order q in which the Decisional Diffie-Hellman
problem is hard.

4.1.2 Commitment. The scheme is parameterized with κ , the order of the
group element g in G (κ may be 160 in most scenarios). The pollster chooses κ

bits b1, . . . , b κ at random, such that exactly half of them be ones. Let β denote
the integer whose binary representation is b1, . . . , b κ . The pollster outputs
E(gb i) for i = 1, . . . , κ . The pollster proves that the ciphertexts are well-formed,
that is, are encryptions of either g0 or g1. Next, using the multiplicative ho-
momorphism of E, the pollster computes E(gβ) =

∏κ

i=1 E(gb i)2i

. The pollster
then provably decrypts this value and outputs gβ . The bounty is placed on the
value β. Finally, the pollster produces a list of k − κ ciphertexts, which are
encryptions of g0. The combined list of k ciphertext plays the same role as in
Section 3.

4.1.3 Data submission. Let b denote the bit to be submitted by a respon-
dent. The respondent chooses a random index i ∈ {1, . . . , k}. If b = 0, the
respondent sends to the pollster a re-encryption of the ciphertext E(gb i). If
b = 1, the respondent uses the multiplicative homomorphism of ElGamal to
compute the ciphertext E(g1−b i) = E(g)/E(gb i) and sends this ciphertext to the
pollster over a secure channel. Let C denote the ElGamal ciphertext sent to
the pollster.

The respondent must also submit a proof of correct operation. The re-
spondent gives a proof to the pollster of the following discrete-log system (see
Section 2.4):

(

k
∨

i=1

PCR
(

E(gb i) C
))

∨

(

k
∨

i=1

PCR
(

E(g)/E(gb i) C
))

.
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According to Camenisch and Stadler [1997], the cost of this proof is 6k − 1
modular exponentiations for the prover (the respondent) and 6k modular ex-
ponentiations for the verifier (the pollster). The purpose of this proof it to
prevent respondents from cheating by submitting nonrandomized replies that
would carry more weight than randomized ones.

The probability that a respondent’s bit is inverted, that is, the randomiza-
tion parameter of the randomized response scheme, is p = κ/(2k).

4.1.4 Data collection and claiming the bounty. These steps are exactly as
in Section 3.

The probability that the bond is claimed is provably reducible to the discrete
logarithm problem of recovering β from g and gβ in the group G. The only
constraint is that the number of nonzero bits in β is exactly half its length,
which reduces the complexity of the problem by a factor less than κ .

It is natural to compare this approach with the simpler randomized re-
sponse schemes described in the introduction, in which the respondents
prerandomize their own data. The values submitted in our scheme have no
greater statistical fidelity than in the simpler scheme. The important distinc-
tion is that, in our scheme, the interests of the pollster are aligned with the
privacy concerns of the participants: a value p close to zero gives very accu-
rate answers but puts the bounty at risk. The privacy of the individuals is not
a result of choosing p close to 1/2, as in classical randomized response, but
inherent for all values of p.

4.2 Variant that Allows Release of Some Data

The data collected from respondents are most useful when the pollster is able
to analyze it and can act on the analyses (or even publish the results of the
analyses) without fear of forfeiting the bounty (as long as the results of the
analyses do not compromise the privacy of respondents). While the scheme of
Section 4.1 ensures that privacy breaches are punished, the pollster would also
like assurances about what sort of behavior (or publication) is allowed, based
on the data collected. If the publication of certain data is allowed, because
it poses no threat to the privacy of respondents, the publication of that data
should not allow a bounty hunter to successfully claim the bounty.

When the pollster performs queries over the bits submitted by the respon-
dents, it is in fact performing queries over bits of its own secret. Publishing
the results of such queries raises the concern that the pollster may accidentally
reveal information about its secret bits. The pollster would like to restrict it-
self to queries that guarantee the “privacy” of its own secret, so that it runs
no risk of having to forfeit the bounty. The property desired by the pollster is
the same as ǫ-differential privacy for respondent data: the distribution over
results should not be substantially affected by the modification of one of the
pollster’s secret bits.

To achieve this property, we propose a simple variant of the data submission
protocol of Section 4.1. Recall from Section 4.1 that the pollster outputs k

ciphertexts E(gb i) for i = 1, . . . , k in the commitment step. Intuitively, the goal
of the variant presented here is to prevent one respondent (or a set of colluding
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respondents) from all submitting the same ciphertext E(gb i). We achieve this
with the following data submission protocol:

(1) The pollster re-encrypts the ciphertexts E(gb i) for i = 1, . . . , k and permutes
them according to a permutation π chosen uniformly at random and known
only to the pollster. The pollster outputs the permuted set E(gbπ(i)) for i =
1, . . . , k.

(2) Let b denote the bit to be submitted by a respondent. The respondent
chooses a random index j ∈ {1, . . . , k}. Let i denote the value (not known
to the respondent) such that j = π(i). If b = 0, the respondent computes
a re-encryption of the ciphertext E(gbπ(i)). If b = 1, the respondent uses
the multiplicative homomorphism of ElGamal to compute the ciphertext
E(g1−bπ(i) ) = E(g)/E(gbπ(i)). Either way, let C denote the ciphertext computed
by the respondent. The respondent sends the pollster a commitment to C.

(3) The pollster reveals the permutation π and proves correct mixing in step 1
(see Section 2.4 for details on how that is done). If the verification fails, the
respondent aborts the data submission process.

(4) The respondent outputs C, together with a proof of a discrete-log system
that shows that C is either a re-encryption of E(gbπ(i)) or of E(g)/E(gbπ(i)), as
in Section 4.1.

(5) The pollster checks C against the commitment received in step 2, and
checks the discrete-log proof system. If both are correct, the bit from the
respondent is accepted.

A malicious respondent may attempt to skew the distribution of the indices
π(i) by not completing step 4. To ensure a near-uniform distribution (with
statistical distance from the uniform less than 1/k), the pollster should use a
random index if the submission protocol is aborted after the permutation π is
revealed.

Now consider ǫ-differential privacy as applied to the respondent data. If
the information released by the pollster preserves ǫ-differential privacy for the
respondents, then the distribution over its outputs does not change substan-
tially (as a function of ǫ) if any respondent changes its submitted value. Let
si denote the number of respondents from a query set S whose submission is a
re-encryption of bit b i. Since a change in the value of the secret bit b i results
in a change of at most si values, any computation that preserves ǫ-differential
privacy for the respondents’ data also preserves (ǫsi)-differential privacy for bit
b i of the pollster’s secret.

THEOREM 4.1. An ǫ-differential privacy query over the set S increases the

probability of the bounty being claimed by at most exp(ǫκ maxi si).

PROOF. Consider the probability that the bounty hunter succeeds in identi-
fying the κ/2 secret locations i for which b i = 1, taken first over the random-
ness in the selection of the locations, and then over the randomness given by
ǫ-differential privacy. Take c = κ maxi si as the largest number of respondents
whose received data would change as a result of an arbitrary change in the
κ/2 locations of non-zero bits. The bounty hunter’s distribution over guesses
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is conditioned on the locations chosen, but differential privacy guarantees that
no guess increases in probability by more than a factor of exp(ǫc). We can
therefore remove the bounty hunter’s dependence on the actual location at the
cost of a factor of exp(ǫc).

We have

Pr
location

Pr
guess

[guess = location | location]

≤ Pr
location

Pr
guess

[guess = location] exp(ǫc)

= exp(ǫc)/

(

κ

κ/2

)

.

The final step follows from the observation that no matter the distribution
over the guess, the uniform distribution over the actual location makes the
probability one over the number of possible locations.

If the query is independent of the distribution of respondents,
∑

i:b i=1 si is
unlikely to greatly exceed (1 − p)‖S‖.

If the query is permitted to depend on the distribution, perhaps because the
respondents themselves pose the questions in an attempt to trap the pollster,
then

∑

i:b i=1 si could be as large as ‖S‖, but even in this case the pollster can
still choose ǫ and k to yield meaningful results.

4.3 A Stronger Bound for Sum Queries

In the case where the query is independent of the assignment of respondents to
bits, we can occasionally prove a stronger bound for the scheme of Section 4.2.
Consider the query that counts the number of respondents from S whose bit
is set. If the pollster were to change the location of one of its nonzero bits,
the total sum would change by at most the difference in the sums for the two
locations. If the distribution of respondents is uniform, this difference can be
substantially smaller than the sums themselves, improving substantially on
the bound above. The following lemma is a standard balls-and-bins argument
of the number of balls in a bin tightly concentrated around its expected value.
As a corollary, the lemma implies that the difference between the number of
balls in two bins is likely to be small compared to the total number of the balls
in both bins, which corresponds to the change in a sum-query’s answer if the
location of a nonzero bit changes.

LEMMA 4.2. Letting si be the random variable denoting the number of

respondents in bin i, with probability at least 1 − δ, for all i we have (si − µ)2 ≤

4(s/k) ln(k/δ), provided that δ > exp(−s/k).

Letting d be the change in the value of the sum above, an identical change
can be attained by changing the values of d respondents. If the pollster
maintains ǫ-differential privacy for the respondents, the pollster is assured of
ǫd-differential privacy for the location of each of its non-zero bits, even though
substantially more than d respondents may live at each location.
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THEOREM 4.3. For any counting query that is independent of the distri-

bution of respondents to bins that maintains ǫ-differential privacy of the

respondents data with probability at least 1 − δ the probability of a bounty

being claimed is at most exp(2ǫκ
√

(s/k) ln(k/δ))/
(

κ

κ/2

)

, which vanishes for large

enough k.

PROOF. We start with the observation that for each of the κ/2 possible
locations for the set bits, the number of positive and negative respondents are
within c′ = 2

√

(s/k) ln(k/ǫ) of their mean, with probability at least 1− ǫ. Condi-
tioned on this event holding, changing the location of the κ/2 bits results in a
change of at most c = κc′ to the sum. A change of c to the sum could be caused
by the alteration of as many respondents data, but ǫ-differential privacy
ensures that the probability of no event should increase by more than a fac-
tor of exp(ǫc) due to such a change. The proof follows in a form identical to that
of Theorem 4.1.

5. A SCHEME WITH INTERACTIVE INDICTMENT BASED ON RSA

In this section, we propose another scheme that allows the pollster to release
information about the data collected as long as it does not violate the privacy
of any nontrivial fraction of respondents. In a nutshell, our scheme works as
follows. The bounty hunter prepares encryptions of unknown bits and sub-
mit them as baits. Should the pollster leak information about these bits, the
bounty hunter indicts the pollster by presenting the bits and a proof of the
baits’ validity in order to claim the bounty. After the indictment, the onus is
on the pollster to refute the accusation, which can be achieved by proving that
sufficiently many bits decrypt to different values than alleged by the bounty
hunter.

5.1 Setup

Let E denote a semantically secure public-key encryption scheme (e.g., RSA
in what follows) and let D denote the corresponding decryption function. The
pollster outputs public parameters for E. Let h be a hash function and let f

be another hash function whose image is the set of ciphertexts of E. In our
proof of security, we model h and f as random oracles. In the real world the
functions are instantiated based on cryptographically strong hashes, such as
SHA-256.

5.2 Sending a Bit to the Pollster

To send a bit b ∈ {0, 1} to the pollster, a respondent Pi chooses a value r such
that the least significant bit of h(Pi||r) is b . The respondent sends Pi and E(r)
to the pollster.

5.3 Decryption

Given a respondent identifier P and a ciphertext C, the pollster decrypts C to
recover the plaintext r, then computes the least significant bit b of h(P||r).
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5.4 Sending a Bait to the Pollster

To send a bait to the pollster, the respondent chooses a random value s,
computes f (s) and sends to the pollster Pi and f (s). Notice that neither the
decryption of f (s) nor the bit recovered by the pollster is known to the bounty
hunter.

5.5 Accusing the Pollster

If the pollster releases uniquely identifiable bits, some of which can be linked
to the baits, the bounty hunter can indict the pollster. For some integer pa-
rameter n0 (whose value is discussed later), the indictment consists of n > n0

distinct triples of the form

〈Pi, si, b i〉,

which we call exhibits. An exhibit is valid if and only if the bit decrypted by
the pollster, i.e. the least significant bit of h(Pi||D( f (si))) is equal to b i.

The pollster can contest the indictment by demonstrating that at least (1/2−

wn)n of the alleged exhibits are invalid. The minimum number of exhibits n0

and the exact form of wn, which lies between 0 and 1/2 and serves to protect the
pollster, will be discussed later. The pollster proves that an exhibit is invalid
by outputting ri = D( f (si)) and demonstrating that the least significant bit of
h(Pi||ri) is not b i.

If the pollster cannot defend herself or refuses to do so, the bounty must
be forfeited. Note that this solution requires the pollster to be online for the
indictment process, but it does not rely on a trusted third party.

5.6 Security

We note first that the reason for using RSA in this scheme, instead of ElGamal
as in previous schemes, is to give respondents the ability to select a random
valid ciphertext for which they do not know the corresponding plaintext. We
note also that properly constructed baits are indistinguishable from other sub-
missions, and encode bits that are uncorrelated and provably unknown to the
bounty hunter. Next, we show that a pollster whose data disclosure policy
preserves ǫ-differential privacy cannot be convicted by an over-zealous bounty
hunter.

PROPOSITION 5.1. If the data queries answered by the pollster preserve

ǫ-differential privacy, the probability that any bounty hunter can claim the

bounty is less than

max
n≥n0

exp(nǫ − nw2
n/2).

PROOF. To analyze the probability of successful indictment given differen-
tial privacy access to a data set, we consider the joint probability density be-
tween the indictment made, I, (a set of locations and guesses at the values
at these locations) and the data set, d, which we take to have a random prior
distribution from the point of view of the attacker. Using the predicate V(I, d)
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to indicate valid indictments I for a data set d, ie: at least a 1/2 + wn fraction
of the exhibits are correct, the probability of successful indictment is

∫

I

∑

d

Pr[I ∧ d] V(I, d) =

∫

I

Pr[I]
∑

d

Pr[d|I] V(I, d) .

For each I, we now decompose d into the product of two random variables, dI

and d′
I, the restriction of the data set to locations identified by the indictment

and the remaining data. Noting that V(I, d) depends only on dI, and extending
the notation to V(I, dI) with the same meaning,

=

∫

I

Pr[I]
∑

d′
I

∑

dI

Pr[dI ∧ d′
I|I]V(I, dI)

=

∫

I

Pr[I]
∑

d′
I

Pr[d′
I|I]

∑

dI

Pr[dI|I, d′
I] V(I, dI) .

Apply Bayes’ rule to Pr[dI|I, d′
I] gives Pr[I|dI, d′

I](Pr[dI|d
′
I]/ Pr[I|d′

I]), and
noting that by independence Pr[dI|d

′
I] = Pr[dI],

=

∫

I

Pr[I]
∑

d′
I

Pr[d′
I|I]

∑

dI

Pr[I|dI, d′
I]

Pr[dI]

Pr[I|d′
I]

V(I, dI) .

The definition of differential privacy allows us to conclude that Pr[I|dI, d′
I] ≤

exp(ǫn) Pr[I|d′
I], which after canceling with the Pr[I|d′

I] in the denominator
gives

≤

∫

I

Pr[I]
∑

d′
I

Pr[d′
I|I]

∑

dI

Pr[dI]V(I, dI) exp(ǫn) .

For any fixed indictment I, the probability that dI satisfies V(I, dI) is at most
exp(−nw2

n/2) by a Chernoff bound (since we assume that RSA is one-way and
we model the hash functions f and h as random oracles), giving

≤

∫

I

Pr[I]
∑

d′
I

Pr[d′
I|I] exp(ǫn) exp(−nw2

n/2) .

The exp(nǫ − nw2
n/2) term is independent of I and d′

I, and as their densities
integrate to one, the equation achieves our stated bound.

The pollster must determine a value of ǫ that permits sufficient utility
without compromising the security of the bounty. Safe values of ǫ in turn
depend on the values n0 and wn that govern the indictment rules. These values
must be chosen to permit a sufficient level of safe disclosure. At the same time,
respondents should also insist on realistic settings of n0 and wn to ensure that
bounty hunters are able to catch privacy leaks.

It is also worth noting that the probability that a bounty hunter succeeds
in a fraudulent claim depends only on the number of exhibits n, and not on
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the total number of baits submitted. Were this not the case, there would be a
strong incentive for bounty hunters to flood the system with baits, corrupting
the integrity of the poll.

6. A SCHEME WITH INTERACTIVE INDICTMENT BASED ON ELGAMAL

In this section, we present a variant of the scheme of Section 5 based on
ElGamal. Like the scheme of Section 5, the scheme presented in this section
allows the pollster to release information about the data collected from re-
spondents as long as it does not violate the privacy of a non-trivial fraction of
respondents. Since ElGamal ciphertexts (on elliptic curve groups) can be
shorter than RSA ciphertexts, the scheme based on ElGamal offers better
communication complexity than that based on RSA. On the downside, the
ElGamal-based scheme of this section assumes the existence of a trusted judge
who supervises the indictment process when the pollster stands accused of
leaking private data. The description of the scheme follows.

6.1 Pollster Setup

The pollster outputs public parameters for an ElGamal encryption scheme de-
noted E. As in Section 3, we denote g ∈ G the generator of a multiplicative
subgroup Gq of order q in which the Decisional Diffie-Hellman problem is hard.
Let h denote a cryptographically strong hash function, such as SHA-256.

6.2 Sending a Bit to the Pollster

Let b denote the bit to be submitted by a respondent. The respondent first
contacts the pollster and indicates its intention to submit a bit. When con-
tacted, the pollster chooses a random value ri and sends to the respondent the
ciphertext E(ri) together with the pollster’s signature σi on E(ri). The respon-
dent then proceeds as follows, depending on whether it intends to submit a
true bit of data or a bait:

6.2.1 Sending one true bit of data. To send a bit b ∈ {0, 1} to the pollster,
the respondent chooses a random value si such that the least significant bit of
h(si) is b . The respondent then computes the randomized ciphertext E(si) and
sends that value to the pollster over a secure channel (e.g., using TLS).

6.2.2 Sending a bait. To send a bait to the pollster, the respondent chooses
a random nonzero value si, computes the ciphertext E(ri · si) using ElGamal’s
multiplicative homomorphism, and sends the resulting ciphertext to the poll-
ster over a secure channel.

6.3 Data Collection

The pollster receives ElGamal ciphertexts from respondents. Since ElGamal is
semantically secure under re-encryption, the pollster cannot distinguish true
bits from baits. The pollster decrypts all ciphertexts E(ti) and recovers the
least significant bit b i of the value h(ti).
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6.4 Accusing the Pollster

If the pollster releases uniquely identifiable bits, some of which can be linked
to the baits, the bounty hunter can indict the pollster. The indictment consists
of n > n0 distinct triples of the form

〈E(ri), σi, si, b i〉,

which we call exhibits.

6.5 Validating Exhibits

If an indictment is brought up against the pollster, the exhibits are submitted
to the judge, who privately reviews their validity. An exhibit is valid if and
only if the following conditions hold:

(1) The signature σi is a valid pollster’s signature on E(ri).

(2) The least significant bit of h(ri · si) is equal to b i.

The judge first eliminates exhibits which do not satisfy the first property. The
judge must then determine which exhibits satisfy the second property, with
help from the pollster. The pollster can contest the validity of an exhibit by
demonstrating that it does not satisfy the second property. To demonstrate
to a trusted judge that an exhibit 〈E(ri), σi, si, b i〉 is invalid, the pollster
decrypts the value E(ri) and outputs ri for the judge. This allows the judge to
check whether the least significant bit of h(ri · si) is equal to b i.

6.6 Security

The security properties of this scheme are identical to the scheme of Section 5.
We note that it is important that exhibits be validated in private by a trusted
judge. This prevents participants from learning which exhibits are valid, and
which are invalid. The reason why participants must be prevented from learn-
ing this information is as follows. If they did learn this information, they
should be prevented from ever submitting the same exhibit twice (it is triv-
ial to create valid exhibits if two tries are allowed). But preventing multiple
submissions opens the door to an attack, in which the pollster preventively
accuses himself with invalid exhibits. This self-accusation does not cause the
pollster to forfeit his bond, since the exhibits are invalid. But it ensures that
the same exhibits can not later be used by participants to accuse the pollster,
and thus allows the pollster to leak the data corresponding to these exhibits
without fear of retribution.

7. EMPIRICAL MEASUREMENTS OF BOUNDS

In this section we briefly look at actual parameter settings derived from the
bounds we have proven, considering a range of parameters that might be
realistic, and contrasting the trade-offs of each approach. We will consider
four approaches: the two analyses of Randomized Response, corresponding to
Sections 4.2 and 4.3, and two instances of the scheme from Section 6, with the
indictment parameters wn = 1/3 and wn = 1/2. For the first indictment scheme,

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 9, Pub. date: December 2008.



Data Collection with Self-Enforcing Privacy · 9: 21

Fig. 2. Data set of 1,000 elements, with required standard deviation 10. The indictment scheme
with wn = 1/3 is not visible, as our results do not give non-trivial bounds on the probability of a
breach.

we plot the bound given by the Chernoff bound, whereas for wn = 1/2, where
all bits must be guessed, we substitute 1/2n for the Chernoff bound.

We consider a simple counting query, in which we want to discover the
number of elements in the data set that satisfy a given predicate. In each of
the three figures, we will fix the size of the data set, and place a requirement
on the accuracy of the final result. This accuracy requirement, articulated
by requiring the standard deviation of the result to be at most σ , places con-
straints on the value of ǫ for ǫ-differential privacy for all schemes as well as
the fraction of occupied bins in the randomized response schemes. The current
best ǫ-differential privacy approaches for counting, taken from Dwork et al.
[2006], add error to the result with standard deviation 1/ǫ. Consequently, for
the randomized response schemes

√

p(1 − p)s + 1/ǫ2 must be at most σ , and in
the indictment schemes 1/ǫ must be at most σ .

With these constraints in place, we can examine the trade-off between se-
curity, measured as the logarithm of the probability that the bond is claimed
(assuming no additional leakage by the pollster), and the size requirements
in the form of bins k or evidences n. In Figures 2, 3, and 4 we examine
these tradeoffs for data sets of sizes 103, 105, and 107, and standard deviation
requirements of 101, 102, and 103, respectively.

There are several important observations to make about the relative slopes
of the lines. First, the indictment schemes are linear, with slope equal to
(ǫ − w2

n/2), if the Chernoff bound is used, and (ǫ − ln 2) for wn = 1/2. These
slopes are independent of the size of the data set. On the other hand, the sim-
ple bound for randomized response does shift to the right as we increase the
noise and size of the data set. The more advanced bound stays put in the three
figures, as the ratio of variance (σ 2) to data set size is maintained. If the data
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Fig. 3. Data set of 100,000 elements, with required standard deviation 100.

Fig. 4. Data set of 10,00,000 elements, with required standard deviation 1, 000.

set and standard deviation were taken to unreasonable sizes, the advanced
bound would surpass the more naive one.

8. CONCLUSION

We have studied four data submission protocols that provide the ability to
offer publicly verifiable evidence of data leaks. This evidence is convincing
both in that actual leakage can be demonstrated, and in that a fraudulent
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indictment is highly unlikely to succeed in the absence of leakage. All four
protocols assume the presence of proactive bounty hunters who submit baits
to the data collector. Baits are indistinguishable from regular data but offer
irrefutable evidence of a data leak when one occurs.

Our four protocols differ in the properties they offer. The first protocol
allows for noninteractive bounty verification and relatively exact data collec-
tion. The second protocol uses a form of randomized response to collect data,
and allows every input to serve as a bait. The third and fourth protocols
permit the pollster to publicly disclose a limited amount of non-identifying in-
formation about the data collected, but they require an interactive indictment
process. The fourth protocol assumes a trusted party charged with reviewing
the indictments.

These four protocols demonstrate several desirable properties of a data
collection mechanism with self-enforcing privacy. We leave open the problem
of designing a protocol that offers all these properties simultaneously. Under-
standing which features are compatible with others, and which (if any) are
mutually exclusive, is an interesting direction for future research.
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